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Abstract

The use of high-power industrial equipment, such as large-scale mixing equipment
or a hydrocyclone for separation of particles in liquid suspension, demands careful
monitoring to ensure correct operation. The fundamental task of state-estimation
for the liquid suspension can be posed as a time-evolving inverse problem and solved
with Bayesian statistical methods. In this paper, we extend Bayesian methods to
incorporate statistical models for the error that is incurred in the numerical solution of
the physical governing equations. This enables full uncertainty quantification within a
principled computation-precision trade-off, in contrast to the over-confident inferences
that are obtained when all sources of numerical error are ignored. The method is
cast within a sequential Monte Carlo framework and an optimised implementation is
provided in Python.

Keywords: Inverse Problems, Electrical Tomography, Partial Differential Equations, Prob-
abilistic Meshless Methods, Sequential Monte Carlo
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1 Introduction

Hydrocyclones provide a simple and inexpensive method for removing solids from liquids,

as well as separating two liquids according to their relative densities (assuming equal fluid

resistances) (Gutierrez et al. 2000). They have widespread applications, including in areas

such as environmental engineering and the petrochemical industry (Sripriya et al. 2007).

In particular, they have few moving parts, can handle large volumes and are relatively

inexpensive to maintain. This makes them ideal as part of a continuous process in hazardous

industrial settings and contrasts with alternatives, such as filters and centrifuges, which are

more susceptible to breakdown and/or have higher running costs. The physical principles

governing the hydrocyclone are simple; a mixed input is forced into a cone-shaped tank at

high pressure, to create a circular rotation. This rotation forces less-dense material to the

centre and denser material to the periphery of the tank. The less-dense material in the

core can then be extracted from the top (overflow) and the denser material removed from

the bottom of the tank (underflow). This mechanism is illustrated in Fig. 1.

Continual monitoring of the hydrocyclone is essential in most industrial applications,

since the input flow rate is an important control parameter that can be adjusted to maximise

the separation efficiency of the equipment. Our focus in this work is on state estimation

for the internal fluid. Indeed, the high pressures that are often involved necessitate careful

observation of the internal fluid dynamics to ensure safety in operation (Bradley 2013).

1.1 Statistical Challenges

Direct observation of the internal flow of the fluids is difficult or impossible due to, for

example, the reinforced walls of the hydrocyclone and the opacity of the mixed component.

Under correct operation, the output (overflow and underflow) can be measured and tested
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Figure 1: A simplified schematic description of typical hydrocyclone equipment. (a) The

tank is cone-shaped with overflow and underflow pipes positioned to extract the separated

contents. (b) Fluid, a mixture to be separated, is injected at high pressure at the top of the

tank to create a vortex. Under correct operation, less-dense materials are directed toward

the centre of the tank and denser materials are forced to the peripheries of the tank.

for purity, but advanced indication of a potential loss of efficiency is desirable, if not essen-

tial in most industrial contexts. Such a warning allows for adjustment and hence avoidance

of impending catastrophic failure. One possible technique for monitoring the internal flow

is electrical impedance tomography (EIT). The target of an EIT analysis is the electrical

conductivity field a† of the physical object; the conductivities of different fluid components

will in general differ and this provides a means to measure the fluid constituents. This tech-

nique has many applications in medicine, as well as industry, as it provides a non-invasive

method to estimate internal structure from external measurements (the inverse problem)

(Gutierrez et al. 2000). Further, it is ideal for industrial processes as it is possible to collect

data at rates of several hundred frames per second, hence allowing real-time monitoring and

control of sensitive systems. However, the rapid acquisition of data requires equally rapid

analysis and the nature of EIT requires that low-accuracy approximations to the physical
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governing equations are needed to keep pace with incoming data in the monitoring context

(Hamilton & Hauptmann 2018). This is due to the computational demands that are posed

by the repeated solution of physical governing equations (the forward problem) in evalu-

ation of the statistical likelihood. However, in standard approaches, the error introduced

by a crude discretisation of the physical governing equations is not accounted for and may

lead to an over-optimistic view of the precision of results. This could lead to misleading

interpretations of the results and hence potentially dangerous mis-control; it is therefore

important to account for the presence of an unknown and non-negligible discretisation error

in interpretation of the statistical output.

1.2 Probabilistic Numerical Methods

Probabilistic numerics (Hennig et al. 2015) is an emergent research field that aims to

model the uncertainty in the solution space of the physical equations that arises when

the forward problem is only approximately solved. In contrast to conventional emulation

methods (Kennedy & O’Hagan 2001), which are extrusive in the sense that the physical

equations are treated as a black box, probabilistic numerical methods are intrusive and

seek to model the error introduced in the numerical solution due to discretisation of the

original continuous physical equations. Thus a probabilistic numerical method provides

uncertainty quantification for the forward problem that is meaningful, reflective of the

specific discretisation scheme employed, and enables a principled computation-precision

trade-off, where the presence of an unknown discretisation error is explicitly accounted

for by marginalisation over the unknown solution to the forward problem (Briol et al.

2018, Cockayne et al. 2017). This paper contributes a rigorous assessment of probabilistic

numerical methods for the Bayesian solution of an important inverse problem in industrial

process monitoring, detailed next.
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1.3 Our Contributions

The scientific problem that we consider is Bayesian state estimation for the time-evolving

conductivity field of internal fluid using data obtained via EIT. The Bayesian approach to

inverse problems is well-studied (Stuart 2010, Nouy & Soize 2014) and in particular the

application of statistical methods to EIT is now well-understood (Kaipio et al. 1999, 2000,

Watzenig & Fox 2009, Dunlop & Stuart 2016, Yan & Guo 2015, Aykroyd 2015, Stuart &

Teckentrup 2016) with sophisticated computational methods proposed (Kaipio et al. 2000,

Vauhkonen et al. 2001, Polydorides & Lionheart 2002, Schwab & Stuart 2012, Schillings

& Schwab 2013, Beskos et al. 2015, Chen & Schwab 2015, Hyvonen & Leinonen 2015,

Chen & Schwab 2016a,b,c). In this paper, probabilistic numerical methods are proposed

and investigated as a natural approach to uncertainty quantification with a computation-

precision trade-off, wherein numerical error in the approximate solution of the forward

problem is explicitly modelled and accounted for in a full Bayesian solution to the inverse

problem of interest. At present, the literature on probabilistic numerical methods for partial

differential equations consists of Owhadi (2015), Chkrebtii et al. (2016), Owhadi (2017),

Owhadi & Zhang (2017), Cockayne et al. (2016a,b), Conrad et al. (2017), Raissi et al. (2017).

This paper goes further than the most relevant work in Cockayne et al. (2016a,b), which

tackled Bayesian inverse problems based on EIT with probabilistic numerical methods, in

several aspects:

• The inversion problem herein is more challenging than the (static) problems consid-

ered in previous work, in that we aim to recover the temporal evolution of the true

unknown conductivity field a† based on indirect and noise-corrupted observations at

a finite set of measurement times. To address this challenge, a (descriptive, rather

than mechanistic) Markovian prior model a for the field is developed, which is shown
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to admit a filtering formulation (Todescato et al. 2017). This permits a sequential

Monte Carlo method (particle filter) to be exploited for efficient data assimilation

(Law et al. 2015).

• The filtering formulation introduces additional challenges due to the fact that nu-

merical (discretisation) error in solution of the forward problem will be propagated

through computations performed at earlier time points to later time points, as well

as the possibility that numerical errors can accumulate within the computations. A

detailed empirical investigation of the computation-precision trade-off is undertaken

based on the use of probabilistic numerical methods for solution of the EIT governing

equations.

• Real experimental data are analysed, generated by one of the present authors in

a controlled laboratory experiment. These data consist of 2,401 individual voltage

measurements taken at discrete spatial and temporal intervals over the boundary of

the vessel, and are used to demonstrate the efficacy of the approach under realistic

experimental conditions.

In particular, this paper constitutes one of the first serious applications of probabilistic

numerical methods to a challenging real-world problem, where proper quantification of

uncertainty is crucial.

1.4 Overview of the Paper

The structure of the paper is as follows: Sec. 2 contains the mathematical, statistical

and computational methodological development. Sec. 3 reports our experimental results

and Sec. 4 discusses their implications for further research and for future application to

industrial processes.

7



2 Methods

In Sec. 2.1 we introduce the physical model and make the inversion problem formal.

Then in Sec. 2.2 we recall the Bayesian approach to inversion, with an extension to a

time-evolving unknown parameter. Sec. 2.3 introduces probabilistic models for numerical

error incurred in discretisation of the physical governing equations. The final section, 2.5

develops a sequential Monte Carlo method for efficient computation.

2.1 Abstraction of the Inverse Problem

The physical equations that model the measurement process are presented below, following

the recent comprehensive treatment in Dunlop & Stuart (2016).

2.1.1 Set-Up

Consider a bounded, open domain D ⊂ R
d with smooth boundary denoted ∂D. Let

D̄ = D∪∂D. The domain represents a physical object and our parameter of interest is the

conductivity field a : D̄ → R of that object. Here a(x) denotes the conductivity at spatial

location x ∈ D̄. Consider m electrodes fixed to ∂D, the region of contact of electrode

i ∈ {1, . . . ,m} being denoted Ei ⊂ ∂D. A current stimulation pattern I = (Ii)
m
i=1 ∈ R

m

is passed, via the electrodes, through the object. Note that from physical conservation of

current we have
∑m

i=1 Ii = 0.

The electrical potential u : D̄ → R over the domain, induced by the current stimulation
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pattern, can be described by the following partial differential equation (PDE):

∇ · (a∇u) = 0 in D

∫

Ei
a∇u · ndσ = Ii

u = Ui on Ei

a∇u · n = 0 on ∂D \ ∪mi=1Ei.

(1)

Here n is the outward unit normal, which corresponds to the convention that Ii > 0 refers

to current flow out of the domain, and dσ represents an infinitesimal boundary element.

The quantities Ui on the electrodes Ei will constitute the measurements. Known as the

complete electrode model (CEM), this PDE1 was first studied in Cheng et al. (1989). For

a suitable fixed field a, existence of a solution u is guaranteed and, under the additional

condition that
∑m

i=1 Ui = 0, uniqueness of the solution u can also be established (Somersalo

et al. 1992). Thus the forward problem is well-defined.

The true conductivity field a† is considered to be unknown and is the object of interest.

In contrast to most work on EIT, in our context a† is time-dependent and we extend the

notation as a†(x, t) for, with no loss in generality, a time index t ∈ [0, 1]. In order to

estimate a†, measurements yj,k are obtained under distinct stimulation patterns Ij ∈ R
m,

j = 1, . . . , J , modelled as

yj,k = Pj,ku
† + ǫj,k ∈ R

m (2)

1The mathematical formulation in Eqn. 1 assumes, as we do in this work, that contact impedance at

the electrodes can be neglected. For the case of imperfect electrodes, the reader is referred to Aykroyd

(2018).
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where the projections

Pj,ku
† :=











u(xE1 ; Ij, a
†(·, tk))

...

u(xEm; Ij, a
†(·, tk))











are defined for each stimulation pattern j and each discrete time point tk, k = 1, . . . , n,

and the ǫj,k represent error in the measurement. Here u(·; I, a) denotes the solution of

the PDE with conductivity field a and stimulation pattern I, while xEi is a point central

to the electrode Ei. Thus u† = u(·; I, a†) is the solution of the PDE defined by the true

field a† and, for fixed j, k, the vector Pj,ku
† contains the quantities Ui in the CEM with

conductivity field a†(·, tk) and stimulation pattern I = Ij.

In the absence of further conditions on a†, the inverse problem is ill-posed. Indeed, the

infinite-dimensional field a† cannot be uniquely recovered from a finite dataset. (Recall the

seminal work of Hadamard (1902), who defined an inverse problem to be well-posed if (i) a

solution exists, (ii) the solution is unique, and (iii) the solution varies continuously as the

data are varied.) To proceed, the inverse problem must therefore be regularised (Tikhonov

& Arsenin 1977).

2.2 The Bayesian Approach to Inversion

In this section we exploit Bayesian methods to regularise the inverse problem (Stuart 2010).

Sec. 2.2.1 introduces the prior model, Sec. 2.2.2 casts posterior computation as a filtering

problem and Sec. 2.2.3 reviews mathematical analysis for numerical approximation of the

posterior that accounts for numerical error in the PDE solution method.
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2.2.1 Prior Model for the Conductivity Field

In this paper we interpret Eqn. 1 in the strong form, which in particular requires the

existence of ∇a† on D. This information will be encoded into a prior distribution: Let

{φi}
∞
i=1 be an orthonormal basis for a separable Hilbert space H with norm ‖ · ‖H . It is

assumed that H ⊂ C1(D̄), where Cm(S) is used to denote the set of m-times continuously

differentiable functions from S to R. Let (Ω,F ,P) be a probability space and for measurable

v : Ω → R denote Ev =
∫

vdP.

Model Assumption 1. Let α > 1/2 and ω ∈ Ω. Our prior model is expressed as a

separable Karhounen-Loéve expansion:

log a(x, t;ω) =
∞
∑

i=1

i−αψi(t;ω)φi(x)

where the ω 7→ ψi(·;ω) are modelled as independent Gaussian processes with mean functions

mψ,i and covariance functions kψ,i such that

mmax
ψ := sup

i∈N
sup
t∈[0,1]

|mψ,i(t)| <∞, kmax
ψ := sup

i∈N
sup
t∈[0,1]

kψ,i(t, t) <∞.

The logarithm is used to ensure positivity of the conductivity field, as is considered

standard in Bayesian approaches to (static) EIT (Dunlop & Stuart 2016). Henceforth the

probability argument ω ∈ Ω will be left implicit.

This prior construction ensures that ∇a exists in D. To see this, we have the following

result:

Proposition 1. For fixed t ∈ [0, 1], almost surely a(·, t) exists in C1(D̄).

Note that, in particular, this result justifies point evaluation of ∇a in the algorithms

that we present; since x 7→ ∇a(x, t) is almost surely continuous, such point evaluations are

almost surely well-defined. All proofs are reserved for Appendix A.
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This paper imparts weak prior assumptions, in the sense of smoothness, on the time-

evolution of the random field:

Model Assumption 2. The ψi are modelled as Brownian with mean functions mψ,i(t) = 0

and covariance functions kψ,i(t, t
′) = λmin(t+ τ, t′ + τ), for all t, t′ ∈ [0, 1], for some fixed

λ > 0 and τ ≥ 0.

This prior model allows for flexible and data-driven estimation of the temporal evolution

of the unknown conductivity field. At the same time, this choice allows estimation to be

cast as a filtering problem (see Sec. 2.2.2) due to the following important fact:

Proposition 2 (Due to Wiener (1949)). The increments ψi(t+ s)−ψi(t) are independent

with distribution N(0, λ(s+ τ)), for all 0 ≤ t ≤ t+ s ≤ 1.

An immediate consequence is that the field a(·, t) itself is a Markov process. To see

this, let

kφ(x, x
′) =

∞
∑

i=1

i−2αφi(x)φi(x
′).

For convenience, we let θ = log a in the sequel. Then:

Corollary 1. The increments θ∆(·) := θ(·, t+s)−θ(·, t) are independent Gaussian random

fields with mean function m∆(x) = 0 and covariance function k∆(x, x
′) = λ(s+ τ)kφ(x, x

′),

for all x, x′ ∈ D and all 0 ≤ t ≤ t+ s ≤ 1.

Let Γs denote the distribution of the increment θ∆ over the time interval [t, t + s].

The infinite-dimensional nature of the random variable θ∆ precludes the use of standard

density notation, due to the non-existence of a Lebesgue measure in the infinite-dimensional
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context (p.143 Yamasaki 1985). Instead, the distribution Γs is formalised through its

Radon-Nikodym derivative

dΓs
dγ

(θ∆) ∝ exp

(

−
1

2
‖θ∆‖

2
k∆

)

= exp

(

−
1

2λ(s+ τ)
‖θ∆‖

2
kφ

)

with respect to abstract Wiener measure γ (Gross 1967), where ‖·‖k denotes the Cameron-

Martin norm based on the covariance function k. The reader unfamiliar with Radon-

Nikodym notation is referred to the accessible introduction in Halmos & Savage (1949).

2.2.2 Formulation as a Filtering Problem

Denote θk = θ(·, tk). Then the directed acyclic graph representation of the conditional

independence structure of the statistical model (Lauritzen 1996) is as follows:

θ1 → θ2 → . . . → θn−1 → θn

↓ ↓ ↓ ↓

y·,1 y·,2 . . . y·,n−1 y·,n

Let Πn represent the posterior distribution over the conductivity field based on the data

y·,k for k ≤ n. Then statistical inference is naturally formulated as a filtering problem at

linear cost (Särkkä 2013, Todescato et al. 2017):

dΠn

dΠn−1

(θ) ∝ p(y·,n|I, θn).

Here the Radon-Nikodym notation has been used on the LHS, while p has the conventional

interpretation as a p.d.f. with respect to Lebesgue measure, here representing the likelihood

model specified by the distributional model for ǫj,k in Eqn. 2. The solution to the filtering

problem is the n-step posterior distribution:

dΠn

dΠ0

(θ) =
n
∏

k=1

dΠk

dΠk−1

(θ)
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where the reference measure Π0 is the prior distribution for the conductivity field given in

Assumption 1. From Prop. 2, the prior marginal on (θ1, . . . , θn), denoted Π0,1:n, can be

decomposed as follows:

dΠ0,1:n

d(γ × · · · × γ)
(θ1, . . . , θn) ∝

dΠ0,1

dγ
(θ1)

n
∏

k=2

dΓtk−tk−1

dγ
(θk − θk−1),

where γ × · · · × γ denotes the product of n abstract Wiener measures and the initial

distribution Π0,1 is computed as

dΠ0,1

dγ
(θ1) ∝ exp

(

−
1

2λ(t1 + τ)
‖θ1‖

2
kφ

)

as a direct consequence of Assumption 2. Later we use Πn,n+1 to denote the marginal

of Πn over the components θ(·, tn+1); the so-called posterior predictive distribution. This

is simply a convolution of Πn with the centred Gaussian field described in Cor. 1 and

is of industrial relevance since it allows anticipation of the future dynamics and thus for

intelligent hazard control.

2.2.3 Numerical Error and its Analysis

The likelihood model in Eqn. 2 depends on the projections Pj,ku which in turn depend on

the exact solution u(xEi ; Ij, a(·, tk)) of the PDE for given inputs Ij and a(·, tk). In general

the exact solution of the PDE is unavailable in closed-form and numerical methods are used

to obtain discrete approximations, for instance based on a finite element or collocation basis

(Quarteroni & Valli 2008). The assessment of the error introduced through discretisation is

well-studied, with sophisticated theories for worst-case and average-case errors and beyond

(Novak & Wozniakowski 2008, 2010).

Several papers have leveraged these analyses to consider the impact of discretisation er-

ror in the forward problem on the inferences that are made for the inverse problem (Schwab
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& Stuart 2012, Schillings & Schwab 2013, 2014, Nouy & Soize 2014, Bui-Thanh & Ghat-

tas 2014, Chen & Schwab 2015, 2016c,a, Nagel & Sudret 2016). These analyses all focus

on static inverse problems (i.e. for a single time point). However, the generalisation of

these theoretical results to the temporal context introduces considerable technical difficul-

ties. Indeed, the filtering formulation is such that error in an approximation of Π1 will be

propagated and lead to an error in the approximation of Πn whenever n ≥ 2. Numerical

approximation of Πn thus involves n− 1 sources of discretisation error and analysis in the

time-evolving setting must account for propagation and accumulation of these discretisa-

tion errors. However, standard worst-case error analyses (such as those listed above) are

inappropriate for temporal problems, since in general the worst-case scenario will not be

realised simultaneously by all numerical methods involved in the computational work-flow.

Presented with such an inherently challenging problem, our novel approach - described

in the next section - to model discretisation error as an unknown random variable and prop-

agate uncertainty due to discretisation through computation has appeal on philosophical,

technical and practical levels.

2.3 Probabilistic Numerical Methods

Recall that the exact solution u(·; a, I) to the PDE is unavailable in closed-form. In this

section we view numerical solution of Eqn. 1 not as a forward problem, but as an inverse

problem in its own right (called a sub-inverse problem in this work) and provide full

quantification of solution uncertainty that arises from the discretisation of this PDE via

a collocation-type method. Sec. 2.3.1 introduces a prior model for u while Sec. 2.3.2

completes the specification of this sub-inverse problem associated with solution of the

PDE. Then, Sec. 2.3.3 demonstrates how solution uncertainty can be propagated through

the original inverse problem by marginalisation over the unknown exact solution u of the
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PDE. Sec. 2.4 establishes theoretical properties of the proposed method.

2.3.1 Prior Model for the Potential Field

In this section we again adopt Bayesian methods to make the sub-inverse problem well-

posed. The chief task is to construct a prior for u, the potential field. In principle, the

physical governing equations, together with the prior for the conductivity field a, induce a

unique prior for the potential field. The relationship between these probabilities has been

explored in the context of stochastic PDEs; see Lord et al. (2014) for a book-length treat-

ment. However, the task of characterising (or even approximating) the implied distribution

on u is highly non-trivial2. For this reason, we follow Cockayne et al. (2016a,b) and treat

the two unknown fields as independent under the prior model. In particular, we encode

independence across time points into the prior model for u, a choice that is algorithmically

convenient. This allows us, in the following, to leave the time index implicit. This has a

natural statistical interpretation of encoding only partial information into the prior - and

can be both statistically and pragmatically justified (Potter & Anderson 1983).

To reduce notation in this and the following section, we consider a fixed conductivity

field a ∈ C1(D̄) and a fixed current stimulation pattern I ∈ R
m; these will each be left

implicit.

Model Assumption 3. The unknown solution u to Eqn. 1 is modelled as a Gaussian

process with mean function mu(x) = 0 and covariance function

ku(x, x
′) =

∫

k0u(x, z)k
0
u(z, x

′)dz (3)

such that k0u ∈ C2×2(D̄ × D̄) is a positive-definite kernel.

2In principle this is characterised by the Green’s function of the PDE, but if the Green’s function was

known we would not have needed to discretise the PDE.
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This minimal assumption ensures that, under the prior, the differential ∇ · (a∇u) is

well-defined over D. Indeed, in general:

Proposition 3. If k0u ∈ Cβ×β(D̄ × D̄) with β ∈ N, then almost surely u ∈ Cβ(D̄).

2.3.2 Probabilistic Meshless Method

Next we obtain a posterior distribution over the solution u to the PDE in Eqn. 1. In

particular this requires us to be explicit about the nature of our “data” for this sub-

inverse problem. The mathematical justification for our approach below is provided in the

information-based complexity literature on linear elliptic PDEs of the form Au = f on D,

Bu = g on ∂D (Werschulz 1996, Novak & Wozniakowski 2008, Cialenco et al. 2012). In

this framework, limited data fi = f(xAi ), gi = g(xBi ) are provided on the forcing term f and

the boundary term g; the mathematical problem is then optimal recovery of the solution u

from these data, under a loss function that must be specified. This is a particular example

of a linear information problem, since the fi and gi are linear projections of the unknown

solution u of interest; see Novak & Wozniakowski (2008) for a book length treatment.

The data with which we work, in the above sense, are linear projections obtained at

collocation points {xAi }
nA

i=1 ⊂ D and {xBi }
nB

i=1 ⊂ ∂D:

Liu := ∇ · a(xAi )∇u(x
A
i ) = 0 i = 1, . . . , nA

LnA+iu := a(xBi )∇u(x
B
i ) · n(x

B
i ) = 0 i = 1, . . . , nB

LnA+nB+iu :=
∫

Ei
a∇u · ndσ = Ii i = 1, . . . ,m.

Here L = [L1, . . . ,LnA+nB+m] is a linear operator from C2(D̄) to R
nA+nB+m. For a function

h(·, ·) ∈ C2×2(D̄ × D̄), in a slight abuse of notation, Lh will be used to denote action of

L on the first argument, while the notation L̄h denotes action on the second argument.
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The composition LL̄h is understood as a matrix with (i, j)th element LiL̄jh ∈ R. In

this notation, the data can be expressed as Lu = [0⊤, I⊤]⊤ where I = [I1, . . . , Im]
⊤. The

posterior over u is obtained by conditioning the prior measure on these data. Recall that

Pu = [u(xE1 ), . . . , u(x
E
m)]

⊤. For our purposes, it is sufficient to obtain the posterior over

the finite dimensional vector Pu:

Pu

∣

∣

∣

∣

∣

∣

Lu =





0

I



 ∼ N(µ,Σ)

µ = [PL̄ku][LL̄ku]
−1





0

I



 (4)

Σ = [PP̄ku]− [PL̄ku][LL̄ku]
−1[LP̄ku]

This distribution represents uncertainty due to the finite amount of computation that is

afforded to numerical solution of the PDE in Eqn. 1. Eqn. 4 was termed a probabilistic

meshless method in Cockayne et al. (2016a,b). Note that themaximum a posteriori estimate

µ is identical to the point estimate provided by symmetric collocation (Fasshauer 1996)

and this point estimator (only) was considered in the context of Bayesian PDE-constrained

inverse problems in Marzouk & Xiu (2009), Yan & Guo (2015). The point estimator µ

requires that the (nA+nB+m)-dimensional square matrix LL̄ku is inverted; since this is also

the computational bottleneck in computation of Σ, it follows that the probabilistic meshless

method has essentially the same computational cost as its non-probabilistic counterpart.

Considerable theoretical advances in the numerical analysis of these probabilistic numerical

methods (for static problems) have since been made in Owhadi (2017). For non-degenerate

kernels ku, the matrix LL̄ku is of full rank provided that no two collocation points are

coincidental.

The selection of collocation points can be formulated as a problem of statistical experi-
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mental design. Indeed, adaptive refinement strategies, that target an appropriate functional

of the posterior covariance Σ until a pre-specified tolerance is met, can be considered (see

Cockayne et al. 2016a). For brevity in this paper we simply considered the collocation

points to be fixed.

2.3.3 Marginal Likelihood

The natural approach to define a data distribution is through marginalisation over the

unknown solution u to the PDE. This marginalisation can be performed in closed form

under a Gaussian measurement error model:

Model Assumption 4. The measurement errors ǫj,k are independent N(0, σ2I).

Consider a stimulation pattern Ij applied at time tk ∈ [0, 1]. Define Pj,k = Pu(·; Ij, a(·, tk))

and denote by µj,Σj the output of the probabilistic meshless method (Eqn. 4) for the in-

put stimulation pattern Ij. Then the marginal distribution of the data yj,k, given the

measurement error standard deviation σ, admits a density as follows:

p∗(yj,k|Ij, a(·, tk), σ) =

∫

N(yj,k|Pj,k, σ
2I)N(Pj,k|µj,Σj)dPj,k

= N(yj,k|µj, σ
2I + Σj) (5)

where we have used the shorthand of N(·|µj,Σj) for the p.d.f. of N(µj,Σj). Eqn. 5 has

the clear interpretation of inflating the measurement error covariance σ2I by an additional

amount Σj to reflect additional uncertainty due to discretisation error in the numerical

solution of the PDE in Eqn. 1. This distinguishes the probabilistic approach from other

applications of collocation methods in the solution of Bayesian PDE-constrained inverse

problems, where uncertainty due to discretisation is ignored (Marzouk & Xiu 2009, Yan

& Guo 2015). Eqn. 5 also appears in the emulation literature for static problems (e.g.
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Calvetti et al. 2017). However, emulation methods treat the PDE as a perfect black-box

and, as a result, the matrices Σj obtained from emulation do not reflect the fact that the

PDE must be discretised3.

This paper proposes to base statistical inferences on the posterior distribution Π∗
n de-

fined recursively via

dΠ∗
n

dΠ∗
n−1

(θ) ∝ p∗(y·,n|I, exp(θn), σ), Π∗
0 = Π0.

In particular we will be most interested in the posterior predictive distribution Π∗
n,n+1

obtained with these probabilistic numerical methods, where discretisation uncertainty is

explicitly modelled. Unlike Πn,n+1, the posterior predictive distribution Π∗
n,n+1 can be

exactly computed, since it does not require the exact solution of the PDE.

2.4 Theoretical Properties

The theoretical analysis of Cockayne et al. (2016a) can be exploited to assess the consistency

of the probabilistic meshless method in Eqn. 4, in the case where the field a is fixed.

Define the fill distance h := min{hA, hB} where hA = supx∈Dmini ‖x − xAi ‖2 and hB =

supx∈∂Dmini ‖x− xBi ‖2. Then we outline the following result:

Proposition 4. Let Bǫ denote a Euclidean ball of radius ǫ > 0 centred on Pu in R
m,

where u is the true solution of the PDE and P was as previously defined. Then, under the

assumptions of Cockayne et al. (2016a), which include that H(k0u) is norm-equivalent to

the Sobolev space Hβ(D), then the mass afforded to R
m \ Bǫ in the posterior N(µj,Σj) is

O(ǫ−2h2β−4−d) for h > 0 sufficiently small.

3The typical usage of emulators is to reduce the total number of forward problems that must be solved.

This consideration is orthogonal to the present work and the two approaches could be combined.
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This result ensures asymptotic agreement between the probabilistic numerical approach

to the inverse problem and the (unavailable) exact approach based on the exact solution

of the PDE in Eqn. 1 in the limit h → 0 of infinite computation. Empirical evidence for

the appropriateness of the uncertainty quantification for static EIT experiments and finite

computation was presented in Cockayne et al. (2016a).

2.5 Computation via Sequential Monte Carlo

The log-normal prior on the conductivity field precludes a closed-form posterior. However,

the filtering formulation of Sec. 2.2.2 suggests a natural approach to computation based

on particle filters, otherwise known as sequential Monte Carlo (SMC) methods (Del Moral

2004).

Let Π0,1 ≪ Π′
0,1 where Π′

0,1 is a user-chosen importance distribution on C1(D̄) (and

could be Π0). The method begins with N independent draws θ
(1)
0 , . . . , θ

(N)
0 from Π′

0,1; each

draw θ
(i)
0 is associated with an importance weight

w
(i)
0 ∝

dΠ0,1

dΠ′
0,1

(θ
(i)
0 )

such that
∑N

i=1w
(i)
0 = 1. This provides an empirical approximation

∑N
i=1w

(i)
0 δ(θ

(i)
0 ) to the

prior marginal distribution Π0,1 that becomes exact as N is increased. Let t0 := t1. Then,

at each iteration n = 1, 2, . . . of the SMC algorithm, the following steps are performed:

1. Re-sample: Particles θ̃
(1)
n , . . . , θ̃

(N)
n are generated as a random sample (with replace-

ment) of size N from the empirical distribution
∑N

i=1w
(i)
n−1δ(θ

(i)
n−1).

2. Move: Each particle θ̃
(i)
n is updated to θ

(i)
n according to a Markov transition Mn−1

that leaves Π∗
n−1 invariant. (Details are provided in Appendix B.)
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3. Re-weight: The next set of weights are defined as

w(i)
n ∝ p∗(y·,n|I, exp(θ

(i)
n ), σ)

dΓtn−tn−1

dγ
(θ(i)n − θ̃(i)n )

and such that
∑N

i=1w
(i)
n = 1.

The output after n iterations is an empirical approximation
∑N

i=1w
(i)
n δ(θ

(i)
n ) to the posterior

distribution Π∗
n. The posterior predictive distribution Π∗

n,n+1 can be obtained from similar

methods, as

dΠ∗
n,n+1

dΠ∗
n

(θ) ∝
dΓtn+1−tn

dγ
(θn+1 − θn). (6)

The re-sample step in the above procedure does not in general need to occur at each

iteration, only when the effective sample size is small; see Del Moral (2004). Theoretical

analysis of SMC methods in the context of infinite-dimensional state spaces is provided

in Beskos et al. (2015). For this work we considered a fairly standard SMC method, but

several extensions are possible and include, in particular, stratified or quasi Monte Carlo

re-sampling methods (Gerber & Chopin 2015). One extension which we explored was

to introduce fictitious intermediate distributions between Π∗
n−1 and Π∗

n following Chopin

(2002), which we found to improve the performance of SMC in this context. For the

experiments reported in the paper, 100 intermediate distributions were used, defined by

tempering on a linear temperature ladder, c.f. Kantas et al. (2014), Beskos et al. (2015).

This completes our methodological development. Optimised Python scripts are avail-

able to reproduce these results at: https://github.com/jcockayne/hydrocyclone_code.

Next, we report empirical results based on data from a controlled EIT experiment.
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3 Results

This section considers data from a laboratory experiment designed to investigate the tem-

poral mixing of two liquids. The experiment was conducted by one of the present authors

and carefully controlled, to enable assessment of statistical methods and to mimic the

salient features of industrial hydrocyclone equipments.

3.1 Experimental Protocol

In the experiment, a cylindrical perspex tank of diameter 15cm and height 30cm was used

with a single ring of m = 8 electrodes, each measuring approximately 1cm wide by 3cm

high. The electrodes start at the bottom of the tank, with the initial liquid level exactly at

the top of the electrodes. Hence there is translation invariance in the vertical direction and

the contents are effectively a single 2D region, meaning that electrical conductivity can be

modelled as a 2D field. The experimental set-up is depicted in Fig. 2.

At the start of the experiment, a mixing impeller was used to create a rotational flow.

This was then removed and, after a few seconds, concentrated potassium chloride solution

was carefully injected into the tap water initially filling the tank. Data was then collected

at regular time intervals until it was assumed that the liquid had fully mixed. Further

details of the experiment can be found in West et al. (2005). These data were previously

analysed (with non-probabilistic numerical methods) in Aykroyd & Cattle (2007).

This experiment mimics the situation when a hydrocyclone moves from an in-control

regime to an out-of-control regime, in that initially there is a well defined core which

gradually disappears as the liquids merge together. Performing the experiment in the

laboratory allowed careful control of experimental conditions and, in particular, a lack

of electrical interference from other equipment. A similar experimental set-up for data-
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generation was recently employed in Hyvonen & Leinonen (2015).

There are several widely accepted data collection ‘protocols’ for EIT (Isaacson 1986).

A protocol specifies the sequence of electrodes that are used to create the electric field,

as well as the sequence of electrodes used to measure the resulting electric potential. In

this experiment the ‘reference protocol’ was used, where a drive current is passed between

a reference electrode and each of the other electrodes in turn allowing a maximum of

J = 7 linearly independent current patterns. For each current pattern, the U1, . . . , Um

were measured up to a common additive constant4, so that without loss of generality E1 is

the ‘reference’ electrode and U1 ≡ 0. This permits a total of 7× 7 = 49 measurements y·,k,

obtained at each time point tk in the experiment.

3.2 Experimental Results

The proposed statistical approach, based on probabilistic numerical methods, was used to

make inferences on the unknown conductivity field a† based on this realistic experimental

dataset.

The assumption that k0u has two continuous derivatives is sufficient for the prior to be

well-defined (Prop. 3). However, the theoretical result in Prop. 4 requires a more regular

kernel with at least β > 2 + d/2 (weak) derivatives to ensure contraction of the (static)

posterior. In reality, molecular diffusion implies that clear boundaries are not expected to

be present in the true conductivity field. Thus it is reasonable to assume that both the

conductivity field a and the electrical potential u will be fairly smooth in the interior D.

For these reasons, the kernels employed for experiments below were of squared-exponential

form, since this trivially meets all smoothness requirements, including smoothness of the

solution u in D.

4This reflects the fact that it is voltage that is actually measured, which is the difference of two potentials.

24



Figure 2: Experimental set-up: A cylindrical perspex tank containing tap water was stirred

before an amount of potassium chloride was injected. Electrodes positioned around the tank

measured voltages, which can be related through a partial differential equation to the inter-

nal conductivity field. The inverse problem consists of estimating the internal conductivity

field from the voltages that were measured. (Only the bottom ring of electrodes were used

for the data analysed in this paper.) Photo reproduced from West et al. (2005).

3.2.1 Static Recovery Problem

First, we calibrated our probabilistic numerical methods by analysing the static recovery

problem. This prior for θ was taken to be Gaussian, with a mean of zero and a squared-

exponential covariance function

ka(x,x
′) := ϕa exp

(

−
‖x− x

′‖22
2ℓ2a

)

where ϕa controls the magnitude of fields drawn from the prior, while the length-scale

ℓa controls how rapidly those functions vary. Since the main aim here is to assess the

probabilistic meshless method, rather than the performance at state estimation, we simply

fixed ϕa = 1 and ℓa = 0.3. Note that while it is common in EIT problems to use priors
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(a) nA + nB = 165 (b) nA + nB = 259

xA
i

xB
i

(c) nA + nB = 523

Figure 3: Typical sets of collocation points xAi and xBi that were used to discretise the

PDE.

which promote hard edges in drawn samples, owing to applications in medicine, here a

smooth prior is appropriate. For all experiments in this paper the parameter σ, that

describes technical measurement error, was set to σ = 1.0 based on analysis of a technical

replicate dataset. For the probabilistic meshless method, the prior model was centered and

a squared-exponential covariance function was used, with ϕu = 100 to match the scale of

measurements in the dataset, and ℓu = 0.211, a value chosen by empirical Bayes based

upon a high-quality reference sample. The collocation points were chosen on concentric

circles, as shown in Fig. 3 for increasing values of nA and nB.

For illustration, we first considered simulated data and a coarse collocation method

which did not model discretisation error. This was compared to a reference posterior,

obtained using a brute-force symmetric collocation forward solver with a large number of

collocation points. (Of course, it is impractical to use a large number of collocation points

in the applied context due to the associated computational cost.) The result, shown in

Fig. 4, was a posterior that did not contain the true data-generating field a† in its region
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Figure 4: Failure case: Here a small number nA + nB = 165 of collocation points was used

to discretise the PDE, but the uncertainty due to discretisation was not modelled. The

reference posterior distribution (grey) was compared to the approximation to the posterior

obtained when the PDE is discretised (blue) and the discretisation error is not modelled

(“Non-PN”). Projections onto principal components (PC) of the reference posterior are

displayed. It is observed that the approximated posterior is highly biased.

of support. This result was observed to be typical for nA + nB < 250 and motivates the

formal uncertainty quantification for discretisation error that is provided by probabilistic

numerical methods in this paper.

The experimental data used for this assessment were obtained as a single frame (time

point 14) from the larger temporal dataset. In Fig. 5(a) we show the posterior mean

estimate, together with its posterior variance, for a reference conductivity field generated
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Figure 5: Posterior means and standard-deviations for the recovered conductivity field.

The first column represents the reference solution, obtained using a symmetric collocation

forward solver with a large number of collocation points. The remaining columns repre-

sent the recovered field when probabilistic numerical methods are used based on nA + nB

collocation points as illustrated in Fig. 3.

using a high-quality symmetric collocation forward solver with nA + nB = 207 collocation

points. Adjacent, in Fig. 5 we show the posterior mean and variance for the conductivity

field obtained with probabilistic numerical methods for increasing values of nA + nB. It

is seen that both the posterior mean and posterior standard deviation produced with the

probabilistic numerical method converge to the reference posterior as the number of collo-

cation points is increased. However, at coarse resolution, the posterior variance is inflated

to reflect the contribution of an discretisation uncertainty to each numerical solution of the

forward problem. This provides automatic protection against the erroneous results seen in

Fig. 4.

In Fig. 6 we plot the number nA + nB of collocation basis points versus the integrated

posterior standard-deviation for the unknown conductivity field. These results demon-
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Figure 6: Posterior standard-deviation for the conductivity field, integrated over the domain

D, as a function of the number nA+nB of collocation points. The blue curve represents the

standard case where error due to discretisation of the PDE is not quantified (“Non-PN”)

whilst the red curve represents the case where a probabilistic numerical method is used to

provide uncertainty quantification for the PDE solution itself (“PN”).

strate the computation-precision trade-off that is made possible with probabilistic numer-

ical methods, and are consistent with the preliminary investigation in Cockayne et al.

(2016a,b). Next, we turn to the temporal problem that motivates this research.

3.2.2 Temporal Recovery Problem

For this experiment, data were obtained at 49 regular time intervals. Times 1-10 were

obtained before injection of the potassium chloride solution, while the injection occurred

rapidly, between frames 10 and 11. The remaining time points 12-49 capture the diffusion

and rotation of the liquids, which is the behaviour that we hope to recover.

The parameter λ controls the temporal smoothness of the conductivity field in the

prior model. Three fixed values, λ ∈ {10, 100, 1000} were considered in turn, representing
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Figure 7: Posterior mean for the conductivity field a(·, t), shown as a function of the time

index. Here we consider the dependence of the recovered field on the choice of the temporal

covariance parameter λ. The value nA + nB = 209 was used.

decreasing levels of smoothness. The case of no temporal regularisation was also displayed.

Our method was applied to estimate the time-evolution of the field. Results are shown

in Fig. 7. The counter-clockwise rotation of the fluid was first clearly seen for λ = 100,

whilst the value λ = 10 represented too much temporal regularisation, which caused this

information to be lost. On the other hand, the predictive posterior in Eqn. 6 is trivial in

the limit of large λ, so that in our context smaller values of λ are preferred. It is expected

that an analogous calibration can be performed in the real-world context.

To assess whether the problems of bias and over-confidence due to discretisation can be

mitigated in the temporal context, where discretisation errors are propagated and accumu-

late over time, we fixed λ = 100 and inspected the posterior over the coefficients ψi at the

final time point tn. Results in Fig. 8 confirmed that the posterior Π∗
n (red) was inflated
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Figure 8: Posterior distribution over the coefficients ψi, at the final time point tn. Here

a small number nA + nB = 165 of collocation points was used to discretise the PDE. The

reference posterior distribution (grey) was compared to the approximation to the posterior

obtained when discretisation of the PDE is not modelled (“Non-PN”) and modelled (“PN”).

Projections onto principal components (PC) of the reference posterior are displayed.

relative to the standard approximate posterior (blue) and tended to cover more of the true

posterior Πn (grey) in its effective support. This provides empirical evidence to support

the use of the proposed posterior Π∗
n.

In Fig. 9 we again plot the number nA + nB of collocation basis points versus the

integrated posterior standard-deviation for the unknown conductivity field, again at the

final time point. These results demonstrate a computation-precision trade-off similar to

that which was observed for the static recovery problem. Compared to the static recovery
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Figure 9: Temporal recovery problem: (a) Posterior standard-deviation for the conductiv-

ity field a(·, tn) at the final time point tn, integrated over the domain D. (b) Computational

time required by the proposed method, relative to the (non-probabilistic) symmetric collo-

cation method applied on a resolved grid.

problem in Fig. 6, however, we observed greater inflation of the posterior standard devia-

tion when probabilistic numerical methods were used. This reflects the fact that we have

constructed a full probability model for the effect of discretisation error, which is able to

capture how these errors propagate and accumulate within the computational output.

4 Discussion

The motivation for this research was industrial process monitoring, but the associated

methodological development was general. In particular, we addressed the important topic

of how to perform uncertainty quantification for numerical error due to discretisation of

the physical governing equations specified through a PDE. Typically this source of error is
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ignored, or its contribution bounded through detailed numerical analysis, such as Schwab &

Stuart (2012). However, in the temporal setting, theoretical bounds are difficult to obtain

due to propagation and accumulation of errors, so that it is unclear how to proceed.

In this work we proposed a statistical solution, wherein a probabilistic numerical method

was used to provide uncertainty quantification for the discretisation error associated with a

collocation-type numerical method. Aided by sequential Monte Carlo sampling methods, it

was shown how this model for discretisation uncertainty can be employed in the temporal

context. The result was a more comprehensive quantification of uncertainty, that accounts

for both statistical uncertainty and for propagation and accumulation of discretisation

uncertainty in the final output. For our motivating industrial application, this work is

expected to facilitate more reliable anticipation and pro-active control of the hydrocyclone,

to ensure safety in operation (Bradley 2013). Beyond that, it is anticipated that the

mitigation of bias and over-confidence observed in our experimental results is a feature of

probabilistic numerical methods in general.

The methods that we pursued differ in a fundamental sense to techniques that seek to

emulate the forward model. Emulation, as well as dimension reduction methods, have been

widely used in static recovery problems to reduce the computational cost of repeatedly

solving the governing PDE (Marzouk et al. 2007, Marzouk & Najm 2009, Cotter et al.

2010, Schwab & Stuart 2012, Cui et al. 2016, Chen & Schwab 2016c,b). Notably Stuart &

Teckentrup (2016), Calvetti et al. (2017) considered integrating the emulator uncertainty

into inference for model parameters. However, to train an emulator it is usually required

to have access to a training set of parameters a for which the exact solution u of the PDE

is provided. Thus the focus of emulation is related to generalisation in the a domain, as

opposed to quantification of discretisation uncertainty in the u domain. An interesting

extension of this work would be to combine these two complementary techniques; this
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would be expected to reduced the computational cost of the proposed method.

The principal limitation of our approach was that a Markov temporal evolution of the

conductivity field a(·, t) was assumed. Physical consideration suggest that the Markov as-

sumption is incorrect, since time-derivatives of all orders of this field will vary continuously

and thus encode information that is useful. However, it is not clear how this information

can be encoded into a prior for the temporal evolution of the conductivity field whilst

preserving the computationally convenient filtering framework. On the other hand, the

Markov prior can be statistically justified in that it represents an encoding of partial prior

information (Potter & Anderson 1983). It remains a problem for future work to investigate

the potential loss of estimation and predictive efficiency as a result of encoding only partial

information into the prior model.

The second limitation we highlight is that the prior model for the potential field u(·, t)

did not include a temporal component. This choice was algorithmically convenient, as

it de-coupled each of the forward problems of solving the PDE, such that each time a

probabilistic numerical method was called, it could be implemented “out of the box”.

Nevertheless, a temporal covariance structure in the parameter a implies that there also

exists such structure in u and the effect of not encoding this aspect of prior information

should be further investigated.

Overall, we are excited by the prospect of new and more powerful methods for uncer-

tainty quantification that can deal with both statistical and discretisation error in a unified

analytical framework.
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A Proof of Results in the Main Text

Proof of Proposition 1. Let L2
H = {v : D̄ × Ω → R s.t. E‖v‖2H < ∞}, which is a Banach

space with norm (E‖ · ‖2H)
1/2; see section 2.4 of Dashti & Stuart (2016). Following Thm.

2.10 in Dashti & Stuart (2016), consider the partial sums

log aN(·, t) =
N
∑

i=1

i−αψi(t)φi(·).

For N > M we have

E‖ log aN(·, t)− log aM(·, t)‖2H = E

N
∑

i=M+1

i−2α|ψi(t)|
2

≤

N
∑

i=M+1

i−2α[(mmax
ψ )2 + kmax

ψ ]

≤ [(mmax
ψ )2 + kmax

ψ ]
∞
∑

i=M+1

i−2α.

Since α > 1/2, the RHS vanishes as M → ∞. Thus, as L2
H is a Banach space, log a(·, t)

exists as an L2
H limit. It follows that log a(·, t), and hence a(·, t), takes values almost surely

in C1(D̄).

Proof of Corollary 1. From direct algebra:

θ∆(x) = θ(x, t+ s)− θ(x, t) =
∞
∑

i=1

i−α[ψi(t+ s)− ψi(t)]φi(x)

=
√

λ(s+ τ)
∞
∑

i=1

i−αξiφi(x)
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where the ξi are independent N(0, 1). From the Karhounen-Loéve theorem (Loève 1977),

this is recognised as a Gaussian random field with mean functionm∆(x) = 0 and covariance

function

k∆(x, x
′) = λ(s+ τ)

∞
∑

i=1

i−2αφi(x)φi(x
′)

= λ(s+ τ)kφ(x, x
′),

as claimed.

Proof of Proposition 3. Let H(k) denote the reproducing kernel Hilbert space associated

with a kernel k. In Cialenco et al. (2012), Lemma 2.2, it was established that a generic

integral-type kernel ku, as in Eqn. 3, corresponds to the covariance function for a Gaussian

process that takes values almost surely in H(k0u). To complete the proof, Corr. 4.36

(p131) in Steinwart & Christmann (2008) establishes that if k0u ∈ Cβ×β(D̄ × D̄) then

H(k0u) ⊂ Cβ(D̄).

Proof of Proposition 4. Let µ(x) and σ(x) denote, respectively, the posterior mean and

standard deviation of u(x) under the probabilistic meshless method. Prop. 4.1 of Cockayne

et al. (2016a) established that the posterior mean µ(x) satisfies |µ(x)−u(x)| ≤ σ(x)‖u‖H(ku)

and Prop. 4.2 of Cockayne et al. (2016a) established that the posterior standard deviation

σ(x) satisfies σ(x) ≤ Chβ−2−d/2 for some constant C independent of x ∈ D. In particular

we have ‖µj−Pu‖2 = O(hβ−2−d/2). Lastly, Thm. 4.3 of Cockayne et al. (2016a) established

a generic rate of contraction for the mass of a Gaussian distribution of O(ǫ−2h2β−4−d), as

required. (Note that these results are specific consequences of more general results found

in Lem. 3.4 in Cialenco et al. (2012) and Secs. 11.3 and 16.3 of Wendland (2005).)

36



B Details of the Markov Kernel Used

This appendix contains a description of the Markov transition kernel that was used. Indeed,

for the Markov transition kernel Mn−1 used in the Move step in Section 2.5, we employed

the pre-conditioned Crank–Nicholson method. This will now be described.

Let Π be a probability distribution on a measurable space (Θ,B), such that the Radon-

Nikodym derivative dΠ/dΠ0 is well-defined for a fixed reference distribution Π0. Recall that

a Markov transition kernel M which leaves Π invariant is a function M : Θ × B → [0, 1]

such that

1. the map θ 7→M(θ, B) is B-measurable for all B ∈ B

2. the map B 7→M(θ, B) is a probability measure on (Θ,B) for all θ ∈ Θ

3. invariance; Π(B) =
∫

M(θ, B)dΠ(θ) for all B ∈ B.

The pre-conditioned Crank–Nicholson method (with step size β ∈ (0, 1))

θ∗ :=
√

(1− β2)θ + βξ, ξ ∼ Π0

θnew =







θ∗ with probability α(θ, θ∗) = min
{

1, dΠ
dΠ0

(θ∗)/ dΠ
dΠ0

(θ)
}

θ otherwise

for generating the next state θnew of the Markov chain, given the current state is θ, corre-

sponds to a Markov transition kernel

M(θ, B) =

∫

1[θ∗ ∈ B]α(θ, θ∗) + 1[θ ∈ B](1− α(θ, θ∗))dΠ0(ξ)

that leaves Π invariant. The associated Markov chain has been shown to have non-vanishing

acceptance probability when Θ is a Hilbert space and Π0 is a Gaussian distribution (Thm.

6.4 of Cotter et al. 2013). This was the Markov transition kernel that we employed, with
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β tuned to achieve an acceptance rate of between 10%–25%, Θ being the state space of θn

and Π0 being the prior Π0,1, defined in the main text. Nevertheless, it is not the unique

Markov transition kernel that could be used; see Cotter et al. (2013) for several examples

of Markov transition kernels that are well-defined in the Hilbert space context.
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