
Journal Pre-proof

Fully probabilistic deep models for forward and inverse problems in parametric PDEs

Arnaud Vadeboncoeur, Ömer Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami and
Fehmi Cirak

PII: S0021-9991(23)00464-3

DOI: https://doi.org/10.1016/j.jcp.2023.112369

Reference: YJCPH 112369

To appear in: Journal of Computational Physics

Received date: 14 December 2022

Revised date: 5 July 2023

Accepted date: 10 July 2023

Please cite this article as: A. Vadeboncoeur, Ö.D. Akyildiz, I. Kazlauskaite et al., Fully probabilistic deep models for forward and inverse
problems in parametric PDEs, Journal of Computational Physics, 112369, doi: https://doi.org/10.1016/j.jcp.2023.112369.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and
formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and
review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal
pertain.

© 2023 Published by Elsevier.

https://doi.org/10.1016/j.jcp.2023.112369
https://doi.org/10.1016/j.jcp.2023.112369

Highlights

• We introduce a fully probabilistic approach to simultaneously learn the parameter-to-solution (forward) and solution-to-parameter (in-
verse) maps of parametric PDEs.

• The learning of the forward and inverse maps is posed as an inference problem using a proposed probabilistic model.
• In the probabilistic model, the PDE residual is an observed random variable with zero mean and user-prescribed variance.
• The evidence, or marginal likelihood, for observing a zero valued residual is maximized by considering the evidence lower bound

(ELBO) or, equivalently, the Kullback-Leibler divergence.
• The unknown random forward and inverse maps are approximated as Gaussian distributions with a mean and covariance parameterized

by neural networks.
• The proposed model is, after training, suitable for real-time solutions of the forward and inverse problems.

Fully probabilistic deep models for forward and inverse problems
in parametric PDEs

Arnaud Vadeboncoeura, Ömer Deniz Akyildizb, Ieva Kazlauskaitea, Mark Girolamia,c, Fehmi Ciraka

aDepartment of Engineering, University of Cambridge, 7a JJ Thomson Avenue, Cambridge, CB3 0FA, U.K.
bDepartment of Mathematics, Imperial College, Exhibition Rd, London, SW7 2AZ, U.K.

cThe Alan Turing Institute, 96 Euston Rd, London, NW1 2DB, U.K.

Abstract

We introduce a physics-driven deep latent variable model (PDDLVM) to learn simultaneously parameter-to-solution

(forward) and solution-to-parameter (inverse) maps of parametric partial differential equations (PDEs). Our formula-

tion leverages conventional PDE discretization techniques, deep neural networks, probabilistic modelling, and vari-

ational inference to assemble a fully probabilistic coherent framework. In the posited probabilistic model, both the

forward and inverse maps are approximated as Gaussian distributions with a mean and covariance parameterized by

deep neural networks. The PDE residual is assumed to be an observed random vector of value zero, hence we model

it as a random vector with a zero mean and a user-prescribed covariance. The model is trained by maximizing the

probability, that is the evidence or marginal likelihood, of observing a residual of zero by maximizing the evidence

lower bound (ELBO). Consequently, the proposed methodology does not require any independent PDE solves and is

physics-informed at training time, allowing the real-time solution of PDE forward and inverse problems after training.

The proposed framework can be easily extended to seamlessly integrate observed data to solve inverse problems and

to build generative models. We demonstrate the efficiency and robustness of our method on finite element discretized

parametric PDE problems such as linear and nonlinear Poisson problems, elastic shells with complex 3D geometries,

and time-dependent nonlinear and inhomogeneous PDEs using a physics-informed neural network (PINN) discretiza-

tion. We achieve up to three orders of magnitude speed-up after training compared to traditional finite element method

(FEM), while outputting coherent uncertainty estimates.

Keywords: Physics-Informed Generative Models, Latent Variable Model, Variational Inference, Neural Networks,

Finite Elements, Weighted Residuals

Email address: av537@cam.ac.uk (Arnaud Vadeboncoeur)

Preprint submitted to Journal of Computational Physics July 12, 2023

1. Introduction

Partial differential equations (PDEs) are central pillars of many fields of science and engineering. They are typ-

ically nonlinear and depend on parameters which modulate their behavior, allowing them to describe a wide range

of physical and operational conditions. It is thus of great interest to solve PDEs for a range of parameters to obtain

numerical simulations of various scenarios. This amounts to solving the PDE for a fixed parameter and is termed

forward problem, for which an extensive number of solution techniques are available, including finite element method

(fem), finite volumes, finite differences, and spectral methods [1, 2]. These methods provide a way to move from a

parameter to the solution, thus a parameter-to-solution map. The forward problem might be challenging to solve

when the PDE is high-dimensional or nonlinear, requiring the numerical methods to have high precision, resulting in

a heavy computational burden. On the other hand, given the experimental data of a certain phenomenon, it is often of

interest to infer the associated unknown parameters from the experimental data to determine the parameter regimes of

the observed system, a setting which is termed the inverse problem [3]. Recent growing interest in inverse problems

is driven by the increased availability of sensor data in science and engineering and advances in machine learning

(ML) in exploring high-dimensional spaces. Inverse problems are typically more difficult than forward problems due

to under-specification, meaning that small errors in observations may lead to large errors in the model parameter, and

the parameters explaining the observations may not be unique. This is particularly true in the presence of observation

noise and missing physics [4], and high-dimensional parameter spaces [5, 6].

More specifically, many modern engineering design scenarios require computationally expensive FEM solvers,

limiting the amount of experimentation possible within a given time frame/computational budget. Being able to

emulate both the forward and the inverse maps allows the practitioners to explore a variety of designs and experimental

setups efficiently. For example, given a specific modeling problem (e.g. the design of a thin-shell car body) with known

governing equations, a designer needs to find the best set of parameters (e.g. material properties, geometry, boundary

conditions) to obtain a product with desired properties (e.g. a structure that does not buckle under a given load).

An efficient forward solver allows exploring numerous designs by varying the parameters; this generative process

(of proposing design parameters and producing corresponding solutions) would be prohibitively expensive using

standard FEM solvers as it requires expensive Assemble and Solve operations. In addition, observational data may be

available for existing designs (either from experiments or high-fidelity simulations) and need to be incorporated into

the framework.

1.1. Contributions

Our goal in this paper is to solve simultaneously the forward and inverse problems over a range of parameters,

while at the same time building an interpretable, physically meaningful low-dimensional latent space of PDE parame-

ters while providing uncertainty quantification (UQ). Such uncertainty quantification is of great value when modeling

parametric PDEs in the forward direction through surrogates because we want to understand the distribution of model

2

confidence between solve instances and within solution domains. UQ in the approximating posterior distributions in

inverse problems is also of central importance due to the ill-posedness of many problems [4]. Most importantly, the

Bayesian view in modeling PDEs gives us a principled framework to combine machine learning-based methods with

classical numerical schemes in a coherent and reasoned manner and has allowed us to construct a model whereby

we can train surrogates to jointly learn a variety of probabilistic maps. To achieve this, we develop a probabilistic

formulation called physics-driven deep latent variable models (pddlvm) and uniquely blend techniques from numerical

solutions of PDEs, deep learning, and probabilistic ML. Notably, the training of the method is free from the costly

forward solve operations; in other words, we do not need to generate PDE solutions to act as training data.

To summarize, we propose a method that (i) simultaneously learns deep probabilistic parameter-to-solution

(forward) and solution-to-parameter/observation-to-parameter (inverse) maps, (ii) is free from PDE for-

ward numerical solve operations, (iii) uses the Bayesian view [4] of regularizing the inverse problem to address their

inherent ill-posedness while calibrating model uncertainty in the forward direction, and (iv) allows for the incorpora-

tion of various neural networks (NNs) tailored to parametric PDEs (such as physics-informed neural networks (pinn)s

[7], neural operators [8–11]) into a coherent probabilistic framework. We demonstrate this last point by showing that

we can embed a pinn network into our variational family; thus our framework also allows for any architecture to be

converted into a probabilistic method.

1.2. Related Work

The challenges associated with forward and inverse parametric PDE problems led to a proliferation of ML-based

techniques that aim to aid the forward simulation of physical processes given some parameters and the estimation

of parameters that cannot be directly observed (see, e.g., [12–14]). Although the early approaches were primarily

based on training ML methods, such as random forests and deep NNs, on observed or simulated physical data [15]

and discovering governing physics laws from the data [16], recent methods focus on ML approaches where physics

is an integral part of the model. This is achieved through physics informed loss functions that combine the exist-

ing PDE-based parameterizations of physical processes with observed/simulated data [17], or through differentiable

physics [7, 18, 19]. The exceptional success of these methods brought tremendous attention to the emerging field of

physics-informed machine learning [14, 20]. We summarize some of these advances and their relevance to our work

below.

Physics-informed neural networks (pinn) and related methods. pinn-based methods [7, 14, 21–24] convert the

PDE formulation into a loss function with either hard or soft constraints [25, 26]. Most of these methods are based

on point-wise evaluation of losses and may struggle to handle complex geometries; see, e.g., [27], for treatment of

complex meshes. As loss-based models, pinns are not inherently probabilistic, unlike the method we develop in the

current paper.

3

Learning Forward and Inverse PDE maps. An alternative approach is to learn mappings between parameters/ini-

tial/boundary conditions to solutions, typically requiring parameter-to-solution (i.e. input-output) pairs in a supervised

setting [9, 10, 28–32] which may be unavailable or costly. Further extensions consider the unsupervised case [33, 34],

and couple the model with fem [35].

Probabilistic approaches. Probabilistic formulations of PDE-informed models vary from supervised approaches [36]

and mixed semi-supervised formulations [37], to uncertainty quantification procedures based on convolutional neural

networks (CNN) [38] to Gaussian processes combined with fem [39–42]. The most relevant to our work are [43, 44]

where the authors introduce the weighted residual method (which is a generalization of many classical numerical

methods for PDEs [45–50]), and treat the residual term as a pseudo-observation [44]. This approach, however, dif-

fers from our framework in that we learn the direct mappings between the parameters and the solutions, while [44]

introduces an intermediate low-dimensional embedding that is not readily interpretable. Other related approaches

consider flow-based probabilistic surrogates [51]. There are also techniques that use normalizing flows for solving

stochastic differential equations in the inverse and forward direction [52]. Another line of work integrates physical

and deterministic models within variational autoencoders (VAEs). Some of these models focus on the construction of

efficient regularized inverse maps [53, 54], while others construct additional latent spaces and relate them to physical

observations [55, 56]. Related to this line of work, [57] learn disentangled latent representations of physical pro-

cesses. Among these, the most relevant to our work is the physics-integrated VAE [58], which introduces physics

knowledge into a VAE framework. However, our approach is markedly different, as we approximate both forward

and inverse maps for parametric PDEs and propose a different variational formulation that constructs a latent space

directly characterizing both the solution and the parameters of the physical models.

2. Parametric PDEs and their Discretization

We are interested in PDEs defined on a domain Ω with boundary ∂Ω, generalized as

Gz(u, x) = f (x), for x ∈ Ω ⊂ Rd, (1a)

Bz(u, x) = 0, for x ∈ ∂Ω, (1b)

where d ∈ {1, 2, 3}, Gz and Bz are (possibly) nonlinear operators that describe the PDE and its boundary conditions,

respectively, u(x) is the solution field, f (x) is the source field, and z(x) is a parameter of the PDE such as the diffusivity

field or a scalar like the wave speed. In the following, we first describe a general way to derive different numerical

solution schemes and then introduce fem and pinns.

4

2.1. Weighted Residual Method

The method of weighted residuals provides a convenient framework for the derivation of many well-known PDE

discretization techniques [45, 48–50]. Given a PDE of the form (1), we first define the domain residual

R(u, z, f , x) := Gz(u, x) − f (x). (2)

For the sake of brevity, in the following the boundary term (1b) is omitted, i.e. it is assumed to be satisfied. We

then, multiplying by some arbitrary weight function w(x) and integrating over the domain, obtain a weighted residual

functional,∫
Ω

w(x) (Gz(u, x) − f (x)) dx =

∫
Ω

w(x)R(u, z, f , x)dx. (3)

Next we choose a set of test functions w1:n(x) against which we will be integrating the residual. We further pose

that û(x) is the approximant of the solution field u(x). The form of the relationship between the function û(x) that is

defined everywhere on Ω and the vector u describing û(x) depends on the approximation technique chosen. Similarly,

we pose that the PDE parameter field z(x) and forcing field f (x) are represented by the approximants ẑ(x) and f̂ (x).

We then assemble the resulting discrete system of equations into a vectorized form

Az(u) =

[∫
Ω

wi(x)Gẑ(û, x)dx
]

i=1:n
, (4a)

fWR =

[∫
Ω

wi(x) f̂ (x)dx
]

i=1:n
. (4b)

Here, Az : Rn → Rn is a discretized nonlinear mapping of the differential operator. It allows us to express our

discrete residual compactly as

r := Az(u) − fWR, (5)

with r,u, fWR ∈ Rn. This residual description is agnostic to the particular method of discretization used in practice.

2.2. Finite Elements and Parameterizations

It is key to leverage the advantages of various discrete representations of solution fields when constructing prob-

abilistic emulators for the solution of physics problems. Finite elements expansions provide flexible function repre-

sentations which are versatile, but tend to be very high dimensional. By making use of a low dimensional spectral

Chebyshev representation of solution fields we can reduce the number of degrees of freedom necessary to describe

smooth solutions. Spectral expansions can easily be projected onto arbitrary finite element meshes which is a key

characteristic when constructing physics emulators as we typically wish to be mesh independent. We describe the

various representations of u(x) as through mappings π as

u 7→
πCH

uFE 7→
πFE

û(x), (6)

5

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

T0(x)

T1(x)

T2(x)

T3(x)

T4(x)

(a) Spectral Chebyshev basis functions Ti(x)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(b) Local fem linear basis functions φi(x)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

π
C

H
(u
,x

)

(c) Spectral Chebyshev function
∑

i Ti(x)ui

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

π
F

E
(u

F
E
,x

)

uFE = π
CH

(u, x1:10)

û(x)

(d) 10 node fem linear interpolation

Figure 1: In (a) we show 5 Chebyshev basis function, in (b) 10 linear fem basis functions, in (c) a function composed of 5 Chebyshev basis functions

and in (d) its interpolation using 10 linear fem basis functions. We can see that we require many more terms in a linear interpolation to approximate

smooth functions.

where u denotes the spectral representation of solution fields and uFE are the finite element coefficients. The mapping

πCH is a Chebyshev mapping of the spectral coefficients to a set of spatial locations x1:n, given by

uFE = πCH (u, x1:n) =

∑
i

Ti(x j)ui

j=1:n

, (7)

where Ti(x) is the ith Chebyshev polynomial. We use a finite element expansion as the approximant solution field

û(x) = πFE (uFE, x) =
∑

i

φi(x)uFE
i , (8)

where φ(x) the fem basis functions. In a Bubnov-Galerkin approach we pose wi(x) = φi(x). The coefficients ui on the

boundaries ∂Ω are chosen to respect the (Dirichlet) boundary conditions. The mesh allows us to both define the basis

functions and describe the geometry of the domain Ω. We use integration by parts to obtain the weak form of (3) prior

to finite element discretization [59].

6

It is similarly advantageous to represent our parameter field z(x) through a spectral approximation

z 7→
πCH

ẑ(x), (9)

which is chosen to be a spectral parameterization as

ẑ(x) = πCH (z, x) =
∑

i

Ti(x)zi. (10)

We parameterize forcing fields in a similar way to the solution fields through

f 7→
πCH

fFE 7→
πFE

f̂ (x), (11)

each mapping is then given as

fFE = πCH (f, x1:n) =

∑
i

Ti(x j) fi

j=1:n

, (12a)

f̂ (x) = πFE (fFE, x) =
∑

i

φi(x) f FE
i , (12b)

where we use (4b) to map fFE to fWR through f̂ (x) to be used in (5). These various parameterizations allow us to

represent solution fields, parameter fields, and forcing fields in a fem mesh invariant manner. We show in Fig 1 a

representation of 5 spectral Chebyshev basis functions and 9 fem elements and their local basis functions as well as

the interpolation of a Chebyshev function by fem basis functions.

2.3. Physics Informed Neural Networks (PINNs)

To construct a physics informed neural network the trial solution û(x) is chosen to be the output of a neural network

and the spatial locations x are the input. To evaluate the residual (2), we take the relevant gradients of the trial solution

on a grid of (collocation) points and construct the discretized differential equation according to (5) and (4). More

specifically, we define a mapping πNN between the approximant and the discrete representation of the solution field as

u 7→

πNN

û(x1:n). (13)

More precisely, we have u = πNN (û, x1:n) where

πNN (û, x1:n) = [û(x1), . . . , û(xn)],

with x1:n is a collection of fixed equidistant collocation points, and

û(x) = (`l ◦ . . . ◦ `i ◦ . . . ◦ `0)(x). (14)

Here, `i(x) = σ(Wix + bi) and W is a matrix of learnable weights, b is a vector of learnable biases and σ is a chosen

activation function. In this work we only look at PINN implementations with fixed grids. Others works such as [60]

7

r

z

β-netu f

(a)

u

α-netz f

(b)

Figure 2: (a) The probabilistic graphical model with the inverse (β) neural network, where the double rings indicate that r is an observed vector.

(b) The probabilistic graphical model with the forward (α) neural network.

look at random grid methods, but this is out of the scope of this current work. The framework could be extended to

incorporate repeatedly sampled random grids.

In this work we are interested in PINNs for parametric PDEs. For this we pass PDE parameter z and forcing term

f as inputs along with the spatial evaluation coordinate. To enforce boundary conditions in this framework a second

residual is constructed involving the boundary term (1b) and added in a weighted manner to the PDE residual. In our

framework, we keep the boundary residual in vectorized form and append it to the domain residual.

3. Deep Probabilistic Models for Parametric PDEs

FEM and PINNs allow to solve the well-posed forward problem for fixed PDE parameters. In settings that require

the solution to PDEs for a variety of parameters, the use of either method can be computationally very expensive. On

the other hand, the problem of finding z given some components of u (the inverse problem) may be ill-posed and is

generally a harder problem. Solving inverse problems for large collections of observations pertaining to different PDE

instances is generally computationally infeasible using classical methods. To overcome these issues, we introduce

deep probabilistic models to directly approximate the maps (z, f) 7→ u and (u, f) 7→ z, while simultaneously providing

uncertainty estimates. Once trained, our probabilistic models allow for the online solution of both the forward and

inverse problem given a particular forcing f. We first describe, in Sec. 3.1, a method to train a deep probabilistic model

to emulate the forward and inverse maps of a PDE without any observed data and without any independent solve

operations. Building on this, we introduce in Sec. 3.2 a version of our framework which incorporates observation

data.

3.1. Probabilistic Model and Variational Approximation without Observed Data

Following the weighted residual approach we consider the residual r ∈ Rn in (5) as an auxiliary random variable

that is observed and has the value r = 0. We pose the joint distribution over all variables as

pβ(r,u, z, f) = p(r|u, z, f)pβ(z|u, f)p(u)p(f), (15)

8

where β is the trainable set of parameters in our model, see Figure 2a. Such a factorization is a modelling choice; the

joint distribution could in fact be factorized in different ways so long as the rules of probability are respected. The

posed factorization was chosen to obtain a conditional distribution p(r|u, z, f) of the residual r as well as a conditional

distribution pβ(z|u, f) of z given the solution u and the forcing f. The assumption of this particular model is that u

and f are independent when none of the variables in the model are observed. However, it is easy to show that u and f

become conditionally dependent when r = 0 is assumed to be observed [61].

We pose the likelihood of the residual as

p(r|u, z, f) = N(r; Az(u) − fWR,Σr), (16)

where Σr is the covariance matrix indicating the desired accuracy of the discrete solution u expressed as the deviation

of the residual from zero. Treating r as an observed vector and setting r = 0 as in Sec. 2.1, we aim to maximize

its marginal likelihood p(r = 0) by integrating out all other variables. We next choose a deep probabilistic model

of the form pβ(z|u, f) = N(z;µβ(u, f),Σβ(u, f)), where µβ and Σβ are represented by neural networks with the set of

parameters β consisting of weights and biases. Our model resembles the variational autoencoder (VAE) structure;

however, we use a physics-informed model and formulate the parameter as the latent vector z. The direct corre-

spondence between latent variables and physical parameters enables us to have latent variables with a clear physical

interpretation.

We also use a decoder-like distribution to learn the conditional density pβ(z|u, f) which gives us the flexibility to

obtain z given a solution field u and forcing f. To this end, we pose the factorization

qα(u, z, f) = qα(u|z, f)p(z)p(f), (17)

with the approximation qα(u|z, f) = N(u;µα(z, f),Σα(z, f)), where µα and Σα are represented by neural networks

with the set of parameters α consisting of weights and biases, see Fig. 2b. Inspired by the weighted residual approach

introduced in Sec. 2.1 (see also [44]), we maximize the marginal likelihood of the residual by fixing r = 0 and deriving

an evidence lower bound (elbo) that lower bounds the log marginal likelihood log p(r = 0). In order to do this, we

first note

p(r = 0) =

∫
pβ(r = 0,u, z, f)dudzdf, (18)

where the p(r = 0) acts as evidence. Our aim is to maximize the evidence, i.e. the probability of observing r = 0, by

optimising the neural network parameters α and β. To this end, we introduce an instrumental variational approximation

and rewrite (18) as

p(r = 0) =

∫
pβ(r = 0,u, z, f)

qα(u, z, f)
qα(u, z, f)dudzdf, (19)

by dividing and multiplying the integrand in (18) by qα(u, z, f). Next, we compute the logarithm of this quantity,

since maximizing log p(r = 0) is equivalent to maximizing p(r = 0) and is more numerically stable. Using Jensen’s

9

inequality we can obtain an expression of the form

log p(r = 0) ≥ F (α, β), (20)

and using (15) and (17), we arrive at the lower bound

F (α, β) =

∫
log

p(r = 0|u, z, f)pβ(z|u, f)p(u)
qα(u|z, f)p(z)

qα(u|z, f)p(z)p(f)dudzdf. (21)

The elbo obtained in this manner can also be derived using the Kullback–Leibler divergence between the posterior

p(u, z, f|r) and the variational approximation qα(u, z, f) to it. This link is especially evident in VAE literature [62]. A

full derivation of our pddlvm framework can be found in Appendix B where we show that our framework minimizes

the KL divergence between the intractable posterior of our latent variable given the pseudo-observed residual r = 0

and a tractable variational approximation in the form DKL(qα(u, z, f)||pβ(u, z, f|r)). Using the derived elbo, we then

seek

{α?, β?} ∈ argmax
β,α

F (α, β). (22)

We note that the α and β networks (which parameterize qα(u|z, f) and pβ(z|u, f), respectively) have intuitive func-

tionalities (see Fig. 2 for the graphical models). In particular, the α network provides a parameter-to-solution

(forward) map, while the β network provides a solution-to-parameter (inverse) map, both with associated uncer-

tainty estimates. Modern variational inference techniques rely on maximizing the lower bound F (α, β), instead of the

true evidence log p(r = 0) to learn the parameters (α, β). To compute (21) we express the integral as an expectation

and use Monte-Carlo approximation of this expectation. The N-sample Monte Carlo elbo estimate of the gradient of

F (α, β) can be obtained by sampling from p(z), p(f) and qα(u|z, f) (using the reparameterization trick [63]). For this,

we rewrite elbo (21) as a generic integral

F (α, β) = Eqα(u|z,f)p(z)p(f)[vα,β(u, z, f)], (23)

where

vα,β(u, z, f) = log
p(r = 0|u, z, f)pβ(z|u, f)p(u)

qα(u|z, f)p(z)
. (24)

Given that ε ∼ N(0, I), we can sample u ∼ qα(u|z, f) by sampling ε and computing

wα(z, f, ε) = µα(z, f) + Σ1/2
α (z, f)ε, (25)

and write

F (α, β) = Eqα(u|z,f)p(z)p(f)[vα,β(u, z, f)] = Eq(ε)p(z)p(f)

[
vα,β(wα(z, f, ε), z, f)

]
.

To construct the Monte Carlo elbo, we now sample ε(j) ∼ q(ε), z(j) ∼ p(z), f(j) ∼ p(f) for j = 1, . . . ,N and obtain

F N(α, β) =
1
N

N∑
j=1

vα,β(wα(z(j), f(j), ε(j)), z(j), f(j)). (26)

10

The rest of the training is done by computing the gradient of this stochastic loss w.r.t. α, β and running a variant of

gradient descent, such as Adam [64]. In many practical applications (and in this paper), N = 1, i.e., a one-sample

estimate of the gradient is utilized [62]. We note that one of the strengths of this method is that both linear and

nonlinear PDEs can be treated the same way as we only need to evaluate the residual term and its gradient.

Algorithm 1 Pseudocode for pddlvm

Initialize: α0, β0, T (number of iterations), N (number of Monte Carlo samples).

for t = 1, . . . ,T do . Gradient descent.

for i = 1, . . . ,N do . Monte Carlo estimate of the loss (21).

Sample z(i) ∼ p(z)

Sample f(i) ∼ p(f)

Sample u(i) ∼ qαt−1 (u|z(i), f(i))

Compute F N(α, β) using the samples.

(αt, βt)← OPTIMISER(αt−1, βt−1,F
N(α, β)) . Update parameters.

3.2. Probabilistic Model and Variational Approximation with Observed Data

We now introduce observations into our model to cover data-centric scenarios, as well as to handle multiple forcing

terms. In this section, we assume that the β-network yielding the distribution pβ(z|u, f) is pretrained as described in

Sec. 3.1. We denote the learned β network parameter by setting β = β?. For a given observation set {yi}
m
i=1, where

yi ∈ Rny , and a corresponding solution set {ui}
m
i=1, we introduce the observation likelihood

p(yi|ui) = N(yi; g(ui),Σy), for i = 1, . . . ,m, (27)

where g : Rn → Rny is a known observation operator and Σy is the noise covariance. We pose our probabilistic model

for a tuple (yi,ui) as

p(yi,ui) = p(yi|ui)p(ui). (28)

Note in this case that our probability model is fully specified, with no trainable parameters. We next describe our

variational approximation as

qφ(ui|yi) = N(ui;µφ(yi),Σφ(yi)). (29)

The marginal likelihood of the data is given by

p(yi) =

∫
p(yi,ui)dui. (30)

Incorporating the variational distribution qφ(ui|yi) for the observation-to-solution map we can write for the log

marginal likelihood of the data

log p(yi) = log
∫

p(yi,ui)
qφ(ui|yi)

qφ(ui|yi)dui. (31)

11

Using Jensen’s inequality this expression can be bounded by the elbo

Fi(φ) =

∫
log

p(yi|ui)p(ui)
qφ(ui|yi)

qφ(ui|yi)dui. (32)

Given the dataset {yi}
m
i=1, the full elbo is F (φ) =

∑m
i=1 Fi(φ). Once trained, the variational distribution qφ(ui|yi) is

sufficient to obtain an encoding model for observations. The lower bound can be computed in a similar manner to the

elbo in Sec. 3.1 with

Fi(φ) = Eqφ(ui |yi)[vφ(yi,ui)], (33)

where

vφ(yi,ui) = log
p(yi|ui)p(ui)

qφ(ui|yi)
qφ(ui|yi), (34)

which can also be computed through the reparametrization trick detailed in (25) as

wφ(yi, ε) = µφ(yi) + Σ
1/2
φ (yi)ε, (35)

and write

Fi(φ) = Eqφ(ui |yi)[vφ(yi,ui)] = Eq(ε)

[
vφ(yi,wφ(yi, ε))

]
.

This can be approximated with Monte-Carlo sampling as done in (26).

To realize the observation-to-parameter map, we can then use the already learned β?-network to marginalize

over u as

p(z|y, f) =

∫
qφ? (u|y)pβ? (z|u, f)du. (36)

The marginalization of z over u can also be easily extended to include the forcing f. We stress that the method we

propose only uses data when we are inverting some observable map from a dataset, this extension does not learn the

physics of a problem but rather some transformation that is over the underlying physics. The physics are learned using

the algorithm described in Sec. 3.1 and this probabilistic physics model can then be used for combined inference as

shown in (36).

3.3. Algorithm and Implementation Details

Priors and Monte Carlo elbo. In all formulations, we assume a flat prior p(u) ∝ 1 for the solution field. We choose

p(f) and p(z) as uniform or normal distributions (see Sec. 4). We estimate the elbos in (21) using sampling from

z ∼ p(z) and f ∼ p(f), u ∼ qα(u|z, f) (using the reparameterization trick [63])) and optimize with Adam [64]. When

multiple observations exist, i.e. if m � 1, we use only one-sample estimate of elbo, resulting in a doubly-stochastic

gradient. See Algorithm 1 for the full algorithm. We also provide details in Sec. 4 where necessary. In Fig. 3 we show

diagrams depicting the flow of samples in the algorithm. With all the quantities computed through the given samples

we can then evaluate all the relevant terms in the elbo.

12

(a) Architecture for fem-pddlvm

(b) Architecture for pinn-pddlvm

Figure 3: The architecture of both the fem-pddlvm and the pinn-pddlvm. The large “∼” symbol denotes the drawing of random samples from the

distribution (or from the distribution described by the given parameters) on the left of it. The two variants of pddlvm differ in the fact that for the fem

version we reparametrize the samples u(i) with a global expansion which in the shown examples are Chebyshev expansions of various orders. For

the pinn-pddlvm version we instead evaluate the network at the collocation gridpoints and sample directly in the solution space of the domain, this

yields the simplification u(i)
j = û(i)(x j). In the pinn version the β-Net is implemented as a convolutional neural network taking in the trial solution

evaluated on the grid, it can in essence be interpreted as an image.

4. Examples

We demonstrate our methodology on six selected examples1. In all experiments, we choose a diagonal covari-

ance for the networks, although other choices can be explored [62]. Furthermore, we make use of a bounded re-

parameterization of the log variance of the neural networks [65]. We note that our approach is extrusive in the sense

that it needs only the solution and its gradient but is agnostic to the inner workings of the fem package. The examples

in Sec. 4.1, Sec. 4.2, and Sec. 4.3 all use a fem-pddlvm residual formulation and the output of the neural network is

parameterized with a Chebyshev expansion. The further sections are based on the pinn formulation of the residual. A

summary of relevant information for each experiment can be found in Appendix E.

1The code is made available at https://github.com/ArnaudVadeboncoeur/PDDLVM

13

https://github.com/ArnaudVadeboncoeur/PDDLVM

4.1. 1D Linear Poisson

We use the formulation in Sec. 3.1 to train the α and β networks on a linear Poisson equation with Dirichlet

boundary conditions

−∇ · (κ(x)∇u(x)) = f (x), x ∈ (−1, 1), (37)

u(−1) = a, u(1) = b.

we learn the parameter-to-solution map jointly with the solution-to-parameter map with uncertainties.

When using (10) to represent a physical quantity which is strictly positive we compose the spectral mapping πCH

with a Softplus transformation of the form log(1 + exp(x)). As the transformation is nonlinear, we make use of the

unscented transform [66] for estimation of the first and second moments of the probability density when mapping

the probability of z onto the domain Ω. When we project z in Chebyshev coefficients onto the finite element mesh

as ẑ(x1:n), we can transform its probability distributions as p(ẑ(x1:n)) = N(ẑ(x1:n);µβT>,TΣβT>), where T is the

Chebyshev Vandermond matrix at the mesh locations x1:n. The choice of Chebyshev polynomials for this expansion

is motivated by their stability (as opposed to monomial or Lagrange polynomials, which suffer from the Runge’s

phenomenon) and the ease with which they approximate constant, linear, and quadratic functions. Other expansions

such as Fourier series might require many terms to approximate these simple functions with accuracy.

4.1.1. Learning Without Observations

In this section we demonstrate the use of our method on the linear Poisson problem without observations as in

Sec. 3.1. To measure the accuracy of our method after training, we compute the fem ground truth solution, however,

these are not used during training. The residual is marginalized over the prior of z and f which allow us to learn

the PDE over the prior ranges. In this example, our interpretable latent variable z = κ denotes the coefficients of

the κ(x) expansion. To ensure positivity of the diffusion field, we pass κ(x) through a Softplus function of the form

log(1 + exp(κ(x))). In Fig. 4 the values for the boundary conditions a and b are kept fixed at 0 and 0.5. We plot

the results from the pddlvm inference for 10 random samples drawn from the prior of κ. The diffusivity field κ(x) and

forcing f (x) is parameterized as a constant function and the solution field is given by a 4th order Chebyshev expansion.

The prior over κ is N(κ; 0, 1). We use a NN architecture of 50 nodes for 3 hidden layers. We use a “swish” activation

function and train each model for 2 × 105 iterations with Adam and a learning rate of 10−3 decayed by half 10 times

over the training time. The joint training of the α and β networks takes 218 seconds. In Fig. 4b the shaded region for

2 standard deviation is very small as the forward problem is well determined and so the confidence region is highly

concentrated around the mean function. In contrast to this, the inverse problem is more ill-posed and this is reflected

by the larger uncertainty bands around the mean of the diffusion field in Fig. 4.

Using this model, we study the effect of varying the εr value of the residual covariance, i.e. Σr = ε2
r I, controlling

the solution accuracy. In Fig. 5 we plot the log Mean Normalized Squared Error (MNSE) (A.1) for 100 samples of

solution fields, diffusion field, and boundary conditions for a variety of κ from the prior. Similarly, in the Appendix

14

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)
±

2σ

(a) FE Solver

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
u

(x
)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)
±

2σ

(b) pddlvm Forward

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)
±

2σ

(c) True κ(x)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.4

0.6

0.8

1.0

1.2

κ
(x

)
±

2σ

(d) pddlvm Inverse

Figure 4: Results for the 1D linear Poisson equation. (a) The true solutions given by a linear fem solver for 10 different constant functions of κ(x).

(b) The predicted solution with 2σ interval given by the pddlvm for those same functions κ(x). (c) The 10 true κ(x) functions used to compute the

solution fields in plots (a) and (b). (d) The pddlvm reconstruction of κ(x) from the solution field of plot (a) (identical functions means a perfect

reconstruction of the κ(x) field).

Fig. C.13 we plot the mean normalized squared error for 100 independent draws of κ from various ranges of values.

The error for the proposed solution field is computed with respect to a true fem solution. For the reconstructed

quantities κ and the boundary conditions, we compare the generated samples with the reconstructed one. As expected,

the MNSE tends to increase as we move away from the regions of highest probability density of our prior distribution

of p(κ). We see that irrespective of the value of εr, the error increases for the solution field coefficients, the diffusivity

field coefficients, and the boundary conditions as we move away from the main probability mass of the prior. As can

also be seen in Fig. C.14, changes in the value for εr tempers the optimization surface which will affect the training

of the algorithm. We can conclude from this that there is no single correct setting of εr but in effect is a practitioner’s

choice which will impact the learning process.

15

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−16

−14

−12

−10

−8

−6

−4

−2

lo
g

N
M

E
S

ol
u

ti
o
n

F
ie

ld

ε =1.0

ε =0.1

ε =0.01

ε =0.001

ε =0.0001

(a) u(x)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−12

−10

−8

−6

−4

lo
g

N
M

E
K

a
p

p
a

F
ie

ld

ε =1.0

ε =0.1

ε =0.01

ε =0.001

ε =0.0001

(b) κ(x)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−24

−22

−20

−18

−16

−14

−12

lo
g

N
M

E
B

ou
n

d
a
ry

C
on

d
it

io
n

s

ε =1.0

ε =0.1

ε =0.01

ε =0.001

ε =0.0001

(c) Boundary conditions

Figure 5: The MNSE of PDDLVM predictions when compared to the ground truth. The algorithm was trained with a prior of p(κ) = N(0, 0.5) and

was tested with 100 random draws of new κ from a narrow uniform testing distribution of width 0.5. We show the variation of error as we slide

this testing distribution from values of -2 to 2. The points on the graph denote the center of this narrow testing distribution, the testing distribution

extends in both direction by 0.25. In this manner, we compare the model’s predictions to the fem solution as well as the true values of κ and the true

values of the boundary conditions. We can see that as we go farther from regions of high prior density of κ, the error increases and vise-versa. We

plot the log MNSE for (a) the inferred solution field (forward problem), (b) the reconstructed diffusion field from the solution (inverse problem), and

(c) the boundary conditions. This is computed for a variety of parameters εr. The boundary conditions are kept fixed throughout this experiment via

a Dirac prior during training. However, we treat the value of the boundary conditions as variable to be inferred. We can see that error in boundary

conditions inferred from inverting the solution field still varies with respect to how close we sample κ to the main probability mass of p(κ).

16

α-Net β-Net

MNSE 6.82 × 10−4 2.36 × 10−3

% truth in 2σ 29.6% 87.0%

Table 1: MNSE for 1D nonlinear Poisson problem and percentage coverage of 2 standard deviations of the output on the ground truth.

4.1.2. Observable Map Inversion

We make use of Sec. 3.2 to learn to invert a noisy mapping from the measurements to the solutions in the presence

of observations. Here the governing equation is (37) with varying boundary conditions and the observable forward

map is a truncation operation of the middle 20 values on the observable grid of 100 mesh points. We use a set of 100

observations with a noise covariance of Σy = σ2
yI, where σy = 0.01. The α? and β? networks are pretrained on the

linear Poisson equation with κ(x) expressed as a 3rd order Chebyshev expansion, variable boundary conditions, and

variable constant function forcing. The model qφ reconstructs u as Chebyshev coefficients from the noisy, partially

observed y. We show the results of inference with 5 new data observations not included in the dataset in Fig. 6. To

quantify the accuracy of this model we draw 100 independent samples from p(z) and p(f). We then compute the

MSNE for those 100 independent draws. The computed MNSE for u projected on the FE grid is of 5.64 × 10−4 and

for z (the κ(x) field) projected on the FE mesh the MNSE is of 8.35 × 10−3.

4.2. 1D Nonlinear Poisson Problem

In this example, we apply a pddlvm for a 1D nonlinear Poisson problem of the form,

− ∇ · (η(u, x)∇u(x)) = f (x), (38)

η(u, x) =

(
S

∣∣∣∣∣du
dx

∣∣∣∣∣ + 5κ(x)
)
/10,

for x ∈ (−1, 1). Here z = {κ, a, b} denotes the coefficients of the κ(x) expansion and the boundary condition values

respectively and the boundary conditions are u(−1) = a, u(1) = b. The function S (x) = 1/(1 + e−x) is the sigmoid

function. For the current example we parameterize κ(x) as a 4th order Chebyshev expansion. The solution field is

expressed as a 9th order Chebyshev expansion through the πCH mapping. The approximant πz(z, x) is then only

applied on κ(x). The priors are: p(κi) = N(0, 1), p(a) = δ(a), p(b) = U(0.5, 1), and f (x) has a single expansion term

drawn from p(f) = U(1, 2) as is associated to the 0th Chebysehv polynomial. The NN architecture for this problem

is a fully connected 4 layers deep network with 100 neurons per hidden layer. The FE model is discretized with 60

elements. The residual covariance is chosen to be Σu = ε2
r I with εr = 10−2. The model is trained for 106 iterations with

an initial learning rate of 10−3 that is halved every 2× 105 iterations with Adam. In Fig. 7, the predictive distributions

as well as the solutions are plotted.

17

(a) y (b) True u(x)

(c) True κ(x) (d) qφ(u|y)

(e) pβ? (z|ū, f)

Figure 6: Example of missing data. (a) Five data samples not observed during training. (b) The true u(x) used to generate the synthetic data in (a).

(c) The true parameter coefficient used to generate (b). (d) The predictive distribution of u given an observation y. (e) The inferred distribution over

κ(x) given the inferred mean of u in (d) and the forcing. The variable ū denotes the mean of the predicted distribution given by qφ(u|y).

18

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

f
(x

)

(a) FE Solver

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
u

(x
)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

f
(x

)

(b) qα(u|z, f)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
κ

(x
)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

f
(x

)

(c) True κ(x)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

f
(x

)

(d) pβ(z|u, f)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

u
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)

−1.0 −0.5 0.0 0.5 1.0

x

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

κ
(x

)
±

2σ

−1.0 −0.5 0.0 0.5 1.0

x

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

f
(x

)

(e) f (x)

Figure 7: Results for the 1D nonlinear Poisson example. (a) The true solution for 10 different instances of {z, f (x)}. (b) The predicted solution with

2σ interval given by the pddlvm for those same functions. (c) The 10 true κ(x) functions used to compute the solution fields of the first 2 subplots.

(d) The pddlvm reconstruction of κ(x). (e) The forcing functions f (x).

19

Forward Inverse

MNSE pddlvm 0.00277 0.00745

avg. time pddlvm 0.00346s 0.0252s

avg. time FE 10.4s

(a) (b)

Figure 8: (a) Computational runtime of using the fem-pddlvm framework on the thin-walled flexible shell bunny as compared to traditional fem. (b)

The mesh of the bunny geometry used for the finite element discretization, it has 24858 degrees of freedom.

4.3. Thin-Walled Flexible Shell

In this example, we consider the deformation of the Stanford bunny with an inhomogeneous Young’s modulus

subjected to self-weight, see Figure 8. We analyze this model with an isogeometrically discretized Kirchoff-Love

shell finite element scheme [67–69]. The model is based on the potential energy formulation of a smooth hyper-

elastic shell. The weak form of the shell equilibrium equation is obtained by determining the stationary point of the

potential energy where f (x), u(x) : R3 → R3 and the shell is subject to Dirichlet boundary conditions only.

The function f (x) represents the external loading on the shell surface. We choose the forcing to be a uniform ver-

tical pressure representing self-weight. For the Kirchoff-Love model we require basis functions with square integrable

second derivatives which are obtained from Catmull-Clark subdivision surfaces [70]. In this example, we choose a

Dirichlet boundary condition constraining the displacements at the base of the bunny such that u(x) = 0, for x2 < b,

where x2 denotes the vertical coordinate axis and b is the chosen height of the base.

To build solution fields with a neural network in a mesh invariant and low dimensional way, we reparameterize

the output of the network with a vector valued 3D Chebyshev expansion

û(x) = πCH (u, x) =
∑
l,m,n

UilmnTl(x(1))Tm(x(2))Tn(x(3)), (39)

where û(x) = (û(1)(x), û(2)(x), û(3)(x))> indexed by i ∈ {1, 2, 3} and the random vector u = vect(U) where U is a four

dimensional tensor where the components Uilmn are Chebyshev coefficients. Furthermore, x = (x(1), x(2), x(3))> ∈ Ω ⊂

R3. The vector field û(x) denotes the displacement of the bunny surface and is computed on the intersection of the

volume and the surface. Describing a 3 component vector field in 3 dimensions this way requires 3N3 Chebyshev

coefficients, where N denotes the number of basis function per dimension. We choose a sixth order Chebyshev

expansion with 7 coefficients per dimension so that we have 1029 Chebyshev expansion coefficients. On the other

20

hand, the quadrilateral Stanford bunny mesh has 8286 nodes and 24858 degrees of freedom. The bunny geometry

width, height and length are 154.8, 151.9, and 118.6 respectively. All coordinates plus a 10 unit buffer on all sides are

then mapped to the unit cube for the centered Chebyshev reparametrization. The shell has a thickness of 1, a vertical

volumetric pressure field of 10−5, a Poisson ratio of 0.3, and the height of the fixed base is of 7. For this example, the

physically interpretable latent variable z is the set of parameters characterizing κ(x(2)) which varies across the height

of the shell to mimic the control of the material distribution that one might have in 3D printing contexts. It represents

the modulus of elasticity expressed as a second order Chebyshev expansion passed through a Softplus function and

multiplied by 109.

With the fem formulation we can take advantage of well-known preconditioning techniques [71] for iterative

solvers. Employing a simple preconditioner can greatly accelerate and stabilize convergence. This preconditioning

is formulated as a reparametrization of the residual with the stiffness matrix of a representative sample z of p(z). To

do this, we pre-multiply the residual vector r by Az̄. The matrix Az̄ is the stiffness matrix assembled with z̄ which

the mean of p(z). This yields the preconditioned residual formulation as Az̄r which was found to greatly accelerate

convergence and improve stability of the optimization routine. Both α and β networks are fully connected neural

networks with 3 hidden layers of 2.5k neurons with “swish” activation functions [72]. The pddlvm was trained for

50k iterations for a total of 16.6 hours. Once trained, we draw new samples of z from its prior, we then use both the

fem model and the emulator to obtain the solution fields for comparison. Fig. 9 shows the predictions of the trained

pddlvm. The top row pertains to the forward operation, the bottom row focuses on the inverse mapping. We plot the

fem solutions, the predictive mean, the standard deviation, as well as the absolute error. Table 8(a) summarizes the

mean normalized squared errors of the means of both the forward and inverse maps as well as the average time taken

per sample for 100 independent draws from the prior p(z).

When computing the residual term necessary for fem-pddlvm, we need to update the stiffness matrix for new

samples of the PDE parameters z. In the governing equation, the domain integral depends linearly on Young’s modulus

and we take its value to be constant across each element. Thus, when we compute the residual for a new sample of z

we do not need to recompute the quadrature for the integration of the r.h.s. of the weak form. We can instead stash

the element stiffness matrices for a Young’s modulus of 1 and post-multiply the already integrated element matrices

with the new values for the Young’s modulus at the centroid of the element. From this we can then assemble the new

matrix, bypassing the expensive quadrature routine. This observation is important when computing the residual tens

of thousands of times for large problems. However, if we are interested in marginalizing over a quantity that cannot

be factorized out of the element stiffness integrals then the quadrature must be computed every iteration.

4.4. 1D Nonlinear Heat Equation

To showcase the modularity of the pddlvm framework, we consider next a time dependent nonlinear heat equation

discretized with a pinn[7]. We can treat this as a spatio-temporal problem where we work with spatial and temporal

dimensions the same way [7]. When combined with the pinn framework, our solution field predictive distribution and

21

(a) Forward fem (b) Mean Forward pddlvm

(c) Abs. Error (forward) (d) St. Dev. (forward)

(e) True Parameter Field (f) Mean Inverse pddlvm

(g) Abs. Error (inverse) (h) St. Dev. (inverse)

Figure 9: Results from a trained fem-pddlvm of a thin-walled 3D shell bunny. The top row shows (a) the displacement field obtained with a forward

fem solution, (b) mean estimate provided by pddlvm, (c) absolute error between (a) and (b), (d) standard deviation. In the bottom row, similarly, we

have (e) true parameter field, (f) mean estimate of the parameters provided by the inverse of pddlvm, (g) absolute error, (h) standard deviation. The

agreement between (g) and (h) demonstrates that when the difference between our method and the true parameter field is larger, our uncertainty

estimates are coherent and demonstrates the regions with larger error accurately. See Sec. 4.3 for more details.

22

(a) µα(x, t) (b) 2σα(x, t)

Figure 10: The distribution qα(u|z, f) for a parameter sample γ, κ for the time dependent nonlinear heat equation as defined in (41) and discretized

with pinn-pddlvm. In (a) we show the mean of the predictive field and in (b) we show the 2 standard deviation of the predictive solution field. Notice

the uncertainty is lowest at the fixed boundaries at x = 0, x = 2π and highest in the region of higher non-linearity.

the inverse distribution are formulated in a general way as

qα(u|z, f) = N
(
µα(x1:n, t1:n, z, f), diag(σ2

α(x1:n, t1:n, z, f)
)
,

pβ(z|u, f) = N(µβ(u),Σβ(u)), (40)

where u ∈ Rn and are jointly trained as per the framework in Sec. 3.1. The samples u are then given to the various

PINN & Conv-Net PINN-PDDLVM

Mean Residual Forward 2.83 × 10−4 1.23 × 10−4

MNSE Inverse 6.35 × 10−3 2.83 × 10−3

% truth in 2σβ n/a 98.06%

total training time 6440s 6808s

Table 2: Comparison of PINN-PDDLVM model and a coupled PINN and convolutional inversion network. For details on the pinn residual

formulations, see (42).

other probability density functions as well as the residual evaluator in (4). Here the collocation method with wi(x, t) =

δ(x − xi)δ(t − ti) is used reducing the integration to a point evaluation of the PDE on the grid. We use automatic

differentiation through variable u and the neural network to obtain ∂xû(x) with the reparametrization trick. The

parameter-to-solution map takes in a pair of x, t coordinates along with the PDE parameters. To obtain the

distribution across the domain we pass in a grid of x, t coordinates. For the inverse map, we pass a picture of the entire

field as a grid of evaluations. A convolutional structure is well adapted for dealing with this kind of spatial data.

The PDE we analyze is the heat equation with a temperature dependent conductivity function. We specify the

second order nonlinear parametric time dependent PDE as

∂u(x, t)
∂t

=
1
γ
∇ · (η(u, κ)∇u(x, t)), η(u, κ) =

∣∣∣∣∣∣u(x, t)κ2 + 1
κ

∣∣∣∣∣∣ , (41)

23

for x ∈ (0, 2π), with initial conditions and boundary conditions u(0, t) = 1, u(2π, t) = 1, and u(x, 0) = sin(x) + 1. The

η(u, κ) function represents a material whose conductance increases linearly as the temperature increases with a slope

and intercept are governed by the scalar κ. We construct Σr = diag
(
[ε2

D0
, . . . , ε2

Dd
, ε2

B0
, . . . , ε2

Bb
, ε2

I0
, . . . , ε2

Ii
]
)

where each

ε denotes the confidence for the d domain nodes, the b boundary nodes, and the i initial condition nodes respectively.

We choose a residual standard deviation εD = 0.01, while to strongly enforce the initial and boundary conditions, we

choose εB = 0.001 and εI = 0.001. The PDE is also parameterized with γ which denotes the heat capacity of the

material. We train the pddlvm with marginalization over the prior p(z) = U([1, 5] × [1, 5]) where z = {κ, γ}.

(a) log RPINN(γ, κ) (b) log Rµα (γ, κ)

(c) log σ̄α(γ, κ)

Figure 11: A comparison of (a) pinn and (b) pinn-pddlvm residuals and in (c) the average pinn-pddlvm standard deviation. The quantities are

computed over a 2-dimensional range of values of parameters γ and κ. The white square denotes the bounds for the observed κ, γ during training

as well as the bounds over which the mean residual is computed and is defined by the prior p(z) = p(γ)p(κ) = U([1, 5]) ×U([1, 5]).

In Fig. 11 we plot the log pinn residual for a range of PDE parameters κ and γ and we plot the log mean standard

deviation of the α network. In Fig. 10 we show a predicted distribution over the solution field of the heat equation for

24

a sample of γ, κ drawn from the prior and computed through the pinn-pddlvm framework.

The parameter-to-solution network for both the standard pinn and pinn-pddlvmmodels have 4 fully connected

hidden layers of 100 neurons with “swish” activation functions. For the PINNs results we sampled 2.5k combinations

of γ and κ between [1., 5.] × [1., 5.] and we trained a PINN-network for 5 × 105 iterations. We then used this trained

PINN to output solutions fields and create a supervised training dataset for the convolutional inverse network. Both the

deterministic inversion network (Conv-Net) and PINN-PDDLVM-β networks are 2D convolutional neural networks

with 3 layers of 2D convolutions with swish activation, kernel size of 4, stride (2,2) and [8, 16, 32] filters followed

by a final dense layer of 500 neurons ending with either 2 or 4 output neurons for either the Conv-Net network or the

PINN-PDDLVM-β networks respectively.

We train the Conv-Net network with a squared error loss, minibatched one example at a time with Adam and a

learning rate of 10−3. When computing the residual for comparison we employ the standard pinn-style [7] residual as

Rh(γ, κ) =
1

NM

N∑
i

M∑
j

(
−
∂h(xi, t j)

∂t
+

1
γ
∇ · (η(h(xi, t j), κ)∇h(xi, t j))

)2

+
1
n

n∑
k

(h(xk, 0) − u(xk, 0))2 +
1
m

m∑
l

[
(h(0, t0) − u(0, t0))2 + (h(2π, t0) − u(2π, t0))2

]
, (42)

where the second and the third terms are the residuals for the initial and the boundary conditions. It is the log of (42)

that is plotted in Figs. 11 but it is not the residual used for training the pinn-pddlvm, for that we use (4).

4.5. Inhomogeneous Wave Equation

Here, we compare the use of a 2D Fourier Neural Operator (FNO) trained on a supervised data of PDE solu-

tions with an unsupervised PINN-PDDLVM model. The PDE in question is the inhomogeneous wave equation with

parameterized forcing,

∂2u
∂t2 −

∂2u
∂x2 = f (x), (43)

f (x) =
∑

i

fixi.

Here fi make up the vector f and are the parameters which make up the polynomial expansion representation of

the forcing. In the current example we use 4 terms in the forcing expansion where all components are drawn from

U(−5, 5). The solutions for FNO datasets and the validation set are assembled and computed from samples of f

drawn from this distribution. In Fig. 12 we show 2 example ground truth solutions from the dataset as well as the

mean predictions of those two example given by the pinn-pddlvm. The FNOs for the forward and inverse directions

have 4 hidden layers with 32 channels and 12 Fourier modes. We train the FNOs for 5 × 104 iterations for different

number of training data. The training data is obtained from a Chebyshev based solver of 21 × 21 basis functions.

In Table 3 we compare this with an unsupervised PINN-PDDLVM trained for 2.5 × 105 iterations with a similar

architecture to that of Sec. 4.4.

25

(a) True wave A (b) α-Net Mean A

(c) True wave B (d) α-Net Mean B

Figure 12: Examples of ground truth and mean predictions from the α-Net of a pinn-pddlvm for 2 sets of waves with different forcing. Wave A:

f = 0, Wave B: f = −5x3.

FNO-50 FNO-100 FNO-500 FNO-1000 PDDLVM

MNSE-Forward 1.78 × 10−2 6.20 × 10−4 1.18 × 10−4 9.57 × 10−5 1.29 × 10−4

MNSE-Inverse 9.40 × 10−3 8.67 × 10−4 1.69 × 10−4 1.31 × 10−4 6.51 × 10−4

Table 3: Comparison of MNSE for supervised FNOs with differing number of data points (number following FNO) against an unsupervised

PINN-PDDLVM.

5. Conclusions

pddlvm is a fully probabilistic generative model for parametric PDEs that builds an interpretable latent space

representation and provides uncertainty estimates on the predictions. The Bayesian view allows us to construct a

collection of probabilistic mappings that are connected together in a sound and principled way. The ability to produce

forward and inverse solutions with uncertainty estimates is of significant importance to the practical use of such

methods. It is particularly crucial when dealing with inverse problems as they are inherently ill-posed.

The modular nature of the developed framework allows for an easy transition between meshless (e.g. pinns)

26

and mesh-based (e.g. fem) discretizations, making it agnostic to the specific method used to discretize the PDE.

For example, we leverage the fem formulation (that includes a customized mesh and preconditioners) to obtain the

deformations in thin shells subject to gravity, providing estimates of the material properties and a framework for novel

content generation. As we have shown, the use of our method with pinns produces a very streamlined framework for

learning the behavior of parametric PDEs.

While conventional fem offers many advantages for solid mechanics problems, for other applications (such as fluid

flows), other discretization techniques (such as immersed, particle-based methods [73, 74] or spectral methods) might

be preferable. Furthermore, in current work, the variational inference is based on the mean field assumption, which is

known to be overconfident in estimating the posterior uncertainty. The work can naturally be extended to utilize the

connectivity structure in the fem formulation to improve the calibration of the uncertainty estimates while leveraging

the sparse structure imposed by the fem [75]. Other directions this work can be expanded is in the use of different

architectures for the forward and inverse probabilistic maps, such as Fourier Neural Operators [8], Wavelet Neural

Operators [76] or Physics-Informed Graph Neural Galerkin Networks [27]. This work could have significant impact

in parametric PDE applications such as design and optimization scenarios and the study of complex systems.

Acknowledgements

A.V. was supported by the Baxter & Alma Ricard Foundation Scholarship. Ö. D. A. was partly supported

by the Lloyd’s Register Foundation Data Centric Engineering Program and EPSRC Program Grant EP/R034710/1

(CoSInES). I. K. was funded by a Biometrika Fellowship awarded by the Biometrika Trust. M. G was supported by

a Royal Academy of Engineering Research Chair, and EPSRC grants EP/R018413/2, EP/P020720/2, EP/R034710/1,

EP/R004889/1, EP/T000414/1. F. C. was supported by Wave 1 of The UKRI Strategic Priorities Fund under the EP-

SRC Grant EP/T001569/1, particularly the “Digital twins for complex engineering systems” theme within that grant,

and The Alan Turing Institute.

References

[1] A. Ern, J.-L. Guermond, Theory and practice of finite elements, Vol. 159, Springer, 2004.

[2] A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Springer, 2008.

[3] A. Tarantola, Inverse problem theory and methods for model parameter estimation, SIAM, 2005.

[4] A. M. Stuart, Inverse problems: A Bayesian perspective, Acta Numerica 19 (2010) 451–559. doi:10.1017/S0962492910000061.

[5] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers in Applied Mathematics, Society for Industrial and Applied Mathemat-

ics, 2002.

[6] S. Arridge, P. Maass, O. Öktem, C.-B. Schönlieb, Solving inverse problems using data-driven models, Acta Numerica 28 (2019) 1–174.

doi:10.1017/S0962492919000059.

[7] M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019) 686–707.

27

https://doi.org/10.1017/S0962492910000061
https://doi.org/10.1017/S0962492919000059

[8] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial

differential equations, arXiv preprint arXiv:2010.08895 (2020).

[9] L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation

theorem of operators, Nature Machine Intelligence 3 (3) (2021) 218–229.

[10] A. Anandkumar, K. Azizzadenesheli, K. Bhattacharya, N. Kovachki, Z. Li, B. Liu, A. Stuart, Neural operator: Graph kernel network for

partial differential equations, in: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2020.

[11] N. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Learning maps between

function spaces with applications to pdes, Journal of Machine Learning Research 24 (89) (2023) 1–97.

[12] J. Han, A. Jentzen, W. Ee, Solving high-dimensional partial differential equations using deep learning, Proceedings of the National Academy

of Sciences 115 (07 2017). doi:10.1073/pnas.1718942115.

[13] J. Sirignano, K. Spiliopoulos, DGM: A deep learning algorithm for solving partial differential equations, Journal of Computational Physics

375 (2018) 1339–1364.

[14] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nature Reviews Physics

3 (6) (2021) 422–440.

[15] K. Raveendran, C. Wojtan, N. Thuerey, G. Turk, Blending liquids, ACM Transactions on Graphics 33 (4) (2014).

[16] S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems,

Proceedings of the National Academy of Sciences 113 (15) (2016) 3932–3937.

[17] B. Kim, V. C. Azevedo, N. Thuerey, T. Kim, M. Gross, B. Solenthaler, Deep fluids: A generative network for parameterized fluid simulations,

in: Computer Graphics Forum, Vol. 38, Wiley Online Library, 2019, pp. 59–70.

[18] L. Ardizzone, J. Kruse, S. Wirkert, D. Rahner, E. W. Pellegrini, R. S. Klessen, L. Maier-Hein, C. Rother, U. Köthe, Analyzing inverse

problems with invertible neural networks, arXiv preprint arXiv:1808.04730 (2018).

[19] Q. Zhao, D. B. Lindell, G. Wetzstein, Learning to solve pde-constrained inverse problems with graph networks, in: ICML 2022 2nd AI for

Science Workshop.

[20] O. Ghattas, K. Willcox, Learning physics-based models from data: perspectives from inverse problems and model reduction, Acta Numerica

30 (2021) 445–554.

[21] M. Raissi, G. E. Karniadakis, Hidden physics models: Machine learning of nonlinear partial differential equations, Journal of Computational

Physics 357 (2018) 125–141.

[22] G. Pang, L. Lu, G. E. Karniadakis, fPINNs: Fractional physics-informed neural networks, SIAM Journal on Scientific Computing 41 (4)

(2019) A2603–A2626.

[23] Z. Mao, A. D. Jagtap, G. E. Karniadakis, Physics-informed neural networks for high-speed flows, Computer Methods in Applied Mechanics

and Engineering 360 (2020) 112789.

[24] S. Cai, Z. Mao, Z. Wang, M. Yin, G. E. Karniadakis, Physics-informed neural networks (PINNs) for fluid mechanics: A review, Acta

Mechanica Sinica (2022) 1–12.

[25] L. Lu, R. Pestourie, W. Yao, Z. Wang, F. Verdugo, S. G. Johnson, Physics-informed neural networks with hard constraints for inverse design,

SIAM Journal on Scientific Computing 43 (6) (2021) B1105–B1132.

[26] S. Wang, Y. Teng, P. Perdikaris, Understanding and mitigating gradient flow pathologies in physics-informed neural networks, SIAM Journal

on Scientific Computing 43 (5) (2021) A3055–A3081.

[27] H. Gao, M. J. Zahr, J.-X. Wang, Physics-informed graph neural Galerkin networks: A unified framework for solving PDE-governed forward

and inverse problems, Computer Methods in Applied Mechanics and Engineering 390 (2022) 114502.

[28] K. Bhattacharya, B. Hosseini, N. B. Kovachki, A. M. Stuart, Model Reduction And Neural Networks For Parametric PDEs, The SMAI

Journal of Computational Mathematics 7 (2021) 121–157.

[29] R. Wang, K. Kashinath, M. Mustafa, A. Albert, R. Yu, Towards physics-informed deep learning for turbulent flow prediction, in: Proceedings

of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1457–1466.

28

https://doi.org/10.1073/pnas.1718942115

[30] R. G. Patel, N. A. Trask, M. A. Wood, E. C. Cyr, A physics-informed operator regression framework for extracting data-driven continuum

models, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113500.

[31] F. Kröpfl, R. Maier, D. Peterseim, Operator compression with deep neural networks, Advances in Continuous and Discrete Models 2022 (1)

(2022) 1–23.

[32] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification, Journal

of Computational Physics 366 (2018) 415–447.

[33] S. Wang, H. Wang, P. Perdikaris, Learning the solution operator of parametric partial differential equations with physics-informed DeepONets,

Science advances 7 (40) (2021).

[34] A. Vadeboncoeur, I. Kazlauskaite, Y. Papandreou, F. Cirak, M. Girolami, Ö. D. Akyildiz, Random grid neural processes for parametric partial

differential equations, arXiv preprint arXiv:2301.11040 (2023).

[35] M. Yin, E. Zhang, Y. Yu, G. E. Karniadakis, Interfacing finite elements with deep neural operators for fast multiscale modeling of mechanics

problems, Computer Methods in Applied Mechanics and Engineering (2022) 115027.

[36] Y. Yang, P. Perdikaris, Conditional deep surrogate models for stochastic, high-dimensional, and multi-fidelity systems, Computational Me-

chanics 64 (2) (2019) 417–434.

[37] Y. Yang, P. Perdikaris, Adversarial uncertainty quantification in physics-informed neural networks, Journal of Computational Physics 394

(2019) 136–152.

[38] N. Winovich, K. Ramani, G. Lin, ConvPDE-UQ: Convolutional neural networks with quantified uncertainty for heterogeneous elliptic partial

differential equations on varied domains, Journal of Computational Physics 394 (2019) 263–279.

[39] J. Cockayne, C. J. Oates, T. J. Sullivan, M. Girolami, Bayesian probabilistic numerical methods, SIAM Review 61 (4) (2019) 756–789.

[40] M. Girolami, E. Febrianto, G. Yin, F. Cirak, The statistical finite element method (statFEM) for coherent synthesis of observation data and

model predictions, Computer Methods in Applied Mechanics and Engineering 375 (2021) 113533.

[41] C. Duffin, E. Cripps, T. Stemler, M. Girolami, Statistical finite elements for misspecified models, Proceedings of the National Academy of

Sciences 118 (2) (2021).

[42] Ö. D. Akyildiz, C. Duffin, S. Sabanis, M. Girolami, Statistical finite elements via Langevin dynamics, SIAM/ASA Journal of Uncertainty

Quantification (2022).

[43] S. Kaltenbach, P.-S. Koutsourelakis, Incorporating physical constraints in a deep probabilistic machine learning framework for coarse-graining

dynamical systems, Journal of Computational Physics 419 (2020) 109673.

[44] M. Rixner, P.-S. Koutsourelakis, A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing

physical constraints through virtual observables, Journal of Computational Physics 434 (2021) 110218.

[45] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, 1986.

[46] S. Chakraverty, N. Mahato, P. Karunakar, T. D. Rao, Advanced numerical and semi-analytical methods for differential equations, John Wiley

& Sons, 2019.

[47] M. Hatami, Weighted residual methods: principles, modifications and applications, Academic Press, 2017.

[48] B. A. Finlayson, The method of weighted residuals and variational principles, SIAM, 2013.

[49] L.-E. Lindgren, From weighted residual methods to finite element methods (2009).

[50] C. Gerald, P. Wheatley, Applied Numerical Analysis, Featured Titles for Numerical Analysis, Pearson/Addison-Wesley, 2004.

[51] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and

uncertainty quantification without labeled data, Journal of Computational Physics 394 (2019) 56–81.

[52] L. Guo, H. Wu, T. Zhou, Normalizing field flows: Solving forward and inverse stochastic differential equations using physics-informed flow

models, Journal of Computational Physics 461 (2022) 111202.

[53] D. O’Malley, J. K. Golden, V. V. Vesselinov, Learning to regularize with a variational autoencoder for hydrologic inverse analysis, UMBC

Faculty Collection (2019).

[54] D. J. Tait, T. Damoulas, Variational autoencoding of PDE inverse problems, arXiv preprint arXiv:2006.15641 (2020).

29

[55] Z. Qian, W. Zame, L. Fleuren, P. Elbers, M. van der Schaar, Integrating expert ODEs into neural ODEs: Pharmacology and disease progres-

sion, Advances in Neural Information Processing Systems 34 (2021) 11364–11383.

[56] W. Zhong, H. Meidani, Pi-vae: Physics-informed variational auto-encoder for stochastic differential equations, Computer Methods in Applied

Mechanics and Engineering 403 (2023) 115664.

[57] C. Jacobsen, K. Duraisamy, Disentangling generative factors of physical fields using variational autoencoders, Frontiers in Physics 10 (2022).

[58] N. Takeishi, A. Kalousis, Physics-integrated variational autoencoders for robust and interpretable generative modeling, Advances in Neural

Information Processing Systems 34 (2021) 14809–14821.

[59] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, Vol. 3, Springer, 2008.

[60] P.-H. Chiu, J. C. Wong, C. Ooi, M. H. Dao, Y.-S. Ong, CAN-PINN: A fast physics-informed neural network based on coupled-automatic–

numerical differentiation method, Computer Methods in Applied Mechanics and Engineering 395 (2022) 114909.

[61] C. M. Bishop, Pattern Recognition and Machine Learning, Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[62] D. P. Kingma, M. Welling, An introduction to variational autoencoders, Foundations and Trends in Machine Learning 12 (4) (2019) 307–392.

[63] D. P. Kingma, M. Welling, Auto-encoding variational Bayes, nternational Conference on Learning Representations (ICLR) 2014 (2014).

[64] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representations (ICLR) (2015).

[65] D. Dehaene, R. Brossard, Re-parameterizing vaes for stability, arXiv preprint arXiv:2106.13739 (2021).

[66] E. A. Wan, R. Van Der Merwe, The unscented Kalman filter for nonlinear estimation, in: Proceedings of the IEEE 2000 Adaptive Systems

for Signal Processing, Communications, and Control Symposium, IEEE, 2000, pp. 153–158.

[67] F. Cirak, M. Ortiz, P. Schröder, Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, International Journal for Numer-

ical Methods in Engineering 47 (12) (2000) 2039–2072.

[68] F. Cirak, Q. Long, Subdivision shells with exact boundary control and non-manifold geometry, International Journal for Numerical Methods

in Engineering 88 (9) (2011) 897–923.

[69] E. Febrianto, L. Butler, M. Girolami, F. Cirak, Digital twinning of self-sensing structures using the statistical finite element method, Data-

Centric Engineering 3 (2022) e31.

[70] Q. Zhang, M. Sabin, F. Cirak, Subdivision surfaces with isogeometric analysis adapted refinement weights, Computer-Aided Design 102

(2018) 104–114.

[71] M. J. Grote, T. Huckle, Parallel preconditioning with sparse approximate inverses, SIAM Journal on Scientific Computing 18 (3) (1997)

838–853.

[72] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions, arXiv preprint arXiv:1710.05941 (2017).

[73] T. Rüberg, F. Cirak, Subdivision-stabilised immersed b-spline finite elements for moving boundary flows, Computer Methods in Applied

Mechanics and Engineering 209–212 (2012) 266–283.

[74] S. J. Lind, B. D. Rogers, P. K. Stansby, Review of smoothed particle hydrodynamics: towards converged lagrangian flow modelling, Proceed-

ings of the Royal Society A 476 (2241) (2020) 20190801.

[75] J. Povala, I. Kazlauskaite, E. Febrianto, F. Cirak, M. Girolami, Variational Bayesian approximation of inverse problems using sparse precision

matrices, Computer Methods in Applied Mechanics and Engineering 393 (2022) 114712.

[76] T. Tripura, S. Chakraborty, Wavelet neural operator for solving parametric partial differential equations in computational mechanics problems,

Computer Methods in Applied Mechanics and Engineering 404 (2023).

[77] J. C. Strikwerda, Finite difference schemes and partial differential equations, SIAM, 2004.

[78] R. Eymard, T. Gallouët, R. Herbin, Finite volume methods, Handbook of numerical analysis 7 (2000) 713–1018.

[79] B. A. Finlayson, L. E. Scriven, The method of weighted residuals—a review, Applied Mechanics Review 19 (9) (1966) 735–748.

[80] W. C. Gibson, The method of moments in electromagnetics, Chapman and Hall/CRC, 2021.

30

Appendix

Appendix A. Experimental Details

All experiments were run on an AMD Ryzen 9 5950X 16-Core Processor CPU and an NVIDIA GeForce RTX

3090 GPU. For all experiments, the TensorFlow GPU usage was limited between 6 and 13 GBs. The Poisson 1D

examples are run on the CPU rather than the GPU as the fem code is sequential and runs faster on the CPU. The 3D

Bunny example was run on a mix of CPU and GPU. The PINN example was run entirely on the GPU as it can best

leverage this type of hardware. We also note the definition used for the reported Mean Normalized Squared Error as

MNSE(x∗1:N , x1:N) :=
1
N

N∑
i

‖x∗i − xi‖
2

‖x∗i ‖
2 , (A.1)

where x∗ denotes the base truth, and x denotes the approximation.

Appendix B. Alternative Derivation of PDDLVM

In this section, we show how to derive the pddlvm from the KL divergence between an intractable posterior and

a variational approximation. We start by restating our joint model (15) from Sect. 3.1 which includes the residual

observation variable and the trainable inversion network

pβ(r,u, z, f) = p(r|u, z, f)pβ(z|u, f)p(u)p(f). (B.1)

We also restate our trainable variational approximation distribution (17),

qα(u, z, f) = qα(u|z, f)p(z)p(f). (B.2)

Using Bayes’ rule we write for the intractable posterior of the latent variable given the observed residual

pβ(u, z, f|r) =
pβ(r,u, z, f)

p(r)
. (B.3)

We then consider the KL divergence between this intractable posterior and our tractable variational approximation

DKL(qα(u, z, f)||pβ(u, z, f|r)) =

∫
log

qα(u, z, f)
pβ(u, z, f|r)

qα(u, z, f)dudzdf, (B.4)

=

∫
log

qα(u, z, f)p(r)
pβ(r,u, z, f)

qα(u, z, f)dudzdf.

From this we factorize the evidence of the residual p(r) out of the integral

DKL(qα(u, z, f)||pβ(u, z, f|r)) =

∫
log

qα(u, z, f)
pβ(r,u, z, f)

qα(u, z, f)dudzdf + log p(r), (B.5)

31

while taking into account that
∫

qα(u, z, f)dudzdf ≡ 1. We then note that the KL divergence is a non-negative quantity

so that

DKL(qα(u, z, f)||pβ(u, z, f|r)) ≥ 0. (B.6)

This allows us to define the lower bound on the log marginal residual, as we further specify that r = 0. We then obtain

a lower bound on the marginal likelihood of solving the parameterized PDE for all parameter values specified by their

priors,

log p(r = 0) ≥
∫

log
pβ(r = 0,u, z, f)

qα(u, z, f)
qα(u, z, f)dudzdf. (B.7)

Substituting the chosen factorizations (B.1) and (B.2) into the individual joint terms, we obtain the pddlvm framework

derived in Sec. 3.1,

log p(r = 0) ≥
∫

log
p(r = 0|u, z, f)pβ(z|u, f)p(u)

qα(u|z, f)p(z)
qα(u|z, f)p(z)p(f)dudzdf. (B.8)

In order to relate the proposed probabilistic model to classical non-probabilistic approaches it is instructive to compare

after introducing the probability densities and taking their logarithms the resulting expressions.

Appendix C. Additional Results for 1D Nonlinear Poisson

In Fig. C.13 we plot the same quantities as in Fig. 5 but not in the log scale and in box plot format. We show the

MNSEs for a variety of parameters of εr. In Fig. C.14 we plot the training of the elbo for various settings of εr. We

notice that the smaller the choice of εr, the slower the convergence, but the higher the accuracy.

Appendix D. PINN-PDDLVM

We stress the generality of using the weighted residual formulation, as noted by [44], as different choices for the

weight function w(x) results in different well-known discretization methods. Setting wi(x) = δ(x − xi) we have a

collocation method [77], and for wi(x) = δi j for x ∈ Ω j we obtain a subdomain (finite volume) method [78]. For

wi(x) = ∂R(û, . . .)/∂u j we have a least-squares method [79], for wi(x) = xm−1 we have a moment method (used in,

e.g., electromagnetism [80]). For wi(x) = φi(x) we obtain a Galerkin method [1]. This could be a spectral method if

wi(x) , 0 for every x ∈ Ω or fem if wi(x) , 0 only for x ∈ Ωk ⊂ Ω.

In the case of pinn we clarify its link with the weighted residual method as a method of least-squares collocation

[48]. This is done by choosing wi(x) =
∂R(û,x)
∂W δ(xi − x) with N1,N2,N3 collocation points in {Ω,Γ,I}, which are the

domain, boundary conditions and initial conditions, respectively. W denotes the collection of NN parameters. We

abuse the notation and use x = {x, t}. As in [79] we motivate the least-squares method as

ri =

∫
Ω

wi(x)RΩ(û, x)dx +

∫
Γ

wi(x)RΓ(û, x)dx +

∫
I

wi(x)RI(û, x)dx. (D.1)

32

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.00

0.01

0.02

0.03

0.04

N
M

E
S

o
lu

ti
o
n

F
ie

ld

ε =1.0

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

ε =0.1

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0

1

2

3

4

5

6

×10−6 ε =0.01

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0

1

2

3

4

5

6
×10−7 ε =0.001

(a) MNSE of u(x).

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

N
M

E
D

iff
u

si
v
it

y
F

ie
ld

ε =1.0

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0

2

4

6

8

×10−5 ε =0.1

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

ε =0.01

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

ε =0.001

(b) MNSE of the reconstructed κ(x).

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0

1

2

3

4

5

6

N
M

E
B

ou
d

ar
y

C
on

d
it

io
n

s

×10−9 ε =1.0

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

×10−9 ε =0.1

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0

2

4

6

8
×10−10 ε =0.01

[-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0][-1.0, -0.5] [-0.5, 0.0] [0.0, 0.5] [0.5, 1.0]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

×10−8 ε =0.001

(c) MNSE of a, and b (boundary condition values).

Figure C.13: The MNSE for different εr values for the ranges of κ given on the x-axis. This was computed for the 1D linear Poisson example of

Sec. 4.1 and is computed from the same values as Fig. 5 but not in the log scale. The prior on which the fem-pddlvmwas trained was p(z) = N(0, 0.5).

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

iterations ×105

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

E
L

B
O

×105

eps = 1.0

eps = 0.1

eps = 0.01

eps = 0.001

eps = 0.0001

Figure C.14: The convergence of the elbo estimate for a 1D linear Poisson equation for various choices of εr.

We then substitute the definition of wi(x) =
∂R(û,x)
∂W δ(xi − x),

ri =

∫
Ω

∂RΩ

∂W
δ(xi − x)RΩ(û, x)dx +

∫
Γ

∂RΓ

∂W
δ(xi − x)RΓ(û, x)dx

+

∫
I

∂RI
∂W

δ(xi − x)RI(û, x)dx. (D.2)
33

After factorizing out the partial derivative with respect to W and introducing the factor of one-half we obtain

ri =
1
2
∂

∂W

[∫
Ω

δ(xi − x)R2
Ω(û, x)dx +

∫
Γ

δ(xi − x)R2
Γ(û, x)dx

+

∫
I

δ(xi − x)R2
I

(û, x)dx
]
. (D.3)

Since ri is required to be zero for all i, all residuals must be zero. We define

Ii(W) = R2
Ω(û, xi) + R2

Γ(û, xi) + R2
I

(û, xi). (D.4)

If we average over the points in each residual domain and assemble into a single objective, we obtain

I(W) =
1

N1

∑
xi∈Ω

R2
Ω(û, xi) +

1
N2

∑
xi∈Γ

R2
Γ(û, xi) +

1
N3

∑
xi∈I

R2
I

(û, xi), (D.5)

which is the commonly used training objective for pinn-type models.

Appendix E. Additional Details

In this subsection we collect information from the paper for easy referencing.

1D Linear Poisson – Sec. 4.1.1

dim u dim r dim z z p(z) εr α-Net β-Net iters

5 21 1 {κ} N(0, 1) 10−2 3l, 50n 3l, 50n 2 × 105

Table E.4: Basic information 1D Linear Poisson

1D Linear Poisson Observable Map Inversion – Sec. 4.1.2

dim u dim r dim z dim f dim y z σy εr α-Net β-Net iters

8 101 4 1 80 {κ, a, b} 10−2 10−2 4l, 50n, 4l, 50n, 1 × 106

Table E.5: Basic information 1D Linear Poisson Observable Map Inversion

p(κi) p(f) p(a) p(b)

U(−1, 1) U(1, 5) U(−0.5, 0.5) U(−0.5, 0.5)

Table E.6: Prior information 1D Linear Poisson Observable Map Inversion

34

1D Nonlinear Poisson – Sec. 4.2

dim u dim r dim z dim f z εr α-Net β-Net iters

10 61 5 1 {κ, b} 10−2 4l, 100n 4l, 100n 1 × 106

Table E.7: Basic information 1D Nonlinear Poisson

p(z) p(f) p(b)

N(0, 1) U(1, 1) U(0.5, 1)

Table E.8: Prior information 1D Nonlinear Poisson

Thin-Walled Flexible Shell – Sec. 4.3

dim u dim r dim z z p(z) εr α-Net β-Net iters

1029 24858 3 {κ} U(−2, 2) 10−2 3l, 2500n 3l, 2500n 5 × 104

Table E.9: Basic information Thin-Walled Flexible Shell

Nonlinear Heat Equation – Sec. 4.4

dim u dim r dim z z p(z) εr α-Net β-Net iters

2 × 105 2 × 105 2 {γ, κ} U(1, 5) ×U(1, 5) 10−2 4l, 100n 3c, 1l − 500n 5 × 105

Table E.10: Basic information Nonlinear Heat Equation

Inhomogeneous Wave Equation – Sec. 4.5

dim u dim r dim z z p(z) εr α-Net β-Net iters

2.5 × 103 2.5 × 103 4 {f} U(−5, 5) 10−2 4l, 100n 3c, 1l − 500n 2.5 × 105

Table E.11: Basic information Inhomogeneous Wave Equation

35

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

Credit Author Statement

Arnaud Vadeboncoeur : Conceptualization, Methodology, Software, Writing – original draft.
Ömer Deniz Akyildiz: Conceptualization, Writing – original draft and review & editing.
Ieva Kazlauskaite: Conceptualization, Writing – original draft and review & editing.
Mark Girolami: Conceptualization, Writing – review & editing.
Fehmi Cirak: Conceptualization, Writing – review & editing.

	Introduction
	Contributions
	Related Work

	Parametric PDEs and their Discretization
	Weighted Residual Method
	Finite Elements and Parameterizations
	Physics Informed Neural Networks (PINNs)

	Deep Probabilistic Models for Parametric PDEs
	Probabilistic Model and Variational Approximation without Observed Data
	Probabilistic Model and Variational Approximation with Observed Data
	Algorithm and Implementation Details

	Examples
	1D Linear Poisson
	Learning Without Observations
	Observable Map Inversion

	1D Nonlinear Poisson Problem
	Thin-Walled Flexible Shell
	 1D Nonlinear Heat Equation
	Inhomogeneous Wave Equation

	Conclusions
	Appendices
	Experimental Details
	Alternative Derivation of PDDLVM
	Additional Results for 1D Nonlinear Poisson
	PINN-PDDLVM
	Additional Details

