22 research outputs found

    Learning probability distributions generated by finite-state machines

    Get PDF
    We review methods for inference of probability distributions generated by probabilistic automata and related models for sequence generation. We focus on methods that can be proved to learn in the inference in the limit and PAC formal models. The methods we review are state merging and state splitting methods for probabilistic deterministic automata and the recently developed spectral method for nondeterministic probabilistic automata. In both cases, we derive them from a high-level algorithm described in terms of the Hankel matrix of the distribution to be learned, given as an oracle, and then describe how to adapt that algorithm to account for the error introduced by a finite sample.Peer ReviewedPostprint (author's final draft

    Learning probabilistic languages by k-testable machines

    Get PDF
    Algorithms and the Foundations of Software technolog

    Emergence and Stability of Self-Evolved Cooperative Strategies using Stochastic Machines

    Full text link
    To investigate the origin of cooperative behaviors, we developed an evolutionary model of sequential strategies and tested our model with computer simulations. The sequential strategies represented by stochastic machines were evaluated through games of Iterated Prisoner's Dilemma (IPD) with other agents in the population, allowing co-evolution to occur. We expanded upon past works by proposing a novel mechanism to mutate stochastic Moore machines that enables a richer class of machines to be evolved. These machines were then subjected to various selection mechanisms and the resulting evolved strategies were analyzed. We found that cooperation can indeed emerge spontaneously in evolving populations playing iterated PD, specifically in the form of trigger strategies. In addition, we found that the resulting populations converged to evolutionarily stable states and were resilient towards mutation. In order to test the generalizability of our proposed mutation mechanism and simulation approach, we also evolved the machines to play other games such as Chicken, Stag Hunt, and Battle, and obtained strategies that perform as well as mixed strategies in Nash Equilibrium.Comment: 8 pages, 5 figures, Submitted to and Accepted for IEEE SSCI 2020 (Symposium Series on Computational Intelligence

    Learning Probabilistic Finite State Automata For Opponent Modelling

    Get PDF
    Artificial Intelligence (AI) is the branch of the Computer Science field that tries to imbue intelligent behaviour in software systems. In the early years of the field, those systems were limited to big computing units where researchers built expert systems that exhibited some kind of intelligence. But with the advent of different kinds of networks, which the more prominent of those is the Internet, the field became interested in Distributed Artificial Intelligence (DAI) as the normal move. The field thus moved from monolithic software architectures for its AI sys- tems to architectures where several pieces of software were trying to solve a problem or had interests on their own. Those pieces of software were called Agents and the architectures that allowed the interoperation of multiple agents were called Multi-Agent Systems (MAS). The agents act as a metaphor that tries to describe those software systems that are embodied in a given environ- ment and that behave or react intelligently to events in the environment. The AI mainstream was initially interested in systems that could be taught to behave depending on the inputs perceived. However this rapidly showed ineffective because the human or the expert acted as the knowledge bottleneck for distilling useful and efficient rules. This was in best cases, in worst cases the task of enumerating the rules was difficult or plainly not affordable. This sparked the interest of another subfield, Machine Learning and its counter part in a MAS, Distributed Machine Learning. If you can not code all the scenario combinations, code within the agent the rules that allows it to learn from the environment and the actions performed. With this framework in mind, applications are endless. Agents can be used to trade bonds or other financial derivatives without human intervention, or they can be embedded in a robotics hardware and learn unseen map config- uration in distant locations like distant planets. Agents are not restricted to interactions with humans or the environment, they can also interact with other agents themselves. For instance, agents can negotiate the quality of service of a channel before establishing a communication or they can share information about the environment in a cooperative setting like robot soccer players. But there are some shortcomings that emerge in a MAS architecture. The one related to this thesis is that partitioning the task at hand into agents usually entails that agents have less memory or computing power. It is not economically feasible to replicate the big computing unit on each separate agent in our system. Thus we can say that we should think about our agents as computationally bounded , that is, they have a limited amount of computing power to learn from the environment. This has serious implications on the algorithms that are commonly used for learning in these settings. The classical approach for learning in MAS system is to use some variation of a Reinforcement Learning (RL) algorithm [BT96, SB98]. The main idea around those algorithms is that the agent has to maintain a table with the per- ceived value of each action/state pair and through multiple iterations obtain a set of decision rules that allows to take the best action for a given environment. This approach has several flaws when the current action depends on a single observation seen in the past (for instance, a warning sign that a robot per- ceives). Several techniques has been proposed to alleviate those shortcomings. For instance to avoid the combinatorial explosion of states and actions, instead of storing a table with the value of the pairs an approximating function like a neural network can be used instead. And for events in the past, we can extend the state definition of the environment creating dummy states that correspond to the N-tuple (stateN, stateN−1, . . . , stateN−t

    Wrapper Maintenance: A Machine Learning Approach

    Full text link
    The proliferation of online information sources has led to an increased use of wrappers for extracting data from Web sources. While most of the previous research has focused on quick and efficient generation of wrappers, the development of tools for wrapper maintenance has received less attention. This is an important research problem because Web sources often change in ways that prevent the wrappers from extracting data correctly. We present an efficient algorithm that learns structural information about data from positive examples alone. We describe how this information can be used for two wrapper maintenance applications: wrapper verification and reinduction. The wrapper verification system detects when a wrapper is not extracting correct data, usually because the Web source has changed its format. The reinduction algorithm automatically recovers from changes in the Web source by identifying data on Web pages so that a new wrapper may be generated for this source. To validate our approach, we monitored 27 wrappers over a period of a year. The verification algorithm correctly discovered 35 of the 37 wrapper changes, and made 16 mistakes, resulting in precision of 0.73 and recall of 0.95. We validated the reinduction algorithm on ten Web sources. We were able to successfully reinduce the wrappers, obtaining precision and recall values of 0.90 and 0.80 on the data extraction task

    Learning deterministic probabilistic automata from a model checking perspective

    Get PDF
    Probabilistic automata models play an important role in the formal design and analysis of hard- and software systems. In this area of applications, one is often interested in formal model-checking procedures for verifying critical system properties. Since adequate system models are often difficult to design manually, we are interested in learning models from observed system behaviors. To this end we adopt techniques for learning finite probabilistic automata, notably the Alergia algorithm. In this paper we show how to extend the basic algorithm to also learn automata models for both reactive and timed systems. A key question of our investigation is to what extent one can expect a learned model to be a good approximation for the kind of probabilistic properties one wants to verify by model checking. We establish theoretical convergence properties for the learning algorithm as well as for probability estimates of system properties expressed in linear time temporal logic and linear continuous stochastic logic. We empirically compare the learning algorithm with statistical model checking and demonstrate the feasibility of the approach for practical system verification
    corecore