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Abstract—A k-testable machine is a finite automaton which
recognizes a language L by only seeing a window of size k of
each string in L. In this paper we use k-testable machines to
recognize probabilistic languages and propose a novel algorithm
to learn them. We work in the context of passive learning as our
algorithm is based on a finite sample of strings belonging to the
target language equipped with frequencies.

Because our algorithm learns a probabilistic automaton, the
resulting language is less sensitive to noise threshold than
Garcı́a’s algorithm. When compared with the ALERGIA learning
algorithm, our method provides a better result in the case of the
target language being a k-testable language. In fact, in this case,
for the given window k we can learn at the limit the target
language exactly.

Index Terms—automata, k-testable language, probabilistic fi-
nite automata, passive learning

I. INTRODUCTION

Probabilistic finite automata have been used to model a

distribution over strings. They have been widely applied in

several fields, such as computational biology [1] and speech

recognition [2]. Therefore, learning probabilistic finite automa-

ta has been an important issue. In 1967, Gold [3] introduced

the criterion of identification in the limit for successful learn-

ing a language and proved that regular languages cannot be

identified by positive sample (text) only. However, Angluin

proved that this is not the case for a wide range of distribution

classes, including probabilistic regular languages [4], which

can be identified from positive samples with probability 1.

Since then, several algorithms of learning probabilistic regular

languages have been published. The ALERGIA algorithm was

developed by Rafael Carrasco and Jose Oncina [5], who also

published a simpler version, the RLIPS algorithm, in 1999

[6]. Another algorithm for learning only acyclic automata was

developed by Ron et al. [7].

Gold’s results are very strict with respect to the class of

regular languages. To cope with these, Angluin pointed out

that it is possible to approach certain particular subclasses

of languages [8]. Following Angluin, Garcı́a introduced an

algorithm for learning k-testable (k − T SS) languages [9].

Practically, learning k−testable has been used in a wide range

of applications [10]–[12], such as biological sequences, aural

pattern recognition and sequence classification. Furthermore,

k-testable probabilistic languages in the strict sense are di-

rectly related to order-k Markov source [13], which has been

successfully utilized in pattern recognition system [14]. On

the other hand, probabilistic languages can approximately

characterize natural languages, and the accuracy increases as

more data is taken into account [15], [16]. However, there is

no room for noise in Garcı́a’s algorithm [17]: once a string

is accepted by the learning automata it will always be in

every refinements, even if the string do not belong to the

language to be learn. In other words, the fault tolerance of

Garcı́a’s algorithm is very low. Our research is motivated by

this problem.

In this paper we provide an algorithm for passively learning

probabilistic regular language given a finite set of strings

together with some frequency (a sample), which allows for

the identification of k-testable probabilistic languages. Our

approach is different from active learning because it does

not require any extra information about the sample. We show

that it can learn a target language with probability 1 in the

limit of infinite data. Our approach is based on a probabilistic

extension of learning k-testable languages.

II. PRELIMINARIES

In this section, we present some necessary background,

mainly to fix the notation. Given an alphabet Σ, a language

L is a subset of Σ∗. If s is a string in Σ∗ and s = tuv for

three strings t, u and v, then t is said to be a prefix of s, v is

a suffix of s, and u is a substring of s.

In this paper we are interested to learning regular languages,

that is, languages recognized by a deterministic finite automa-

ton.

Definition 1. Deterministic finite automaton A deterministic
finite automaton (DFA) is a tuple A = 〈Σ, Q, qλ, FA, δ〉,
where:

• Σ is the alphabet,
• Q is a finite set of states,
• qλ ∈ Q is the initial state,
• δ : Q× Σ→ Q is a transition function,
• FA ⊆ Q is a set of final accepting states.

The state δ(q, a) denotes the unique state in which a DFA

goes to when reading the symbol a in a state q. As usual, we

extend the transition function so to get as input strings rather

than symbol s of the alphabet. We denote by δ∗(q, x) the state

reached by a DFA after receiving a string x in a state q. The

definition of the extended transition function is by induction

on the length of the string:
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Definition 2. Let A = 〈Σ, Q, qλ, FA, δ〉 be a finite automation.
We define the extended transition function

δ∗ : Q× Σ∗ → Q (1)

as follows:
• ∀q ∈ Q, δ∗(q, λ) = q,
• ∀q ∈ Q, ∀ω ∈ Σ∗, and ∀a ∈ Σ,

δ∗(q, ωa) = δ(δ∗(q, ω), a)

The extended transition function is used to define the

language L(A) recognized by a deterministic finite automaton

A:

L(A) = {ω ∈ Σ∗|δ∗(qλ, ω) ∈ F}. (2)

The class of languages recognized by a deterministic finite

automaton is the one of regular languages [18]. In the sequel,

we will be interested in a subset of regular languages, the

k−testable language. Intuitively, these are languages that can

be recognized by only observing no more than k consecutive

symbols, either as prefix, suffix or substring. To characterize

formally the class of k-testable language, [19] introduced a

special machine:

Definition 3. k-testable machine Given k > 0, a k-testable
machine is a 5-tuple Zk = 〈Σ, I, F, T, C〉 with:
• Σ is the alphabet,
• I, F ⊆ Σk−1 (prefixes of length k − 1 and suffixes (or

finals) of length k − 1),
• C ⊆ Σ<k (short strings),
• T ⊆ Σk (allowed segments).

Given a k-testable machine Zk = 〈Σ, I, F, T, C〉, the k-

testable language recognized by it which can be defined by:

L(Zk) = (IΣ∗ ∩ Σ∗F − Σ∗(Σk − T )Σ∗) ∪ C

Informally, a k-testable language is a set of strings starting

with strings in I , finishing with strings in F and containing

strings in T , if their sizes are greater than or equal to k.

Otherwise, they must belong to set C. There are, thus, two

types of strings in L(Zk): strings of length less than k, that

are defined by C, and strings of length greater or equal kthat

must contain substrings in the other sets I, T and F . Note that

if k = 1, the language accepted by any 1−testable machine is

Σ�. This is because the sets I, F and C are {λ}, T equals Σ.

See the example 1.

A k-testable language is a regular language for which its

memory (i.e. the minimal number of states needed by a DFA

to recognize it) can be bounded a priori. This follows from

Definition 3, because the size of the window of visible symbols

of a k-testable language is exactly k and the next symbol

depend on the k − 1 previous characters. In other words, k-

testable languages are causal.

Even if all k−testable languages are regular languages,

the converse is not true, for any k. For instance, consider

the language which is defined by the regular expression

aΣ∗a+ bΣ∗b, which is not k-testable language (for any k), as

the last symbol may depend on more than k previous one.

Fig. 1. A 1-testable language.

Example 1. The 1-testable language recognized by the
1−testable machine Z1 = 〈Σ = {a, b}, I = {λ}, F =
{λ}, T = {a, b}, C = {λ}〉 is the one recognized by the
deterministic finite automaton in Figure 1 which basically
accepts any strings.

Example 2. The automaton from Figure 2 recognises the lan-
guage bb∗ab∗. This language is 3−testable language because
it can be recognized by a 3−testable machine. But it is not a
2−testable language, because with a window of size two, any
2-testable machine would accept the set of strings b∗.

A probabilistic language D is a probability distribution over

Σ∗. The probability of a string x ∈ Σ∗ under the distribution

D is denoted by PD(x) and it must satisfy:

∑

x∈Σ∗
PD(x) = 1 . (3)

Probabilistic regular languages are accepted by probabilistic

finite automata [20].

Definition 4. Probabilistic finite automata A determinis-
tic probabilistic finite automaton(DPFA) is a tuple A =
〈Σ, Q, qλ,Fp, δp〉, where:
• Σ is the alphabet,
• Q is a finite set of states,
• qλ is the initial state,
• δp : Q× Σ×Q→ Q+ ∩ [0, 1],
• Fp : Q→ Q+ ∩ [0, 1] assigns final-state to probabilities,
• ∀q ∈ Q, ∀a ∈ Σ, |{q′ : δP (q, a, q′) > 0}| ≤ 1.

The last conditions is about being deterministic, i.e. the

automaton is deterministic when we assume that the transition

function δp(q, a, q
′) is completely defined by q and a, in the

sense that it is strictly positive for at most one state q′. A

distribution over Σ∗ said to be regular deterministic if it can

be generated by DPFA.

To define the language, we need to introduce the extended

transition function δ∗ : Q × Σ∗ ⇀ Q for deterministic

probabilistic finite automata. It is defined by induction on the

length of the string as follow:

• δ∗(q, λ) = q
• δ∗(q, ωa) = q′, if δ(δ∗(q, ω), a, q′) > 0 and δ∗(q, ω) is

defined, else it is undefined.

Note that because of the deterministic assumption on a prob-

abilistic automaton, the above function is well defined and

partial.

The language accepted by a DPFA A is defined as follows:
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Fig. 2. A deterministic automaton for the 3 − T SS automaton Z =
〈{a, b}, I = {bb, ba}, F = {ab, bb, ba}, T = {bbb, bab, abb}, C = {ba}〉.

L(A) = {ω|δ∗(qλ, ω) = q′,Fp(q
′) > 0, }. (4)

Next we describe how the probability associated to each

string ω is computed, defining a distribution on PD on Σ∗

for a given PDFA. Basically, PD(ω) = PD(ω, qλ), where

PD(λ, q) = F (q) and PD(aω) = δ(qλ, a, q
′) · PD(ω, q′).

The assignment of probability to strings generalize to an

assignment of probability to language by summing up the

probability of each string in the language. This allows to define

a distribution over Σ in a given context:

PD(a|ω) = PD(ωaΣ∗)

PD(ωΣ∗)
. (5)

Informally PD(a|ω) is the probability of generating an a after

having generated ω according to the distribution PD.

Since our goal is to learn probabilistic finite automata, in

practice we have access to frequencies instead of probabilities.

For instance, we can get 10 out of 100 strings start with the

letter a, not the probability 1
10 . For this propose, we introduce a

deterministic frequency finite automaton (DFFA), which takes

into account the number of times an event occurs.

Definition 5. Deterministic frequency finite automaton A
deterministic frequency finite automaton is a tuple A =
〈Σ, Q, Ifr,Ffr, δfr〉 where

• Σ is the alphabet,
• Q is a finite set of states,
• Ifr : Q → N (initial-state frequencies); since the

automaton is deterministic there is exactly one state qλ
for which Ifr � =0,

• Ffr : Q→ N (final-state frequencies),
• δfr : Q×Σ×Q→ N is the transition frequency function,
• ∀q ∈ Q, ∀a ∈ Σ, |{q′ : δfr(q, a, q′) > 0}| ≤ 1.

The notation δfr(q, a, q
′) = n can be interpreted as ”there is

a transition from q to q′ labelled with a that is used n times”.

In addition, there is a relationship between the frequencies of

the transitions leading to a state and those leaving a state:

Definition 6. Consistency A deterministic frequency finite au-
tomaton A = 〈Σ, Q, Ifr,Ffr, δfr, δA〉 is said to be consistent
or well defined if ∀q ∈ Q,

Ifr(q)+
∑

q′∈Q,a∈Σ
δfr(q

′, a, q) = Ffr(q)+
∑

q′∈Q,a∈Σ
δfr(q, a, q

′).

(6)

When a deterministic frequency finite automaton is consis-

tent, the number of strings entering and leaving a given state

is identical. Consistency is defined as maintaining the flows:

any string that enters a state (or starts in a state) has to leave

it (or end there).

III. INFERENCE ALGORITHM

In this section we introduce our learning algorithm. It

consists of several steps. The first step is to construct a

Ak−T SS machine from sample S. Let S ⊆ Σ∗ be a finite

learning sample and k ≥ 1, then we construct a k-testable

machine Ak−T SS using an algorithm similar to [9]:

Algorithm 1 Ak−T SS
Input: A sample S
Output: A k − T SS machine
1: Σ is the alphabet used in S
2: I(S) := Σk−1 ∩ PREF (S)
3: C(S) := Σ<k ∩ S
4: F(S) := Σk−1 ∩ SUFF (S)
5: T(S) := Σk ∩ {v : uvw ∈ S, u, v, w ∈ Σ�}
6: return 〈Σ, I(S), F (S), T (S), C(S)〉

From the Algorithm 1, we see that the strings in the sample

S of length less than k define the set C. While for those strings

in S of length greater or equal to k, we cut all the prefixes

of size exactly k− 1 and put them in set I . Similarly, we cut

all the suffixes of size k − 1 and put them in set F . And we

put all substrings of size k in the set T . In other words, this

step of learning k−testable languages is to find the prefixes,

substrings and suffixes of size k − 1 that occur in the sample

S.

Example 3. Let us consider the sample S =
{a, aa, abba, ababa, ababab}. Following the Algorithm 1,
when k = 1, we get a machine Z1:
• Σ = {a, b},
• I(S) = {λ},
• C(S) = {λ},
• F (S) = {λ},
• T (S) = {a, b}.

However, when k = 2, we get the more interesting machine
Z2:
• Σ = {a, b},
• I(S) = {a},
• C(S) = {a},
• F (S) = {a, b},
• T (S) = {aa, ab, ba, bb}.
The next step is to construct a deterministic finite automaton

from a k-testable machine that recognise the same language.
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Algorithm 2 Building a DFA from a k − T SS
Input: A k − T SS machine 〈Σ, I, F, T, C〉
Output: A DFA 〈Σ, Q, qλ, FA, δ〉
1: Q := ∅
2: FA := ∅
3: if k = 1 then
4: Q := {qλ}
5: FA := {qλ}
6: for a ∈ Σ do
7: δ(qλ, a) = qλ
8: end for
9: else

10: for pu ∈ I ∪ C, p, u ∈ Σ� do
11: Q := Q ∪ {qu}
12: end for
13: for au ∈ T, a ∈ Σ, u ∈ Σ� do
14: Q := Q ∪ {qu}
15: end for
16: for ua ∈ T, a ∈ Σ, u ∈ Σ� do
17: Q := Q ∪ {qu}
18: end for
19: for pau ∈ I ∪ C, a ∈ Σ, p, u ∈ Σ� do
20: δ(qp, a) = qpa
21: end for
22: for aub ∈ T, a, b ∈ Σ, u ∈ Σ� do
23: δ(qau, b) = qub
24: end for
25: for u ∈ F ∪ C do
26: FA := FA∪{qu}
27: end for
28: end if
29: return 〈Σ, Q, qλ, FA, δ〉

Given a k − T SS machine, Algorithm 2 converts all the

prefixes of strings in set I and C into states in Q, and for

every string pau, we have a transition from p to pa to link

two states qp and qpa. Similarly, all prefixes and suffixes of

strings in T are converted into states of the automaton and for

every string aub, we get a transition from au to ub to link the

states qau and qub. The final states in FA corresponds to the

strings in set F . Note that the sizes of the state space of the

automaton is at most k − 1.

Example 4. Let S = {a, c, abba, abbbba} be our learning
sample and suppose we choose k = 3. According to Algorithm
1, we get the 3-testable machine:
• Σ = {a, b, c},
• I(S) = {ab},
• F (S) = {ba},
• T (S) = {abb, bba, bbb},
• C(S) = {a, c}.

Using Algorithm 2, the above machine in translated into
the automaton of Figure 3. Hence the 3-testable language
recognized by the above machine is a+ c+ abb∗a. Note that
the sample S is included in the language recognized by the
automaton.

Proposition 1. Given a sample S, for a fixed k > 0, the
language recognized by the k-testable machine generated by
Algorithm 1 is the same as the language recognized by the
deterministic automaton constructed by Algorithm 2. Further-
more, this language includes S.

To learn a distribution on Σ∗, we will consider samples

Fig. 3. A DFA generated from the sample S = {a, c, abba, abbbba}.

with frequencies. A sample with frequency is a pair (S, Fr),
where S is a finite subset of Σ∗ and Fr is a function

associating to each element in S a positive number, denoting

its frequency. The idea is that we observe a finite set of strings

and their frequencies which are used to learn a distribution

on Σ∗ consistent with the sample S and close enough to the

associated frequency.

Algorithm 3 Building a DFFA from a sample

Input: A sample S with frequency Fr
Output: A DFFA 〈Σ, Q, Ifr,Ffr, δfr〉
1: Build a Ak−T SS machine 〈Σ, Q, qλ, FA, δ〉 from a sample according

to Algorithm 1
2: Build a DFA 〈Σ, Q, qλ, FA, δ〉 from a Ak−T SS machine according to

Algorithm 2
3: Ifr(qλ) :=

∑
x∈S Fr(x)

4: for ∀qp ∈ Q, ∀a ∈ Σ, u, p, x ∈ Σ� do
5: if |p| < k − 1 then
6: δfr(qp, a, qpa) =

∑
pax∈S Fr(pax)

7: else
8: δfr(qp, a, qpa) =

∑
upax∈S Fr(upax)

9: end if
10: end for
11: for ∀q ∈ FA, x ∈ S do
12: Ffr(q) =

∑
x,δ(qλ,x)=q Fr(x)

13: end for
14: return 〈Σ, Q, Ifr,Ffr, δfr〉

In Algorithm 3, qλ is the initial state, which means the

DFFA starts from qλ, so the frequency of the initial state is

the sum of the frequencies of all strings in the sample. For

any other states qp ∈ Q, if the length of string p is shorter

than k, the frequency of this transition is equal to the sum

of the frequencies of all the strings that start from qp in the

sample. Otherwise, the frequency is equal to the sum of the

frequencies of all the strings which contain the substring p.

For each state q in finial set, the frequency of transition is

equal to the sum of the frequencies of strings which ended in

state q.

Proposition 2. The deterministic frequency finite automaton
resulting from Algorithm 3 is consistent.

132

Authorized licensed use limited to: Universiteit van Amsterdam. Downloaded on February 02,2022 at 11:38:34 UTC from IEEE Xplore.  Restrictions apply. 



Proof. For the state qλ, the left hand side of Equation (6) is the

sum of the frequencies of all strings in the sample. The right

hand side, in turn, is the sum of the frequencies of strings with

λ as prefix. Since all the strings have λ as prefix, the equation

holds.

For any other state qp, Ifr(qp) = 0, according to the

Algorithm 3,and if the length of p is shorter than k − 1
then

∑
q′∈Q,a∈Σ δfr(q

′, a, qp) =
∑

px∈S Fr(px), Ffr(qp) =∑
x∈S,δ(qλ,x)=qp

Fr(x) and
∑

q′∈Q,a∈Σ δfr(qp, a, q
′) =∑

pax∈S Fr(pax). That is to say, the left of the equa-

tion equals the sum of the frequencies of all strings in

S which have p has prefix, while the right of equa-

tion equals the sum of the frequency of the string p
and of the frequencies of all strings in S having pa as

prefix. Therefore, the equation is true. Similarly, if the

length of p is equal to k − 1,
∑

q′∈Q,a∈Σ δfr(q
′, a, qp) =∑

upx∈S Fr(upx), Ffr(qp) =
∑

x∈S,δ(qλ,x)=qp
Fr(x) and∑

q′∈Q,a∈Σ δfr(qp, a, q
′) =

∑
upax∈S Fr(upax).

So the left of equation equals the sum of the frequency of

all strings in S starting with upa and the right of equation

equals the sum of the frequencies of all strings ending with p
and the frequencies of all strings starting with upab. So they

are equals, from which it follows that the DFFA we get from

Algorithm 3 is a consistent DFFA.

If the DFFA is consistent, then we can construct a DPFA.

We use the following Algorithm 4 to translate frequencies into

probabilities, in the most expected way.

Algorithm 4 Constructing a DPFA from a DFFA

Input: A consistent DFFA A = 〈Σ, Q, Ifr,Ffr, δfr〉
Output: A DPFA B = 〈Σ, Q, qλ,Fp, δp〉
1: for q ∈ Q do
2: FREQ[q] := Ffr(q)
3: for a ∈ Σ, q′ ∈ Q do
4: FREQ[q] := FREQ[q] + δfr(q, a, q

′)
5: if FREQ[q] > 0 then
6: Fp(q) :=

Ffr(q)

FREQ[q]
7: else
8: Fp(q) := 0
9: end if

10: end for
11: for a ∈ Σ do
12: if FREQ[q] > 0 then
13: δp(q, a, q′) :=

δfr(q,a,q
′)

FREQ[q]
14: else
15: δp(q, a, q′) := 0
16: end if
17: end for
18: end for
19: return 〈Σ, Q, qλ,Fp, δp〉

In Algorithm 4, for every state q in Q, we sum up the

frequencies of all transitions leaving the state q and entering

it. We denote by FREQ[q] the result of this summation. It

follows that the positive probability assigned to each state is
Ffr(q)

FREQ[q] . and, using consistency, the probability associated to

each transition from q to q′ labeled by a is
δfr(q,a,q

′)
FREQ[q] . It is

important to realize that the loop of line 3 can be optimized if

we remember the state q′ such that δfr(q, a, q
′) > 0, because

Fig. 4. A DFFA from sample S = {a, aa, abba, abbbba, abbabba} and a
frequency Fr such that Fr(a) = 200, Fr(aa) = 100, Fr(abba) = 150,
Fr(abbbba) = 300 and Fr(abbabba) = 250.

Fig. 5. A DPFA from sample S = {a, aa, abba, abbbba, abbabba} and a
frequency Fr such that Fr(a) = 200, Fr(aa) = 100, Fr(abba) = 150,
Fr(abbbba) = 300 and Fr(abbabba) = 250.

all other states do not add anything to the frequency. Note that

all the transitions in DFFA are the same as ones in DPFA.

In order to explain how our algorithm works, we need a

sample with frequency. That is to say, a multiset that every

event has the times of occurrence. Now we shall use one

sample of 1000 strings:

Example 5. Let S = {a, aa, abba, abbbba, abbabba} and a
frequency Fr such that Fr(a) = 200, Fr(aa) = 100,
Fr(abba) = 150, Fr(abbbba) = 300 and Fr(abbabba) = 250
be our learning sample and suppose, we choose k = 3.
According to Algorithm 1, we can get:
• Σ = {a, b}
• I(S) = {ab, aa}
• F (S) = {aa, ba}
• T (S) = {abb, bab, bba, bbb}
• C(S) = {a, aa}
Using Algorithm 2, Algorithm 3 and Algorithm 4, then we

can build the corresponding DFA, DFFA and DPFA from the
above sample S. These machines are shown in Fig. 4 and Fig.
5.

IV. ANALYSIS OF THE ALGORITHM

A. Comparison with ALERGIA algorithm

When considering the language without probabilities, the

language learned by our algorithm is the smallest k-testable

language including the sample [17]. This property is called

consistency.
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Proposition 3. Given a sample with frequency S, and k > 0,
then Lk(A) is smallest language including S̄ = {ω|(ω, n) ∈
S}.
Proof. If there were a smaller one then some prefix, suffix or

substring should be absent.

Note that if the length of a string is shorter than k, then

the probability of the string in sample is the same as the

probability of string we get from the learning automaton.

Otherwise, if the length of string is equal to or greater than

k, the probabilities may be different. In total, even if we

normalize the probabilities of all strings in the sample from

the learning automaton, we do not necessarily get the same

probabilities as those in the sample. However, if k is large

enough, which means k is greater than the longest string in

the sample, the probabilities are the same.

If the target language is k-testable then in the large sample

limit, our learning algorithm with k as window parameter will

learn exactly the target language. This is an easy consequence

of the consistency property above. However notice that for

more general regular language (not necessarily k-testable), our

learning algorithm will never learn the target language exactly,

but it will learn the smallest k-testable language instead. This

convergency result is different from probably approximately

correct (PAC) learning [21], which is typically stronger.

Next we consider other methods for learning probabilistic

languages. The most famous are those based on the ALER-

GIA algorithm [5]. The ALERGIA algorithm starts with the

construction of a frequency prefix tree acceptor (FPTA), as

a first basic approximation of the model of the language

to be learnt. The learning algorithm then approximates the

generating model by merging together states in the FPTA

which are to be considered language equivalent.

Below, we present an example of a k-testable language for

which our algorithm gets a better result when compared to the

ALERGIA algorithm.

Let the target language be the one generated by the au-

tomaton in Fig. 6, and let S = {a, ab, abab, aaab, aabab}
and a frequency Fr such that Fr(a) = 522, Fr(ab) = 174,

Fr(abab) = 86, Fr(aaab) = 109 and Fr(aabab) = 109 be

the sample.

The automata generated by our algorithm and ALERGIA

are shown in Figure 7 and Figure 8, respectively. The structure

of target automaton and the automaton from our algorithm are

the same, because the sample S is a characteristic set for the

target language (i.e. there are enough strings in S to cover all

transitions of the target automaton). This is not the case for

the automaton learnt by ALERGIA. In fact, the string aaba is

not in the target language (LT ), but it is in the learnt language

(LA). Conversely, the string aab in the LT , but not in LA. Note

that, if string aaa with some frequency would be included

in the sample S, then the result from ALERGIA would be

consistent with the target. In general, ALERGIA learn any

regular language in the large sample limit [22].

Furthermore, ALERGIA complexity depends on merging of

equivalent states. This problem is known to have polynomial

Fig. 6. The target DPFA which can recognize a 3−testable language.

Fig. 7. The DPFA constructed by our algorithm from the sample S =
{a, ab, abab, aaab, aabab} and a frequency Fr such that Fr(a) = 522,
Fr(ab) = 174, Fr(abab) = 86, Fr(aaab) = 109 and Fr(aabab) = 109.

time complexity [23]. Our algorithm, instead, is linear in the

number of states and the size of sample. In general, for a fixed

k, the number of states of our generated automaton is
1−|Σ|k
1−|Σ| ,

where |Σ| is the length of Σ.

We conclude by showing a more complex example. Consid-

er the probabilistic automaton shown in as Fig. 9 which accepts

strings in (aa+aab)�+b with probability strictly greater than

0. Let S = {b, aab, aabb, aaaab, aabaab, aabaabb} be a sam-

ple with frequency Fr given by Fr(b) = 188, Fr(aab) = 188,

Fr(aabb) = 471, Fr(aaaab) = 94, Fr(aabaab) = 47,

Fr(aabaabb) = 12. Figures 10 and 11 show the automata

learned by our algorithm with k = 3 and k = 4, respectively.

Fig. 8. The DPFA constructed by ALERGIA algorithm from the sample S =
{a, ab, abab, aaab, aabab} and a frequency Fr such that Fr(a) = 522,
Fr(ab) = 174, Fr(abab) = 86, Fr(aaab) = 109 and Fr(aabab) = 109.
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Fig. 9. The target DPFA.

Fig. 10. The DPFA constructed by our algorithm from the sample S =
{b, aab, aabb, aaaab, aabaab, aabaabb} and a frequency Fr such that
Fr(b) = 188, Fr(aab) = 188, Fr(aabb) = 471, Fr(aaaab) = 94,
Fr(aabaab) = 47, Fr(aabaabb) = 12 with k = 3.

Fig. 12 shows the automaton learned by the ALERGIA al-

gorithm. All three of them accept the strings of the sample

with the probability greater than 0. In Table I, we can see

that the string aabaabaab is in the target language, but it

cannot accepted by the automaton learned by ALERGIA. It is

accepted by both automata learned by our algorithm. On the

other hand, the string aaab is not in the target language, but

all three automata accept it. Even if the automaton with k is

4 accepted with the very low probability.

Fig. 11. The DPFA constructed by our algorithm from the sample S =
{b, aab, aabb, aaaab, aabaab, aabaabb} and a frequency Fr such that
Fr(b) = 188, Fr(aab) = 188, Fr(aabb) = 471, Fr(aaaab) = 94,
Fr(aabaab) = 47, Fr(aabaabb) = 12 with k = 4.

Fig. 12. The DPFA constructed by ALERGIA algorithm from the sample
S = {b, aab, aabb, aaaab, aabaab, aabaabb} and a frequency Fr such that
Fr(b) = 188, Fr(aab) = 188, Fr(aabb) = 471, Fr(aaaab) = 94,
Fr(aabaab) = 47, Fr(aabaabb) = 12.

strings Target k = 3 k = 4 ALERGIA

b 0.17 0.19 0.19 0.169
aab 0.166 0.249 0.271 0.069
aabb 0.042 0.365 0.392 0.147

aabaabb 0.01 0.021 0.027 0.007
aabaabaab 0.01 0.001 0.001 0

aaab 0 0.045 0.018 0.044
aaaab 0.083 0.008 0.009 0.044

TABLE I
THE COMPARISON TABLE OF OUTPUT PROBABILITIES

B. Comparison with Garcı́a’s algorithm

Now we compare our algorithm with Garcı́a’s algorithm in

noise setting. The target automata is depicted as Fig. 13. We

can get string a with probability 0, string aa with probability

0.5. Suppose there is a sample S = {b, aa, aaa, aaaa} and

a frequency Fr such that Fr(b) = 1, Fr(aa) = 100,

Fr(aaa) = 100 and Fr(aaaa) = 100. The frequency of the

string b is 1, apparently b is the “noise” here.

We choose the k = 3, according to our algorithm, we can

get a DPFA as Fig. 14. Then we can get the string b with

probability 0.003, the string aa with probability 0.499 and the

string aaa with probability 0.249. Under these circumstances,

we can tell the difference between the noise and other strings

from probabilities. Then, we can recognize language by DPFA

using a cut-point. Let c ∈ R and 0 ≤ c < 1, the language

accepted by a DPFA A is defined as follows:

Lc(A) = {ω|pA(ω) > c}. (7)

The language Lc(A) is then said to be accepted by A with

respect to the cut-point c. If we set the cut-point c larger than

the probability of getting string b, then we can avoid to accept

string b.
Garcı́a’s algorithm is a k−length learner, for some k ∈

N, learns languages defined entirely by good substrings of

length n. It simply memorised all k−length it encounters, and

accepts or generates strings that contain only k−length from

the set it memorised. According to the Garcı́a’s algorithm,

we can get a DFA as depicted in Fig. 15. This DFA will

accept string b, which is supposed not to appear in the target
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Fig. 13. The target DPFA.

Fig. 14. A DPFA learnt from sample S = {b, aa, aaa, aaaa} and a
frequency Fr such that Fr(b) = 1, Fr(aa) = 100, Fr(aaa) = 100
and Fr(aaaa) = 100. The frequency of the string b is 1 according to our
algorithm.

language. Therefore, the string b appears just once and the

DFA is completely wrong. That is to say, it will introduce

the wrong state in the automaton. Apparently, our algorithm

is less sensible to the noise.

V. CONCLUSIONS

It is important to realize how to choose k is a crucial issue.

If we choose a small k, the automaton will accept everything,

running the risk of over-generalisation. If we choose k too

large, one may not generalise enough. For example, if k is

larger than the largest string in sample S, we just learn exactly

the sample S itself, and nothing more.

Fig. 15. A DFA learnt from sample S = {b, aa, aaa, aaaa} and a frequency
Fr such that Fr(b) = 1, Fr(aa) = 100, Fr(aaa) = 100 and Fr(aaaa) =
100. The frequency of the string b is 1 according to the Garcı́a’s algorithm.

Next we want to do some experiments to see how our

algorithm performs in practical situations, using large text

samples with frequency, and compare our results with those

obtained by Alergia
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