471 research outputs found

    Privacy-preserving outsourced support vector machine design for secure drug discovery

    Get PDF
    AXA Research Fund, Singapore Management Universit

    Security for Machine Learning-based Systems: Attacks and Challenges during Training and Inference

    Full text link
    The exponential increase in dependencies between the cyber and physical world leads to an enormous amount of data which must be efficiently processed and stored. Therefore, computing paradigms are evolving towards machine learning (ML)-based systems because of their ability to efficiently and accurately process the enormous amount of data. Although ML-based solutions address the efficient computing requirements of big data, they introduce (new) security vulnerabilities into the systems, which cannot be addressed by traditional monitoring-based security measures. Therefore, this paper first presents a brief overview of various security threats in machine learning, their respective threat models and associated research challenges to develop robust security measures. To illustrate the security vulnerabilities of ML during training, inferencing and hardware implementation, we demonstrate some key security threats on ML using LeNet and VGGNet for MNIST and German Traffic Sign Recognition Benchmarks (GTSRB), respectively. Moreover, based on the security analysis of ML-training, we also propose an attack that has a very less impact on the inference accuracy. Towards the end, we highlight the associated research challenges in developing security measures and provide a brief overview of the techniques used to mitigate such security threats

    Outsourced Privacy-Preserving kNN Classifier Model Based on Multi-Key Homomorphic Encryption

    Get PDF
    Outsourcing the k-Nearest Neighbor (kNN) classifier to the cloud is useful, yet it will lead to serious privacy leakage due to sensitive outsourced data and models. In this paper, we design, implement and evaluate a new system employing an outsourced privacy-preserving kNN Classifier Model based on Multi-Key Homomorphic Encryption (kNNCM-MKHE). We firstly propose a security protocol based on Multi-key Brakerski-Gentry-Vaikuntanathan (BGV) for collaborative evaluation of the kNN classifier provided by multiple model owners. Analyze the operations of kNN and extract basic operations, such as addition, multiplication, and comparison. It supports the computation of encrypted data with different public keys. At the same time, we further design a new scheme that outsources evaluation works to a third-party evaluator who should not have access to the models and data. In the evaluation process, each model owner encrypts the model and uploads the encrypted models to the evaluator. After receiving encrypted the kNN classifier and the user’s inputs, the evaluator calculated the aggregated results. The evaluator will perform a secure computing protocol to aggregate the number of each class label. Then, it sends the class labels with their associated counts to the user. Each model owner and user encrypt the result together. No information will be disclosed to the evaluator. The experimental results show that our new system can securely allow multiple model owners to delegate the evaluation of kNN classifier

    Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

    Full text link
    Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy expertsComment: To appear in the Proceedings on Privacy Enhancing Technologies (PoPETs), Vol. 2019, Issue

    Secure Outsourced Computation on Encrypted Data

    Get PDF
    Homomorphic encryption (HE) is a promising cryptographic technique that supports computations on encrypted data without requiring decryption first. This ability allows sensitive data, such as genomic, financial, or location data, to be outsourced for evaluation in a resourceful third-party such as the cloud without compromising data privacy. Basic homomorphic primitives support addition and multiplication on ciphertexts. These primitives can be utilized to represent essential computations, such as logic gates, which subsequently can support more complex functions. We propose the construction of efficient cryptographic protocols as building blocks (e.g., equality, comparison, and counting) that are commonly used in data analytics and machine learning. We explore the use of these building blocks in two privacy-preserving applications. One application leverages our secure prefix matching algorithm, which builds on top of the equality operation, to process geospatial queries on encrypted locations. The other applies our secure comparison protocol to perform conditional branching in private evaluation of decision trees. There are many outsourced computations that require joint evaluation on private data owned by multiple parties. For example, Genome-Wide Association Study (GWAS) is becoming feasible because of the recent advances of genome sequencing technology. Due to the sensitivity of genomic data, this data is encrypted using different keys possessed by different data owners. Computing on ciphertexts encrypted with multiple keys is a non-trivial task. Current solutions often require a joint key setup before any computation such as in threshold HE or incur large ciphertext size (at best, grows linearly in the number of involved keys) such as in multi-key HE. We propose a hybrid approach that combines the advantages of threshold and multi-key HE to support computations on ciphertexts encrypted with different keys while vastly reducing ciphertext size. Moreover, we propose the SparkFHE framework to support large-scale secure data analytics in the Cloud. SparkFHE integrates Apache Spark with Fully HE to support secure distributed data analytics and machine learning and make two novel contributions: (1) enabling Spark to perform efficient computation on large datasets while preserving user privacy, and (2) accelerating intensive homomorphic computation through parallelization of tasks across clusters of computing nodes. To our best knowledge, SparkFHE is the first addressing these two needs simultaneously

    Lightweight privacy-preserving ensemble classification for face recognition

    Get PDF

    Privacy in characterizing and recruiting patients for IoHT-aided digital clinical trials

    Get PDF
    Nowadays there is a tremendous amount of smart and connected devices that produce data. The so-called IoT is so pervasive that its devices (in particular the ones that we take with us during all the day - wearables, smartphones...) often provide some insights on our lives to third parties. People habitually exchange some of their private data in order to obtain services, discounts and advantages. Sharing personal data is commonly accepted in contexts like social networks but individuals suddenly become more than concerned if a third party is interested in accessing personal health data. The healthcare systems worldwide, however, begun to take advantage of the data produced by eHealth solutions. It is clear that while on one hand the technology proved to be a great ally in the modern medicine and can lead to notable benefits, on the other hand these processes pose serious threats to our privacy. The process of testing, validating and putting on the market a new drug or medical treatment is called clinical trial. These trials are deeply impacted by the technological advancements and greatly benefit from the use of eHealth solutions. The clinical research institutes are the entities in charge of leading the trials and need to access as much health data of the patients as possible. However, at any phase of a clinical trial, the personal information of the participants should be preserved and maintained private as long as possible. During this thesis, we will introduce an architecture that protects the privacy of personal data during the first phases of digital clinical trials (namely the characterization phase and the recruiting phase), allowing potential participants to freely join trials without disclosing their personal health information without a proper reward and/or prior agreement. We will illustrate what is the trusted environment that is the most used approach in eHealth and, later, we will dig into the untrusted environment where the concept of privacy is more challenging to protect while maintaining usability of data. Our architecture maintains the individuals in full control over the flow of their personal health data. Moreover, the architecture allows the clinical research institutes to characterize the population of potentiant users without direct access to their personal data. We validated our architecture with a proof of concept that includes all the involved entities from the low level hardware up to the end application. We designed and realized the hardware capable of sensing, processing and transmitting personal health data in a privacy preserving fashion that requires little to none maintenance
    • …
    corecore