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a b s t r a c t

While decision-making task is critical in knowledge transfer, particularly from multi-source domains,
existing knowledge transfer approaches are not generally designed to be privacy preserving. This has
potential legal and financial implications, particularly in sensitive applications such as financial market
forecasting. Therefore, in this paper, we propose a Privacy-preserving Multi-party Knowledge Transfer
system (PMKT), based on decision trees, for financial market forecasting. Specifically, in PMKT, we
leverage a cryptographic-based model sharing technique to securely outsource knowledge reflected in
decision trees of multiple parties, and design a secure computation mechanism to facilitate privacy-
preserving knowledge transfer. An encrypted user-submitted request from the target domain can also
be sent to the cloud server for secure prediction. Also, the use of decision trees allows us to provide
interpretability of the predictions. We then demonstrate how PMKT can achieve privacy guarantees,
and empirically show that PMKT achieves accurate forecasting without compromising on accuracy.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Financial technology (also referred to as FinTech) is crucial in
our society, particularly in technologically advanced nations such
as Australia, U.S. and Singapore. Examples of FinTech include fi-
nancial market forecasting services (such as those using machine
learning techniques). A study by KPMG,1 for example, estimated
that FinTech services are expected to grow with machine learning
in the next few years, potentially providing additional profit-
making opportunities for the FinTech stakeholders. In machine
learning-based financial market forecasting services, we need suf-
ficient datasets that are relevant and of a certain quality as they
play a crucial role in the accuracy of the forecasting results [1–4].

In the real-world, there are only relatively few financial dataset
collected in a single financial institution, particularly in smaller

∗ Corresponding author at: School of Cyber Engineering, Xidian University,
Xi’an 710071, China.

E-mail addresses: emmazhr@163.com.cn (Z. Ma), jfma@mail.xidian.edu.cn
(J. Ma), ybmiao@xidian.edu.cn (Y. Miao), raymond.choo@fulbrightmail.org
(K.-K.R. Choo), snbnix@gmail.com (X. Liu), xywang_xidian@163.com (X. Wang),
yangtf@stu.xidian.edu.cn (T. Yang).
1 https://assets.kpmg/content/dam/kpmg/xx/pdf/2018/07/h1-2018-pulse-of-

fintech.pdf, last accessed Nov 30, 2019.

and regional financial institutions, which can be used to train the
machine learning models. This is partly because of the costs and
resources required in the identification, generation and collection
of suitably high quality financial data. This complicates the tasks
of training an accurate classifier model, and consequently impact
on the provision of precise financial market forecasting services.
However, if we are able to source relevant financial datasets from
different institutions, located in different countries or continents,
and combine them, then we will be able to utilize such combined
datasets for machine learning model training. In the literature,
there are a number of multi-party knowledge transfer techniques
proposed, such as the technique presented in [5].

Cloud computing can be leveraged yo mitigate the constraints
due to storage and access, due to its underpinning features such
as flexible/on-demand access, and reduced computation costs.
There are, however, a number of security and privacy considera-
tions in the deployment of systems to facilitate knowledge shar-
ing across multi-parties, particularly those located in countries
with different, or conflicting, privacy regulations (e.g., European
countries and Asian countries). The latter is particularly problem-
atic for sharing of financial data collected frommultiple parties, as
such data usually contain sensitive information (e.g., trading vol-
ume, and sensitive customer information). Therefore, to achieve

https://doi.org/10.1016/j.future.2020.01.007
0167-739X/© 2020 Elsevier B.V. All rights reserved.
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Fig. 1. A system overview of multi-party model sharing.

privacy protection, a number of cryptographic-based outsourced
data sharing techniques have been presented in the literature, for
example by leveraging homomorphic encryption [6–11]. While
using homomorphic encryption allows one to achieve relatively
strong privacy guarantees, the efficiency of data computation
over homomorphic encryption is low. In addition, it is challeng-
ing, if not impractical, to control, trace and maintain data integrity
during data sharing processes.

Since parameters of a classifier model also contain invaluable
knowledge [12], we posit the potential of using a cryptographic-
based outsourced model sharing to achieve multi-party knowl-
edge sharing [13]. Such an approach allows us to achieve strong
privacy guarantees, and to avoid information leakage during
training, we can pre-train a classifier model prior to outsourcing
— see Fig. 1.

In addition to high forecasting accuracy, the interpretability
of classifier models is also crucial in the financial industry [14].
Decision Tree (DT) [15], a widely used predictive method, has a
number of attractive properties such as intuitive representation,
and easy understanding. Therefore, DTs can be trained over mul-
tiple related but different datasets to extract relevant knowledge
across multi-parties for knowledge transfer [16,17]. Although
these DTs have a structural difference, there are similarities in the
knowledge described, as demonstrated in the existing research
literature [18,19]. However, these existing knowledge transfer on
DTs approaches rely on the participation of model parameters,
which easily expose sensitive information.

Since there are no existing privacy protection solutions for
knowledge transfer on DTs, it is non-trivial to design the privacy-
preserving knowledge transfer. Inspired by the above motiva-
tions, in this paper, we first propose a Privacy-preserving Multi-
parties Knowledge Transfer scheme on decision trees for financial
market forecasting, hereafter referred to as PMKT. PMKT employs
the Paillier cryptosystem to design privacy-preserving solutions
for each component of knowledge transfer on DTs. The main
contributions of this paper are summarized as follows:

• Secure outsourced model sharing among multi-party: Since
classifier models contain sensitive information, it is nec-
essary to protect the model’s privacy. To securely share
models across multiple parties, PMKT employs the Paillier
cryptosystem to encrypt models prior to sharing them to the
cloud server. This allows us to minimize the leakage of the
model’s privacy.
• Secure knowledge transfer: PMKT is designed to provide

privacy-preserving knowledge transfer on DTs, which con-
structs an accurate classifier model for the target domain.
Specially, PMKT facilitates secure computation to prevent
privacy leakage.

• Secure classification on-the-fly: PMKT allows an authorized
user in the target domain to upload his/her encrypted real-
time requests for secure classification. Upon receiving the
requests, the trained transfer model returns relevant en-
crypted forecasting results without compromising forecast-
ing accuracy.

In the next section, we will briefly review the related litera-
ture.

2. Related work

Cryptographic-based Knowledge Sharing. To prevent privacy
leakage during knowledge sharing, we can leverage homomor-
phic encryption, such as partially homomorphic encryption (PHE)
and fully homomorphic encryption (FHE). PHE consists of ad-
ditive homomorphic encryption (e.g., Paillier cryptosystem [20]
and Bresson cryptosystem [21]) and multiplicative homomorphic
encryption (e.g., ElGamal cryptosystem [22] and unpadded RSA
cryptosystem [23]), which only satisfies either additive or multi-
plicative homomorphic operations. Although some cryptosystems
such as the BGN cryptosystem [24] support both additive and
multiplicative homomorphic, these schemes only provide one
multiplicative homomorphic operation and limited number of ad-
ditive homomorphic operations. To avoid this limitation, Gentry
et al. [25] presented the first FHE scheme, which can provide
arbitrary number of additive and multiplicative homomorphic op-
erations. However, the implementation complexity of FHE results
in it not been widely employed in real-world applications.

As discussed earlier, there are a number cryptographic-based
outsourced data sharing schemes designed for sharing knowl-
edge among multiple parties, such as those presented in [26–
28]. While existing data sharing-based methods are promising,
since they not only require multiple data owners to contribute
individual data in a privacy-preserving manner, (i.e., data are
shared in the form of ciphertext form without compromising the
privacy of data owners), but they also implement computations
over ciphertexts for the classifier training. However, a number
of challenges remain. For example, the massive encrypted data
that are uploaded to the cloud will require many homomorphic
operations over ciphertexts, which is clearly expensive (e.g., due
to the time-consuming homomorphic computations during the
process of training a classifier). Therefore, instead of uploading
the encrypted data to the cloud server, Li et al. [29] proposed a
secure classification scheme. The latter allows the classifier owner
to share his/her encrypted classifier model with the cloud server,
in order to provide the classification service. However, existing
outsourced model sharing schemes only support a single-party
setting. In [30,31], the privacy-preserving framework is proposed
to outsource the classifier models from multiple parties to fa-
cilitate global model training. However, they have to guarantee
that all classifiers from multiple parties are trained over the
single-source domain. The trade-off is a lower accuracy rate.

Knowledge Transfer. Knowledge transfer techniques (also
known as transfer learning techniques) [32] allow the distribu-
tion of training datasets and test datasets to be different. As
parameters shared by the individual models from related source
domains contain invaluable knowledge that can be transferred in
the target domain, model-based knowledge transfer approaches
have been widely used in practice. Benefits of using DT include
intuitive representation and easy implementation [33], and not
surprisingly there have been attempts to provide knowledge
transfer using DTs [34,35]. Such approaches generally rely on
the parameters of DTs. A number of DT similarity measurement
frameworks have been presented in recent times [36,37], which
depend on structural similarity of two DTs from different domains
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(i.e., source domains and a target domain). In addition, the cor-
rectness of knowledge among different domains can be evaluated
under the similarity measurement of DT. However, such DT-
based knowledge transfer techniques require the participation
information of all source domains and the target domain. This
is a potential privacy leakage vector.

In this paper, our goal is to utilize the outsourced model
sharing from multi-source domains to improve the performance
of the target domain. Clearly, privacy preservation guarantee
of knowledge transfer across different domains is important in
practice, and this necessitates the design of a privacy-preserving
knowledge transfer using DTs across multiple different parties
scheme.

3. Preliminaries

In this section, we review the definitions of knowledge trans-
fer and similarity measurement on DTs, as well as the Paillier
cryptosystem.

3.1. Knowledge transfer

Given a dataset of row vectors X = {x1, . . . , xm}T , Y =
{y1, y2, . . . , ym}T , where T denotes the transpose operation, X
denotes a specific training sample, Y denotes the set of all labels,
xi ∈ X denotes the ith sample vector, yi denotes the correspond-
ing label of xi. Note that the symbol F represents the space of all
sample vectors. Let a dataset be a domain D consisting of a feature
space F and a marginal probability distribution P(X), which is
represented as D = {F , P(X)}. In general, given two different
domains D1 = {F1, P1(X)} and D2 = {F2, P2(X)}, the condition
D1 ̸= D2 means F1 ̸= F2 or P1(X) ̸= P2(X).

Knowledge Transfer: Given multi-source domains DS

= {DS1 , . . . , DSn} and a target domain DT , the goal of knowledge
transfer is to help the target domain to build an accurate classifier
by leveraging the knowledge in multi-source domains, where
DSi ̸= DT (i = 1 to n).

3.2. Similarity measurement of decision trees

We choose Gini index [38] as the decision criteria (i.e., the
best node split is the one with maximum of Gini index), namely
CART decision tree, note that we only focus on the binary clas-
sification in PMKT. A DT consists of a root node, internal nodes
(imply decisions) and leaf nodes (imply classes), and each branch
from the root to a leaf node represents a decision sequence of
a prediction outcome which may indicate valuable knowledge in
the classification [39]. The DT structure is shown in Fig. 2, where
F = {f1, . . . , fν} denotes the feature set, C = {c1, c2} represents
the label set. Besides, each leaf node corresponds to a label ci,
domfk describes the value global range of fk, and ranfk (ci) denotes
the value range of fk when the label is ci, where fk ∈ F .

In statics, similarity measurement of DT [37] is a well-known
approach to compare similarity between two DTs according to
the structure component. V (ci) (see Eq. (1)) denotes the relative
importance over feature space on the label ci, and the rela-
tive importance of each feature fk is defined as

|ranfk (ci)|
|domfk |

, where
|ranfk (ci)| = maxfk (ci) − minfk (ci), |domfk | = maxfk − minfk . It is
worth noticing that maxfk (ci) and minfk (ci) respectively represent
the max value and the min value of the feature fk on the label ci,
and |domfk | implies the global value range of each feature, which
has no difference over label set.

V (ci) =
∏ν

k=1

|ranfk (ci)|
|domfk |

(fk ∈ F ). (1)

Fig. 2. An example DT structure.

For two related but structurally different DTs, namely dt1 and
dt2, the similar measurement is represented as Eq. (2), where
SPdt (ci) denotes a structural probability for the label ci on a DT.

Sim(dt1, dt2) = Sim(SPdt1 (C), SPdt2 (C)),

= 1−
∏C

i=1
|SPdt1 (ci)− SPdt2 (ci)|;

SPdt (ci) =
V (ci)∑C
j=1 V (cj)

.

(2)

3.3. Public-key cryptosystem

Here, we introduce the proposed public-key scheme [20,40]
based on the Paillier cryptosystem in Fig. 3, which acts as the
basis cryptographic primitive in PMKT.

4. Problem formulation

In this section, the system model, threat model and privacy
requirements associated with our PMKT are demonstrated, re-
spectively.

4.1. System model

As illustrated in Fig. 4, our system model involves a target
domain, n source domains, a Cloud Service Provider (CSP), a Cloud
Platform (CP) and a Key Certification Authority (KCA).

• Key certification authority: The trusted KCA is responsible for
the distribution and management of all keys in the system.
• Target domain: A target domain is a single financial insti-

tution with comparatively few data. It is hard to provide
accurate financial market forecasting service for constantly
generated requests from users. Hence, the target domain
needs to make use of related knowledge from source do-
mains included in classifiers to construct a more accurate
knowledge transfer model.
• Source domains: Source domains are similar and related fi-

nancial institutions/parties to the target domain. Each
source domain owns tremendous quantities of related finan-
cial data as his/her individual private datasets and is willing
to contribute his/her classifier model to help the target
domain construct an accurate classifier model. Therefore,
source domains should encrypt the classifiers trained over
local financial datasets before sharing them with CP.
• Cloud platform: CP, which is a semi-honest cloud server

with adequate storage space, performs knowledge transfer
for the target domain, and provides online financial market
forecasting service for authorized users.
• Cloud service provider: CSP provides computation services

over ciphertexts for knowledge transfer and online financial
market forecasting service.
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Fig. 3. Definition of public-key cryptosystem.

Fig. 4. System model.

• User: An authorized user belonging to the target domain
can submit his/her encrypted financial requests to CP for
accurate financial market forecasting service. When the cor-
responding encrypted forecasting results are returned by CP,
the user can obtain the final forecasting results.

4.2. Threat model

In our threat model, we assume that CP, CSP, source domains,
the target domain and users are honest-but-curious entities that
faithfully performs the pre-defined protocols, but try to learn
more private information from other entities. Hence, an active
adversary A∗ is introduced with the following abilities in our
model:

• A∗ may intercept communications links to acquire the en-
crypted data.
• A∗ may compromise CP to learn more information about

the encrypted models under individual public keys from all
source domains and the target domain.
• A∗ may compromise CSP to learn more information about

all ciphertexts sent by CP.
• A∗ may compromise a domain (i.e., a source domain or

a target domain) to learn more information about other
domains.
• A∗ may compromise users in order to acquire information

of all encrypted results belonging to the user.

In addition, we assume that CP and CSP are two independent
and non-colluding servers. Such assumption has been commonly
used in [33,41]. As the most cloud servers are well-established,
the collusion will harm their individual interests and credibility.
Besides, it is difficult for attackers to compromise both CP and
CSP at the same time.

4.3. Privacy requirements

For privacy preservation guarantees, we aim to achieve the
following privacy requirements.

• Model Privacy: A privacy-preserving scheme requires the
sensitive information of a party cannot be leaked to enti-
ties other than its owner. The models containing sensitive
parameters should not be disclosed to untrusted parties.
• Privacy-preserving knowledge transfer: To maintain privacy

preservation guarantees, the sensitive parameters and inter-
mediate computational results cannot be leaked during the
process of knowledge transfer.
• Request Privacy: An authorized user submits a request to

CP for accurate financial market forecasting service without
leaking the private request to others.
• Result Privacy: CP returns a forecasting result corresponding

to the user-submitted financial request, note that the result
is only known to the user.

5. Basic components of PMKT

5.1. Key distribution

For the initialization of security primitive in PMKT, the fully-
trusted KCA generates keys for all entities in the system model.
The detailed process of key distribution is shown as follows:

• The KCA generates key pairs (pki, ski) for the ith source
domain (i = 1 to n), (pkt , skt ) for a target domain, and
(pku, sku) for an authorized user, respectively.
• The KCA first generates a key pair (pk, sk) for each cloud

server (CP or CSP), and splits the secret key sk into λ1 and
λ2, sku into λu1 and λu2 , skt into λt1 and λt2 and ski into λi1
and λi2 , respectively. Then, λ1, λu1 , λt1 , λi1 are sent to CP, λ2,
λu2 , λt2 , λi2 are sent to CSP (i = 1 to n).
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Table 1
Descriptions of secure protocols.
Protocol Description

Addition Return the addition result [[ma +mb]]

Subtraction Return the subtraction result [[ma −mb]]

Scaling-down Return the scale-down result [[
⌊ m

10ε

⌋
]]

Multiplication Return the multiplication result [[ma]] × [[mb]]

Comparison Return the comparison result of [[ma]] and [[mb]]

Division Return the division result [[ma]]
[[mb]]

Argmax Return the index of the largest value of an encrypted
set

Transformation Transform ciphertexts under an authorized key to
another authorized key

5.2. Data preprocess

As our cryptosystem only supports integer numbers, the real
numbers need to be converted into integers. In our system, we
use the approximation and expansion method to solve the limi-
tation. The public scale factor ε is used to convert a real number
into an integer. For example, all the data are multiplied by 10ε ,
and then approximate these values to the nearest integers for the
further encryption, where ε is an integer number. Taking 3.141
as an example, 3.141 can multiply 102 (ε = 2), and then the
approximation method is used to get 314. In PMKT, without a
specific hint, [[x]] implies the encrypted data under the public key
pk.

5.3. Secure computation

Since our cryptographical scheme only satisfies additive ho-
momorphic property, we further design secure computation over
ciphertexts by revising the original secure computation proto-
cols [42] and using the blinding random number technique in
order to avoid the computation limitation, as shown in Table 1.
The detailed presentations of secure computation are described in
Fig. 5, note that some computations require CP to interact with
CSP.

Correctness. The correctness of the above secure computation
is verified by the following process:

• The correctness of secure scaling-down:

[[

⌊
M
10ε

⌋
]] − [[r]] = [[

⌊
m+ r · 10ε

10ε

⌋
]] − [[r]]

= [[

⌊ m
10ε

⌋
]].

• The correctness of secure multiplication:

[[res]] · S1 · S2 · S3 = [[Ma ×Mb]] · S1 · S2 · S3
= [[(ma + r1)× (mb + r2)]] · [[r1 × r2]]N−1 · [[ma]]

N−r2 · [[mb]]
N−r1

= [[(ma + r1)× (mb + r2)− r1 × r2 − r2 ×ma − r1 ×mb]]

= [[ma]] × [[mb]].

• The correctness of the secure comparison:

[[res]] = ([[m′a]] · [[m
′

b]]
N−1)r1 · [[r2]]

= [[r1(2ma − 2mb)+ r2]]
≈ [[r1(2ma − 2mb)]] (r2 ≪ r1).

Thus, when ma ⩾ mb, |res| ⩽ |N|/2, when ma < mb,
|res| > |N|/2.
• The correctness of the secure division: The Newton–Raphson

method is used to approximate the inverse of [[mb]]. Each
iterative computation (see Eq. (4)) involves two times secure
multiplication and one time secure addition. The correctness

Table 2
Notation descriptions.
Notation Description

[[dom]] Auxiliary information of a DT
[[ran]] Feature range of a DT
C = {c1, c2} Label set of a DT
F = {f1, . . . , fν} Feature set of a DT
paths Tree path sets of a DT
|ranfk (ci)| Feature range fk ∈ F on the label ci of a DT
|domfk | Feature range fk ∈ F of a DT
|ranfk (ci)|
|domfk |

Feature relative importance fk ∈ F with label ci
V (ci) Feature relative importance space of a DT
SPdt (ci) Structural probability of label ci in dt
Sim(dt1, dt2) Similar measurement between two DTs dt1 and dt2
wi Transfer weight of a DT
hdt (x) Classification result of instance x in dt
H(x) Final classification result of the integrated transfer

of secure division depends on both secure addition and se-
cure multiplication. The corresponding correctness of secure
addition and secure multiplication is shown in the above
analysis for details.
• The correctness of the secure argmax: Designed on the

secure comparison, comparing two encrypted numbers in
the set of encrypted data, the final result is computed. The
correctness of secure argmax is based on the corresponding
correctness of secure comparison.
• The correctness of the secure transformation:

[[m′]]pk2 − [[r]]pk2 = [[m+ r]]pk2 − [[r]]pk2 = [[m]]pk2 .

6. PMKT framework

In this section, we detailedly describe how to construct the
privacy-preserving knowledge transfer and successfully imple-
ment secure prediction in the multi-source domains settings. The
notation definitions are described in Table 2.

6.1. Overview of PMKT framework

To guarantee both privacy preservation and high accuracy, the
involved phases are shown as follows, — see Fig. 6.

• Locally training decision trees: Since the knowledge trans-
fer is a method that transfers valuable knowledge con-
tained in the pre-trained models from multi-source domains
to the target domain, it is required that DTs should have
been pre-trained over individual datasets from multi-source
domains.
• Integrated knowledge transfer: In PMKT, our ultimate goal

is to securely implement the DT-based knowledge transfer.
Initially, DT models shared by multi-source domains are
measured for a similarity with the DT model shared by
the target domain in a privacy-preserving manner. Then,
according to the similarity of each DT from source domains,
the corresponding transfer weight is assigned to the DT with
a privacy-preserving weight distribution approach. Finally,
we construct an integrated knowledge transfer model across
multiple DTs with privacy guarantees.
• Secure classification on-the-fly: We provide secure classifica-

tion on the integrated knowledge transfer model. On receiv-
ing an encrypted user-submitted request, each DT gener-
ates individual forecasting results on the encrypted request,
which is a part of the integrated knowledge transfer model.
Then, combined these results with their individual trans-
fer weights, the final forecasting result of the integrated
knowledge transfer will be returned.
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Fig. 5. The detailed presentations of secure computation.

Fig. 6. Overview of PMKT framework.

6.2. Locally training decision trees

With the CART decision tree algorithm, multi-source domains
pre-train their individual DTs over local datasets. As the training
process runs over plaintexts, it is extremely efficient and real-
time during the pre-training process. As shown in Fig. 2, on the
pre-trained DT, each tree node contains parameters (e.g., split-
ting value, splitting feature index, right node and left node). We
encrypt a DT by gradually encrypting the tree nodes from top to
down. Then, each source domain shares the encrypted DT model
with CP.

In addition, for further knowledge transfer, each source do-
main needs to upload his/her feature range of training dataset as
auxiliary information. For privacy preservation, both the auxiliary
information encrypted as [[dom]]pki and the DT model from the
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ith source domain are sent to CP. Therefore, it is required to
transform ciphertexts under different public keys pki into the
same public key pk by using secure transformation.

6.3. Integrated knowledge transfer

In this section, we show how to achieve the integrated knowl-
edge transfer in PMKT. The involved processes are shown in
follows.

6.3.1. Privacy-preserving similarity measurement
We perform the privacy-preserving similarity measurement to

compute the similarity between two DTs (i.e., one from a source
domain and the other from a target domain). To achieve this goal,
building tree paths, calculating feature range and label probability
on an encrypted DT are the fundamental works for the similar-
ity measurement, which are greatly significant for measurement
results. The specific process is shown as follows.

Algorithm 1: TreePaths
Input: node as the root node of the encrypted DT model
Output: the set of tree paths paths = {nodes1, nodes2, ...}

1 if (node equal to null) then
2 return paths;
3 leftPaths=node+TreePaths(node.leftChild);
4 rightPaths=node+TreePaths(node.rightChild);
5 paths.add(leftPaths);
6 paths.add(rightPaths);
7 if (paths.size equal to 0) then
8 paths.add(node);
9 return paths.

• The tree paths in an encrypted DT : The tree paths on an en-
crypted DT are converted into the representation of branch
sequences, each tree path starts with the root node and
ends with a leaf node. Taking Fig. 2 as an example, there
is a total of four tree paths: path1 = {f1, f2, c1}, path2 =

{f1, f2, c2}, path3 = {f1, f3, c1}, and path4 = {f1, f3, c2}.
The root node of each tree path is the same, but the leaf
node of each path corresponds a different label ci. Here, we
give a brief description about securely obtaining tree paths
by traversing an encrypted DT in Algorithm 1. Input the
root node of an encrypted DT, which contains the leftChild,
rightChild, feature ID (i.e., fId), and value. The algorithm
recursively executes from root node to the leaf nodes. To
represent the tree paths, a set of node arrays (i.e., paths =
{nodes1, nodes2, . . .}) is denoted, where the ith tree path is
expressed as a node array nodesi.
• The feature range on the encrypted DT : Since each tree path

on a DT contains a label that reveals worthwhile infor-
mation in identifying similarity, the paths are grouped by
their corresponding labels. Besides, owing to the auxiliary
information [[dom]] contains the value range of each feature,
we can obtain the feature range [[ran]] of each feature for dif-
ferent label ci on an encrypted DT in the form of ciphertext
with the aid of [[dom]]. The details are shown in Algorithm 2.
Through comparing the value of each node on the tree path
with the current feature range, the feature range [[ran]] is
updated. As all data involved in the process are ciphertexts,
secure comparison in Section 5.3 is called.
• The structural probability on the encrypted DT : Without ac-

cessing to the original dataset, we can get the structural
probability with the auxiliary information. Combined Eq. (1),
a structural probability [[SPdt (ci)]] is figured out (– See (2)).

As the |ranfk (ci)| and |domfk | are encrypted data, the secure
addition, secure division, secure multiplication in Section 5.3
are involved in the process.

Algorithm 2: FeatureRange
Input: The auxiliary information [[dom]] and the tree paths paths

of the encrypted DT model dt
Output: Feature range [[ran]]

1 forall the pathi ∈ paths do
2 ci = pathi.lable;
3 forall the nodej ∈ pathi do
4 k = nodej.fId; //get the feature id

[[maxfk (ci)]] = [[dom]].maxfk ; //max value of aid
5 [[minfk (ci)]] = [[dom]].minfk ; //min value of aid
6 if nodej+1 equal to nodej.leftChild then
7 if Comparison([[maxfk (ci)]], [[node.value]]) == 1 then
8 [[maxfk (ci)]] = [[node.value]];

9 else
10 if Comparison([[minfk (ci)]], [[node.value])] == 0 then
11 [[minfk (ci)]] = [[node.value]];

12 [[ran(ci)]].put([[minfk (ci)]], [[maxfk (ci)]]);

13 return [[ran]].

Similarity measurement between two encrypted DTs is com-
puted as shown in Eq. (5), where [[SPdt1 (ci)]] and [[SPdt2 (ci)]] re-
spectively denote the DT structural probability of dt1 and dt2 for
the label ci. To provide strong privacy guarantees, Eq. (5) runs
over ciphertexts.

[[Sim(dt1, dt2)]] = 1−
∏2

i=1

⏐⏐[[SPdt1 (ci)]] − [[SPdt2 (ci)]]⏐⏐. (5)

With these above steps, we can estimate the similarity be-
tween the encrypted dti (i = 1 to n) belonging to a source domain
and dtt belonging to the target domain in a privacy-preserving
way. Finally, we obtain an encrypted set {[[Sim(dt1, dtt )]], . . . ,
[[Sim(dtn, dtt )]]}, which represents the similarity between each
source domain and the target domain.

6.3.2. Privacy-preserving integrated knowledge transfer
Consecutively, we assign transfer weights to these encrypted

DTs belonging to source domains, where each DT belonging to
source domains is assigned a transfer weight based on the sim-
ilarity between dti (i = 1 to n) from source domains and dtt
from the target domain. In Algorithm 3, the weight normalization
is implemented so that a weight wi belonging to dti satisfies∑n

i=1 wi = 1, where all weights is in the ciphertext format. Since
all weights and similarities are ciphertexts for privacy preser-
vation, secure addition and secure division in Section 5.3 are
involved.

Based on the weighted ensemble learning method [43], we
aim at implementing the integrated knowledge transfer with
these DTs frommulti-source domains. The detail process is shown
as follows.

• First, we assign transfer weights to each prediction of dti
(i = 1 to n) from source domains, according to the trans-
fer weight of each DT. The forecasting result of a dti is
represented as hdti (x) = ci,
• Then, the weighted forecasting result of the integrated

knowledge transfer represented as H(x) is generated, as
shown in Eq. (6),

H(x) = cArgmax
∑n

i=1 (wi·hdti (x))
, (6)

where the secure argmax operation is required.
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Algorithm 3: Privacy-preserving Weight Normalization
Input: The encrypted similarity set of DT models

{[[Sim(dt1, dtt )]], ..., [[Sim(dtn, dtt )]]}
Output: The encrypted transfer weight array

W = {[[w1]], ..., [[wn]]}

1 [[sum]] =
∑n

i=1 [[Sim(dti, dtt )]];
2 for 1 ≤ i ≤ n do
3 W [i] = [[Sim(dti,dtt )]]

[[sum]] // secure division;

4 return W .

6.4. Secure classification on-the-fly

• An authorized user submits his/her request [[req]]pku after
encrypting it with his/her public key pku. On receiving an
encrypted request [[req]]pku , each dti (i = 1 to n), which
comprises of the integrated knowledge transfer model, will
output the encrypted classification result hdti ([[req]]) for the
encrypted request. The specific process of predicting the
forecasting result [[req]] of a DT is shown in Algorithm 4.
However, as the dti runs over the ciphertext domain under
the public key pk, [[req]]pku needs to be transformed into
[[req]] under the public key pk. Hence, the secure transform
is involved to implement [[req]] ← transform([[req]]pku ).
• The final forecasting result of the integrated knowledge

transfer is represented as [[res]], and the forecasting result of
a dti is represented as hdti ([[req]]). Then, [[res]] = H([[req]])←
cArgmax

∑n
i=1 (wi·hdti ([[req]]))

with secure Argmax.

• Before returning the final forecasting result to the user, the
secure transformation is required to be operated [[res]]pku ←
transform([[res]]). After transforming the ciphertexts under
public key pk domain to public key pku domain, [[res]] is
returned to the user. Then, the user can obtain the final
forecasting result by decrypting it with his/her secret key
sku.

Algorithm 4: Classification
Input: The root node of an encrypted DT, the user-submitted

encrypted request [[req]]
Output: The encrypted result hdti ([[req]])

1 if node is a leaf node then
2 return node.label;
3 fk = node.fId;
4 if Comparison([[req]]fk .value, [[node.value]]) == 1 then
5 return classification(node.leftChild, [[req]]);
6 else
7 return classification(node.rightChild, [[req]]);
8 return hdti ([[req]]).

7. Security analysis

In this section, we make security analysis on our PMKT frame-
work to demonstrate that PMKT can achieve the problem formu-
lations in Section 4.3, which is based on semantic security of the
proposed public-key cryptosystem evaluated in [20,40] and as-
sumptions that there are non-colluding semi-honest adversaries.
Specifically, we define the real vs. ideal model to formalize the
privacy in PMKT. The model involves challengers (i.e., an entity
with a secret key), source domains, target domain and users
(a.k.a., S0), CP (a.k.a., S1) and CSP (a.k.a., S2), as well as adversaries
A = (AS0 , AS1 , AS2 ) and simulators (i.e., SimulatorS0 , SimulatorS1 ,
SimulatorS2 ).

Normally, in the real world, we assume that an adversary A
interacts with a challenger, note that A also has interactions with
a simulator S in the ideal world. Besides, we consider that PMKT
is secure when the view of the adversary in the real world is
indistinguishable from its view in the ideal world. And we define
T as the required knowledge of A when the view of the adversary
in the real world can distinguish from its view in the ideal world,
and define AdvA(·) to represent whether A obtains the knowledge.

7.1. Security of computation

Based on the semantic security of the public-key cryptosys-
tem and the assumption that S1 and S2 are non-colluding cloud
servers, we demonstrate the security of computation over cipher-
texts described in Section 5.3.

Theorem 1. The process of secure scaling-down is secure against
semi-honest adversaries with the semantic security of the public-key
cryptosystem stated in Section 3.3, and also prevents the adversaries
from distinguishing the intermediate computational results with the
presence of non-colluding semi-honest adversaries A = (AS1 , AS2 ).

Proof. We separately analyze the security of each phase in
secure scaling-down with the above real vs. ideal model. We build
simulators Simulators = (SimulatorS1 , SimulatorS2 ) in the ideal
world to simulate the view of A = (AS1 , AS2 ) in the real world.

• During the process of secure scaling-down, two semi-honest
cloud serves (i.e., CP and CSP) interactively complete the
computation. We provide a proof that the process is secure
against both adversaries AS1 and AS2 in the real world. Given
an encrypted data [[m]], SimulatorS1 randomly chooses r and
computes r ′ = r∗10ε , and calculates [[r ′]] ← Enc(r ′), [[M]] =
[[r ′]]·[[m]], then SDec algorithm is used to obtain the decryp-
tion share [[M]]1. Finally, SimulatorS1 returns the encrypted
data [[m]] and decryption share [[M]]1 to AS1 . While for AS1 , it
contains the ciphertext [[m′]] and decryption share [[M ′]]1. As
the public-key scheme is semantic security, it is obvious that
if AS1 can distinguish [[m]] and [[m′]] and these decryption
shares, then AS1 needs to obtain secret key sk or the other
secret share λ2. The views of AS1 cannot distinguish the real
word from the ideal world without the corresponding secret
key, which is demonstrated as

AdvAS1
(T ) = AdvAS1

([[m]], sk, [[M]]1, λ2)

⇒ AdvAS1
([[m]], sk) ∨ AdvAS1

([[M]]1, λ2)

⇒ (AdvAS1
([[m]]) ∧ AdvAS1

(sk))∨

(AdvAS1
([[M]]1) ∧ AdvAS1

(λ2))

⇒ (True ∧ False) ∨ (True ∧ False)⇒ False.

• SimulatorS2 runs SDec and WDec algorithms to obtain the
plaintext M which is blinded by a random number. It is clear
that M is randomly distributed as the random number r is
randomly generated. SimulatorS2 simulates AS2 as the above
operations. Owing to the blinding technique, if AS2 can dis-
tinguish M , then AS2 must need to obtain the corresponding
random number r , which is demonstrated as

AdvAS2
(T ) = AdvAS2

(M, r)⇒ AdvAS1
(M) ∧ AdvAS2

(r)

⇒ True ∧ False⇒ False,

where AS2 cannot obtain r which is stored in CP. Therefore,
the views of AS1 is unfeasible to distinguish the real world
from the ideal world.
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Therefore, both CP and CSP learn no sensitive information
about the private data and the immediate computational re-
sults, the process of secure scaling-down is well-designed to
protect privacy. The security proofs of secure multiplication, se-
cure comparison and secure division are similar to that of secure
scaling-down under the semi-honest adversaries A = (AS1 , AS2 ).
Next, we illustrate the security of secure transformation. □

Theorem 2. The process of secure transformation is secure against
semi-honest adversaries with the semantic security of the public-
key cryptosystem, and also against adversaries to distinguish the
intermediate computational results with non-collusion is occurred
among semi-honest adversaries A = (AS0 , AS1 , AS2 ).

Proof. We provide security proof in secure transformation with
the above real vs. ideal model. We build simulators Simulators =
(SimulatorS0 , SimulatorS1 , SimulatorS2 ) in the ideal world to sim-
ulate the view of A = (AS0 , AS1 , AS2 ) in the real world, which
is similar to the proof of Theorem 1. The only difference is the
involvement of SimulatorS0 and AS0 .

• SimulatorS0 receives the request req as the input and simu-
lates AS0 as follows: SimulatorS0 encrypts req with the autho-
rized public key pk1 as [[req]]pk1 ← Enc(req), then it returns
[[req]]pk1 to AS0 . Due to the semantic security of the public-
key cryptosystem, if AS0 can distinguish the real word from
the ideal world, then AS0 must obtain the corresponding
secret key sk1. AS0 has no advantage in distinguishing the
views from the real world and the ideal world, which is
demonstrated as
AdvAS0

(T ) = AdvAS0
([[req]]pk1 , sk1)

⇒ AdvAS1
([[req]]pk1 ) ∧ AdvAS2

(sk1)

⇒ True ∧ False⇒ False.

• SimulatorS1 simulates AS1 as follows: SimulatorS1 blinds a
random number to the encrypted req, and calculates de-
cryption share with SDec algorithm, then SimulatorS1 returns
blinded encrypted [[req′]]pk1 and its decryption share to AS1 .
Since AS1 has no knowledge of the secret key to obtain the
plaintext, with the semantic security game of the public-key
cryptosystem, AS1 cannot obtain the secret key sk1, which is
demonstrated as
AdvAS1

(T ) = AdvAS1
([[req′]]pk1 , sk1)

⇒ AdvAS1
([[req′]]pk1 ) ∧ AdvAS1

(sk1)

⇒ True ∧ False⇒ False.

Therefore, it is hard to distinguish the ciphertexts between
the real world and ideal world for AS1 .
• SimulatorS2 simulates AS2 as follows: SimulatorS2 obtains the

decrypted req′ with SDec and WDec algorithms, and req′ is
blinded and randomly distributed since the decrypted req′
includes the random number which is randomly selected.
Owing to the blinding technique, AS2 cannot obtain the
random number r stored in CP, which is blinded to req′, the
specific process is demonstrated as

AdvAS2
(T ) = AdvAS2

(req′, r)

⇒ AdvAS2
(req′) ∧ AdvAS2

(r)

⇒ True ∧ False⇒ False.

Therefore, AS2 is computationally indistinguishable from the
ideal world and the real world.

Obviously, the authorized users, CP and CSP in the process
cannot learn any information from the encrypted intermediate

results and blinded random numbers. Based on the above secure
analysis, we show that no sensitive information about privacy
data is disclosed. Hence, we conclude that the secure computa-
tion is well-designed to implement calculations over ciphertexts
while providing strong privacy preservation. In the following
subsection, we demonstrate the security of our PMKT. □

7.2. Security of PMKT framework

In this section, we demonstrate that our PMKT is secure under
an active adversary A∗ defined in Section 4.2.

Theorem 3. PMKT framework can implement privacy-preserving
integrated knowledge transfer against the active adversary A∗.

Proof. We provide a security proof in privacy-preserving inte-
grated knowledge transfer with the adversary Adv(T ). □

• If A∗ eavesdrops on the communication links between the
source/target domain and the CP, then the original en-
crypted model and auxiliary data [[m]] will be acquired by
A∗. Owing to the semantic security, if A∗ can learn these
data, A∗ must hold the corresponding secret key sk to de-
crypt these ciphertexts. A∗ cannot learn these data without
the corresponding secret key sk to decrypt these ciphertexts,
which is demonstrated as
AdvA∗ (T ) = AdvA∗ ([[m]], sk)

⇒ AdvA∗ ([[m]]) ∧ AdvA∗ (sk)
⇒ True ∧ False⇒ False.

• If A∗ eavesdrops CSP, then the original intermediate results
M in the plaintext form will be acquired by A∗. Since these
intermediate results are randomly distributed as they are
blinded random numbers, if A∗ can learn these random
numbers r , then A∗ can know the information of plain-
texts. However, A∗ cannot know the information of plain-
texts as these random numbers r stored in CP, which is
demonstrated as
AdvA∗ (T ) = AdvA∗ (M, r)

⇒ AdvA∗ (M) ∧ AdvA∗ (r)
⇒ True ∧ False⇒ False.

• If A∗ compromises the CP or CSP to acquire the secret
share (i.e., λ1 or λ2), it is impossible to recover the secret
key, as the secret key is randomly split by executing KeyS
algorithm.

Theorem 4. PMKT framework can securely achieve real-time clas-
sification on the integrated knowledge transfer with the presence of
the active adversary A∗.

Proof. The specific process is similar to Theorem 3.

• When A∗ compromises the transmission between the user
and the CP, then the user’s encrypted requests [[req]]pkU
could be obtained by A∗. Due to the semantic security, if A∗

can learn these encrypted requests [[req]]pkU , then A∗ must
obtain the corresponding secret key skU . A∗ cannot learn
these requests without the corresponding secret key skU to
decrypt these ciphertexts, which is demonstrated as

AdvA∗ (T ) = AdvA∗ ([[req]]pkU , skU )
⇒ AdvA∗ ([[req]]pkU ) ∧ AdvA∗ (skU )
⇒ True ∧ False⇒ False.
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• If A∗ eavesdrops CSP, all intermediates MU involved in se-
cure transformation are blinded random numbers. Due to
the blinding technique, A∗ can acquire information of plain-
texts with these blinding random numbers rU . A∗ cannot
learn the real information of plaintexts as these blinding
random numbers rU are stored in CP, which is demonstrated
as
AdvA∗ (T ) = AdvA∗ (MU , rU )

⇒ AdvA∗ (MU ) ∧ AdvA∗ (rU )
⇒ True ∧ False⇒ False.

• The final encrypted forecasting results on the integrated
knowledge transfer are transmitted to the user, which may
also be available to A∗. However, even A∗ obtains secret keys
from other users, A∗ is still not able to decrypt the encrypted
result returned by the CP, as the different user’s secret key
in our system is unrelated and independently.

Therefore, we conclude that PMKT framework can resist the
threats defined in Section 4.2. □

8. Performance analysis

In this section, we first implement the experiment setup in
Section 8.1. Then, the correctness and misclassification rate eval-
uation, computation overhead and communication overhead will
be evaluated in Section 8.2. Besides, the real-world financial
dataset is used to evaluate the performance of the PMKT.

8.1. Experiment analysis

The PMKT is evaluated by using Java. The experiments are
evaluated on our PC testbed (3.30 GHz four-cores processors and
4 GB memory).

8.1.1. Performance of secure computation
To evaluate the performance of secure computation, we ex-

ecute these ciphertext calculations with the variation of crypto
parameter N . As the secure Argmax is designed on secure com-
parison, the main impact on its performance is the size of a
ciphertext set, which decides the times of calling secure compari-
son. Hence, we do not consider secure Argmax. Here, we evaluate
secure multiplication, comparison, division, scaling down, and
transformation by executing each algorithm 100 times. When
the bit length of N is 1024, it takes 201.03 ms to run secure
multiplication, 61.23 ms to run secure comparison, 1139.08 ms to
run secure division, 70.63 ms to execute secure scaling-down and
69.67 ms to execute secure transformation. Besides, the commu-
nication overhead, the computational cost for CP & CSP, and sum
running time are analyzed, — see Fig. 7(a)–(e). We discover that
both computational cost and communication overhead of these
secure computation increase with the bit length of N . Owing to
more encrypted data are needed to be processed with the in-
crease of N , it is required more computation and communication
resources.

Since secure multiplication and secure scaling-down in [44]
based on Paillier cryptosystem, we focus on the contrast of the
performance of secure multiplication, secure scaling-down be-
tween our system and [44], — see Fig. 7(f)(g). We observe that
the running time of both secure multiplication and secure scaling-
down in our PMKT system bring the significant improvement
than those of [44].

Table 3
Source domains and target domain.
Domains DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8 DS9 DT

Accuracy 0.88 0.93 0.84 0.85 0.81 0.85 0.81 0.96 0.84 0.62
Direct transfer 0.71 0.78 0.79 0.73 0.71 0.71 0.71 0.72 0.73 0.62

Table 4
Performance metrics comparison.
Method TPR TNR Accuracy

PMKT 94.9% 79.6% 82.3%
Normal 96.6% 80.0% 82.9%

Notes. Normal: the integrated knowledge transfer over plaintexts.

8.1.2. Performance of integrated knowledge transfer and classifica-
tion

To evaluate the effectiveness of PMKT framework, we assume
N to be 1024 bits to realize 80-bit security level.2 Considering
both the accuracy and efficiency, we assume the public factor to
be ε = 3.

We perform the experiments on the real financial market
dataset called Bank Marketing Dataset3 from the UCI machine
learning repository. The dataset is related with the forecasting
goal that if the user will subscribe to a product. Each instance
contains 20 features. In the experiment, we divide the dataset
into 10 subsets according to the kind of jobs belonging to each
instance, namely ‘‘DS1’’, ‘‘DS2’’, . . . , ‘‘DS9’’ and ‘‘DT ’’. Note that we
choose the ‘‘DT ’’ as the target domain, and other nine subsets ‘‘DSi’’
(i = 1 to 9) as source domains.

We first pre-train DTs over DSi (i = 1 to 9) and DT . To eval-
uate the accuracy of DT models, we use 10-fold cross-validation.
The accuracy of these pre-trained DTs is shown in Table 3. See
Fig. 7(h), when these pre-trained DTs from DSi (i = 1 to 9)
are directly transferred to the target domain DT without using
PMKT framework, compared the original accuracy of pre-trained
DTs with the accuracy of direct transfer, we discover that direct
transfer has a significant accuracy loss of each pre-trained DT.
In addition, each source domain encrypts his/her pre-trained
DT before uploading to the cloud server in PMKT. It averagely
costs 922.8 ms to pre-train a DT over each source domain and
32.569 s to encrypt a DT. Besides, it spends 200 bits to transmit
an encrypted DT.

For privacy-preserving similarity measurement, it costs 3718s
to measure the similarity between each encrypted pre-trained
DT from the above nine source domains DSi (i = 1 to 9) and
the encrypted pre-trained DT from the target domain DT . For
instance forecasting, it takes 3.57 s for an encrypted request
from the target domain. Moreover, as shown in Table 4, we also
test the performance of PMKT compared with the performance
over plaintexts. We introduce True Positive (TP), False Positive
(FP), False Negative (FN) and True Negative (TN) to analyze the
performance of PMKT, where TP indicates the number of correctly
classified abnormal instances, FP indicates the number of misclas-
sified normal instances, FN indicates the number of misclassified
abnormal instances, TN indicates the number of correctly classi-
fier normal instances. True Positive Rate (TPR), True Negative Rate
(TNR) and accuracy are three important performance metrics as
computed in

Accuracy =
TP + TN

TP + TN + FP + FN
,

TPR =
TP

TP + FN
, TNR =

FP
FP + TN

.

2 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-
57pt1r4.pdf.
3 https://archive.ics.uci.edu/ml/datasets/Bank+Marketing.

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://archive.ics.uci.edu/ml/datasets/Bank+Marketing
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Fig. 7. Performance of PMKT.

We observe that those performance metrics between PMKT
and integrated knowledge transfer over plaintexts are similar.
TPR, TNR and accuracy have dropped slightly in PMKT, and the
accuracy of PMKT is 82.3% compared with the accuracy over
plaintexts (82.9%), the accuracy of our PMKT has a decrease of
0.6%. The reason of decrease is that real-world datasets in decimal
value is required to convert into integers before the encryption
operation, both the convert operation and encryption operation
have a slight impact upon the forecasting accuracy. As demon-
strated in Fig. 7(i), we observe that the accuracy of the integrated
knowledge transfer impacted by the number of source domains,
the variation of forecasting accuracy increases with varying the
number of source domains.

8.2. Theoretical analysis

To evaluate the effectiveness of PMKT framework, we analyze
the correctness and misclassification rate of our framework. Be-
sides, the computational overhead and communication overhead
of our PMKT are shown in following.

8.2.1. Correctness of similarity measurement
The correctness of similarity measurement is verified as fol-

lows. Given two related but different DTs (i.e., dt1 and dt2), the
similarity measurement between these two DTs is represented
as Sim(dt1, dt2), where SPdt (ci) reveals the relative importance
over feature space on different class labels which has a strong
connection with the dt ′s tree structure and follows the Eq. (7).
Since Sim(dt1, dt2) relies on distance measurement of the predic-
tion probabilities on each label, combined with Eqs. (2) and (7),
more similar the prediction probabilities between two DTs are,
the closer Sim(dt1, dt2) is to 1. If and only if SPdt1 (ci) = SPdt2 (ci)
that Sim(dt1, dt2) = 1, where ci ∈ C .∑C

i=1
SPdt (ci) = 1. (7)

8.2.2. Misclassification analysis of similar measurement
We first make the misclassification analysis of a single DT

(i.e., dti), which is from a source domain. Then, on this basis,
we make misclassification analysis of the integrated knowledge
transfer.

Given an instance x, P(ck|x) which denotes an ideal posteriori
probability when x belongs to the label ck, e

dti
ck (x) denotes the pre-

diction error on the DT dti, the estimated probability is gdti (ck|x)
on condition that x belongs to the label ck, which is computed as
Eq. (8).

gdti (ck|x) = P(ck|x)+ edtick (x). (8)

Owing to the existence of prediction error edtick (x), the actual
classification boundary l deviates from the ideal classification
boundary l∗, we denote the bias as b = l − l∗. Therefore, there
is an instance x belonging to label ci, while a DT misclassifies x
to the label cj. In this case, the probability of misclassification is
represented as Eq. (9), where ci, cj ∈ C and ci ̸= cj.

Edti =
∫ l

l∗

⏐⏐P(cj|x)− P(ci|x)
⏐⏐p(x)d(x). (9)

Owing to the high prediction accuracy of a DT from a source
domain, the bias b is small. Hence, P(ck|x) can obtain a linear
approximation as shown in Eq. (10), where p(x) ≈ p(l∗) and
x ∈ [l∗, l].

P(ck|x) ≈ b · P ′(ck|l)+ P(ck|l∗). (10)

The probability of misclassification Edti is computed as

Edti =
p(l∗)
2
· b2 ·

(
P ′(ci|l)− P ′(cj|l)

)
. (11)

To implement knowledge transfer from multi-source domains
to the target domain, the integrated knowledge transfer is em-
ployed in PMKT. On the basis of the above analysis, the misclas-
sification analysis of the integrated knowledge transfer is shown
as follows. The estimated probability of the integrated knowledge
transfer is shown as

gdts(ck|x) =
n∑

i=1

wi · gdti (ck|x). (12)

The probability of misclassification is represented as Eq. (13),
where µ = P ′(ci|ldts) − P ′(cj|ldts). When x = ldts, the prediction
probability of the label ci and cj is the same, i.e., gdts(ci|ldts) =
gdts(cj|ldts). Combined with the linear approximation, we can ob-
tain bdts = µ−1[edtsci (ldts)− edtscj (ldts)].

Edts =
p(l∗dts)
2
· b2dts · µ. (13)
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Since the weight of knowledge transfer belonging to multi-
source domains depends on the similarity measurement between
dti from a source domain and dtt from the target domain, and
follows

∑n
1 wi = 1, then wi can be represented

wi =
[∑n

j=1
Sim(dtj, dtt )

]−1Sim(dti, dtt ). (14)

Finally, combined with the above deductions, the probability
of misclassification on the integrated knowledge transfer Edts is
shown in Eq. (15), where σ

dti
ci and σ

dti
cj respectively represent the

variance of edtici and edticj .

Edts =
p(l∗dts)
2µ
·

∑n

i=1
w2

i

[
(σ dti

ci )2 + (σ dti
cj )2

]
, (15)

8.2.3. Computational overhead
In PMKT, we make an assumption that one regular expo-

nentiation calculation with an exponent of length ||N|| requires
1.5||N|| multiplications [40]. Taking Enc stated in Section 3.3 as
an example, the length of m is ||N||, and gm is required 1.5||N||
multiplications. Besides, compared with addition/subtraction and
multiplication calculations, exponential computing has a greatly
higher computational cost. Hence, our analysis ignores the repet-
itive addition/subtraction and multiplication calculations. For the
public-key cryptosystem in Section 3.3, to implement the en-
cryption, Enc requires 1.5||N|| multiplications. To implement the
decryption, Dec requires 1.5||N|| multiplications, and SDec and
WDec requires 1.5||N|| multiplications to process.

For the secure computation, it costs 1.5||N|| multiplications
to run secure subtraction for the CP while ignoring the secure
addition. To execute secure scaling-down, it costs 4.5||N|| mul-
tiplications for the CP, and 4.5||N|| multiplications for the CSP.
For secure multiplication over ciphertexts, it costs 10.5||N|| mul-
tiplications for the CP, and 7.5||N|| multiplications for the CSP. To
run the secure comparison, it is required 3||N|| multiplications for
the CP, and 4.5||N|| multiplications. We assume that the itera-
tion time is t to implement the secure division. Hence, it costs
(27t+10.5)||N|| multiplications for the CP, while (19.5t+7.5)||N||
multiplications for the CSP. For secure Argmax, we assume that
the size of input set is d, it takes 3d||N|| multiplications for the CP,
while 4.5d||N|| multiplications for the CSP. To execute the secure
transformation, it is required 4.5||N|| multiplications for the CP,
and 4.5||N|| multiplications for the CSP.

For the privacy-preserving knowledge transfer, assume that all
DTs in our system have the same height θ of the right subtrees
and the left subtrees, where each DT have ϕ tree paths, and the
size of feature space is ν. It costs O((θϕ + ν)||N||) multiplications
for the CP and CSP to implement the privacy-preserving similar
measurement between the dti from the source domain and dtt
from the target domain. Based on the similarity of n DTs from the
source domains, it is required O(n(θϕ+ν)||N||) multiplications for
the CP and CSP to construct the integrated knowledge transfer in
a privacy-preserving way. For the real-time prediction, it takes
O(nθ ||N||) multiplications for the CP and CSP to implement the
high-accuracy prediction.

8.2.4. Communication overhead
In PMKT, the encrypted data and its decryption share re-

quire 2||N|| bits for transmission. For the secure computation, it
requires 4||N|| bits to be transmitted between the CP and CSP
to execute secure scaling-down, secure comparison and secure
transformation. To implement secure Argmax, it needs 4d||N|| bits
transmitted between the CP and CSP. For the secure multipli-
cation, it requires to transmit 12||N|| bits, while secure division
needs (20t+8)||N|| bits. During the privacy-preserving knowledge
transfer, O(nθϕ||N||) bits are transmitted among the CP and multi-
source domains, and O(n(θϕ + ν)||N||) bits transmitted between

Table 5
Comparative summary.
Method [16] [7] [29] [45] PMKT

Knowledge transfer ✓ ✗ ✗ ✗ ✓
Privacy preservation ✗ ✓ ✓ ✓ ✓
Multi-parties ✓ ✗ ✗ ✓ ✓
Secure computation ✗ ✓ ✓ ✗ ✓
Computation cost Θ ≫ Θ – ≫ Θ Θ

Notes. Computation cost belonging to the training classifier phase, we define
Θ = O(m∗ ν ∗h), where m is the size of samples, ν is the number of features, h
is the depth of a DT. [16] and PMKT run over plaintexts, the computation cost is
Θ , while [7] and [45] run over ciphertexts, the computation cost is much bigger
than Θ .

the CP and CSP. For the secure classification, it takes O(nθ ||N||)
bits between the CP and CSP, and O(||N||) bits between the user
and the CP to implement the prediction.

8.3. Comparative analysis

In this section, we demonstrate that comparative summary
among PMKT and other existing privacy-preserving schemes [7,
16,29,45]. In [16], Lee et al. designed a knowledge transfer scheme
on DTs, which emphasizes the transfer of valuable knowledge
across multiple similar and related source domains. As DTs in-
clude sensitive information of source domains which may be
disclosed to the untrusted parties. One of the worst drawbacks
of [16] is that it results in the issue of privacy disclosure. Con-
sidering privacy concerns, Bost et al. [7] proposed a privacy-
preserving classification using the Naive Bayes, hyperplane de-
cision and DTs to protect the confidentiality of the data and
classifiers. Unfortunately, as classifiers are trained over encrypted
data, it costs heavy computational overhead in ciphertext op-
erations. To reduce the training cost, Li et al. [29] proposed a
privacy-preserving outsourced model sharing framework to im-
plement secure classification service. However, the framework
only supports the single-party setting rather than the multi-party
setting. To avoid the limitation, Li et al. [45] presented a scheme
based on FHE which provides privacy preservation across multi-
parties. Due to the multiplicative homomorphic of FHE, it is not
requisite to design secure computation for the ciphertext mul-
tiplication. However, owing to the heavy computation workload
and implementation complexity, it is different to apply the time-
consuming fully homomorphic scheme in real-world. Besides,
PMKT removes the above constraints, a comparative summary of
these schemes is shown in Table 5.

9. Conclusion

In this paper, we focused on achieving privacy preservation of
multi-party knowledge transfer for financial market forecasting.
Our proposed PMKT system is design to provide strong privacy
guarantees for data, classifier models and user-submitted re-
quests in the multi-party setting. Additionally, theoretical analy-
sis and extensive experimental results on the real-world dataset
demonstrated that PMKT is efficient and viable in practice. Fu-
ture research includes extending PMKT to support multi-class
classification and other classifiers.
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