69 research outputs found

    Collecting Shared Experiences through Lifelogging: Lessons Learned

    Get PDF
    The emergence of widespread pervasive sensing, personal recording technologies, and systems for the quantified self are creating an environment in which one can capture fine-grained activity traces. Such traces have wide applicability in domains such as human memory augmentation, behavior change, and healthcare. However, obtaining these traces for research is nontrivial, especially those containing photographs of everyday activities. To source data for their own work, the authors created an experimental setup in which they collected detailed traces of a group of researchers over 2.75 days. They share their experiences of this process and present a series of lessons learned for other members of the research community conducting similar studies

    Overview of the NTCIR-14 Lifelog-3 task

    Get PDF
    Lifelog-3 was the third instance of the lifelog task at NTCIR. At NTCIR-14, the Lifelog-3 task explored three different lifelog data access related challenges, the search challenge, the annotation challenge and the insights challenge. In this paper we review the activities of participating teams who took part in the challenges and we suggest next steps for the community

    Exploring lifelog sharing and privacy

    Get PDF
    The emphasis on exhaustive passive capturing of images using wearable cameras like Autographer, which is often known as lifelogging has brought into foreground the challenge of preserving privacy, in addition to presenting the vast amount of images in a meaningful way. In this paper, we present a user-study to understand the importance of an array of factors that are likely to influence the lifeloggers to share their lifelog images in their online circle. The findings are a step forward in the emerging area intersecting HCI, and privacy, to help in exploring design directions for privacy mediating techniques in lifelogging applications

    Lifelogging user study:bystander privacy

    Get PDF
    Automatically and passively taking pictures (using lifelogging devices such as wearable cameras) of people who don’t know they’re having their picture taken raises a number of privacy concerns (from a bystander’s perspective). We conducted a study focussing on the bystanders’ concerns to the presence of augmented reality wearable devices in two contexts (one formal and one informal). The results suggests the need to embed privacy enhancing techniques into the design of lifelogging applications, which are likely to depend upon an array of factors, but not limited to the context of use, scenario (and surroundings), and content

    Analyzing the Use of Camera Glasses in the Wild

    Full text link
    Camera glasses enable people to capture point-of-view videos using a common accessory, hands-free. In this paper, we investigate how, when, and why people used one such product: Spectacles. We conducted 39 semi-structured interviews and surveys with 191 owners of Spectacles. We found that the form factor elicits sustained usage behaviors, and opens opportunities for new use-cases and types of content captured. We provide a usage typology, and highlight societal and individual factors that influence the classification of behaviors.Comment: In Proceedings of the 37th Annual ACM Conference on Human Factors in Computing Systems (CHI 2019). ACM, New York, NY, US

    PrivacEye: Privacy-Preserving Head-Mounted Eye Tracking Using Egocentric Scene Image and Eye Movement Features

    Full text link
    Eyewear devices, such as augmented reality displays, increasingly integrate eye tracking but the first-person camera required to map a user's gaze to the visual scene can pose a significant threat to user and bystander privacy. We present PrivacEye, a method to detect privacy-sensitive everyday situations and automatically enable and disable the eye tracker's first-person camera using a mechanical shutter. To close the shutter in privacy-sensitive situations, the method uses a deep representation of the first-person video combined with rich features that encode users' eye movements. To open the shutter without visual input, PrivacEye detects changes in users' eye movements alone to gauge changes in the "privacy level" of the current situation. We evaluate our method on a first-person video dataset recorded in daily life situations of 17 participants, annotated by themselves for privacy sensitivity, and show that our method is effective in preserving privacy in this challenging setting.Comment: 10 pages, 6 figures, supplementary materia

    Analysing privacy in visual lifelogging

    Get PDF
    The visual lifelogging activity enables a user, the lifelogger, to passively capture images from a first-person perspective and ultimately create a visual diary encoding every possible aspect of her life with unprecedented details. In recent years, it has gained popularities among different groups of users. However, the possibility of ubiquitous presence of lifelogging devices specifically in private spheres has raised serious concerns with respect to personal privacy. In this article, we have presented a thorough discussion of privacy with respect to visual lifelogging. We have re-adjusted the existing definition of lifelogging to reflect different aspects of privacy and introduced a first-ever privacy threat model identifying several threats with respect to visual lifelogging. We have also shown how the existing privacy guidelines and approaches are inadequate to mitigate the identified threats. Finally, we have outlined a set of requirements and guidelines that can be used to mitigate the identified threats while designing and developing a privacy-preserving framework for visual lifelogging

    LifeLogging: personal big data

    Get PDF
    We have recently observed a convergence of technologies to foster the emergence of lifelogging as a mainstream activity. Computer storage has become significantly cheaper, and advancements in sensing technology allows for the efficient sensing of personal activities, locations and the environment. This is best seen in the growing popularity of the quantified self movement, in which life activities are tracked using wearable sensors in the hope of better understanding human performance in a variety of tasks. This review aims to provide a comprehensive summary of lifelogging, to cover its research history, current technologies, and applications. Thus far, most of the lifelogging research has focused predominantly on visual lifelogging in order to capture life details of life activities, hence we maintain this focus in this review. However, we also reflect on the challenges lifelogging poses to an information retrieval scientist. This review is a suitable reference for those seeking a information retrieval scientist’s perspective on lifelogging and the quantified self
    corecore