550 research outputs found

    Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.Basque GovernmentConsolidated Research Group MATHMODE - Department of Education of the Basque Government IT1294-19Spanish GovernmentEuropean Commission TIN2017-89517-PBBVA Foundation through its Ayudas Fundacion BBVA a Equipos de Investigacion Cientifica 2018 call (DeepSCOP project)European Commission 82561

    Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI

    Get PDF
    In the last few years, Artificial Intelligence (AI) has achieved a notable momentum that, if harnessed appropriately, may deliver the best of expectations over many application sectors across the field. For this to occur shortly in Machine Learning, the entire community stands in front of the barrier of explainability, an inherent problem of the latest techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI (namely, expert systems and rule based models). Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is widely acknowledged as a crucial feature for the practical deployment of AI models. The overview presented in this article examines the existing literature and contributions already done in the field of XAI, including a prospect toward what is yet to be reached. For this purpose we summarize previous efforts made to define explainability in Machine Learning, establishing a novel definition of explainable Machine Learning that covers such prior conceptual propositions with a major focus on the audience for which the explainability is sought. Departing from this definition, we propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at explaining Deep Learning methods for which a second dedicated taxonomy is built and examined in detail. This critical literature analysis serves as the motivating background for a series of challenges faced by XAI, such as the interesting crossroads of data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to the field of XAI with a thorough taxonomy that can serve as reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability

    Privacy-Preserving Crowdsourcing-Based Recommender Systems for E-Commerce & Health Services

    Get PDF
    En l’actualitat, els sistemes de recomanació han esdevingut un mecanisme fonamental per proporcionar als usuaris informació útil i filtrada, amb l’objectiu d’optimitzar la presa de decisions, com per exemple, en el camp del comerç electrònic. La quantitat de dades existent a Internet és tan extensa que els usuaris necessiten sistemes automàtics per ajudar-los a distingir entre informació valuosa i soroll. No obstant, sistemes de recomanació com el Filtratge Col·laboratiu tenen diverses limitacions, com ara la manca de resposta i la privadesa. Una part important d'aquesta tesi es dedica al desenvolupament de metodologies per fer front a aquestes limitacions. A més de les aportacions anteriors, en aquesta tesi també ens centrem en el procés d'urbanització que s'està produint a tot el món i en la necessitat de crear ciutats més sostenibles i habitables. En aquest context, ens proposem solucions de salut intel·ligent (s-health) i metodologies eficients de caracterització de canals sense fils, per tal de proporcionar assistència sanitària sostenible en el context de les ciutats intel·ligents.En la actualidad, los sistemas de recomendación se han convertido en una herramienta indispensable para proporcionar a los usuarios información útil y filtrada, con el objetivo de optimizar la toma de decisiones en una gran variedad de contextos. La cantidad de datos existente en Internet es tan extensa que los usuarios necesitan sistemas automáticos para ayudarles a distinguir entre información valiosa y ruido. Sin embargo, sistemas de recomendación como el Filtrado Colaborativo tienen varias limitaciones, tales como la falta de respuesta y la privacidad. Una parte importante de esta tesis se dedica al desarrollo de metodologías para hacer frente a esas limitaciones. Además de las aportaciones anteriores, en esta tesis también nos centramos en el proceso de urbanización que está teniendo lugar en todo el mundo y en la necesidad de crear ciudades más sostenibles y habitables. En este contexto, proponemos soluciones de salud inteligente (s-health) y metodologías eficientes de caracterización de canales inalámbricos, con el fin de proporcionar asistencia sanitaria sostenible en el contexto de las ciudades inteligentes.Our society lives an age where the eagerness for information has resulted in problems such as infobesity, especially after the arrival of Web 2.0. In this context, automatic systems such as recommenders are increasing their relevance, since they help to distinguish noise from useful information. However, recommender systems such as Collaborative Filtering have several limitations such as non-response and privacy. An important part of this thesis is devoted to the development of methodologies to cope with these limitations. In addition to the previously stated research topics, in this dissertation we also focus in the worldwide process of urbanisation that is taking place and the need for more sustainable and liveable cities. In this context, we focus on smart health solutions and efficient wireless channel characterisation methodologies, in order to provide sustainable healthcare in the context of smart cities

    Ensembles of Pruned Deep Neural Networks for Accurate and Privacy Preservation in IoT Applications

    Get PDF
    The emergence of the AIoT (Artificial Intelligence of Things) represents the powerful convergence of Artificial Intelligence (AI) with the expansive realm of the Internet of Things (IoT). By integrating AI algorithms with the vast network of interconnected IoT devices, we open new doors for intelligent decision-making and edge data analysis, transforming various domains from healthcare and transportation to agriculture and smart cities. However, this integration raises pivotal questions: How can we ensure deep learning models are aptly compressed and quantised to operate seamlessly on devices constrained by computational resources, without compromising accuracy? How can these models be effectively tailored to cope with the challenges of statistical heterogeneity and the uneven distribution of class labels inherent in IoT applications? Furthermore, in an age where data is a currency, how do we uphold the sanctity of privacy for the sensitive data that IoT devices incessantly generate while also ensuring the unhampered deployment of these advanced deep learning models? Addressing these intricate challenges forms the crux of this thesis, with its contributions delineated as follows: Ensyth: A novel approach designed to synthesise pruned ensembles of deep learning models, which not only makes optimal use of limited IoT resources but also ensures a notable boost in predictability. Experimental evidence gathered from CIFAR-10, CIFAR-5, and MNIST-FASHION datasets solidify its merit, especially given its capacity to achieve high predictability. MicroNets: Venturing into the realms of efficiency, this is a multi-phase pruning pipeline that fuses the principles of weight pruning, channel pruning. Its objective is clear: foster efficient deep ensemble learning, specially crafted for IoT devices. Benchmark tests conducted on CIFAR-10 and CIFAR-100 datasets demonstrate its prowess, highlighting a compression ratio of nearly 92%, with these pruned ensembles surpassing the accuracy metrics set by conventional models. FedNets: Recognising the challenges of statistical heterogeneity in federated learning and the ever-growing concerns of data privacy, this innovative federated learning framework is introduced. It facilitates edge devices in their collaborative quest to train ensembles of pruned deep neural networks. More than just training, it ensures data privacy remains uncompromised. Evaluations conducted on the Federated CIFAR-100 dataset offer a testament to its efficacy. In this thesis, substantial contributions have been made to the AIoT application domain. Ensyth, MicroNets, and FedNets collaboratively tackle the challenges of efficiency, accuracy, statistical heterogeneity arising from distributed class labels, and privacy concerns inherent in deploying AI applications on IoT devices. The experimental results underscore the effectiveness of these approaches, paving the way for their practical implementation in real-world scenarios. By offering an integrated solution that satisfies multiple key requirements simultaneously, this research brings us closer to the realisation of effective and privacy-preserved AIoT systems

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    Cyber Security

    Get PDF
    This open access book constitutes the refereed proceedings of the 18th China Annual Conference on Cyber Security, CNCERT 2022, held in Beijing, China, in August 2022. The 17 papers presented were carefully reviewed and selected from 64 submissions. The papers are organized according to the following topical sections: ​​data security; anomaly detection; cryptocurrency; information security; vulnerabilities; mobile internet; threat intelligence; text recognition

    Privacy-preserving distributed data mining

    Get PDF
    This thesis is concerned with privacy-preserving distributed data mining algorithms. The main challenges in this setting are inference attacks and the formation of collusion groups. The inference problem is the reconstruction of sensitive data by attackers from non-sensitive sources, such as intermediate results, exchanged messages, or public information. Moreover, in a distributed scenario, malicious insiders can organize collusion groups to deploy more effective inference attacks. This thesis shows that existing privacy measures do not adequately protect privacy against inference and collusion. Therefore, in this thesis, new measures based on information theory are developed to overcome the identiffied limitations. Furthermore, a new distributed data clustering algorithm is presented. The clustering approach is based on a kernel density estimates approximation that generates a controlled amount of ambiguity in the density estimates and provides privacy to original data. Besides, this thesis also introduces the first privacy-preserving algorithms for frequent pattern discovery in a distributed time series. Time series are transformed into a set of n-dimensional data points and finding frequent patterns reduced to finding local maxima in the n-dimensional density space. The proposed algorithms are linear in the size of the dataset with low communication costs, validated by experimental evaluation using different datasets.Diese Arbeit befasst sich mit vertraulichkeitsbewahrendem Data Mining in verteilten Umgebungen mit Schwerpunkt auf ausgewählten N-Agenten-Angriffsszenarien für das Inferenzproblem im Data-Clustering und der Zeitreihenanalyse. Dabei handelt es sich um Angriffe von einzelnen oder Teilgruppen von Agenten innerhalb einer verteilten Data Mining-Gruppe oder von einem einzelnen Agenten außerhalb dieser Gruppe. Zunächst werden in dieser Arbeit zwei neue Privacy-Maße vorgestellt, die im Gegensatz zu bislang existierenden, die im verteilten Data Mining allgemein geforderte Eigenschaften zur Vertraulichkeitsbewahrung erfüllen und bei denen sich der gemessene Grad der Vertraulichkeit auf die verwendete Datenanalysemethode und die Anzahl von Angreifern bezieht. Für den Zweck eines vertraulichkeitsbewahrenden, verteilten Data-Clustering wird ein neues Kernel-Dichteabschätzungsbasiertes Verfahren namens KDECS vorgestellt. KDECS verwendet eine Approximation der originalen, lokalen Kernel-Dichteschätzung, so dass die ursprünglichen Daten anderer Agenten in der Data Mining-Gruppe mit einer höheren Wahrscheinlichkeit als einem hierfür vorgegebenen Wert nicht mehr zu rekonstruieren sind. Das Verfahren ist nachweislich sicherer als Data-Clustering mit generativen Mixture Modellen und SMC-basiert sicherem k-means Data-Clustering. Zusätzlich stellen wir neue Verfahren, namens DPD-TS, DPD-HE und DPDFS, für eine vertraulichkeitsbewahrende, verteilte Mustererkennung in Zeitreihen vor, deren Komplexität und Sicherheitsgrad wir mit den zuvor erwähnten neuen Privacy-Maßen analysieren. Dabei hängt ein von einzelnen Agenten einer Data Mining-Gruppe jeweils vorgegebener, minimaler Sicherheitsgrad von DPD-TS und DPD-FS nur von der Dimensionsreduktion der Zeitreihenwerte und ihrer Diskretisierung ab und kann leicht überprüft werden. Einen noch besseren Schutz von sensiblen Daten bietet das Verfahren DPD HE mit Hilfe von homomorpher Verschlüsselung. Neben der theoretischen Analyse wurden die experimentellen Leistungsbewertungen der entwickelten Verfahren mit verschiedenen, öffentlich verfügbaren Datensätzen durchgeführt

    A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability

    Full text link
    Graph Neural Networks (GNNs) have made rapid developments in the recent years. Due to their great ability in modeling graph-structured data, GNNs are vastly used in various applications, including high-stakes scenarios such as financial analysis, traffic predictions, and drug discovery. Despite their great potential in benefiting humans in the real world, recent study shows that GNNs can leak private information, are vulnerable to adversarial attacks, can inherit and magnify societal bias from training data and lack interpretability, which have risk of causing unintentional harm to the users and society. For example, existing works demonstrate that attackers can fool the GNNs to give the outcome they desire with unnoticeable perturbation on training graph. GNNs trained on social networks may embed the discrimination in their decision process, strengthening the undesirable societal bias. Consequently, trustworthy GNNs in various aspects are emerging to prevent the harm from GNN models and increase the users' trust in GNNs. In this paper, we give a comprehensive survey of GNNs in the computational aspects of privacy, robustness, fairness, and explainability. For each aspect, we give the taxonomy of the related methods and formulate the general frameworks for the multiple categories of trustworthy GNNs. We also discuss the future research directions of each aspect and connections between these aspects to help achieve trustworthiness
    corecore