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Abstract

This thesis is concerned with privacy-preserving distributed data mining al-
gorithms. The main challenges in this setting are inference attacks and the
formation of collusion groups. The inference problem is the reconstruction
of sensitive data by attackers from non-sensitive sources, such as interme-
diate results, exchanged messages, or public information. Moreover, in a
distributed scenario, malicious insiders can organize collusion groups to de-
ploy more effective inference attacks. This thesis shows that existing privacy
measures do not adequately protect privacy against inference and collusion.
Therefore, in this thesis, new measures based on information theory are
developed to overcome the identified limitations. Furthermore, a new dis-
tributed data clustering algorithm is presented. The clustering approach
is based on a kernel density estimates approximation that generates a con-
trolled amount of ambiguity in the density estimates and provides privacy to
original data. Besides, this thesis also introduces the first privacy-preserving
algorithms for frequent pattern discovery in a distributed time series. Time
series are transformed into a set of n-dimensional data points and finding
frequent patterns reduced to finding local maxima in the n-dimensional den-
sity space. The proposed algorithms are linear in the size of the dataset
with low communication costs, validated by experimental evaluation using

different datasets.






Summary

This thesis is concerned with privacy-preserving distributed data mining al-
gorithms (PPDDM) in environments where a group of insiders can try to
deploy inference attacks against other peers in the mining group. In a dis-
tributed data context, any participant may try to infer sensitive information
about data owned by other parties from intermediate results and other mes-
sages exchanged during the mining session. The reconstruction of sensitive
data by attackers from non-sensitive sources is known as the inference prob-
lem and was first studied in the field of databases and subsequently by the
data mining community. In a distributed scenario, the inference problem is
even more challenging since malicious insiders can organize collusion groups
to deploy more efficient inference attacks. Often, mathematical properties
allow for reconstructions, like filtering out random noise or inverting a given

data transformation.

This thesis shows that existing privacy measures do not satisfy all required
properties for privacy protection in distributed data settings with inference
and collusion. Moreover, we propose new and improved measures and ap-
ply them to some representative privacy-preserving algorithms. The new
measures are based on information theory and can detect vulnerabilities of

selected algorithms to collusion in different attack scenarios.

This thesis analyzes an existing distributed data clustering algorithm, the
KDEC algorithm, to understand how it performs under an inference attack.
KDEC follows a density-based clustering approach and uses a kernel function
to estimate the density of a dataset. As the analysis pointed out, a possible
inference attack against KDEC is achieved by inverting the kernel function
to reconstruct original data. To overcome this class of attacks, we developed
the KDEC-S algorithm. In KDEC-S, the original kernel is substituted by

a kernel approximation function. As a result, a controlled ambiguity level
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is introduced during the density estimation phase. KDEC-S provides more
privacy than KDEC keeping the same mining quality. It is linear in the
number of data points in the dataset and has low communication costs,
validated through several experiments using different datasets.

Furthermore, in this thesis, we present the first privacy-preserving algorithms
for frequent pattern discovery in distributed time series: DPD-TS, DPD-
HE, and DPD-FS. All algorithms first transform time series into a set of
n-dimensional data points and, then, reduce the problem of finding frequent
patterns to the problem of finding local maxima in the n-dimensional density
landscape. Additionally, the n-dimensional data points are discretized to
form strings from a given alphabet. The density is then computed on discrete
data points, which are generally much smaller than the original dataset size.
Different approaches to density estimation were investigated, using heuristics
to prune the number of data points generated from the original time series.
Their privacy properties considering different inference attack scenarios were
also investigated, and it was shown that the proposed algorithms provide
parameter-controlled privacy levels. The algorithms are linear in the size of
a time series and have low communication costs. The approach is validated

by experimental evaluation using different datasets.
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Zusammenfassung

Diese Arbeit befasst sich mit vertraulichkeitsbewahrendem Data Mining in
verteilten Umgebungen mit Schwerpunkt auf ausgewéhlten N-Agenten-An-
griffsszenarien fiir das Inferenzproblem im Data-Clustering und der Zeitrei-
henanalyse. Dabei handelt es sich um Angriffe von einzelnen oder Teil-
gruppen von Agenten innerhalb einer verteilten Data Mining-Gruppe oder
von einem einzelnen Agenten auferhalb dieser Gruppe. Zunéchst werden
in dieser Arbeit zwei neue Privacy-Mafe vorgestellt, die im Gegensatz zu
bislang existierenden, die im verteilten Data Mining allgemein geforderte
Eigenschaften zur Vertraulichkeitsbewahrung erfiillen und bei denen sich der
gemessene Grad der Vertraulichkeit auf die verwendete Datenanalysemeth-

ode und die Anzahl von Angreifern bezieht.

Fiir den Zweck eines vertraulichkeitsbewahrenden, verteilten Data-Clustering
wird ein neues Kernel-Dichteabschéitzungsbasiertes Verfahren namens KDEC-
S vorgestellt. KDEC-S verwendet eine Approximation der originalen, lokalen
Kernel-Dichteschitzung, so dass die urspriinglichen Daten anderer Agenten
in der Data Mining-Gruppe mit einer htheren Wahrscheinlichkeit als einem
hierfiir vorgegebenen Wert nicht mehr zu rekonstruieren sind. Das Verfahren
ist nachweislich sicherer als Data-Clustering mit generativen Mixture Mod-

ellen und SMC-basiert, sicherem k-means Data-Clustering.

Zusitzlich stellen wir neue Verfahren, namens DPD-TS, DPD-HE und DPD-
FS, fiir eine vertraulichkeitsbewahrende, verteilte Mustererkennung in Zeitrei-
hen vor, deren Komplexitit und Sicherheitsgrad wir mit den zuvor erwihnten
neuen Privacy-Mafken analysieren. Dabei hiingt ein von einzelnen Agenten
einer Data Mining-Gruppe jeweils vorgegebener, minimaler Sicherheitsgrad
von DPD-TS und DPD-FS nur von der Dimensionsreduktion der Zeitrei-
henwerte und ihrer Diskretisierung ab und kann leicht iiberpriift werden.

Einen noch besseren Schutz von sensiblen Daten bietet das Verfahren DPD-



HE mit Hilfe von homomorpher Verschliisselung. Neben der theoretischen
Analyse wurden die experimentellen Leistungsbewertungen der entwickelten
Verfahren mit verschiedenen, offentlich verfiigbaren Datensétzen durchge-
fiihrt.
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Chapter 1

Introduction

This thesis investigates how to extract valuable knowledge from distributed
data sources without compromising the privacy requirements of sensitive
data during the mining process. This question is part of the field known
as privacy-preserving distributed data mining and has been an active area
of research for many decades now. The main challenge in this setting is
that even if the original data are not directly disclosed, a skilled attacker
may still manage to reconstruct original sensitive data to some extent via
inference attacks. Moreover, the attackers may be one of the mining partners
and may organize themselves in collusion groups to improve their chance
at reconstructing sensitive data. This is an important line of investigation
with several potential applications in many fields. We discuss details of our

motivation, research questions, and main contributions in the following.

1.1 Motivation

Distributed data mining (DDM) is a research field concerned with devel-
oping algorithms to extract knowledge from distributed data sources. In
many real-world scenarios, datasets are intrinsically distributed across dif-
ferent companies, governments, or organizations, with loosely coupled sites
connected by a network. Good examples are the biomedical informatics fields
[162] and health care. Data from millions of patients have already been col-
lected and stored in an electronic format [225|, e-Health mobile applications
[11, 33, 85], large scale medical studies [142], mobile crowdsensing [39] and
internet of medical things [177, 180]. Smart grids applications [223] and



Chapter 1. Introduction

the Internet of things (IoT) are also interesting application scenarios with

distributed data and huge economic potential [115, 209].

Distributed data scenarios raise many challenges concerning the privacy
preservation of sensitive data |2, 32, 122|. For example, various countries
have laws and regulations to control how data should be collected and dis-
tributed among different parties, be it institutions or companies. Privacy-
preserving distributed data mining (PPDDM) addresses the question of how
to extract meaningful knowledge from distributed data sources without jeop-

ardizing the privacy of sensitive data.

The main approaches to PPDDM are secure multi-party computation
(SMC), distributed model aggregation (DMA) mining and local differential
privacy (LDP). In SMC-based data mining, the idea is to devise secure pro-
tocols for data mining tasks adapting well known algorithms like decision
trees [124, 37|, clustering [8, 27, 80, 185|, expectation maximization cluster-
ing [129]. DMA approach addresses PPDDM by building local models that
are aggregated into a global model. This approach has been used for classi-
fication [107, 149, 243| and clustering [22, 108, 118, 184]. Local differential
privacy protects privacy by adding noise to original data before using it to
build a model [40, 227]. LDP has been applied to a wide variety of models
and mining tasks including classification [228, 107], clustering [193, 227] and
time series mining [19, 224|. Actually, many works apply differential privacy
together with SMC or DMA [229] as an extra layer of protection.

A critical issue in PPDDM is that participants may learn about sensi-
tive data owned by other parties during the protocol. The reconstruction of
sensitive data by attackers from non-sensitive sources is known as the infer-
ence problem and was first studied in the field of databases [70, 201] and
subsequently by the data mining community |14, 90, 215, 187|. Additionally,
in a distributed scenario, malicious insiders can organize collusion groups
to deploy even more efficient inference attacks. We discuss this problem in
further details in Section 2.3.2 (p. 25).

SMC-based approaches, for instance, protect sensitive information owned
by each participant from direct disclosure via cryptography but do not ad-
dress inferences from the protocol output [109, 132]. For example, in a pro-
tocol where three parties compute the sum of numbers in a secure multiparty
protocol, the process does not leak directly any input information. However,

when a subset of parties collude, they can subtract their contribution and
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learn the input of the remaining party. Unlike SMC, distributed model ag-
gregation approaches do not utilize cryptography and avoid sensitive data
disclosure by exchanging only partial models of local datasets. However, in
some circumstances, the privacy of single points may be compromised. For
example, in [149] the dataset privacy is based on the average privacy of all
points. Some points will, of course, have a privacy level much lower than the
average privacy level. In this case, an inference attack by an insider might

be able to reconstruct these low privacy points with high accuracy.

This investigation focuses on privacy-preserving distributed data mining
algorithms in environments where a group of insiders can try to deploy in-
ference attacks against other peers in the mining group. In particular, this
research concentrates on distributed data clustering (DDC) and pattern dis-
covery in distributed time series mining (DTS) algorithms. The goal is to
provide DDC and DTS with low network traffic, good data mining quality,
and high privacy preservation. We assume a network of peers, each of which

owns a local dataset with access denied to other peers.

This thesis investigates current privacy-preserving measures for SMC
and distributed model aggregation approaches and identifies their limita-
tions when applied to collusion groups and inference attacks scenarios. We
then propose a set of formal properties to capture the requirements a pri-
vacy measure needs to fulfill and show that the current privacy measures
fail to meet at least one of these requirements. From this analysis, new
and improved measures for DDC and DTS are developed. Besides, the new
measures are applied to some representative privacy-preserving distributed

algorithms making explicit their vulnerabilities to inference and collusion.

Further, new algorithms for DDC and DTS are proposed and their privacy-
preserving properties analyzed concerning the new measures. The proposed
algorithms follow a model-based approach, first computing local density es-
timates at each peer and then generating a global model at a distinguished
peer, making it available to all peers in the mining group. Our central hy-
pothesis in this investigation is that a sample of density estimates can be
utilized as surrogate data to perform DDC and DTS. Density estimation is a
non-parametric approach to compute a probability density function given a
dataset. A key observation is that density estimates are additive. Therefore,
we can compute a global sample of the estimates from local estimates. With

this approach, we reduce the bandwidth requirements and avoid publishing
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sensitive data. The mining step works with samples of density estimates to
build the mining results.

As the main result, this investigation shows that density estimates effec-
tively attain all three goals: reduce bandwidth, provide good mining results
and guarantee privacy to sensitive data. Additionally, our algorithms are
linear in the size of datasets and scale well on the number of parties in the

mining session.

1.2 Research Questions

In the context of the discussion above, the investigation presented in this
thesis is driven by the following research questions in privacy-preserving
distributed data mining, particularly DDC and DTS:

1. Privacy Measures for DDC and DTS Mining

How to define and formalize the concept of privacy and correspond-
ing privacy measure in a distributed environment taking into account
inference attacks and collusion of malicious insiders? What kind of
attacks to sensitive data owned by each participant in a distributed

data mining setting can take place?

2. Privacy-Preserving Distributed Mining Algorithms

How to develop an algorithm that provides the desired privacy level
of sensitive data, particularly in DDC and DTS, during the mining
sessions? What kind of data transformations or surrogate data can
be used instead of the original sensitive data while maintaining the
quality of mining results to the desired level? Can an algorithm be
privacy-preserving even without cryptography-based protocols? Can
the algorithm be privacy-preserving while being scalable in the number

of parties and the size of datasets?

1.3 Contributions

The main contributions of this thesis are as follows:

1. Privacy Measures for DDC and DTS Mining



1.8 Contributions

Different existing formalizations of privacy, its assumptions, and limi-
tations are investigated. We start with a set of formal properties and
show that existing privacy measures do not satisfy all required prop-
erties for privacy measures in distributed environments with collusion.
Therefore, new and improved measures are developed and applied to
some representative privacy-preserving algorithms [51]. The new mea-
sures are based on information theory, using the concept of entropy as
a measure of uncertainty. These measures model privacy as the size
of an interval from where values of a given random variable can be
drawn. Some identified benefits from the new measures are detect-
ing the vulnerabilities of selected algorithms to collusion in different
attack scenarios and detecting point-level privacy breaches. The new

measures are used in subsequent chapters (Ch. 4 and 5).

This work also discusses two main threats to privacy (Ch. 2, Sec. 2.3):
inference attacks and collusion groups. Inference attacks allow the at-
tacker to reconstruct sensitive data from any piece of data exchanged
among the parties during a mining session. A collusion group consists
of malicious peers who cooperate to improve their attacks. A successful
inference attack reconstructs a given sensitive dataset with little or no
distortion. Often, mathematical properties reveal possible reconstruc-
tions, like filtering out random noise [111, 219], or inverting a given
data transformation (see, e.g., Sec.4.2.3). We assume that inference
attacks are more powerful when performed by insider agents, which
know all parameter values. Therefore, inference attacks scenarios with
different degrees of available knowledge are developed [47, 48, 52]. Our
privacy analysis follows this framework to assess the privacy flaws of a
given algorithm. Different threats to data privacy in distributed data
mining environments are investigated in Chapters 4 and 5, focusing on

clustering and time series mining, respectively.

This work has been in part published in [47, 48, 51, 52]

2. Privacy-Preserving Distributed Mining Algorithms

Distributed Clustering. This thesis investigates an existing density-
based clustering algorithm, the KDEC scheme, to understand how it
performed under an inference attack using only information exchanged

during a KDEC session. Since KDEC uses kernel density estimation, a



Chapter 1. Introduction

possible attack is based on computing the inverse of the kernel function.
The KDEC-S algorithm for distributed data clustering is developed to
handle the inverse kernel inference attack (Chapter 4). The main idea
is to replace the original kernel function with a kernel approximation
at the estimation phase. Therefore, a controlled amount of ambiguity
is added to the density estimates. The subsequent results show that
KDEC-S provides more privacy than KDEC keeping the same mining
quality (cf. Theorem 4.7). Moreover, it is linear in the number of data
points in the dataset and has low communication costs. The approach
is validated through several experiments using different datasets. This
work has been in part published in [46, 47, 52, 53]

Pattern Discovery in Time Series. The thesis proceeds to develop the
first privacy-preserving algorithms for frequent pattern discovery in
distributed time series: DPD-TS, DPD-HE and DPD-FS (Chapter 5).
The main idea is to transform time series in a set of n-dimensional
data points and, then, reduce the problem of finding frequent patterns
to the problem of finding local maxima in the n-dimensional density
landscape. Different approaches to computing the density estimates
are investigated. DPD-TS generates contiguous non-overlapping sub-
sequences of the original series. However, it may miss some patterns
if they are not aligned with the subsequence size n. DPD-FS gener-
ates non-overlapping subsequences but uses a heuristic to prune the
number of data points generated. DPD-HE adds a security layer with
homomorphic encryption. The privacy properties of all algorithms con-
sidering different inference attack scenarios are also investigated. It is
shown that the algorithms provides a controlled privacy levels via clear
defined privacy parameters (cf. Theorems 5.4 and 5.12). DTSCluster
is yet another algorithm spun off the main results of this thesis (also in
Chapter 5). We applied the idea of pattern discovery to the problem
of clustering short time series from genomic experiments. As it turned
out, the approach produced very consistent clusters of short time se-
ries with linear time complexity both in dataset size and the number of
parties in the mining session. The proposed algorithms are linear in the
size of time series and have low communication costs. The approach
is validated by experimental evaluation using different datasets. This
work has been in part published in |45, 49, 50, 54]



1.4 Thesis Querview

1.4 Thesis Overview

The remainder of this thesis is organized as follows.

Chapter 2 introduces the reader to the basics of knowledge discovery, data
mining, distributed data mining algorithms, and systems. This chap-
ter presents an overview of privacy-preserving distributed data mining
and discusses its privacy definitions, highlighting its assumptions, ap-
plicability, and limitations. Furthermore, this chapter introduces the
inference problem, which occurs when unauthorized agents learn sen-
sitive data during a mining session. The inference problem poses a
general question as to how data mining can potentially jeopardize pri-
vacy since data mining is inherently a learning framework. We propose
several general inference attack scenarios and discuss the limitations
of current privacy-preserving data mining solutions to handle said in-
ference attacks. [52]

Chapter 3 introduces a set of privacy properties and applies it to the pri-
vacy measures discussed in the previous chapter. It shows that existing
privacy measures do not satisfy all required properties for privacy mea-
sures in distributed environments with inference collusion groups. New
privacy measures for distributed data clustering and time series, which
address inference and collusion, are also introduced. The new measures
are then applied to some representative distributed privacy-preserving

algorithms.

Chapter 4 presents the privacy-preserving data mining problem reformu-
lated for the particular case of distributed data clustering. We ana-
lyze a distributed clustering algorithm, KDEC, concerning its privacy-
preserving properties through attack scenarios and propose a new algo-
rithm, KDEC-S, which improves the privacy-preserving aspects with-

out compromising mining quality.

Chapter 5 presents the general problem applied to the case of distributed
time series mining. We formulate the problem of privacy-preserving
pattern discovery in time series and propose three algorithms to solve
it, DPD-TS, DPD-FS, and DPD-HE, together with an analysis of their

privacy and performance properties. This chapter also introduces the
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DTSCluster algorithm, which is applied to genomic short time series

data clustering.

Chapter 6 discusses the architecture and implementation of the proposed
algorithms. It also presents an evaluation environment in which the
experiments in this thesis were run. A description of all datasets used

in this thesis is also provided.

Chapter 7 presents the main conclusions and discusses future research di-

rections.



Chapter 2

Background

“Advanced analysis of data for extracting useful knowledge is
the next natural step in the world of ubiquitous computing."
(H. Kargupta in ACM SIGKDD Tutorial, 2001)

This chapter introduces fundamental notions of distributed data mining
and privacy issues. Readers familiar with knowledge discovery in databases
(KDD), data mining algorithms (DM), distributed data mining (DDM), and
data mining systems, may skip all or parts of this chapter. It also introduces
privacy-preserving distributed data mining (PPDDM), its central concepts,
problems, approaches, and limitations. It also introduces the main threats to

privacy in a distributed data setting: inference attacks and collusion groups.

2.1 Data Mining

Data mining and knowledge discovery are commonly used to denote finding
new knowledge from large databases. In this work, however, a clear distinc-

tion is made between the two terms, as discussed in the following sections.

Knowledge Discovery Process Knowledge discovery in databases (KDD)
is a process that aims to automatically find new pieces of useful information
from vast amounts of data [93]. Its primary motivation is to automati-
cally discover patterns and relations between data stored in large datasets
that could not feasibly be discovered manually. The process is essentially
an attempt to cope with the massive amount of information that one must

manage, developing complex analysis tools to reach this objective. In KDD,
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Data Pre- Data Mining Post-Processing
processing
+ Data selection « Mining Task | « Verification and

+ Data cleaning selection Evaluation
* Data = Mining - Interpretation
transformation algorithm
» Data reduction selection
« Parameter
setting

Figure 2.1: KDD phases showing its sub-steps.

the term “huge” usually denotes Terabytes of information. Examples of such
gigantic databases are satellite image databases, medical information repos-
itories, market information databases, social network data, to name a few.

KDD is an interdisciplinary field and can be seen as the intersection of the
research in machine learning, statistics, information theory, and databases
[238]. Today, the term KDD is used as a synonym for data mining (DM), and,
indeed, one can find many research papers that use the term DM to represent
the entire KDD process. Kargupta and Chan remark, on a “nostalgic note",
that the term KDD was used even before the term DM was coined [110].
Throughout this thesis, the term data mining will be referred to as one of
the phases of the KDD process.

The KDD process consists of four main phases [93]: problem definition,
data preprocessing, data mining, and data post-processing. These phases can
be further decomposed into sub-phases, as shown in Figure 2.1 (cf. [72, 238,
242] and [94]).

Data Mining Phase The previous section shows that data mining (DM)
is just one of several steps in the KDD workflow. This section presents some
of the main issues addressed by DM.

DM is commonly regarded as data analysis of large datasets. Data anal-
ysis shares with DM the goal of searching patterns in data, and it has been
used for a reasonable amount of time by statisticians, economists, biologists,
meteorologists, to name just a few. DM, however, is related to the automated
search in massive datasets, where data is electronically stored and usually
takes the form of a set of examples.

Data mining has two high level goals![72]: prediction and description (cf.

IThis classification is object of discussion in the data mining community.
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Data Mining
Prediction Description
- Classification - Association Rules
- Regression - Clustering
- Deviation Detection - Dependence Analysis

Figure 2.2: Data mining tasks.

Fig. 2.2).

Prediction The main goal of prediction tasks is to build models (and pat-
terns) that can predict unknown values of a target attribute from the
known predictor attributes. Examples of prediction tasks are classifi-

cation, regression, and deviation detection.

Description The main goal of description tasks is to summarize the data
that can be used to recognize, for example, how the data is distributed,
whether or not the attributes are correlated, and so forth. Examples
of description tasks include data clustering, association rules, and de-

pendence analysis.

The pieces of information discovered by DM algorithms are represented
by any well-defined mathematical structure, two of the most well-known
of which are decision trees and association rules. A variety of DM tech-
niques have been developed in the last decades, including cluster analysis
[3], decision-tree based classification [119], and mining of association rules
[73, 141]. The reader may refer to [174] for introductory material on data
mining tasks and algorithms.

DM also involves computational issues. For example, in DM, one has to
address the scalability of the pattern searching algorithms, data distribution
issues, and memory spaces utilization. The early research addressed these
issues and produced several algorithms for different mining tasks.

One critical dimension of DM pertains to how exactly data is stored,
and it can be stored in a single central repository (e.g., a data warehouse)
or distributed among different locations. Distribution implies a set of new

challenges to DM, which are discussed in the following section.
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2.2 Distributed Data Mining

One of the most widely used approaches to mining data from distributed
sources is to apply traditional DM techniques to a collection of integrated
data from the sources in a central repository [76]. This approach presents
several limitations, such as network bandwidth limitation and poor algorithm
scalability.

Most datasets in a distributed setting are too large to be transferred. For
instance, health care clinical data [177, 180], smart grids data generated from
smart meters [223],distributed genomic studies [28, 90|, are examples of huge
datasets generated at different locations. Moreover, downloading data to a
central site is impractical when the network is based on a low bandwidth
connection. The downloading of sensitive data may also not be allowed
due to the local security policies of any given data owner. The centralized
approach with classical DM algorithms does not scale well on the size of
datasets or the number of different data sources since they need to access
raw data, requiring many rounds of messages among the sites. For all these
reasons, the centralized approach typically represents the main bottleneck
for mining distributed databases. Distributed Data Mining (DDM) addresses
these limitations, investigating how to enable data mining with extremely
large distributed data sources with limited network bandwidth.

Another challenge posed by a distributed environment is how to handle
the heterogeneity of data. Heterogeneity comes into play in two different
circumstances [76]: (i) when data is represented in different ways on different
sites; (ii) when data is split in a non-trivial way among sites. Different data
representations and distribution possibilities are presented in the following.

There are three main data representation possibilities according to the

data structure (or lack of it):

e Structured data: In this category, data is represented by a rigid, regular

schema, such as a relational database.

o Semi-structured data: In this category, data follows no rigid schema.
Moreover, it can have an irregular and implicit structure. Commonly,
the distinction between schema and data in semi-structured data is
blurred. Examples include XML, BibTex, and JSON data format.

e Unstructured data: In this category, data has no structure at all, e.g.,

12
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1 2 3
X1 2,3 1,6 0,2
X2 5,2 7.8 0,3
Site 1
1 f2 3
X3 45 53 0.9
X4 5,1 32 0,7
Site 2

Figure 2.3: Homogeneous data distribution: each site stores the same set of fea-
tures (e.g., f1, f2, f3), but has a different set of data objects. In the example, Site
1 stores objects x1,xo while Site 2 stores objects T3, x4.

plain text, images, sound, genomic data.

With regards to data distribution, data may be spread through dis-

tributed datasets in at least two different ways:

e Homogeneous data distribution: In this case, data objects are dis-
tributed across the sites in such a manner that each location stores
the same features of the data objects. It can be said that the data
objects are grouped by site (cf. Fig. 2.3).

e Heterogeneous data distribution: Each site stores a different set of at-
tributes for each data object, possibly with one or more features in
common among the sites, meaning that each location has only partial
information concerning the data object distributed over the local sites
(cf. Fig. 2.4).

The terminology horizontal and wvertical is often used in the literature to
describe a particular case of homogeneous and heterogeneous distribution,
respectively, when data is structured and stored in just one table [76].

A general scheme to solve distributed data mining (DDM) problems is
to perform data mining algorithms at each site to build partial local models
of datasets stored at each location, e.g., [212, 240]. These partial models

are then combined to create a global model. Some data samples may be
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1 2 3 4 5 6
X1 23 1,6 X1 021032119
X2 52 7.8 X2 03)21]33)| 380
X3 45 53 X3 09101]|83)| 24
x4 5.1 3,2 X4 0715|0012
Site 1 Site 2

Figure 2.4: Heterogeneous data distribution: each site refers to the same data
objects (e.g., 1,22, 23,24, .. ), but stores a partial view (different set of features)
of them. In the example, Site 1 stores feature f1 and fo while Site 2 stores features

f37.f4,f57f6... .

exchanged among the sites to improve the global model. The DDM ap-
proach presents better scalability and less communication overhead than the
centralized approach.

The following sections overview two DDM tasks and discuss their main
challenges, followed by strategies to solve them. A survey on the field of
distributed data mining can be found in [76, 214].

2.2.1 Distributed Data Clustering

The distributed data clustering (DDC) problem is informally stated as the
following: to find a partition over distributed data such that every data point
i local datasets is assigned to o global cluster. Global clusters are only

discovered when all datasets are considered.

Example 2.1 Figure 2.5 shows two sites and their respective local cluster
map. There are three clusters if we combine the datasets, as shown in Fig.
2.6.

Distributed clustering algorithms can be classified into two subcategories.
The first consists of methods requiring multiple rounds of message passing,
which requires a significant amount of synchronization [9, 185]. The sec-
ond subcategory consists of methods that build local clustering models and
transmit them to a central site (asynchronously) [126]. The central site
forms a combined global model. These methods require only a single round

of message passing, thus resulting in modest synchronization requirements.

14
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Figure 2.5: A distributed data clustering scenario. Local data clustering may not
find all clusters.
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Figure 2.6: Global clusters
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When it comes to network architecture, there are many forms in which
peers may get organized: (i) distributed network with central node; and
(ii) distributed network without central node [9]. The peer-to-peer model is
an example of the first architecture, and MapReduce is an example of the

second model.

MapReduce [57] is a framework defining a shared-nothing memory ar-
chitecture implemented over a network of several loosely coupled machines.
Nonetheless, it is more restrictive than peer-to-peer, requiring all the ma-
chines to be under the same trust domain. In MapReduce, one node act as

coordinator or master, and all the other node act as workers or slaves.

Several MapReduce implementations of clustering algorithms have been
proposed. Yu et al. [237] proposes Cludoop, an efficient and load-balanced
distributed density-based clustering for big data on the Hadoop platform.
The distributed algorithm incorporates a proposed serial clustering with c-
cluster as a plug-in on mapper and a Merging-Refinement-Merging 3-step
framework to merge c-cluster on the reducer. Experiments on large-scale
real-world and synthetic data show that Cludoop exhibits better scalability
and efficiency when compared with its predecessors. Tsapano et al. [210]
improve the performance of Kernel k-Means using a kernel matrix-trimming
algorithm. All small entries in the kernel matrix are discarded to reduce the
kernel matrix size, and the resulting sparse matrix is stored as adjacency
lists instead of the entire matrix. The approach follows the MapReduce
programming model and consists of 3 stages: the kernel matrix computa-
tion, kernel matrix trimming method, and the Kernel k-Means clustering
algorithm. Results showed that the proposed approach performs just as the
Kernel k-means with the whole matrix. Heidari and colleagues developed a
version of MR-VDBSCAN in MapReduce to address the problem of varied
densities in a dataset [100]. It is based on DBSCAN, but MR-VDBSCAN
computed a local density list to help identify points located on different levels

of densities.

Peer-to-peer architecture does not rely on a central node but requires
more coordination among all peers. Altilio et al. [9] addressed the problem
of clustering data distributed in a peer-to-peer network. They developed
a consensus-based expectation-maximization algorithm (CEM). Computa-
tion is split among the parties, where local EM produces a local temporary

solution. A consensus protocol is run at each step to define the global EM
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parameters. It is an iterative algorithm running until a convergence criterion
is reached. A similar approach is explored by Qin et al. [170] who propose a
consensus algorithm applied to cluster distributed data from a wireless sen-
sors network. The base model is a multiclass logistic regression model built
iteratively. The first partition is generated by k-means in the first round to
ensure the algorithm’s convergence. The authors point out that the algo-
rithm can find the appropriate number of clusters. On the other hand, the
proposed approach is limited to linear boundaries between clusters. Rosato
et al. [175] proposes the V-DEC algorithm for a decentralized architecture.
In this approach, each peer generates a local cluster and collaborates to find

k-means centroids.

2.2.2 Distributed Time Series Mining

Distributed time series analysis and mining encompass a wide variety of
problems and applications, such as smart meter applications [222], collabo-
rative forecasting among different companies [86, 87| public health and clin-
ical research or participatory sensing applications discussed in [172]. In this
setting, participants contribute various time-series data to get useful infor-
mation such as road congestion patterns, micro-weather, load profiles. We
discuss a few examples of research directions on distributed time series in
the following.

Forecasting is one classical problem in time series. Galicia et al. devel-
oped a scalable approach for multi-step forecasting [75]. The problem is to
predict m steps in the future, given past w values in the time series. The
original time series was split into m subseries and trained in parallel to build
an ensemble of m models to predict forecasts with different time horizons.
The approach was presented as a centralized method but could be imple-
mented as a distributed scheme. Talavera et al. [195] also studied the m
step forecasting problem. They use parallel computing to find k nearest time
series from a distributed dataset previously split among several nodes. The
average value of the most similar time series is used as the forecast. We refer
the reader to [164] for an overview of distributed forecasting approaches.

Baldan and Benitez proposed a distributed time series classification al-
gorithm based on MapReduce model [18]. The time series are split between
nodes to distribute the processing load. A time series is transformed via SAX

to a discrete version at each node, and a set of best shaplets is built collabo-
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ratively with information from all nodes. Then, the minimum distance from
each time series to each shaplets is computed, and this information is used
to train a random forest model.

Gong et al. [83] studied clustering of distributed time series and pro-
posed the DBPEC algorithm. DBPEC first split the original time series
into several partitions. Using the Apache Spark framework, DBPEC com-
putes the centroids in parallel and finally produces a global cluster mapping
aggregating information from each partition. Corizzo et al. introduced DEN-
CAST [44]. DENCAST is implemented in Apache Spark and splits the time
series among several nodes. The algorithm uses a distributed local sensitive
hash (LHS) to find an approximate solution that clusters the time series.
DENCAST uses the discovered cluster mapping to make predictions using
the average values from time series in a given cluster.

Indexing is a core function for many data mining tasks, like clustering,
motif discovery, and classification. Yagoubi et al. [231] proposed DPiSAX, a
parallel solution to index and query billions of time series. The authors im-
plemented with Apache Spark framework. The DPiSAX splits the time series
datasets into partitions where local indexes are created and combined into a

global index. The solution includes both approximate and exact searches.

2.2.3 Distributed Data Mining Systems

In this section, a couple of DDM systems that have been successfully applied
to real-world cases are reviewed. The main features of these systems — the
mining task, data mining algorithms used, network type, and data distri-
bution — are all given an overview. Table 2.1 is provided to summarize the
systems reviewed.

Kensington system architecture was developed by Chattratichat et al.
[38]. Kensington uses several Enterprise Java Beans to provide data mining,
object management, and storage management for local and remote clients.
The client is implemented as Java Beans and can connect to the server
through the RMI protocol. The system can operate in a TCP/IP Internet,
Intranet, or virtual private network. Additionally, the system incorporates
connection management and secure communication through secure sockets
(SSL). Each node in the system communicates mining results, database
schema, data samples, and even full datasets on demand. Kensington was

demonstrated at the Terabyte Challenge "98, performing data mining in a
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distributed setting, including a Kensington server in London, another in

Chicago, and a client in Orlando.

Papyrus [89] is a Java-based system addressing wide-area DDM over
clusters of heterogeneous data sites and meta-clusters, supporting different
task and predictive models, including C4.5. It uses mobile agents to move
data, intermediate results, and models between clusters. All computation is
performed locally to reduce network load, and a central root produces the
final result. Each cluster has one distinguished node, which acts as its clus-
ter’s access and control point for the agents. The coordination of the overall
clustering task is either carried out by a central root site or distributed.
Papyrus describes the models and metadata by using a particular markup

language. The authors do not address privacy in Papyrus.

PADMA was developed by Kargupta et al. [112] and deals with the
problem of DDM with homogeneous data sites. Partial data cluster models
are first computed by stationary agents locally at different locations. All
local models are collected at a central site that performs a second-level clus-
tering algorithm to generate the global cluster model. That is followed by
individual agents carrying out hierarchical clustering in text document clas-
sification and web-based information visualization. Partial concept graphs
are subsequently exchanged among agents. It is worth noting that raw data
is also exchanged to perform parallel join operations. PADMA uses Parallel
Portable File System (PPFS) as its core infrastructure, developed in C++.
No privacy issues are discussed in PADMA.

BODHI was developed by Kargupta and his colleagues based on the
Collective Data Mining (CDM) framework [113]. This system was developed
in Java, uses mobile agents, and intends to be a communication system and
runtime environment used in collective data mining. It is not bound to
any specific platform, learning algorithm, or knowledge representation. The
messages are in KQML with embedded data or commands, and the security
is based on RSA.

JAM was proposed by Prodromidis, Chan and Stolfo [192, 168] and is an
agent-based meta-learning system for large-scale data mining applications.
JAM performs high-level classifiers called meta-classifiers and can operate
in heterogeneous data. The system exchanges mining results as classifiers
agents sent as serializable Java objects. The authors do not, however, de-

scribe the privacy features.
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EMADS (Extendible Multi-Agent Data Mining System) [6] is a hybrid
peer-to-peer agent-based system for distributed data mining. It was imple-
mented in JADE and includes data agents, mining agents, task agents, user
agents, and JADE-specific agents for mediation and coordination. EMADS
considers three mining tasks: classification, clustering, and association rules
mining, though it is not bound to any specific algorithm. Wrappers provide
extensibility, adapting data sources or existing mining systems to operate as
an EMADS agent. Agents communicate partial models and control informa-
tion. Privacy is not particularly well described in EMADS. However, only
local mining agents have access to local datasets, never revealing sensitive
data to non-local mining agents.

JaCa-DDM (Jason and CArtAgO for DDM) follows an agent and arti-
facts approach [127]. It defines complex distributed data mining workflows as
agents interactions and data mining algorithms as artifacts. New algorithms
can be added to JaCa-DDM via artifacts, and workflows are defined as Ja-
son agent programs. Agents in JaCA-DDM are full belive-desire-intention
(BDI). Communication is based on KQML speech acts. JaCA-DDM was
implemented in Java (Jason agents and Weka artifacts). Concerning privacy
and security, the authors mention it as a feature in JaCa-DDM, but it is not

explored in detail.

2.3 Privacy Issues in Distributed Data Mining

Protecting data privacy in today’s era of digital information processing is
a challenging task. Data breaches are frequently happening as intentional
attacks, not accidental disclosures. Yahoo was attacked in 2014, LinkedIn in
2012 and 2021, Adobe in 2013, to name a few. The attackers look for credit
card information, user ids, emails, and passwords. Typically, the stolen
information is sold later on the dark web [155]. Nevertheless, there are other
threats to privacy beyond data disclosure.

There have been increasing concerns that data mining is a potential
threat to privacy [187]. A well-known data privacy scandal involved Face-
book and Cambridge Analytica in 2018 [98]. Cambridge Analytica used data
from Facebook users to produce political profiles during the presidential run
in the United States. In this case, sensitive data was not stolen, released to

the public, or sold by hackers. Nevertheless, it raised ethical and political
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Chapter 2. Background

concerns about how to use and distribute sensitive data. In 2011, a similar
debate emerged around the issue of mining drug prescription data as some
deemed it a violation of privacy [226]. While privacy advocates fear the con-
sequences of privacy breaches, such as civil rights infringement, the industry
wants to keep profiting from the knowledge discovered from as many data

sources as possible.

The privacy breach is evident in many cases — personal information was
disclosed. However, generally speaking, what is a privacy breach? Moreover,
what if just a summary of data was released? What if only data mining
results were made public? Does it threaten privacy? These are increasingly
pertinent questions. Omne of the main difficulties involved in this debate
pertains to the very definition of privacy itself and how to guarantee it is

being protected in the context of data mining.

2.3.1 Privacy, Confidentiality and Sensitive Data

Privacy is an elusive concept; it provokes many interpretations and, as such,
there is plenty of literature attempting to shed further light on its complex-
ities [65, 147, 182, 204, 206, 216, 236]. After the Universal Declaration of
Human Rights defined privacy as a right [199, Art. 12| it is well-accepted
that it must be protected.

The term “privacy” itself prompts the intuitive response that it pertains
to a particular individual. Therefore, all information about a person is sub-
ject to the notion of privacy. As a consequence, only an individual has the
right to determine how her or his data should or should not be used [20]. Of
course, the question of what is to be considered private can be interpreted
differently depending on one’s culture and legislation, but it is the individual
who should have the ultimate decision on the matter [1].

Well-known privacy regulations define any piece of data that is related
to a natural individual and which may be used to identify said individual as
sensitive information. In the USA, there is no federal law covering all aspects
of data privacy. There are a large number of laws regulating different top-
ics and sectors [163]. The Health Insurance Portability and Accountability
Act (HIPAA) establishes regulations for the use and disclosure of Protected
Health Information (PHI). HIPAA defines PHI as any information concern-

ing health status, provision of healthcare, or payment for health care that
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can be linked to an individual®. The disclosure of personal information is also
regulated by many different federal statutes, such as the Fair Credit Report-
ing Act of 1970 (credit records), the Video Privacy Protection Act of 1988
(video rental records), the Family Education Rights and Privacy Act of 1974
(educational records) and the Employee Polygraph Protection Act of 1988
(employee polygraph records). California went further and passed the Cali-
fornia Consumers Privacy Act (CCPA), 2018. For instance, CCPA provides
California residents the right to know what is collected about them, refuse to
sell personal data, or request a company to delete information about them,

among other rights. CCPA defines responsibilities, sanctions, and remedies.

In the European Union, privacy is regulated by the General Data Pro-
tection Regulation (GDPR), enforced by each EU country since May, 20183.
In contrast to regulation in the USA, GDPR applies to all business sectors
and defines how individuals are to be protected when data is processed and
transferred. GDPR requires businesses to communicate their user agreement
in simple terms and to allow users to have their data removed when requested

[232]. Companies violating the regulation will face severe sanctions.

China [163| created a privacy regulation in 2018 “that is stricter than
the US but not as much as the EU" [163]. In Brazil the National Congress
passed the Lei Geral de Protecao de Dados Pessoais (LGPD) in August,
2018*. Brazil’s LGPD substitutes previous fragmented legislation about data
privacy and is, in many respects, similar to the EU’s GDPR.

According to all privacy regulations, any piece of data concerning a nat-
ural individual is to be considered private and cannot be made available for
any other purpose beyond the one for which it was first collected. The fun-
damental idea behind every regulation is that any information that could
identify a person in the real world needs to be protected from unauthorized
access.

One related aspect of privacy is the preservation of sensitive knowledge,
i.e. sensible mining results [147]. In this thesis, the term knowledge essen-

tially denotes models and patterns, i.e., typical mining results, that could

2The complete suite of HIPAA Administrative Simplification Regulations can be found
at 45 Code of Federal Regulations (C.F.R.), Parts 160, 162, and 164.

*Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016. EU countries had to transpose it into their national law by 6 May 2018.

“Lei n? 13.709, August 2018. Accessible from http://www.planalto.gov.br/ccivil_
03/_at02015-2018/2018/1ei/113709.htm
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reveal sensitive information (such as individual buying habits, a particular
health condition, or even about a company’s financial situation).

From a more security-minded point of view, privacy is closely related to
the concept of confidentiality. Ensuring that only authorized agents have
access to sensitive data is one of the objectives of secure systems. Data may
fall under many different levels of confidentiality, such as public, restricted,
secret, top-secret. Privacy is one such case of confidentiality where sensitive
data pertains to a person. Every individual has the right to define a desired
level of privacy to its data, and other agents in the system should comply.
Sensitive data, through this thesis, is referred to as a general term, denoting
any piece of data that an agent wants to keep secret from any other agents
to any desired level. If it is not meant to be public, it is sensitive.

Independent of the domain, sensitive data can be roughly categorized
into two main classes in data mining: (i) sensitive inputs; and (ii) sensitive
outputs. Sensitive inputs are the starting point in the data analysis pro-
cedure. Sensitive outputs may consist of statistical summaries, classifiers,
cluster mappings, regression models, and the like. The outputs themselves
may represent a valuable asset or compromise input privacy if used to infer
sensitive input data.

The same idea applies to business data in a business-to-business scenario.
In some scenarios, information about the data collector is, in itself, sensitive.
Consider, for example, a survey on the rate of deaths in hospitals; it is likely
that hospitals would want to keep their identity secret if they are to partake
in the study.

Following the ideas discussed thus far in this chapter, we, rather infor-

mally, define:

Sensitive data is a piece of data to which a privacy level is assigned for
a given privacy measure. An example of sensitive data is information

about individuals in the context of medical data.

Privacy is the right that an agent has to keep any given piece of information

hidden from other agents.

Privacy measure is a quantitative indication of how hidden a piece of data

is from being accessed by unauthorized agents.

The following section discusses privacy threats to datasets and privacy
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threats in the context of data mining. Later in this chapter, we return to
the topic of privacy formalization (cf. Section 2.3.3), and in Chapter 3 we
introduce new privacy measures for distributed data clustering and time

series mining.

2.3.2 The Inference Problem

Several organizations, like retail stores, hospitals, clinics, census bureaus,
collect and maintain large collections of personal information, for instance,
purchase transactions, medical records, and census data [236]. These data
collections are valuable for research, marketing, fraud detection, to name a
few. However, as discussed in the previous section, data collectors in many
fields (medicine, for example) cannot publicize data about individuals due
to privacy regulations. In a business-to-business context, allowing a third
party to access a dataset may disclose valuable information that competitors
could use as a business advantage.

The main concern is not direct disclosure of sensitive data, which is
addressed by access control mechanisms such as mandatory access control
(MAC), but rather the threat of indirect disclosures based on inferences that
can be drawn from queries against the database or released data [194]. This
problem is known as the inference problem and appeared first in the literature
on Statistical Databases in the mid-1970s [201]. It would now be helpful to
examine various well-known instances of this problem in different contexts,

all of which involve sensitive data.

Inference Problem in Databases

Access to statistics about groups is permitted in a statistical database (SD),
but the data concerning individual entities is not released to preserve con-
fidentiality. However, an attacker might disclose confidential information
about an individual entity by posing queries on aggregate statistics and per-
forming arithmetic operations on the answers received, using information
about the size and nature of the sets of individuals involved, as shown in
Example 2.2. Inference control in a statistical database has been extensively
studied, and several inference control mechanisms were developed, including

cell suppression, table restriction, and record perturbation [58, 70].

Example 2.2 (from [58]) Suppose there is only one female professor in a
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particular department. If statistics reveal the total salary of all professors
in the department and the total salary of all the male professors, the female

professor’s salary can be obtained by subtraction.

A multilevel secure database (MLSDB) is a system in which every user
and each piece of data has a security classification label. Classification labels
form a mathematical lattice structure defining a partial order among the
labels [30]. MLSDB ensures that data at a security classification above the
user’s level will be invisible to that particular user [152]. An inference attack
in a multilevel secure database allows an attacker to use low classified data to
infer data classified at higher levels. As illustrated in the following example,
a significant class of inference attacks is based on meta-data such as integrity

constraints, functional, multivalued, or join dependencies.

Example 2.3 (adapted from [30]) Assume security classification labels
public < confidential < top-secret, where the relation < induces a par-
tial order among the labels, with x < y meaning x is less secret than y. Let
a table T, holding information on employees, be defined as T'(name, rank,
salary, experience). Assume that tuples containing both name and salary
are classified at top-secret level and that tuples with name and rank are
classified as confidential. Further, consider that salary is determined by the
employee’s rank, i.e. rank — salary. An attacker with clearance to handle
only confidential data but not allowed to access data at higher levels, e.g. top-
secret, may issue two queries listing Ry (name,rank) and Ry(rank, salary),
both at confidential level. However, with Ry and Rs a user may use the
fact that rank determine salary and disclose the relation R3(name, salary),

which s at top-secret level.

Several approaches to handling inference in MLSDB have been proposed,
including constraint-based security, conceptual structures, and logic-based
approaches. For a survey on MLSD, we refer the reader to [201].

The inference problem is not limited to statistical or multi-level databases.
Research concerning general-purpose databases has been a topic of investi-
gation that has produced several significant contributions. The main goal
is to protect sensitive information from indirect disclosure, but there are no

explicit classification labels to guide a disclosure control mechanism.
Example 2.4 (adapted from [194]) Consider a table defined by the re-
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lation T (physician, patient, medication). A query listing physicians and
patients, i.e., the relation Ri(physician, patient), may not be sensitive. Sim-
ilarly, a query on medications prescribed by each physician may also be non-
sensitive. However, consitder a query associating patients with theiwr pre-
scribed medications, i.e., Ro(patient, medication). This query may be sensi-
tive since medications typically correlate with diseases. Although there is no
direct disclosure of any relation like Rs(patient,disease), an attacker may
use public data Tpp(medication, disease) to infer that a given patient may

suffer from a given disease.

Approaches to inference in databases typically focus on issues like mini-
mal classification updating, partial disclosure, classifying existing data repos-
itories and how to prevent inferences via knowledge discovery [23, 31, 55, 103,

157, 202]. For a survey on this area, the reader can refer to [66].

Inference Problem in Data Mining

The inference problem has also been investigated by the data mining com-
munity (e.g., [14, 99, 121, 144, 187, 200]). Classical data mining algorithms
typically require access to raw data and, if the miner is a malicious agent, it
may use the queries’ answers to infer sensitive information. Countermeasures
to this problem are already discussed in previous paragraphs in the context
of databases. However, data mining opens up new inference possibilities.
With data mining techniques, the inference problem has become even worse.
According to Thuraisingham [200], privacy threats in data mining can be

viewed as a variation of the inference problem in databases:

“|The inference problem| has been discussed a lot over the
past two decades. However, data mining makes this problem
worse. Users now have sophisticated tools that they can use to
get data and deduce patterns that could be sensitive. With-
out these data mining tools, users would have to be fairly so-
phisticated in their reasoning to deduce information from posing
queries to the databases. That is, data mining tools make the
inference problem quite dangerous. (...) we are beginning to see
many parallels between the inference problem and what we now

call the privacy problem.” — B. Thuraisingham
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Data mining results inherently elicit information regarding the data col-
lection [14, 187]. Cluster maps, for instance, describe the overall distribu-
tion of data points in a dataset. Similarly, association rules (AR) reveal
how items co-occur in a shopping basket; a rule about drugs used to treat a
given disease, for example, may disclose sensitive health information about
individuals. Classifiers also offer potential privacy threats. To illustrate the
problem, imagine that a health insurance company builds a classifier allowing
it to identify people with an HIV infection. In this case, if HIV-positive in-
dividuals attempt to attain life insurance from this company, they will have
their health condition disclosed by the classifier. Therefore, data mining
results may represent a threat to privacy.

The above discussion implicitly assumes that we have a centralized set-
ting with a central dataset being queried by a data miner. To summarize, we
state that in a centralized data mining setting, the inference problem may

pose the following threats:

Threat 1 A malicious miner agent could try to access sensitive information
from a set of queries to the central dataset (or a privacy-preserving

version of them).

Threat 2 A malicious agent may learn sensitive mining results (patterns
or models), which can be used to infer either the identity or sensitive

data stored in the central dataset.

Inference and Collusion in Distributed Data Mining

In a distributed data mining setting, data is spread across different sites, each
of which represents a different party (such as an institution, a company, or
a clinic). Each party owns a local dataset and is unwilling to disclose it to
other parties. In a distributed data mining algorithm, the previous threats
are still present. Further, intermediate results, partial models, and pieces of
sensitive knowledge (or model) may be linked to a specific party. Therefore,

we rewrite the previous threats as follows:

Threat 3 A malicious miner agent may try to infer sensitive data or iden-
tity from queries to datasets (or a privacy-preserving version of it),
intermediate mining results, or messages exchanged during the mining

process;
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Threat 4 A malicious miner agent may learn sensitive mining results (pat-
terns or models), which can be used to infer either the identity or

sensitive data stored in datasets owned by other agents.

Threat 5 A malicious miner agent may learn which party produced a given
partial model or local mining result. A partial model could reveal

sensitive information about a specific party.

Inference and Collusion Scenarios in Distributed Data Mining

This section endeavors to define a general framework that describes inference
attacks due to the distributed data mining process. The following section
outlines definitions and assumptions used throughout this thesis.

In this work, the term agent is assumed to denote a generic piece of
software able to: (i) communicate with other agents, (ii) perceive its en-
vironment, and (iii) carry out a set of activities on behalf of the user it
represents [178]. A distributed data mining algorithm is defined as a dis-
tributed process taking a distributed dataset as input and giving a mining
model or pattern as output. A distributed mining algorithm is started by a
finite group of agents organized, according to the algorithm at hand, into a
temporary coalition called a mining group.

Two roles, in particular, are considered; the data holder (or data collec-
tor) and the data miner, which are played by agents in the system. Data
holders are in charge of the datasets, which contain sensitive information
about individuals, trade secrets, or business strategies. Data miners start
and coordinate mining sessions on behalf of their users. In any given mining
group, each agent may act at the same time as data miner and data holder
as well.

A typical distributed data mining session is illustrated in Figure 2.7.
Starting with the original dataset D, data holders produce intermediate re-
sults I from the original datasets D, which can be local models or statistical
information about D. Then, data miners collaboratively produce and publi-
cize the mining results M to all parties in the mining group.

A malicious agent is an agent that uses information exchanged among
the participants of the mining group to feed a secret reconstruction process,
aiming to disclose sensitive data points from other agents’ datasets in the

mining group.
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Figure 2.7: Distributed data mining scenario. Each data holder produces a local
model (or any intermediate result) of its datasets, from which a miner agent pro-
duces the final mining result.

_.--7 Extra knowledge E
" /'l
Intermedllate result . - B Mining results M
~ / -

" / g
- \\ ! ” .
Intermediate result . Reconstructed
----1>>( Reconstruction ) --> i
! dataset R
H 1 H
; / i
. i

Malicious Data Miner

i
/
’
/

.
.
/
%
Intermedllate result | __- [ Information
n

<= Task

“==>  Attack information flow

Figure 2.8: Inference attack in a distributed data mining scenario. Possible in-
ference attacks occur under the control of a malicious miner agent without being
detected by the data holders.

Furthermore, we define an insider agent, given a mining group £, as an
agent which takes part in the activities of this group. Conversely, an outsider
agent is an agent that is not part of a given mining group. Note that the
terms insider and outsider are relative to a specific mining group.

In this thesis, we refer to the inference problem as the threat to data

privacy posed by inference attacks, as stated in the following definition.

Definition 2.1 (Inference Attack) An inference attack in a distributed
data mining setting is a reconstruction algorithm executed in the background
by a malictous miner agent beyond the steps dictated by the mining proto-
col (cf. Figure 2.8) using all information available to him (including par-
tial mining results, intermediate computations, parameter values, and extra

knowledge) to reconstruct sensitive information residing on the data space of
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(a) Single peer attack (b) Collusion attack.

Figure 2.9: Insider attack scenarios. (a) Single peer attack: one or more peers try
to learn sensitive information from the other mining peers, but attackers work alone,
i.e., independent from each other. (b) Collusion attack: attackers work together,
exchanging extra messages (dashed line) to improve the confidence of the disclosed
sensitive data.

other peers in a mining group. Il

Inference attacks in distributed settings may represent threats 3, 4, and
5 discussed earlier in this section. In other words, inference attacks could
breach the privacy of sensitive information even when the data holder does
not directly disclose sensitive data to miner agents.

An inference attacks can be further separated the following categories:

insider (possibly with collusion), outsider and mized attacks.

Insider attack scenario. In this scenario, one member of the mining
group performs the attack. This scenario can be further separated into two
sub-scenarios: (a) single peer attack and (b) collusion attack. In the single
peer attack scenario (cf. Fig. 2.9(a)), one or more peer tries to reconstruct
sensitive information from the other mining peers, but each attacker works
alone without contacting any other attackers. Conversely, in the collusion
attack scenario (cf. Fig. 2.9(b)), there are messages exchanged between (a
subset of) attackers. In this scenario, we assume that the attacker knows

the values of the parameters used in the mining session.

Outsider attack scenario. In this scenario, attacks are performed by
peers that are not members of the mining group — such a peer will henceforth
be referred to as outsider throughout this work (cf. Fig. 2.10). An outsider
attempts to infer sensitive information from data exchanged between mining
peers. It is assumed that the outsider eavesdrops on the communication
among peers in the mining session but forms no collusion with insiders,

i.e., the attacker gets no extra information from insiders other than what is
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]
]
i
|
6

Figure 2.10: Outsider attack scenario. An outsider who eavesdrops on the commu-
nication amongst the peers in a mining group, trying to infer sensitive information
from data contained in the messages it manages to intercept.

Figure 2.11: Mixed attack scenario. A collusion of insiders and an outsider
attacker try to infer sensitive information about other peers.

defined in the mining protocol being used.

Mixed attack scenario. In real-world applications, it is possible to have
mixed attack scenarios. However, we do not explore this scenario further
on this thesis (cf. Fig. 2.11). For the sake of simplicity, we assume that
outsiders know less information about the mining group than any insider. If
an outsider knows everything about the mining session, just as an insider,
we reduce this situation to an insider attack (single or collusion).

In the next section, we discuss the approaches that can be found in
the literature to counter the privacy threats when mining sensitive data, a

research area known as privacy-preserving distributed data mining.

2.3.3 Privacy-Preserving Approaches for Distributed Data

When data is distributed among multiple parties, privacy and data ownership
play a major role, which calls for a privacy-preserving solution. Privacy
regulations may control how data is used beyond the original purpose for
which it was collected — a situation that applies to sensitive data such as
healthcare, telecommunication, or customer data [22].

Another critical point to consider is competition; even if the mining re-
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sults offer some benefits, giving competitors business data may not be a
viable option. For example, if a group of banks wants to learn typical fraud
patterns, they may have to address the privacy regulation on customers’
data and be sure that the competitors learn nothing that could be used as a
business advantage.

Therefore, data integration or aggregation in a distributed data mining
process introduces concerns regarding inference attacks as a potential pri-
vacy threat. The main question here is whether the data mining process or
data mining results may compromise the privacy of sensitive information in
a distributed setting, even when obtained utilizing privacy-preserving tech-
niques.

To address such concerns, three main approaches have emerged in the
field of privacy-preserving distributed data mining: secure multi-party com-
putation (Sec. 2.3.4), distributed model aggregation (Sec. 2.3.5) and pertubation-
based approaches (Sec. 2.3.6). With the secure multi party computation
(SMC) approach, all computations are performed by the group following a
given protocol and using cryptographic techniques to ensure that only the
final results will be revealed to the participants. In the distributed model ag-
gregation approach, each site computes a (partial) local model from the local
dataset, and, in a second step, all local models are aggregated to produce a
global model, which is shared with the participants. The perturbation-based
approach adds noise to original data or model parameters to hide sensitive
data against disclosure.

In the following discussion, we assume a set £ = {L;}Z_| of agents, each
L; residing at site S;. Fach agent may communicate with several other agents
forming a pure peer-2-peer architecture. We assume that only L; has access
to local data set D;. The size of collusion of malicious agents is denoted c,
with ¢ < |£| — 1. We often write “site L;” as a simplification to denote “the

agent L; residing at site S;”.

2.3.4 Secure Multi-Party Computation

Secure multi-party computation (SMC) aims to compute a function in such a
distributed fashion that information sharing is minimized, expecting to add
only a small overhead in the overall time complexity. In SMC, only the final
result can be shared while intermediate information must be kept hidden
from the parties |81, 68|.
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Secure Two-Party Computation was first proposed by Yao [233, 234| with
the Millionaires’ Problem. The problem is that two millionaires would like
to know who is richer without revealing their net worth to one another. Yao
[233] presented a solution to this comparison problem, generalizing it to any
computable function in the two parties setting. Subsequently, the problem
was generalized to multi-party computation in [82].

In general, an SMC scenario is described by P parties, private information
x1,T2,...,xp from each party, a public function f(x1,...xp) that needs to
be computed from the shared data without any of the parties revealing their
private information. Additionally, there is no trusted central server in an
SMC setting. Otherwise, they could send their data to the central server
and wait for the computation result.

A simple example of SMC is secure sum [43]. Consider P sites denoted

L;, each of them holding a private value x;. The goal is to secretly compute:

Assume that the value of v, to be computed, is known to lie in the interval
[0, m]. One site is chosen to be the master and is numbered 1. Remaining
sites are numbered 2, ..., P. Site L generates a random number r, uniformly
chosen from [0, m]. Site L; sends v; = (r+z;) mod m to site so. In the sequel,
every site L;, with [ = 2,..., P, receives the partial sum v;_1 =r + Zi;} x;
and adds its local value x; and sends v; = (x;+v;—1) mod m to the next site
Liy1. The last site sends the last partial vp to the master site, Li. Since L
knows the value of r, it can compute v = vp — r, which is the output of the

secret sum.

Example 2.5 (Secure Sum) Let P=3 and x1 =0, x2 = =5 and x3 = T.
Let m = 20. Assume r = 17, uniformly chosen from [0,20]. L1 computes
vy = 0+ 17 = 17. Ly receives v1 and computes va = (—5 + v1) mod 20 =
(=5 4+ (0 + 17)) mod 20 = 12. L3 computes vs = (7 + v2) mod 20 =
(T4 (=54 0+ 17) mod 20 = 19 and sends it to Ly. Finally, Ly computes

v =wv3 —1 =2, which is the actual result.

Generic SMC protocols are not efficient for large inputs [130]. Therefore,
there was an increased interest in finding efficient SMC protocols for specific

applications of secure computations |62, 88, 133].
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SMC has been applied to privacy-preserving data mining in several dif-
ferent settings, starting with the work of Lindell and Pinkas [130, 131]. They
proposed a modified version of the ID3, called ID3s, which gives an approxi-
mation of the results generated by the original algorithm. They assume two
parties, holding two horizontally partitioned datasets D; and Ds, respec-
tively. The basic idea is to find the attribute that maximizes information
gain, which reduces to finding the attribute that minimizes the conditional
entropy. In ID3, if two attributes have similar entropy levels, the two dif-
ferent trees resulting from choosing one attribute or the other are expected
to have similar predicting accuracy. ID3s does not choose the best attribute
but chooses any attribute whose entropy differs less than § from the best one.
The conditional entropy of D given an attribute A for two parties Hy (D|A)

can be approximated as a sum of the expressions:
(v1 + v2) - log(v1 + v2)

where v; is computed by party L; and wvg is computed by party Ls. The
problem lies in how to compute this equation securely. The authors com-
bine secure log, secure polynomial evaluation, and secure comparison sub-
protocols to evaluate this expression and show how to use this function to
build ID3s. A multi-party version of ID3 is proposed later by Pinkas [165].

Privacy Measure for SMC

SMC protects the exact values of the inputs from being disclosed to the
remaining parties in the group. The protection is achieved via cryptographic
methods, e.g., secret shares, homomorphic encryption, oblivious transfers,
to name a few. SMC does not measure privacy levels directly but provides
analytical proof that a given protocol does not disclose input information
during the protocol execution.

Privacy in SMC is, informally speaking, the equivalent of having a trusted
third party perform the computation and erasing all of the input data after
the computation. An SMC protocol is said to preserve privacy if we can
prove that no party learns anything but the final results, as would be the
case with a trusted third party in the setting. The above notion of privacy
is known as the simulation paradigm [81] and is used to define privacy for

SMC protocols formally.
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Before a formal definition of privacy is put forth, it is necessary to define

some basic concepts.

Definition 2.2 (Negligible Function [82]) A function pn: N — R is neg-
ligible if for every positive polynomial p, and all sufficiently large n’s,

p(n) < 1/p(n)
0

A negligible function decreases faster than the reciprocal of any polynomial.

For example, 2 V™ and n~1°%2" are negligible (as functions in n).

Definition 2.3 (Indistinguishability [132]) Let X and Y be two random
variables and a parameter n defining the size of inputs. We say that X
and Y are computationally indistinguishable, denoted X = Y, if for every
non-uniform polynomial-time algorithm A there exists a function u(-) that is

negligible in n such that,
PrlA(X) = 1] = PrlA(Y) = 1]| < p(n)

where Pr[a] denotes the probability of event a. O

Since X and Y cannot be distinguished by a polynomial-time algorithm
A, they are the same for all practical purposes. Typically, X and Y will
denote the output vectors of the parties in the real (with SMC protocol) and
ideal (with trusted third party) executions, respectively. The outputs are
modeled as random variables since the operation of the parties is typically
probabilistic [132]. Another way to interpret this definition is to say that the
output of A is not significantly different for samples drawn from X or Y.
An essential aspect of SMC protocols is the adversary model. The sim-
plest model is the semi-honest adversary model. Semi-honest adversary
refers to an adversary who follows the protocols instructions but keeps a
record of all messages, and intermediate computations [81]. Although semi-
honest is a weak adversary model, it does guarantee that there is no inad-
vertent information leakage. The semi-honest based protocols are designed

as the first step towards more secure ones.

Definition 2.4 (Private Computation from [81, 82|) Assume P parties
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Li,Lo,...Lp. Let f be a random process that maps pairs of inputs into
pairs of outputs, one for each party. We say that a given protocol m pri-
vately computes f in presence of semi-honest adversaries if there exist prob-
abilistic polynomial-time algorithms S;, 1 € {1,2,..., P}, such that for every

x; €{0,1}* and x = (x1,z2,...,xp), we have:

{(Si(wi, filwi), (x))} ={(view] (x), output™ (x))} (2.1)

O

In the above definition, S; is a simulator used by party L;. S; receives
as input z; and f;(x;) and must generate output that is (computationally)
indistinguishable from the view of L; in the protocol execution. We use f(x)
to represent the output generated from f with the input from all parties.
Notice that view](x), and output?(x) are related random variables with

probability taken over the random tapes of all the parties [132].

Essentially, to prove that an SMC protocol is private, using the above
definition, one needs to show that each party can simulate its view using
the protocol output alone. If the simulation is not possible, there is an

information leak, and the protocol is not private.

In a multi-party scenario it is possible that dishonest parties form a
collusion (or coalitions) [82, ch. 7]. Members of a collusion group can
exchange local inputs, intermediate messages, or local outputs to breach
the privacy of the information held by honest members in the group. In
the presence of a coalition, the main idea remains the same: a multi-party
protocol privately computes a function f if any piece of information learned
by a set (or a coalition) of semi-honest parties can be learned from the set

of inputs and outputs of said parties.

We stress that the notion of privacy computation is essentially binary; a
protocol is either private or not, and it cannot express intermediate degrees
of privacy. For a discussion on proofs for SMC protocols, the reader may
peruse the discussion in [132] and [82, ch. 7].

The following definition rewrites the original definition as a binary mea-
sure. We use the notation PR 4 to denote the privacy level of a given al-
gorithm A. To explicitly indicate privacy measure m in the evaluation of a

given algorithm A we use the notation PR}.
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Definition 2.5 For a given dataset D and an algorithm A and private com-
putation as in Definition 2.4, let PRZC(D) =1 denote that A privately com-
putes a given function f for all x € D and PRiC(D) = 0 otherwise. The
privacy against outsider attacks is denoted by PRZ%(D), to indicate that
the attack has zero participation of insiders. The privacy in the presence of
single inside attackers, without collusion groups, is indicated as PRfﬁ] (D).
Additionally, the privacy level in the presence of collusion group with at most

c members is expressed as PRZ%(D). O

Example 2.6 Example 2.5 presented secure sum protocol where each party
receives a random number in the interval [0,20]. Each party can simulate
its view by drawing o random number from this interval. The simulated
and actual views cannot be distinguished since both represent random num-
bers drawn from the same interval. Therefore, the protocol is private, i.e.
PRgJC\/fcsum[o](D) =1

Example 2.7 (from [132]) Two parties run a protocol to decide if their
two inputs are equal (assume that each is of length k). The protocol works by
running a more straightforward protocol that compares two bits. The input
to this simpler protocol is a pair of bits taken from the corresponding location
i both inputs. The first comparison is of the most significant bits of both
iputs and, afterward, successive bits are compared until a difference is found
or it is decided that the two inputs are equal. If this protocol stops after i
comparisons, the parties can safely conclude that the 1 — 1 most significant
bits of their inputs are equal. This information cannot be deduced in the
ideal model since the parties are only told if the inputs are equal or not equal.
Consequently, the protocol cannot be simulated by one of the parties given her
put and output alone. The protocol is not private according to the privacy
definition above, i.e. PR?J%CBitEq[O}(D) =0.

Limitations. According to SMC literature, there are two kinds of infor-
mation leaks in an SMC protocol [109, 132]: (i) the information leak from
the function computed, irrespective of the process used to compute the func-
tion, and (ii) the information leak from the specific process of computing
the function. Privacy breaches related to the first type of information leak
are unavoidable in an SMC protocol as long as the function has to be com-

puted [187, 208]. In this case, a privacy breach occurs when any party learns
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more than the final result, as shown in Example 2.7. For example, when two
parties sum their ages, they may compute each other’s age by subtraction.
Similarly, if two millionaires compare their net worth, both parties can have
a lower or an upper bound on the other millionaire’s net worth. The second
kind of leak, however, is provably prevented. There is no information leak
whatsoever due to the process, i.e., any outside attacker eavesdropping on the
communications will not be able to learn the inputs from the participants.
In summary, the private computation measure PRPC(D) gives us the
privacy level from the outsider attackers’ point of view. However, it does not
indicate the privacy level when malicious insiders are organized as collusion
of attackers or the critical number of malicious that may compromise the
privacy. Moreover, by being binary, PRPY(D) does not quantify the amount
of privacy breach for a given SMC protocol, and it only indicates when a

breach takes place.

Related Work on Secure Multi-Party Computation

SMC has been applied to many data mining techniques. In the following,

we present a sample of the research work in this field.

Surveys, Tools, and Frameworks. Clifton et al. [43] described various
SMC-based protocols, which can be combined for specific privacy-preserving
data mining applications. As the authors pointed out, the proposed tech-
niques are not secure because some information other than the final results
is revealed to the parties. The authors presented secure protocols for sum,
set union, set union size, and scalar product and showed how to apply them
to mine association rules and clustering. Xu and Yi [230] surveyed the field
of privacy-preserving distributed data mining and proposed a framework to
synthesize and characterize existing SMC protocols. This framework ana-
lyzes privacy requirements to help developers design effective and efficient
SMC protocols. They use the following dimensions to classify protocols:
data partition, algorithm, secure communication model, privacy-preserving
techniques.

Bogdanov et al. [26] proposes Sharemind, a toolkit allowing a data min-
ing specialist with no cryptographic expertise to develop data mining algo-
rithms with fundamental security guarantees. The building blocks needed

to deploy a privacy-preserving data mining application are listed, and the
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design decisions that make Sharemind applications efficient in practice are
explained. The Sharemind architecture provides a secure server and a pro-
gramming language SECRE-C for application developers, which provides ex-
plicit confidentiality types: public and private. All private values are se-
cretly shared, and conversion to the public type requires an explicit call of
the declassify operator. SECRE-C also automatically parallelizes vector and
matrix operations. The architecture has been tested on real-world datasets
with several algorithms implemented in the framework. Sharemind uses the
secret-sharing cryptographic approach to provide security. Further, it as-
sumes that no two miners will collude.

Teo et al. [197, 198] developed the DAG model: a set of secure operators
(including +, —, *, log) that can be combined to produce various functions.
The objective is to use these operators as building blocks to implement SMC
protocols. To demonstrate the applicability of the DAG model, they im-
plemented kernel regression and naive Bayes algorithm. Currently, DAG
operators support only the 2-party case.

We refer the interested reader to [97] for a comprehensive comparison of

ten general-purpose frameworks for secure multi-party computation.

Distributed Data Clustering. Vaidya et al. [213], in a seminal paper,
proposed a protocol for computing distributed data clustering based on the
k-means algorithm. The approach assumes vertically partitioned data and a
multi-party scenario with three non-colluding parties. The authors proposed
secure protocols to find the closest cluster for a given point, secure permuta-
tion, and secure comparison. During the secure comparison, homomorphic
encryption ensures the privacy of each data point. Each site learns only its
part of each cluster centroid and the cluster assignment of all points at each
iteration. Doganay et al. [60] proposed a secret sharing approach to compute
the closet cluster in k-means. They achieved better performance than Vaidya
et al. [213] since secret sharing avoids expensive cryptographic computation.
On the other hand, the authors assume four non-colluding parties. Lin et
al. [129] presents a distributed clustering algorithm over horizontally parti-
tioned data, based on the expectation-maximization (EM) algorithm. EM
mixture clustering is an iterative process that produces a new set of cluster
assignments at each iteration. Over time, these centroids converge to cluster

centers. The proposed algorithm does not disclose individual data points,
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and no information can be traced back to a specific site. The algorithm uses
secure sum protocol to integrate the estimators across the different sites.
The authors observe that the approach assumes no collusion. Otherwise,
a collusion group could learn the centroids and variances of other parties.
Gheid and Challal [80] proposed a distributed k-means algorithm based on
a secure sum protocol. The mining group securely computes each cluster’s
sum and the number of points, iteratively, until convergence as in classical
k-means. The idea is similar to Clifton’s secure sum protocol [43] without
the modulo operation. Experimental results indicate that this protocol is
scalable with the size of the dataset and the number of parties. However,
the security is based on the assumption that there are no collusion groups.
Otherwise, the malicious may recover the centroids and number of points
of an honest party. Shewale et al. [185] used elliptic curves for key sharing
and authentication in a distributed version of the k-means algorithm. Each
local party owns a local dataset and shares the sum and count information
to other sites. This approach assumes a trusted third party that receives en-
crypted sums and counting from each party and computes global centroids
at each iteration. The trusted third party also verifies the digital signature
of each information received. Almutairi et al. [8] extended DBSCAN with
homomorphic encryption. First, local parties produce a distance matrix and
apply Pailler encryption to protect it before sending it to a central server.
The server receives and aggregates all local matrices into a global distance
matrix. The server runs with encrypted data to produce an encrypted cluster
solution. Finally, local parties decrypt only the data relative to their data.
Another secure version of DBSCAN was proposed by Bozdemir et al. [27].
In this case, the authors employed secret sharing to design a ppDBSCAN.
Local parties use secret sharing to split original data before sending it to
the non-colluding cluster servers. The servers run a 2-parties-computation
secure protocol to privately compute distances and discover points in dense
regions as in the original DBSCAN. Local parties receive either labels or

centroids depending on the implementation.

Application of SMC’s Measure to Related Work

Now lets us discuss how the SMC’s private computation measure, PRF,
indicates the privacy level of SMC-based clustering solutions discussed ear-

lier in this section. All subsequent analyses are derived directly from each
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respective work. We consider only distributed clustering approaches (closely
related to our work) for three or more parties, as collusion only makes sense
with three or more parties. Table 2.2 presents a summary of SMC-based
privacy-preserving clustering approaches. This table displays the number of
parties necessary to run a given protocol, the number of trusted third par-
ties assumed by the approach, the sensitive info exchanged during a mining
session, the privacy level under various attack scenarios, and the smallest
collusion group size that causes a privacy leak.

EM-based clustering by Lin et al. [129] works with three or more parties
and no trusted third party. Single attackers are not able to learn anything
beyond the output. However, when there is a collusion between the first and
the last parties, the malicious parties can learn the arguments and variances
of honest parties. This represents a breach because the leaked information
cannot be learned from output alone. In this case, PRZ(;YL[Q](D) =0.

Similarly, Vaidya’s approach [213] and Doganay’s [60] work with three
or more parties without a trusted third party. Collusion of at least two
parties in both schemes also discloses the centroids but not variances. Thus,
PRIC dyaz)(D) = 0 and PRggganay[z] (D) =0.

Gheid and Challal [80] assumes three or more parties and no collusion
among them. The proposed secure sum protocol breaches privacy under the
collusion of two parties and exposes centroids and several points to other
potentially malicious parties. Therefore, PRg,(fei d[2}<D) =0.

The protocol proposed by Shewale et al. [185] works with three or more
parties and needs a trusted third party. Single attackers cannot breach pri-
vacy because they need information held by a trusted third party to succeed.
However, any collusion between any single malicious party and the trusted
third party reveals other parties’ sum and the number of points. In this case,
PR o) (D) = 0.

Some key points to notice from this brief overview are as follows. First,
SMC is very effective in protecting the inputs from outsiders eavesdropping
to the communication. Indeed, all SMC-based data clustering approaches
studied in this section have PR[IS]C =1, i.e., secure against outsider attacks.
Furthermore, all approaches are secure against single attackers (no collu-
sion), i.e., PR[];]C = 1. However, SMC was not designed to protect against
malicious insiders. As already mentioned, in a scenario where parties may

collude if the majority of parties are corrupted, then an SMC protocol may
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fail to provide the correct output and even fail to guarantee that the result
will be delivered to the honest parties [132].

Another important aspect to notice is that each algorithm resists collu-
sion attacks up to a certain size of collusion groups. A small group of two
malicious may be enough to breach privacy in a given scheme, yet another
algorithm may resist a larger collusion group. For instance, VC-SMC pro-
tocol by Vaidya and Clifton [213] breaches privacy with ¢ = 2 while Patel’s
ECC-based approach [160, 161] resists to a collusion attack of all against one
(¢ = P —1). The PR measure, however, does not indicate if there is a
critical number of malicious that breaks each protocol.

We also stress the binary nature of the PRPY measure. The goal of the
original private computation measure is to indicate if a given SMC protocol
leaks information without any further indication on how much privacy was
compromised. For example, there is no distinction between disclosing cen-
troids, data points, or the number of points in a given cluster. Nevertheless,
each piece of leaked information has a different harm potential to privacy.
Leaking a centroid reveals less information than disclosing a raw data point.
All leaks, however, are treated as equally harmful by PRPC metric.

It is also worthy of note that k-means is the most investigated clustering
algorithm in privacy-preserving distributed data scenarios. The choice of
k-means over other approaches could be related to its simplicity. However,
there is still the need to extend this line of research to other clustering
approaches since k-means present several well-known drawbacks, e.g., the
need to know the number of clusters a priori and the tendency to find ball-

shaped clusters.

2.3.5 Distributed Model Aggregation

Model aggregation approaches work by producing local models, later aggre-
gated into a global model. It was first proposed in central data settings to
produce models with reduced variance. An aggregated model is computed
from several models built from subsets of the data available |29, 61, 71, 173,
179]. Aggregation of models is often formulated as a finite mixture model

fa(z) with k& components from a chosen family of models A [190]:
k
fale) =D Bif (@) (2.2)
i=1
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Figure 2.12: Two Gaussians fitted from dataset D (cf. Example 2.8)

where Zle Bi = 1 and f), denotes a individual component model described

by parameters \;.

Example 2.8 (From [96](p. 272)) Assume dataset D = {—0.39, 0.12,
0.94, 1.67, 1.76, 2.44, 3.72, 4.28, 4.92, 5.53, 0.06 , 0.48, 1.01, 1.68, 1.80,
3.25, 4.12, 4.60, 5.28, 6.22}. Consider the family \ of uni-modal Gaussians,
each of which is described by a mean p and variance 0. Let us model the
probability distribution function (p.d.f) of this dataset as a mizture of two
Gaussian, since it appears to be two different populations on dataset D. After
fitting the mizture model to D, we have that each Gaussian® has the following
parameters: A\ = (,u1 = 1.06, 0% = 0.77) and do = (,uz = 4.62, 0’% = 0.87),
respectively (cf. Fig. 2.12). The mizture coefficients are f1 = 0.45 and
B2 = 0.55. Therefore, the mizture model for D is:

f,\(x) = O.45f)\1 (.%') + 0.55f,\2 (ac)

There are many ways to combine models, like averaging local parameters,
averaging the output of local models, majority voting, or training of a meta-
model from resampling of local models [179]. The most known families of
models used as components are decision trees |71, uni-modal Gaussians and
non-parametric kernel density estimates [190].

The idea was extended to the distributed data setting [12, 22, 149, 169,

184, 212, 240| to speed up computation and reduce communication costs,

5The p.d.f of a Gaussian with parameters \; = (i, 04) is

€T ;i 2
1 _(z—py)

f)\. xTr) = e 20?
(@) 2mo?
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as the size of local models exchanged is much smaller than the size of local
datasets. The general setting is similar, but each component f),(x) now rep-
resents a local model owned by a different site. Distributed Model Aggrega-
tion has been used for classification [107, 212, 228], clustering [175, 203, 240],
manifold discovery and probabilistic models [91, 92, 136].

In the following sections, we first present privacy definitions for dis-
tributed model aggregation, and in the subsequent section, we discuss a

sample of distributed model approaches found in the literature.

Privacy Measure for Distributed Model Aggregation

The distributed model aggregation approach seeks to protect the exact values
owned by each participant from being disclosed to other parties in the group.
The protection is achieved by exchanging only data models representing local
datasets and not original data points. The likelihood-based measure has
been proposed in the context of clustering and classification. This measure
interprets privacy as the uncertainty that a given dataset was generated from
a given probability model [149, 150]. For a dataset D with probability model
fa(z), the likelihood is given by:

LD, = [] A=)

zeD

Merugu and Ghosh exploit the fact that the uncertainty is related to the
reciprocal of the likelihood. Consequently, when the likelihood is high, i.e.,
if the model accurately represents the dataset, privacy is low and vice-versa.
It is important to remark that this measure pertains to a whole input dataset
and not a single data point. Notice that the geometrical mean can be inter-
preted as the reciprocal of the average likelihood®, for D and fy(x). Thus,

they define the privacy measure as:

1

™1
PR/ (D) = (H fA<x>>

zeD

6Given the geometrical mean G = {/T1x2x3 ... Ty, it holds that log G = % Z;;l log z;
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Taking the log of both sides, the previous equation can be rewritten as:

log, (PRI** (D)) = —‘,ﬁ, S log, ()

x€D
Finally,
PRlike (D) -9 (_ ﬁ ZIGD log f/\(x)>

Definition 2.6 ([149]) Let D be a given dataset and fy(z) be the probability
density function associated with a given probabilistic model . The privacy
PR'*¢ of data set D given model X is defined as:

PRlike(D) — 2(‘% ZIGD log fA(LE)) (23)

O

From the above definition, it follows that a higher likelihood of generating
a given dataset D from the model A would result in a lower amount of privacy.
For instance, a highly detailed model comprising a mixture of Gaussians with
low variance and centered at each point provides no privacy. Conversely, a
coarse model with few Gaussians and high variance has a low likelihood
of generating a particular dataset and, therefore, provides a higher privacy

level.

Example 2.9 Given a dataset D = {1,4,6,9} and three models \i, A2,
and A3 consisting of a mizture of Gaussians centered at each point x € D,
with variances o3 = 0.1, 05 = 0.5 and U% =1, respectively. The probability
density functions of each model are denoted as fi(x), fa(x), and fs(x). Using
Eq. 2.3 we have, for the first model:

PRIike(p) — o~ T 0z ()+oga(f1 (4))+oga(f1(6)+loae(£1(9)) _ 1 g7

Similarly, we compute the privacy level for D using Ao

PRIike(p) = o~ T 0za(f2(1)+oga(f2(4))+oga(f2(6)+oa(£2(90)) _ 5 194

and A3

PRIike(p) — o~ 10z(fs(1)+oaa(f3(4))+Houa(3(6)+1oua(£50)) _ g 5196

47



Chapter 2. Background

Definition 2.6 was proposed in the context of distributed data classifica-
tion and clustering [149]. In this setting, a dataset owner will publish a model
A instead of the raw data. Therefore, the question is which model should be
made public, given the quality and privacy constraints. The choice is up to

the dataset owner, who will balance the trade-off between the constraints.

1 0.14
0.12
0.8
0.1
_ 06 —
= \></0.08
o4 = 0.06
0.04
0.2
u 0.02
0-5 0 5 10 15 0—5 0 5 10 15
X X
(a) A1 is a mixture of 4 Gaussians, cen- (b) A3 is also a mixture of 4 Gaussians,
tered at each point, with variance 0> = centered at each point, with variance
0.1 o?=1

Figure 2.13: Two different models \y and A3 for dataset D = {1,4,6,9}, as
defined in Example 2.9.

Intuitively, lower values of PR!*¢(D) mean that an insider attacker could
reconstruct the dataset D with high likelihood. Consider, for example, the
model Aj in the previous example, which is a very detailed mixture model
(cf. Fig. 2.13(a)). If we generate datasets R from A\; with a high likelihood
they will be very similar to D, since the variance is very small o = 0.1. Still
worse, an attacker can choose the dataset generated, which has a maximum
likelihood for the given model, optimizing the precision of this reconstruction
attack. With higher variances and coarser models, as in the model shown
in Fig. 2.13(b), generated datasets will be more dissimilar to the original
dataset since the model may produce datasets with a high likelihood in a

much wider region around the initial dataset.

This approach provides adequate protection against outsider attacks since
it does not exchange original data points, only models. Assuming that out-
siders have no information on the model or other relevant parameters, they

cannot reconstruct the original dataset.
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Limitations. One limitation of the likelihood measure is that it does not
consider individual points. Thus, if only a few points are highly likely to be
reconstructed with high precision, the overall measure may still indicate a
low likelihood for the whole dataset. Therefore, privacy breaches at the data
point level may not be detected. One better approach would enforce the
minimum privacy level found, not the average level. Moreover, it does not
address malicious insiders, which may expose the participants to a malicious

central entity attack.

Related Work on Distributed Model Aggregation

Distributed Model Aggregation has been applied to many data mining tech-
niques. In the following, we present a sample of the research work in this
field. We grouped the work by the family of models used to represent un-
derlying data.

Parametric representations. One common approach to represent data
is via parametric models [92, 136, 239, 240]. Zhang et al. [240] describe how
global data models could be learned from local ones, e.g., latent variable
model from Gaussian Mixture Model for clustering and manifold discovery
[239]. The method does not need resampling from local models and produces
a hierarchy of abstracted models, from more fine-grained to a more coarse
global model. Liu et al. [136] investigate how to learn probabilistic principal
components analysis (PPCA) and Gaussian Mixture Models (GMM). The
aggregation is obtained by KL-averaging the local models using Kullback-
Leibler distance instead of linear averaging. The authors propose a simple
bootstrap approach to generate samples from local models to compute the
KL-averaging. Han et al [92] and Han [91]| proposes methods to minimize
noise when drawing bootstrap samples from local models. We refer the
reader to [104] for a survey on distributed model aggregation with parametric

models.

Non-parametric approaches. Local data can also be modeled with non-
parametric models, e.g., kernel density estimates. Liang et al. [126] proposed
REMOLD for distributed data clustering. REMOLD first computes local
kernel density estimates and models them as Gaussian distributions, merged

based on a connection value defined on the kernel nearest neighbor graph.

49



Chapter 2. Background

The globally merged Gaussian model is finally applied to all points to get a
final cluster map. The approach was implemented in Spark on a cluster with
one master and four slaves. Lodi et al [140] investigate distributed clustering
in a peer-to-peer network. Initially, each peer computes a local kernel density
estimate and then queries the value of the local maxima estimates computed
at neighboring peers in the network. Each peer can label its local dataset

considering all identified maxima in the density estimate.

Other representations. Adjacency graphs and discriminative functions
can also be used to represent clusters. Scardapane et al. [181] proposes a
distributed spectral clustering algorithm for peer-to-peer networks. First, an
Euclidean Distance Matrix (EDM) is computed via a distributed gradient
descent optimization algorithm. At each step, local sites exchange a small
portion of their local data and a low-rank factorization of the local distance
matrix during the computation. When the number of iterations is reached,
each local site extracts its Laplacian Matrix from the EDM and applies k-
means locally. Shen et al. [184] use high order statistics to improve the
performance of distributed clustering. Clusters are modeled by discrimina-
tive clustering functions, which define the boundaries of each cluster with no
assumption about the probability distribution of each cluster. The optimiza-
tion problem is solved via distributed gradient descent to find the maximal
mutual information for a given set of parameters describing the discrimina-
tive functions. Only mutual information is exchanged among peers during
the process, and the approximate global mutual information is calculated by
a linear combination of local mutual information. The process iterates for a
user-defined number of times. Tong et al. [203] propose a distributed clus-
tering algorithm based on boundary information. It first identifies boundary
points from local datasets and performs local clustering with the selected
points. A fusion step is conducted by a central party taking all local labeled
boundaries to produce global boundaries, used locally to cluster local data
points. The approach can work with various classic clustering algorithms
on the local clustering step, e.g., DBSCAN or Spectral Clustering. It is
worth noting that boundary points are not treated to avoid privacy leak-
age. Rosato et al. [175] follow an ensemble approach to cluster a distributed
dataset spread over different sites with the V-DEC algorithm. Each site gen-

erates a local cluster, and in a second step, they exchange clusters similarity
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index and centroids until convergence is reached. V-DEC can work with any
clustering algorithm in the local phase, but the authors demonstrated the
idea with k-means. The main goal is performance, not privacy, which is not

explored in detail.

Privacy-preserving approaches. The study of privacy-preserving dis-
tributed model aggregation has been an active research field. Indeed, en-
sembles learning has received most of the attention from the data mining
community (e.g. [22, 107, 123, 125, 228| and references therein).

Merugu and Gosh [149, 150] present a general framework for distributed
learning with privacy. Assuming a given family of parametric models, each
party builds a model of its local dataset and sends it to a central location
where all models are aggregated. The central location first computes a mean
model from local ones, and then artificial data is generated from the mean
model. A final model is fitted on the artificial data. Both local and central
location models are fitted with the EM algorithm run multiple times to pick
the best solution. The authors also propose a privacy measure based on
information theory to quantify the privacy of local datasets given the model.
The proposed measure is such that if the local models are more detailed,
generating a more accurate model, the privacy will decrease. On the other
hand, privacy will increase with less detailed local models.

Xiang and colleagues [228| addresses the problem of combining local
ensembles of classifiers (e.g., random forests) into a global ensemble with
privacy-preservation. The authors presented differential-private versions of
Random Forests (RFsDP) and AdaBoost (AdaBoostDP) algorithms to build
local ensembles. The algorithm computes the weights of a global mixture
of each local ensemble given the size of each local dataset and the accuracy
of each local ensemble. Similar work was proposed by Jia et al. [107]. An
ensemble of trees is computed via AdaBoost with differential privacy. How-
ever, the base learners are CART decision trees. This line of work could be
seen as a hybrid of model aggregation and differential privacy.

Bhowmik et al. [22]| define distributed learning approach when data is
split into several disjoint subsets, and the learner has access only to ag-
gregates. They instantiate the framework to learn Gaussian regression,
binary classifiers, and generalized linear models using telecommunication

and healthcare data. Each subset originates a weak learner, and the global
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model is generated by combining the results from each learner via averag-
ing. Raw data are used only once to compute the local models and never
accessed again. The authors do not use any privacy measure to quantify
privacy preservation of breaches. Li et al. [125] proposes an algorithm for
semi-supervised learning based on a mixture-model, similar to Merugu and
Ghosh’s approach. They first compute local mixture models and then use a
secure protocol to propagate data labels securely. SMC protocols guarantee

privacy.

2.3.6 Perturbation-Based Approaches

As discussed earlier in this section (c¢f. Subsection 2.3.2 on page 28), the
inference problem poses several threats in a distributed data mining scenario,
even when applying SMC or DMA. SMC was designed to protect inputs from
direct disclosure during a distributed computation. However, intermediate
results and outputs may still reveal information via inference attacks [187,
208]. Model aggregation also offers an alternative to avoid data disclosure.
However, several inference attacks can be deployed against a learned model
[144, 229].

Data perturbation has long been investigated as an approach to provide
privacy to sensitive data [34, 35]. The idea is to modify original sensitive
data or even the mining results to avoid inference attacks. Numerous privacy
metrics emerged from this line of research, e.g. k-anonymity, l-diversity, or t-
closeness. However, differential privacy is the most popular metric to assess

how much privacy is preserved by data perturbation algorithms [59].

Differential privacy is a perturbation-based approach proposed by Dwork
[64] as a solution to the privacy-preserving data publishing problem. In this
setting, a data holder answer queries issued by an untrusted miner. The
data holder will add noise to the data to decrease the risk of disclosing mem-
bership of an individual [84]. The goal is to generate summaries that do not
change significantly, even if an individual subject had opted out of the data
collection. In other words, an algorithm is differentially private if and only
if the inclusion of a single tuple in the dataset causes only statistically in-
significant changes to the algorithm’s output. The primary goal is to protect
the so-called membership privacy of an individual, i.e., to keep private if

a record about a given individual is in the dataset or not.
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Definition 2.7 (e-Differential Privacy [64]) An algorithm A gives e-diffe-
rential privacy if for all data sets D1 and Do differing in one eniry, all
outputs O € Range(A) satisfy

Pr[A(D;) € O] < e Pr[A(D3) € O] (2.4)
where Prla] is the probability of event a. O

The above definition states that the probabilities of outputs from e-
differentially private algorithm are bound to a factor of e. Consequently,
the probability distribution of outputs from A(D;) and A(D3) are very sim-
ilar. Some authors prefer to say that in this context A(D;) and A(D3) are
e-indistinguishable [59]. If € is small enough, an adversary will not know if
the output was computed over database D; or database Dy [145]. Therefore,
membership privacy is preserved.

The noise added to the data is commonly drawn from a Laplace distribu-
tion. The scale of the distribution is defined by the query’s sensitivity, which
is the maximum possible difference when applying the same query to D; and
D, |63]. Higher sensitivity queries are more likely to reveal individual tuples,
and thus they should receive more noise.

One essential aspect of a DP algorithm is the parameter €, also known
as the privacy budget. Each query reduces the privacy budget, and after the
budget is consumed, no further queries can be answered. The challenge is
to pick a value big enough to enable a sufficient number of queries before
breaching privacy. However, the semantics of € is not well understood and it
is an active topic of research [24, 95, 98, 167, 196]. Additionally, there is no
systematic way to chose the value (or the range of values) for € [154, 211]. DP
assumes an honest data holder. In practice, honest data holder is a strong
assumption that motivated the research on distributed differential privacy.

In a distributed scenario, no trusted central data holder is assumed.
This approach is called Local Differential Privacy (LDP), and each party is
responsible for adding noise to their data before releasing it to other parties
[227]. Choosing € in LDP is even more challenging since the privacy budget is
shared among all the parties and is added up to compose a global € [221]. The
downside of LDP is that it requires more significant amounts of noise than in
central DP [40]. An intermediate trust model between the central and local

is the shuffle privacy. Shuffle-privacy is an alternative definition that requires
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less noise at the expense of increased computational cost [24, 41]. In this
model, users apply noise to their data, as in the local model. However, each
data point is transformed by a trusted shuffler to break the link between data
points and individual users. Google’s PROCHLO system [24] is a realization
of this model, which is easier to achieve than an equivalent SMC protocol.
For a comprehensive list of extensions and variations of differential privacy
definition, we refer the reader to [59]. DP has also been combined with
generative adversarial networks (GANSs) in the distributed setting to produce
synthetic data as a proxy for local sensitive data. The goal is to train global

models with local synthetic data to avoid model inversion attacks [15, 207].

Limitations As we already mentioned, there are a couple of issues related
to differential privacy. First, the choice of € and its semantics is still an
ongoing question [95, 98, 24, 196, 167, 211]. Second, in the distributed
scenario the necessary amount of noise is much larger than in the centralized
case [40, 221].

It is interesting to notice that differential privacy has been used in many
works as a complementary line of defense to distributed model aggregation
or SMC, e.g., [229]. The idea of hybrid approaches promises to reduce the
amount of noise added by the differential mechanism. Therefore, we will
focus our investigation on the core issues related to SMC and distributed

model aggregation.

2.4 Summary

This chapter presented a brief review of knowledge discovery, data mining,
its main tasks, and algorithms. Advances in communications technology
enabled the development of data mining algorithms for distributed data sce-
narios. In this context, we presented some of the relevant distributed mining
algorithms and discussed the main features of well-known distributed data
mining systems. Data distribution poses new challenges to data mining prac-
titioners and researchers, such as preserving data privacy when data mining
is performed across the boundaries of different institutions with different
authorities” domains.

This chapter also introduced important background concepts, such as

privacy, sensitive data, and potential threats to privacy involved in a data
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mining process (cf. Section 2.3.2). It has shown that the threat of direct
sensitive data disclosure is well addressed by secure multi-party computation
and distributed model aggregation. However, the other threats are harder
to address since they involve the inference problem.

Inference attacks are not as easy to control as one wishes, and they are
hard to detect and handle. Functional dependencies among data may re-
veal unexpected inference channels, and mathematical properties may allow
accurate reconstructions even from data aggregation. Furthermore, mali-
cious peers can organize themselves into collusion groups to get more accu-
rate inference results against honest parties. This study defined a privacy
framework to analyze distributed data mining algorithms for several general
inference attack scenarios.

Numerous pieces of relevant existing studies on privacy-preserving dis-
tributed data mining have been considered, including both secure multi-party
and distributed model aggregation approaches. The different privacy formal-
izations have also been presented, with their specific assumptions and lim-
itations. Existing approaches protect against outsider attacks but may not
be safe against insider attacks. Table 2.3 summarizes the privacy-preserving

approaches and measures discussed in this chapter.
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SMC

Dist. Model Aggregation

Perturbation-based

Applications

Privacy measure
Protects

Interpretation

Assumptions

Good against

Limitations

Association rules, classifica-
tion, clustering

Private computation
Exact values of inputs

Privacy is achieved when real,
and the ideal execution sce-
narios are indistinguishable

Privacy proofs are based on
simulation paradigm

Outsider attacks, due to cryp-
tographic techniques

(i) Does not consider mali-
cious insider attacks; (ii) it is a
binary measure that does not
quantify the amount of pri-
vacy breach (p. 38)

Clustering, classification,
manifold detection

Likelihood-based measure
Input dataset

Privacy is viewed as the av-
erage likelihood of data being
generated from a given Mix-
ture Model

Cluster map modeled as a
model mixture

Outsider attacks, since only
models are exchanged instead
of data points

(i) Does not consider mali-
cious insider attacks; (ii) does
not model privacy breaches at
data point level, only dataset
level breaches (p. 49)

Classification, clustering, etc.

Differential privacy
Membership privacy

Privacy is achieved when the
inclusion of a single tuple does
not change probability distri-
bution of outputs too much

Noise only need to be pro-
portional to queries sensitiv-
ity. Need to trust in the entity
that applies noise.

Insiders and outsiders, de-
pending on who applies noise.

(i)choice of ¢ and its seman-
tics is still an ongoing ques-
tion; (ii) distributed scenario
requires more noise than the
centralized case

Table 2.3: Summary of privacy measures for distributed data mining
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Chapter 3

Privacy Measures Revisited

“She went fairly often to the hut, in the morning or the after-
noon, but he was never there. No doubt, he avoided her on
purpose. He wanted to keep his privacy."

(D. H. Lawrence in Lady Chatterley’s Lover)

“We all have a right to privacy," she said. “Nobody should have
found this all out."
(Thelma Arnold in New York Times, 9 August 2006)

The previous chapter presented the main approaches for privacy-preserving
distributed data mining. It also pointed out the general limitations of current

approaches, mainly related to inference attacks by malicious insiders.

This chapter introduces a set of privacy properties to capture the main
features a privacy measure should have to avoid the limitations identified
thus far. The goal is to formalize the limitations identified informally in the
studied privacy measures allowing the domain experts to define new privacy

measures that improve those limitations.

As the main threats in a distributed mining session come from malicious
insiders trying to infer sensitive information, a privacy measure should con-
sider the presence of collusion groups of malicious peers. Moreover, a privacy
measure should detect the privacy of single data points. Further, this chap-
ter introduces new privacy measures for distributed data clustering and time
series, which address inference and collusion. The new measures are then

applied to some representative distributed privacy-preserving algorithms.
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Chapter 3. Privacy Measures Revisited

3.1 Privacy: Properties and Notations

Classical understanding of privacy sees it as the right to avoid the access to
sensitive information by other agents [20, 65, 147]. In this view of privacy,
the privacy level is given as a binary variable: {private, public}. To say
that some information is private means that other agents have no access to
it. A privacy breach is the unauthorized disclosure of private information.

An alternative definition allows us to see privacy as a continuous variable.
For example, Agrawal and Aggarwal [4] propose an information-theoretical
approach to privacy as the uncertainty about sensitive information. Accord-
ing to this view, privacy is the right to avoid disclosing exact values to other
agents. Consequently, other agents should not determine sensitive values
down to a given interval. In this case, the privacy level is zero for public
information and is some positive value for private information. Privacy of
sensitive data is preserved if the privacy level does not decrease when an

agent participates in a data mining protocol.

Example 3.1 Assume a party Py holds a sensitive variable x € (20,25)
indicating the age of an individual. The variable x is private if other parties
have no access to its exact value and only know that x s a number between 20
and 25. Privacy of x is preserved if, after executing a data mining protocol,

other agents still only know the original interval, i.e., (20,25).

Now, the question is how to measure the amount of privacy in a dis-
tributed setting. In this study, we will regard a privacy measure as a
function that, for a given distributed data mining algorithm, maps a dataset
subset and the maximum size of collusion groups of parties to a real number
and satisfies certain properties. We will call the value of such a measure a
privacy level.

Throughout this study, we use the following notation. Let L1,..., Lp be
sites hosting one element of a partition of a dataset D each, and A be any
distributed data mining algorithm running on Ly,...,Lp. We will assume
that up to P — 1 sites among L1,...,Lp are malicious, in that they seek
to infer objects of dataset D, or parts thereof, possibly in collusion groups
of at most ¢ < P members, by either exchanging information or violating
the protocol of A, or both. When no party attempts to learn sensitive

information held by other parties, i.e., are honest, there are no inside threats
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and ¢ = 0. To explicitly indicate a privacy measure m in the evaluation of
a given algorithm A we use the notation PR'}. We indicate the privacy of
a given singleton {z}, given an algorithm A and measure m, as PR ({z}),
and overload the notation as PR} (x); for a dataset D we use PR’}(D). To
indicate presence of collusion groups of maximum size ¢ we write PR 1(D).
For the sake of simplicity, we omit algorithm, collusion size, measure, dataset,
or data point, when they are implicit in a given context.

By privacy measure for A we mean a computable partial function
PR4: (X,c) €2P x{0,1,2,...,P -1} - PRyy(X) € [0,00)  (3.1)

which satisfies one or multiple of the following properties:

P1 (inference and collusion) PR 4i0)(X) > PR 4(X) when there are at
most ¢ malicious peers colluding, with ¢ € {1,2,..., P — 1}, for all
X C D;

P2 (point monotonicity) it is nonincreasing from singletons to dataset, i.e.,
PRA[C]({x}) > PRA[C}(D) for all ¢ € {0, 1,...,P— 1}.

P3 (interpretability): For a given data point € D, there must be a
mapping from the privacy measure PR({x}) to some property of z or
dataset D.

Property P1 expresses the decrease of privacy level when inference at-
tacks by malicious parties alone or in collusion groups take place. Note that
¢ = 0 denotes only honest insiders, ¢ = 1 expresses the presence of dishon-
est parties but no collusion, and ¢ > 1 denotes collusion groups with more
than one member. Property P2 constrains PR 4 to behave as a worst-case
measure: a greater privacy level than the one at singletons is not attainable
for the dataset. We call this property point-level awareness. Property P3
requires a natural interpretation from the privacy measure into the sensitive
data domain. It should be natural for a domain expert to choose the desired
amount of privacy to be preserved expressed with the expert’s vocabulary.
For instance, the measure could express the number of points in a subset
of D or if x is present/absent in D. Additionally, Eq. (3.1) requires that

privacy measures have non-negative codomain.
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There is an increasing interest in the pertinent literature to define desir-
able properties for privacy measures explicitly. Zhao and Wagner [244] pro-
posed four properties in the context of the vehicular communication domain.
Bezzi [21] emphasizes the importance of point-level privacy compared to the
prevailing view of dataset privacy protection. Pufferfish privacy [116, 117]
and [59] presents a rigorous framework for privacy definitions in the con-
text of data publishing. We share the same motivation, but we focus on

distributed data scenarios.

3.2 Analysis of Existing Privacy Measures

In the following, private computation and likelihood-measure are analyzed

concerning the set of properties proposed in the previous section !

3.2.1 Private Computation Measure for SMC

In the preceding chapter, it was shown that in the presence of collusion
groups, a secure multi-party protocol (SMC) is likely to fail [132]. SMC fails
because the semantic of privacy computation measure only gives the privacy
level from the outsiders’ point of view. Any malicious insiders will receive
the correct output, from which they may try to reconstruct sensitive inputs
owned by other parties [208] or information about these parties [187]. The
private computation measure is non-negative definite and fulfills properties
P2 and P3 but fails to satisfy P1, as discussed below.

PR"Y(D) is non-negative. According to the definition of private com-
putation (Def. 2.4), a computation is private if no party learns each other’s
input. PRPY(D) is a binary measure, indicating if any leak occurred or
not, without any indication of the degree of the privacy breach. Indeed,
Def. 2.5 explicitly uses 0 to indicate that a leak occurred during the pro-
tocol’s execution and 1 to indicate that the protocol is private. Therefore,
PRPY(D) > 0.

PRPY(D) does not address inference or collusion (—-P1). The
private computation measure, PR” C(D), was designed to detect leaks from

the protocol and not from outputs. In an SMC protocol, information that is

! As we mentioned previously, we will not discuss perturbation-based measures further
in this thesis.
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leaked from the results is unavoidable as long as the function has to be com-
puted [109]. For that reason, the private computation measure PRC(D)
concerns only with leaks due to the process of computing the function. This
measure does not address inferences from the output, intermediate messages,

or any advantages due to collusion among the parties.

Example 3.2 Consider example 2.5 where three parties compute the sum of
numbers in an SMC protocol. The process does not leak any information, as

shown in example 2.6. Therefore, with O malicious parties,

PR?]\%C’Sum[O] (.’L‘) =1

Now, suppose that two parties collude. In this case, they can subtract their
input and learn the input of the third party. However, privacy computation

does not care about inferences after the process, and

c
PR cumpz () = 1

meaning that even with two colluders, the process of computation does not
leak information. Notice that PRgAC;[CSum[o] (x) = PRgAC;[CSum[Q] (x) when
PR?%CSum[Q] (z) should be 0 to indicate that the privacy is not preserved in

the presence of 2 malicious parties working in collusion.

PRPY(D) is point level (P2). By definition, if any point = € D,
the dataset of inputs of a given party, is leaked, the protocol is considered
not private, i.e. Yz € D : PRPC(z) = 0 = PRPY(D) = 0. Therefore,
Ve € D : PRFC(z) > PRIY(D).

PRPY(D) has clear interpretation (P3). The interpretation of the
private computation measure in SMC is that for any input x; € D belonging
to party p;, no party p; learns x;, or anything about x;, with ¢ # j, directly
from protocol execution. A privacy breach occurs when any information

about z; is leaked during the process.

3.2.2 Likelihood-Based Measure

In the previous chapter, we discussed the likelihood-based measure intro-
duced by Merugu et al. [149]. The likelihood-based measure is non-negative
and fulfills property P1. However, as discussed below, it does not fulfill
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properties P2 or P3.

PR'*¢(D) is non-negative. By definition of likelihood-based privacy
measure (Def. 2.3 and Eq. (2.3)), PR'*¢(D) > 0 because it is defined as a
power of 2.

PR'*¢(D) addresses inference and collusion (P1). It addresses
inside attacks, which may expose the participants to a malicious central

entity attack.

Example 3.3 Consider a dataset D = {1,4,6,9} and a model formed by
the mizture of two Gaussian. Let the first Gaussian be centered at xg, i.e.
it has mean 1 = 1 with variance 02 = 0.1. The second Gaussian models
the three remaining points, i.e. has mean ps = 6.33 and variance o5 = 1.0.
With probability density function of the mizture model denoted by f(x), using
Eq. (2.3) we have:

PRI (D) = o (~ Ti1 082 (£(1)) +loga(f (1)) +loga (F(6))Hog> (FO))) _ 13 7306
If attackers know the mizture model, it is possible to compute the privacy

level for a given reconstructed set, for example, R = {1}:
PR{{[“(R) = 2'°82/1) = 0.5013

The privacy measure of the original dataset is 13.7326 but drops to 0.5013
when the reconstructed dataset consists of points close to the mean of first

2

Gausstan.*  Therefore, o malicious central entity, which receives the mix-

ture model, may reconstruct the point xo by choosing a set of points R that
minimizes PRI*(R).

PR/*¢(D) is not point-wise (-P2). When only a few points have
a high likelihood of being reconstructed with high precision, PR'*¢(D)
measure will still indicate high privacy protection. Consequently, privacy
breaches at the data point level may not be detected. The breach is a con-
sequence of PR!™*¢(D) being defined as the geometrical mean, as illustrated

in the following example.

Example 3.4 Consider a dataset D = {1,4,6,9} and a mizture of two

2The same behavior occurs if the reconstructed dataset is R = {6}, but in this case,
PR!*¢(R) drops to 5.299.
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Gaussian as in the previous example. With probability density function of

the mizture model denoted by f(x), using Fq. (2.3) we have:

PRIk (D) — o( A1 108 (/(1) Hoga (W) Hom F(6) 00 9)) _ 13 7396

Let’s examine the privacy measure PRlike(:c) for each point x € D:

PR'#(1) = 271082 /() — .5013
PRI*e(4) = 27 log2/(4) — 76272
PR'iF(6) = 2~ 1°82/(6) — 5299
PR!#*e(9) = 271082 /(9 = 175500

Notice that the geometrical mean wn the privacy measure smoothed out

the measure for o = 1, masking a possible privacy breach. In that case,

PR'*(1) = 0.5013 < PR"*¢(D) = 13.7326

Therefore, PR'*¢(D) does not fulfill property P3.

PR'*¢(D) has no clear interpretation (-P3). For a given (sensitive
and hidden) dataset D and a public model A, PR!*¢(D) is the recipro-
cal of the geometrical average likelihood of points being generated from the
given model. As a consequence, when the model is a good fit for the data,
PR!*¢(D) is small. In this case, the model is said to leak too much informa-
tion about the original data. Conversely, if the model is not a good fit for the
data, PR'*¢(D) is large, and the model is said to preserve information. The
problem with this approach is that the average likelihood does not translate
well to the data domain; it is unclear how much protection is provided in

the original data space, i.e., in terms known to a domain expert.

Table 3.1 presents a summary of all studied privacy measures and their

properties.
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Reference Infer. and Collu- Point monotonicity Interpretability

sion (P1) (P2) (P3)
PRP_C [82] no yes yes
PR'*e [149] yes no no
PR™™°¢  (Def. 3.1) yes yes yes
PR (Def. 3.2) yes yes yes
PREK (Def. 3.3) yes yes yes
PR7BX  (Def. 3.6) yes yes yes

Table 3.1: Summary of privacy measures

3.3 New Privacy Measures for Clustering and Time

Series Mining

As discussed in previous sections, the general idea behind privacy measures
involves formalizing the intuitive notion regarding the protection, or lack
thereof, of a piece of sensitive information from unauthorized access. This
section proposes new privacy measures and uses them to analyze specific
distributed data mining algorithms in subsequent chapters. These measures
assume that the attacker may be a member of the mining group. Further-
more, these measures also focus on point-level privacy, not only the dataset

level.

3.3.1 Privacy Measures for Distributed Clustering

Due to its inherent descriptive nature, any cluster map reveals information
about the data. Indeed, this is one of the primary purposes of clustering:
to provide an initial idea of the overall data distribution. From a privacy-
focused point of view, the interesting question is: how does one measure the
amount of privacy loss caused by a given cluster map?

We define cluster privacy as the size of the range of values in a given
dimension. For instance, a cluster of data points over the dimension annual
income ranging from US$ 100 000 to US$ 150 000 reveals the value of each
data point with a maximal absolute error of US$ 50 000 and mean absolute
error of US$ 25 000, assuming uniform distribution®. Consequently, if it is
known that a specific person is modeled as a point in this cluster, then it

is known, with 100% certainty, this person has an annual income of US$

3The maximal absolute error happens when an attacker guesses a point to be in one
extreme when it is actually in the other extreme of the range.
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125 000 25 000. This cluster, then, is said to have a privacy level of 25 000

dimension units, US$ in this case.

Definition 3.1 (Cluster range measure) Given a dataset of reals, i.e.
D C R and a cluster map C = {Cy} C 2P, whose elements C}, are pairwise
disjoint. We define the cluster privacy of a given point x in a given cluster
Cr € C as:

PR"¢(z) = max Cy, — min C, (3.2)

Ezxtending to the whole dataset:

PR™¢(D) = min{PR""¢(x) : z € D} (3.3)
=min{maxCy —minCy : k=1,...,[C|} (3.4)
U

PR"9€¢  gerves as a reminder that the cluster map itself gives away
information on the original data. The smaller a given cluster range is, the
greater the amount of information given away about the location of points.
To avoid (or control) this information leakage, privacy-preserving algorithms
must adopt a mechanism that allows the user to control the minimum range

of each cluster.

Assuming the attackers only know the boundary of clusters (revealed
by the cluster map and known by the members of the mining group), they
cannot learn anything new except for the range of values covered by each
cluster. This metric is based on the assumption that points inside a cluster

follow a uniform distribution from the attackers’ point of view.

Example 3.5 Consider Figure 3.1, representing o dataset with by 6 points,
D ={0,0.3,0.6,1.0,2.5,2.7}. The points in this dataset form two clusters:
C1 ={0,0.3,0.6,1.0} and Cy = {2.5,2.7}. When the cluster map is made
public after the mining sesston, attackers know that points in cluster C1 range
from 0 to 1 and that points in cluster Co range from 2.5 to 2.7. For all points

x; in cluster C7 we have:
PR (z;) =1-0=1
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Figure 3.1: Example of a dataset with two clusters.

Similarly, for all points x; in cluster Cy we have:
PR™(z;) = 2.7 — 2.5 = 0.2

Therefore,
PR"™¢(D) = min{1,0.2} = 0.2

This result indicates that at least one region of D may be vulnerable to re-

construction within an interval of size 0.2.

This study proposes another measure, one based on reconstruction. If
a reconstruction method is known, it is possible to measure how close the

reconstructed data gets to the original sensitive data.

Definition 3.2 (Reconstruction based measure) Let R C R denote a
set of reconstructed data points such that each r; € R is a reconstructed
version of x; € D C R. We define the privacy level, given a reconstruction
method, by:

PR"™(z;) =| z; — r; | (3.5)

Eztending to the whole dataset:
PR™(D) = min{PR"*(z;) : z; € D,r; € R,1 < i <|D|} (3.6)

where |D| is the size of the dataset D C R. O

Roughly speaking, PR indicates the precision with which a data
object x; may be reconstructed for a given cluster map and a reconstruction
method. Note that the reconstruction method does not need to be an exact
function; it can be a heuristic-based method for partially reconstructing the
data. With regards to privacy preservation, even partial reconstructions need

to be considered.

Example 3.6 Assume that we compute the density estimate from the cluster

in Fig. 3.1 using triangle kernel (which is a bounded kernel). Assuming
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that the attackers know the density estimates, they can locate data points by
locating the kernel borders *. The error in this scenario is down to machine
precision, assuming the attackers know the estimation parameters, which, as
discussed in the previous chapter, is a very reasonable assumption when the
attacker is an insider. Therefore, with triangle kernel, in an inside attack
this cluster has:

PR"™(D) =~ 0

A similar privacy metric is the relative error, introduced by Lyu et al.
[143]. Relative error uses 2-norm to evaluate how different is the recovered
dataset compared to the original data, while PR™“(D) uses absolute error.
Lyu and colleagues proposed relative error metric in the context of data
perturbation approach for central data setting.

A general definition of privacy proposed in the centralized data mining
setting is the bounded knowledge measure [4], which defines privacy as the
length of the interval from which a random variable X is generated. This

measure can be expressed in terms of the entropy of X, as follows.

Definition 3.3 (Bounded Knowledge) Given a random variable X with
probability density function fx and domain Qx, the privacy of X is given
by its bounded knowledge is:

PRPK (X)) = 2MX) (3.7)
where the differential entropy h(X) is given by

h(X)=— A fx(x)logs [fx(x)] dx

g

Example 3.7 A random variable X uniformly distributed between 20 and
70, abbreviated X ~ U(20,70), has probability density function given by:

A for20<x <70,
fx(@) =4 -
0 otherwise.

“See Section 4.2.3 for a discussion on single insider attacks using density estimates.
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The entropy of X is h(X) = log2(50). Then, the privacy provided by X
according to bounded knowledge measure is PRPE (X)) = 21092050) — 50,

This definition only assumes that the sensitive attribute can be modeled
as a random variable, i.e., it assumes we can compute the probability distri-
bution of the sensitive attribute. This assumption is general enough to be
used in different data mining contexts, such as cluster analysis and associ-
ation rules [20]. This measure is also known as Inherent Privacy [216] and
denote the number of bits describing each element in the domain of the X.

For a given datapoint « € C;, a cluster C; in the cluster map C induced
from dataset D C R, a random variable X; with domain C; and probability
density function fx,(z) being zero outside Cj, let:

PRPX(z) = PRPK(X;) = 2MX0) (3.8)

In the case of a cluster map, we are interested in the smallest interval

size in the said map. Therefore,

PREX (D) = min{PRPX (z)} = min{2"¥X} (3.9)

It is interesting to note that the PR""9 and bounded knowledge
measure PRPX  (cf. Eq. (3.9)) are related. Indeed, PR™9¢ is a special
case of the bounded knowledge measure PRPX when the probability density
function f(x) is assumed to be the uniform distribution. Therefore, the
privacy level indicated by bounded knowledge measure, PREX | tends to
be tighter than the privacy level indicated by PR"9¢ because the former
uses more information to compute the privacy level.

When there is no known reconstruction method, the reconstruction error
is bounded to the entire domain of possible values, giving no information to
the attacker. In this case we denote PR" = co. Furthermore, if the range
of clusters is not known, we denote it as PR™"9¢ = co. Similarly, with no
distribution known, we have PRPX = .

The following definition extends each of the previously defined measures

to include collusion groups.

Definition 3.4 (Distributed Cluster Privacy) Let A be a distributed data
clustering algorithm, D C R be a dataset, and a privacy measure m €

{rec,range, BK}, with collusion groups containing at most ¢ attackers. We
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define:
PR (D) = min{PRj;(D): 0<i<c} (3.10)

O

The function PR%%P (D) represents the minimum privacy level provided
to dataset D when the collusion groups have at most c peers. For example,
PRﬁ[IQ{] (D) denotes the smallest privacy level provided by algorithm A to
dataset D when collusion groups contain at most two malicious peers. The
focus on the smallest level represents the idea that the weakest scenario is

. When all parties are honest, we have ¢ = 0. In

the most dangerous one
summary, PR""9¢ measures the privacy level achieved by the disclosure of
the cluster map, assuming that the attacker knows nothing else. Therefore,
PR"9¢ ig suited for measuring the privacy level in the single inside attack
scenarios. In a more general setting, PRPX gives the privacy level when the
distribution of data is known to the attacker or collusion group, i.e., PRBX
can be used in a single or collusion attack scenario. When a reconstruction
function is known, the PR measure gives a more accurate privacy level.
PR can be used in single or collusion attack scenarios. Therefore, decid-
ing which measure is the most appropriate relies on the information that is
assumed to be available to the attacker or collusion group: cluster map only,

data distribution, or reconstruction function.

Properties Analysis of PRQ[%P(D)

In the following, we state that PRQ[%P(D) is non-negative (Theorem 3.1)

and has the following properties:

P1 (inference and collusion): theorem 3.2;
P2 (point level privacy): theorem 3.3;

P3 (interpretation): theorem 3.4.

Lemma 3.1 PR™¢(D) > 0, for all dataset D C R.

Proof. PR™™¢(D) is defined as min{max Cj, — min Cy }. Notice that the

definition uses the difference between the max and min values in a given

5This notion comes from the popular idea in computer security that defines the security
level of a system as the level of its weakest link.
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cluster. It follows that,

VO € C :maxCy, —minCj, > 0

Lemma 3.2 PR™(D) > 0, given dataset D C R and reconstructed set
R CR.

Proof. PR™(D) is defined as min{|x; —r;| : x; € D,r; € R,1 <i < N}.
Since |x; — r;| > 0 by definition of the absolute function, it follows that
PR™(D) >0 O

Lemma 3.3 PRPX(X) > 0, for all random variable X .

Proof. PRPE(X) is defined as 2"%). Since h(X) € R and 2% > 0 for all
a € R, it follows that 2h(X) > 0. O

Theorem 3.1 PRQ[CC]P(D) >0, for all dataset D C R and privacy measures
m € {range, BK,rec}.

Proof. PRQ%P (D) is defined over basic measures PR"9¢ = PRPX | and
PR¢ . By lemmas 3.1, 3.3 and 3.2, it holds that PR"*"9¢ > 0, PRBX > 0,
and PR"™ >0 O

Theorem 3.2 Given an algorithm A, for all dataset D C R and privacy

measures m € {range, BK,rec}, and ¢ > 1 (presence of collusion groups), if

there is a collusion scenario decreasing the privacy level of dataset D, then
DCP DCP

PR 1] (D) > PR (D).

Proof. Let a = PRQ[%P (D) be the privacy level of dataset D with algorithm
A with no collusion (i.e., ¢ = 1), and b = PRQ[CC]P(D) be the privacy level
of dataset D with algorithm A4 in a collusion scenario with ¢ > 1 malicious
peers. By definition PR A[C}DCP (D) is defined as the smallest privacy level
considering all collusion scenarios. In that case, PRQ[%P (D) = min{a,b}.
Therefore, if the collusion group decreases the privacy level of the ¢ = 1

scenario, then a > min{a, b}. O
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Lemma 3.4 Vz € D : PRTAa[zge(x) > PRrAa[Z}ge(D), for all dataset D C R.

Proof. Consider a cluster map C from D, with k clusters Cq,Cs, ..., Cy. Let
r; denote r; = max C; —min Cj, the cluster range of C;. For a given point x €
C;, by definition, PR™"¢(z) = r; and PR"9¢(D) = min{ry,re,...,7%}.
Therefore,

ri > min{ry,ro,..., 7}, 1 =1,2,... k

Lemma 3.5 Vz € D : PR (x) > PRZf[f:](D), for all dataset D C R,

Proof. Consider a dataset D C R and a reconstructed set R C R. Let
Zo be any given point in D and r, its reconstructed counterpart in R. By
definition, PR/;;(%a) is [za — ra| and PRH(D) = min{|x; — r;| : x; €

[c

D,r; € R,1 <i <|D|}. Therefore,

|rq — 1o > min{|x; —1;| : x; € D,r; € R}

Lemma 3.6 Vz € D : PRL[ (x) > PRE (D), for all dataset D C R.

Proof. Consider a cluster map C from D, with clusters C1,Cy,...Ck. Let
X, be a random variable modeling data points x, € C,, for any C, €
C. By definition, PR (z,) is 2"} and PRE{ (D) = min{2"X0}, i =
1,2,...,k. Therefore,

PRE\[IE} (fL‘a) = Qh(Xa) 2 min{2h(Xi)}7 i = 17 2’ ceen @y k:

Theorem 3.3 Vz € D : PRQ%P(x) > PRﬁ%P(D), for all dataset D C R

and any measure m € {rec,range, BK}.

Proof. By lemmas 3.4, 3.5 and 3.6, substituting a specific measure m €
{rec,range, BK }. O
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Lemma 3.7 Given a sensitive set D C R, a cluster map C, the privacy
PR™™°(D) = p means that with no further information p is the size of the

smallest interval of where any x € D can be located.

Proof. Assume that a cluster map defines the boundaries of each clus-
ter. By definition 3.1, PR""¢(z) = maxC; — minC}, for x € C;. Since
PR™™¢(D) = min{PR"*"9¢(z)} = p, then p is the size of the smallest in-
terval (min C;, max C;) considering each point x with its respective cluster
C; eC. O

Lemma 3.8 Given a sensilive set D C R, a reconstructed set R C R, the
privacy PR™(D) = p means that p is the lower bound of the reconstruction
error, 1.e.

lz; — il > p
for all points x; € D and r; € R.

Proof. By definition 3.2, PR™¢(D) = min{| x; —r; |} = p. Thus | z; —r; |>
min{| x; —r; |} = p, for all z; € D and r; € R. O

Lemma 3.9 Given a sensitive set D C R, a cluster map C, PRPX(D) = p

means that p is the size of the smallest interval of where x € D can be located.

Proof. By definition (3.3) and equation (3.8), PRP¥ () = 2(X4) with ran-
dom variable X; modeling the points in cluster C; € C with probability den-
sity function fx,(z). Assuming no knowledge about the distribution of points
in C}, fx, is the uniform distribution in the interval defined by the borders
of cluster C;. Thus, X; ~ U(min C;, max C;). Let max C; — min C; = p;, the
size of the interval of values in cluster C;. The probability density function
for any point in the cluster C; with uniform distribution is fx,(z) = 1/p;.
The entropy of X; is h(X;) = logs (p;) and, therefore:

M(Xi) — ologz pi — p; = max C; — min C;

with equation (3.9), PRBX(D) = min{PRP¥ (2)} = min{p;} = p. There-
fore,

max C; — minC; > min{maxC; — minC;} = p
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for all C; € C. O

Theorem 3.4 Given a sensitive set D, a cluster map C, PRPY(D) = p
has a well-defined interpretation, with privacy measures m € {range, BK, rec},

as the size of the smallest interval containing a given point of the dataset.

Proof. This idea is demonstrated in lemmas 3.7, 3.8 and 3.9 U

Theorem 3.4 above shows that PRPCF (D) represents intervals of values
revealed by a cluster map. Larger values are better because it means more
uncertainty on the exact values of a given point. Also, a domain expert could

be alerted when a cluster map does not satisfy the local privacy constraints.

3.3.2 Privacy Measure for Time Series Mining

The time dimension in data describes how a process evolves through time
[245]. Amplitude is the value of time series at a particular time point and
can be compared to the data value in non-time series data. Amplitude in
time series must be protected if it represents a measurement of a sensitive
variable, such as sales volume or purchase history. Furthermore, peaks are
extreme values assumed in the series and may indicate a sudden change
of normal behavior, e.g., money flow problems. Predictions (or trends) are
another aspect that may be considered sensitive since they allow the attacker
to anticipate a given value in the future, with a given statistical confidence
level. Predictions depend on the accuracy of the prediction model available
to the attacker. Thus, predictions might represent a privacy breach if they
are too accurate.

The essential information about all aspects of the time series is the am-
plitude, from which all other aspects can be derived (peaks, trends, and
predictions). If a particular data point is not known or only known to lie in
a given interval, all other aspects will have less accuracy than if the point
was known with exact precision. Therefore, we focus on the amplitude, i.e.,
the raw value at a particular data point.

As discussed in Section 2.3.3, different measures have been proposed in
the privacy-preserving data mining literature. The large majority of the
measure is not defined for time series. Wagner et al. [216] surveyed more

than 80 privacy metrics and found that only three measures are proposed
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for time series. Moreover, the time series metrics found on Wagner’s survey
are domain-specific for smart meters and location-based services. In these
domains the focus is on data point re-identification.

Information theoretical approaches for privacy focus on how confident
the attacker can be given the entropy of a random variable. In this study,
we have chosen to propose an information theoretical-based measure for time
series that quantifies the uncertainty an attacker has concerning the exact
timestamp and amplitude of an original data point.

The privacy measure for time series proposed in this study is an exten-
sion of the entropy-based measure called bounded knowledge, introduced by
Agrawal and Aggarwal [4] and discussed in Section 3.3.1. The privacy level
of a given point in the amplitude dimension of a time series is computed by
modeling it from the attacker’s point of view. Therefore, an arbitrary point
x¢ of the original time series T is modeled as a random variable X, which
allows for the application of the above privacy definition. The probability
density function fx(z) may be used to model the attacker’s knowledge about
the point ;. If the attacker does not know how X is distributed, the uniform
distribution is used, which gives us PRPE(X) = 2le92(0) — ¢ the size of
the interval from where X is drawn. Nevertheless, if a better model for x; is
known, it can naturally be incorporated into the privacy level. For example,
when the time series has a reasonable degree of predictability, the privacy
level can be computed using the correct model.

We can apply the same idea to the time dimension perspective. For a
given point xy, its timestamp ¢ can be modeled as a random variable V. The
probability density function fi/(¢) may be used to model the knowledge the
attacker has about the time point ¢ when z; occurred. Applying the idea
of bounded knowledge, the size of the time interval a specific x; occurred
is PREBK (V) = 2l0e2() — p. Combined, PRPX(X) and PRPX (V) define
a region in amplitude and time from where a given point x; is drawn. The
combined privacy level is defined as the area of this region.

An additional element is included in the extension of the model as this
study accounts for the fact that parties may collude. The following definition

gives the details.

Definition 3.5 (Time Bounded Knowledge) The privacy level of a given

point x in o time series T, with a random variable X modeling the amplitude
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of x, and a random variable V modeling the time stamp where x might occur,

under algorithm A in the presence of ¢ colluders, is given by:

PR, () = PR (X) PR (V) (3.11)
_ 9h(X)gh(V) 5.12)

where h(-) is the differential entropy.

Now, we extended the previous definition to a complete time series.

Definition 3.6 Given an algorithm A, the privacy level of a time series T

in presence of ¢ colluders running A is given in terms of Def. 3.5:
PR (T) = min{PR{" (2) | € T} (3.13)

with ¢ >0, and i =1,2,...,c. O

Finally, using the previous measure, it is possible to measure the privacy
level of a time series mining algorithm, assuming that a given point in the
time series is modeled as a random variable.

Properties Analysis of Time Bounded Knowledge Measure

In the following, we state that PRﬁ%K(T) is non-negative (Theorem 3.5)

and has the following properties:
P1 (inference and collusion): theorem 3.6;
P2 (point level privacy): theorem 3.7;
P3 (interpretation): theorem 3.8.

Theorem 3.5 PRT[C] (T) >0, for all dataset T

Proof. By definition 3.6, PRTBE(T) is defined as min{2"X)2"(V)}  Since
h(-) € R and 2% > 0 for all a € R, it follows that min{2"X)2k(V)} > 0. O

Theorem 3.6 Given an algorithm A, a time series T, and ¢ > 1 (presence

of collusion groups), if there is a collusion scenario decreasing the privacy
level of dataset T', then PRT[” (T) > PRﬁﬁ]K( ).
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Proof. Let a = PRﬁﬁ]K (T') be the privacy level of time series T with algo-
rithm A with no collusion (i.e., ¢ = 1), and b = PR%ZK(T) be the privacy
level of time series T' with algorithm A in a collusion scenario with ¢ > 1
malicious peers. By definition PR A[C}TBK (T') is defined as the smallest pri-
vacy level considering all collusion scenarios. Thus, PRaﬁ]K (T') = min{a, b}.
Therefore, if the collusion group decreases the privacy level of the ¢ = 1 sce-

nario, then a > min{a, b}. O

Theorem 3.7 Given a time series T, PR%BC}K(J:,;) > PRﬁﬁ]K(T), x eT.

Proof. Let X; be a random variable modeling amplitude datapoint z; € T.
Similarly, consider V; a random variable for the position of z; in T. By
definition, PRTPX(T) = min{PRTPX () : z; € T} = min{2"X:)2h(V2) .
x¢ € T}. For a given point z, € T

PRTBK (3,) = 2MXa)oh(Va) > min {2h(Xe)oh (VY v — 1 9 a,...,|T]

Theorem 3.8 Given a sensitive time series T, PRTPE(T) = p has a well-
defined interpretation, as the area, in time and amplitude, where x can be

located.

Proof. By definition 3.6 and equation (3.12), PRTBE (z) = 2MX)2h(V) with
random variable X modeling the amplitude (the value of x) with probability
density function fx(x) and random variable V' modeling the time point ¢
when x occurred. Let S; C T be a subsequence of T' with x € S;. Assuming
no knowledge about the distribution of points in \S;, fx, and fy; are density
functions of uniform distributions in the intervals of size a and b respectively.
Thus, X; ~ U(min{S;}, max{S;}) and V; ~ U(0,]S;]) . Let a be the interval
of values of S;, i.e. a; =| max{S;} — min{S;} |, and b; the interval of time
stamps in S, i.e. the size of S;. The probability density function for any value
in S; with uniform distribution is fx,(z) = 1/a;. Similarly, fy;(t) = 1/b; for
the time stamp ¢ of x. The entropy of X; is h(X;) = log, (a;) and V; is
h(V;) = logy (b;), therefore:

2h(Xi)2h(Vi) — 2log2 ai2log2 bi _ aibi
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with equation (3.13), PRTPE(T) = min{PRTPE(2)} = min{a;b;} = p.
Therefore, p is area of the smallest rectangle formed by amplitude and sub-

sequence size in T where any point x can be located. O

Theorem 3.8 above shows that PRTBE(T) represent intervals of values
in time and amplitude revealed by the mining process. Larger intervals are
better because it means more uncertainty on the exact values of a given point
in time or amplitude. Also, a domain expert could be alerted when a time

series mining algorithm does not satisfy the local privacy constraints.

3.4 Privacy Analysis with Inference and Collusion

Attack Scenarios

In the next sections, selected algorithms for distributed data clustering are
briefly reviewed, and their privacy properties are analyzed in light of our
privacy definitions. The algorithm we analyze in this section were chosen
because they are typical instances of each approach. VC-k-means [213] and
EC-kmeans [161] are good representative of the SMC approach. Similarly,
DDCGM [149] and ITDDC [184] are typical examples of distributed model
aggregation. An interesting new approach is PP-AAC [108] which uses clus-
ter description similar to model aggregation but uses a secure sum protocol
to ensure data privacy.

To apply the privacy framework introduced in the previous section, we
need to identify the parties involved in the mining section of a given algo-
rithm, the information held by each party, and the information exchanged
among them. From this point on, we can analyze how each party may use
its local information, combined with information it receives during the pro-
tocol, to develop an inference attack against other parties. Next, we analyze
how collusion groups may improve inference attacks. In general, we want to

answer the following questions:

1. Which parties are involved? Which information does each party hold?

Moreover, which information each party sends and receives?

2. What can be reconstructed from the information held by a single in-

sider attacker?

3. Which information each collusion group holds?
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Algorithm 3.1 Secure Multi-Party k-Means
Input: P parties, k clusters, n points in dataset X.
Output: vector of means {y;}*_;
Method:

1: initialize centroids p;; with random value;

2: initialize clusters C; < 0, i =1,...k;

3: repeat

4: for all x € X do

5 for all parties j =1 to P do

6: Securely compute the distance vector ¢ from point € X to {u;}
with all parties;

7: Securely decide to put x in the nearest cluster C; with all parties
(with Alg. 3.2);

8: end for

9: end for
10: Update p; as mean of points in cluster C;, i = 1 to k;
11: until threshold is reached

4. What can be reconstructed from information held by a collusion group?

5. Which privacy measure is the most appropriate to quantify privacy loss

in each case, depending on the information available to the attacker?

3.4.1 Secure Multi-Party k-Means Clustering

Vaidya and Clifton [213] proposed an extension of the classic k-means al-
gorithm to the distributed setting, using cryptographic protocols to achieve
privacy (VC-k-means, cf. Alg. 3.1). Data is assumed to be vertically par-
titioned in a multi-party scenario with three non-colluding parties. The
solution is based on a secure protocol to find the closest cluster for any given
point, and it also uses secure permutation and secure comparison. They of-
fer proof that each peer only learns its part of each cluster centroid and the
cluster assignment of all points at each iteration.

The fundamental problem faced in each iteration is securely assigning
each point to its nearest cluster. This problem is non-trivial since each
site owns a part of each tuple, which must remain private. It is solved by
applying the following algorithm (cf. Alg. 3.2) for each point Z (assuming
P > 3 sites).

Let z; and p;; be the portions of & and the ith centroid at the j**
site, respectively. Let ¢; be the length K vector where y;; is the dis-

tance between x; and p;;. The problem boils down to securely computing
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Algorithm 3.2 SMC Closest Centroid
Input: P parties, each of which with a length k vector ¢ of distances. Three parties
are labeled Ly, Lo and Lp
Output: the closest centroid
Method:
1: L, generates P random vectors v; summing to 0;

L, generates a random permutation w over k elements;
for all i =2 to P do

T; = m(yi +vi); // each party adds a distance and permutes
end for

Ly computes T1 = w(y1 + v1);
for alli=1,3to P—1do
qu send TL‘ to Lp;
9: end for
10: Lp computes § =T1 + >0 . T;;
11: for all i =1 to k do
12: securely find the index [ of the minimal distance in the vector ;
13: end for
14: Lp sends [ to L;
15: Ly broadcasts the index [, the closest centroid, to all parties;

argminle{Zle Yij}, i.e. the index of the smallest value in the distance
vector y. Site 1 computes random vectors (length k) 91, ...,Up whose sum
is zero and, 7, a random permutation of {1,...,k}. For each 2 < j < p, site
1 then engages in a secure algorithm allowing site L; to compute (¥} + ;).
At the end of this algorithm, site 1 does not know anything new and site
2 does not know 7 or ;. This algorithm uses homomorphic encryption to
achieve security. Next, sites 1,3,..., P — 1 send 7(¥; + ;) to site P. Site
P sums these vectors with its own (note that site p does not know the vec-
tor at site 2). Then, site P and site 2 use SMC to securely determine the
index ¢ of the minimum entry of vector Zle 7(U; + yj). After that, site 2
knows the minimum distance but not to which centroid it corresponds (due
to the permutation known only to site 1). Finally, site 2 sends ¢ to site 1,
which then broadcasts m=1(¢) to all sites i.e. the closest centroid. They
also presented a modified version of the protocol to handle collusion with an

increased communication cost.

Inference and Collusion Attacks against VC-k-Means

Let Ly, Lo and Lp, be three trusted parties in the VC-k-means protocol
under study. Let L; be any other non-trusted party in the mining group. The

aim is to ascertain which information each party knows during the protocol
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execution, examined in the following.

Single Insider Attacks. A given party L; knows: (i) fi;, a share of the
centroid; (ii) v;j, the distance from the cluster centroid p;; to the view of
point x;; (iii) and a random vector ¥; . The trusted parties know more than
that, as follows.

Ly is the party that starts the protocol. It does know: (i) a partial
view of the cluster centroids, denoted fi1; (ii) the cluster assignment for each
data point x; (iii) a random vector ¥; and (iv) a permutation 7 of 1 to k,
used to preserve the privacy of information in the SMC protocol. Ly knows
Ty = n(%2 + 1), the permuted sum of @ with 7. This information is hidden
from the other parties, and is used only in the clustering step in a protocol
with Lp.

Lp knows its share of the centroid jip, and Ty = 7 (¥ + 7;), with i =
1,3,4,..., P, the permuted sum of ¥; with ¢; of each party but Ls. Moreover,
Lp knows the combined sum of 7 from all parties but Lo, ie. § = T, +
ST

Ly is the party holding the most valuable information, which can be
used to reconstruct sensitive data: the random vector ¥ and the permutation
m. However, without the permuted sum of distances g; from other parties
(i=1,3,4,...,P), L1 will not learn anything because it cannot reconstruct
data points from other parties. Similarly, Ly and Lp will not learn anything
from the information they hold alone. In other words, each party will learn
anything other than the results. With no further information beyond the
cluster map (the output), we can only apply PR™"9¢(D).

Lemma 3.10 Let D be a dataset distributed over a network of peers. When
there are only single insider attacks, algorithm VC-k-means produces a cluster

map C of D with a privacy level given by:

PRegl]j]\/[eans[l] (D) = PRng?\/jeans[l] (D) = min{max C; — min Cz}

with C; € C and the privacy level, PR, as defined in Section 3.3.1 (cf. Def.
3.4).

Proof. Any insider attacker working solo can only learn what is disclosed by
the cluster map itself, namely, that each point z € C; ranges in the interval
(min C;, max C;), with C; € C. O
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The result with no collusion is unsurprising, given that this protocol
was designed to work with three trusted parties — a strong assumption. In
the subsequent attacks, this assumption is dropped as malicious insiders are

introduced into the scenario.

Collusion Attacks. Now, we analyze the privacy level of VC-k-means

when ¢ > 2 malicious insiders form a collusion group.

Attack with Collusion of Insiders L; and Lp. When L and Lp
collude, they may learn data from other parties with arbitrarily high pre-
cision. Together, L1 and Lp hold information on the permuted sum of all
parties except for Lo. Moreover, they hold information on the permutation
7w and the random vector ¥. Therefore, this collusion group may compute
the vector ¢ using the inverse of permutation 7 and subtracting the random
noise v from Y;, as indicated below:

G = NT;) — & (3.14)
with ¢ =1,3,4,..., P

The vector y; represents the distance between a given point z and the
cluster centroid ¢ with mean p;. Once the attacker has the true distance
between all clusters centroids and a given point, every point can be located
with an arbitrary error. Since L and Lp hold information from all parties
but Lo, it is enough to reconstruct data from all parties in the mining group

but Lo. With a given reconstruction method, we can apply PR™¢(D).

Lemma 3.11 Given a collusion group with L1 and Lp, the privacy level of

VC-k-means algorithm, is:

PReglfMeans[Q](D) =P 7\q/'eé'lc]\Jeans[Q](l)) = mln{|x - T| rxeD,re R} ~0

where D C R is the original dataset and R C R is a reconstructed dataset
built using Eq. 8.14.

Proof. When the collusion group includes L; and Lp, they know everything

needed to use Eq. 3.14 and generate the dataset of reconstructed points R
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with arbitrary precision. Therefore, the error in this attack is down to the

minimum error between the original and the reconstructed data. O

For completeness purposes, other potential collusion groups are discussed

in the following.

Attack with Collusion of Insiders L; and L. In this collusion group,
there is not much new, useful information. Lo adds its own permuted sum
T and nothing more. Consequently, the collusion will learn nothing other

than the results.

Attack with Collusion of Insiders L and Lp. In this attack scenario,
the collusion holds the permuted sum from all parties but L. However,
without information from L1, the colluders cannot remove the random noise
from the sum. Hence, nothing can be learned by the collusion group beyond

the results.

Attack with Collusion of Insiders L;, 3 <i < P. Any other collusion
group that does not include L and Lp will not know the permuted sum from
other parties and will not remove the random noise from the sum. Therefore,

this collusion group will learn nothing.

Lemma 3.12 The single and collusion scenarios in VC-k-means, with ¢ col-

luders, are related as follows:
DCP DCP ~
PRVCkMeans[l] 2 PRVCkMeans[c] ~0
with ¢ > 2.

Proof. By Lemma 3.11 the collusion group of size ¢ = 2 with L; and Lp
reach the lowest level of privacy since they have sufficient information to

reconstruct the data with arbitrary precision. ([

Together, these two lemmas reinforce the need for Ly and Lp be trusted
parties. If L; and Lp are trusted, the secure multi-party computation pro-
vides a high level of privacy. Otherwise, a collusion group may reconstruct

sensitive data to arbitrary precision.
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Outsider attack. An outsider needs to get all the information held by
the parties, including the permutation 7, the random vector ¢, and the per-
muted sum from each party. Since messages exchanged in this protocol are
encrypted, an outsider needs to secure assistance from L and Lp to be suc-
cessful. Although this is a theoretical possibility, an outsider is superfluous
if L1 and Lp are malicious. Without insider collaboration, an outsider can
not reconstruct any information from the messages it manages to intercept.
The outsider with zero insider collaboration does learn nothing about the

sensitive data during the mining session. We expressed this result as:
DCP -
PRVCk:Means[O} =

3.4.2 Elliptic Curves-Based k-Means

Patel and colleagues [161] proposes a privacy-preserving distributed k-means
algorithm based on elliptic curves (EC-kmeans). They assume no trusted
party and use elliptic curves to achieve low overhead cryptography. The

authors present no analysis of inference attack or collusion.

Single Insider Attack. FEach peer knows its centroids, its cluster bound-
aries, the encrypted version of the global centroids, and the number of points
on each global cluster. Without collusion, a malicious party does not know
the boundaries of clusters from other parties, i.e., privacy is not compro-
mised. Therefore, we assign the highest privacy degree this scenario:
DCP
PRECkmeans[l](D) = PRrEangneansm(D) =00 (315)
Collusion Attacks. The initiator knows the information necessary to de-
crypt data in the mining session. Therefore, a collusion group with the ini-
tiator and any party L; can learn about the centroids and number of points
in each cluster on the party L;_;. With the centroids, cluster boundaries of
dataset D at L could be estimated and
DCP _ ' R .
PR ECkmeans(2) (D) = PRglggzwans[z] (D) = min{max C; — minC;} (3.16)

Outsider Attacks. Any attacker that is not part of the mining session

will not possess the information necessary to decrypt data. Recall that this
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information is held only by the initiator. Therefore, outsiders have less
information than single insiders. In this case, we indicate the impossibility

to know even the range of any cluster as:

PRggI]:means[O](D) = PRngZ;eans[l] (D) = (317)

3.4.3 Generative Models for Privacy-Preserving Clustering

Merugu and Ghosh [149] present an algorithm for distributed clustering and
classification (DDCGM). DDCGM still is a good representative of the dis-
tributed model aggregation approach, which remains a very active area of
interest [12, 22, 91, 92, 136, 169, 176, 241].

DDCGM algorithm outputs an approximate model Ae of a true global
model A\, from a predefined fixed family of models F', , e.g. multivariate
10-component Gaussian mixtures. This model approximates the underlying
probability model that generated the global dataset D. Merugu’s generative
models first computes local models )\;, from which the average global model

A is generated. The average model ) is given by
ps(@) =) vipx () (3.18)
i=1

where py(z) is the probability density function of a given model A. Although
the average model \ is a good approximation of the true model \., it might
not be very interpretable. Thus, the algorithm finds the model in a given
family F, which is the closest model to the average model A in terms of
KL-divergence. The algorithm uses A to generate a sample dataset D with
a Markov Chain Monte Carlo method. This dataset D is used with an
Expectation-Maximization (EM) approach® to find a good approximation
\. of the true (and unknown) global model A, i.e., \. maximizes the log-
Likelihood of D. The model ). is used as a cluster map, and every point x
is assigned to the cluster that maximizes probability at . The pseudocode

for this idea is shown in Algorithm 3.3.

SExpectation-Maximization (EM) is a probabilistic approach to learning with missing
values. In this case, the missing value is the cluster assignment of each data point.
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Algorithm 3.3 Distributed Data Clustering with Generative Models

Input: Set of models {\;}7 , with weights {v;}£_;, summing to 1, and mixture
model family F.
Output: Estimated global model Ae
Method:
1: Obtain mean model X such that

-
px(x) = Z vipa, (x)

2: Generate D = {x;}7", from mean model A using Markov Chain Monte Carlo
sampling. R
3: Apply EM algorithm to obtain the estimated global model A., such that

_ 1
Ac = L D7 )\C = . 1 > j
arg max L( ) = arg max - Z og(pa.(z5))

AcEF AcE€EF j=1

where L(D, )\.) is the average log-likelihood of D with respect to ..

Inference and Collusion Attacks against Generative Models

DDCGM does not exchange any points, only models [149]. It is important to
remember that generative models, as proposed by Merugu and Ghosh [149],
do give users a mechanism to enforce any particular level of privacy for local
datasets — namely, the number of models in the mixture. Therefore, a local
site chooses the number of models in the local model and ensures that the
local dataset has the desired level of likelihood of being generated by the
global model (cf. Example 2.9). According to the proposed approach, a low
likelihood means high privacy and vice-versa. Observe that the number of
models is the maximum number of clusters in the final model, typically many

orders of magnitude smaller than the dataset size.

Single Insider Attacks. In DDCGM, a central entity receives local gen-
erative models and combines them into an average generative model. Let
us assume that this central entity is a malicious peer. This entity has every
individual generative model from each party in the mining group. With no

further information beyond the output, we can apply PR™9¢(D).

Lemma 3.13 Let py(x) be a mizture model with k elements. The privacy
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level provided by generative models using py(x) and with no collusion is

PRgggGM[l](D) = PRggggGM[l](D) = min{max C; — min C; }

where C; € C, and C is a cluster map, according to the model py(x).

Proof. The central entity has information concerning every local model from
each party. With this information, the central attacker can compute the
min and max element in each dimension of every cluster from each party.
Assume that clusters are modeled by Gaussians. Thus, a given cluster C;
is modeled with mean y; and variance o?. Therefore, the attacker can infer
that the points in this cluster lies in the interval (u; — 30, p; + 30;),i.e. the

interval has size 60;, with 99.7% confidence’. O

Each model, in the generative models approach, represents a probability

REE could also

density function of data points in a given cluster. Thus, P
be used to measure the privacy provided by this approach.

For example, assuming each model is given by a Gaussian in a n dimen-
sional data space with covariance matrix ¥; for a given model, the entropy
of each model is

hi(x) = In\/(2me)™| 3|

where |¥;| is the determinant of the covariance matrix of i model. There-
fore,
PRE GGy (P) = PR B (D) = miin{th(gﬁ)} = ml.in{2ln Virerriily
(3.19)
Parties in this scheme can control the precision of attack and, conse-
quently, privacy by choosing the number of generative models used locally.
More local models lead to a more accurate mixture model. Therefore, to
maintain a desired amount of privacy, parties may want to set locally the
max number of models to be used. The amount of privacy preservation can
be controlled by the number of models used and the range of the cluster de-
scribed by any given model. Therefore, any given site can refuse to partake

in any given mining group when the number of generative models agreed by

the mining group is not in agreement with a local privacy policy or if the

"In statistics, the 3¢ rule for normal distributions says that 99.7% of the values drawn
from a normal distribution are three standard deviations away from the mean.

86



3.4 Privacy Analysis with Inference and Collusion Attack Scenarios

local models are too narrow (a small range implies a low privacy level).

Collusion Attack. When using the generative models approach, a collu-
sion group may learn which models are being utilized by an attacked site.
The attack could be carried out by discarding the models owned by the col-
luders, thereby isolating the models produced by the attacked parties. In
that case, if the central party, which aggregates local models, takes part
in the collusion, the attack is reduced to a single aggregator attack as the

aggregator site holds the local models from all parties.

Lemma 3.14 Central insider attack and collusion attack against generative

models produce the same privacy level.
PRB%ZGM[H (D) = PRE B (P) = PREDcaue (D) (3.20)

with ¢ > 2.

Proof. If the collusion group manages to get the local model from an at-
tacked site, the collusion attack reduces to the case where the central party
is malicious. In that case, the attacker’s problem is to find the boundaries of
each cluster. Since the central site has more information than any site, a col-
lusion attack will not produce a more precise attack than an insider attack
perpetrated by the central site. Therefore, collusion and insider scenarios

produce the same privacy level. O

If the central entity is a malicious party, the privacy of sensitive data
may be at stake. On the other hand, if the central entity is trusted, the
collusion group must garner the local models from the attacked parties. In
an extreme case, a collusion group would involve all parties, excluding the

aggregator and the attacked party.

Outsider Attack. Outsiders need to know the number of mixture models
and the parameters describing each local model. Assuming an outsider does
not have any parameter value, it cannot use the data it gets since generative
models exchange models rather than data. For that reason, intercepting

messages is useless unless the attacker gets the model parameters.
DCP
PRYpeamg (D) = o0 (3.21)
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Now, let us assume that an outsider attacker gets the parameter values
about the local model from a group of mining parties. In this case, the
attack has the same initial information as an insider attacker has, with no

improvement on the privacy bounds already discussed in the insider case.

3.4.4 Information Theoretical Approach to DDC

Shen and Li [184] proposed an information-theoretical approach to distributed
clustering (ITDDC). They assume a peer-to-peer network where each node
solves a local clustering problem and updates its neighbors. The clustering
problem is to fit a discriminative model to cluster boundaries that maximize
the mutual information between cluster labels and data points. With low
communication, local clusters are formed based on global information spread
through the network. The algorithm needs several rounds of iterations to

converge.

Inference and Collusion Attacks against ITDDC

When it comes to privacy, the authors do not investigate how the algorithm
would behave under inference attacks and do not investigate how much pri-
vacy this approach does provide. Therefore, we discuss the ITDDC privacy
properties indirectly from the features of the algorithm as presented in its

original paper.

Single Insider Attack. FEach party in ITDDC knows a set of discrimi-
native models defining the clusters boundaries of points on data sets and
from all its direct neighbors. We can apply PR™"9¢(D;) to compute how
much privacy is preserved at local dataset D; for a given model. Each party
estimates p;(k|x), a class label distribution defined by a local discriminative
model (e.g. logistic regression). The distribution of z in a given cluster is not
disclosed. Thus, each point can only be located in the interval corresponding
to its cluster boundaries. The privacy provided by ITDDC using p;(k|z) and
with no collusion is:

PR?TCDPDC[H(D) = PR§¥LD(]eDC[1](D) = min{max C; — min C; } (3.22)

where max C; and min C; are inferior and superior elements at the each

cluster, according to the boundaries defined by model p;(k|z).
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Collusion attack. Local models are the only information being exchanged
among the parties. Moreover, there is no special central entity holding ex-
tra information on data distribution at local datasets. Therefore, even if
malicious parties collude against another party, they cannot improve on the

single insider attack. Therefore,

PR?TC;DC[C](D) = PR (D) = PR (D)=P IDTCI%DDC[I](D)

ITDDCIc] ITDDCI1]
(3.23)
with ¢ > 1 colluding parties. More directly,
PR?TCEDDC[c](D) = PR?TCDPDC[H (D) (3.24)

Outsider attack. Any outsider that listens in on the messages may acquire
information about the discriminative models describing clusters’ boundaries.
However, if the attackers do not know which family of models were chosen
to describe cluster boundaries, they will not locate said boundaries. In this

case
PR?TCDPDC[O] (D) = o0 (3.25)

On the other hand, if outsiders know which family of models to model

cluster boundaries, the scenario becomes equivalent to a single insider attack.

3.4.5 Average Consensus-Based Clustering

Jia et al. [108] proposes a general framework to achieve privacy-preserving
distributed clustering. The authors propose a distributed algorithm called
privacy-preserving accelerated average consensus algorithm (PP-AAC). This
algorithm computes summations of terms from different parties without a
trusted third party. The protocol is iterative and is guaranteed to converge.
PP-AAC is based on noise addition to the sum terms to avoid unintentional
data leakage. The noise follows an exponential decay and tends to zero with
the increasing number of iterations.

PP-AAC is used as a building block to implement clustering algorithms.
The proposed framework consists of running a clustering algorithm locally
to compute a local model and using PP-AAC to compute a global model
by the sum of local parameters. The authors implemented k-means, fuzzy

clustering, and Gaussian mixture algorithms following this approach.
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PP-AAC assumes there are M parties organized in a graph known to
all participants. Each peer holds a dataset with N; data points and local
sensitive information S} ; about each local cluster, with £ = 1,..., K and
i=1,...,M. Sy, stores the sum of attribute values, number of points, and
covariance matrix. During the protocol execution, parties send a perturbed
version of Sy ; to other peers until convergence of the global values Gy, with
k = 1,...,K. The summation protocol is repeated at each step of the
clustering algorithm. Moreover, each peer communicates only with its direct
neighbors. When the algorithm ends, each local party knows the global
cluster centroids uy, with k =1,..., K.

Inference and Collusion Attacks against PP-AAC

PP-AAC’s approach is similar to model aggregation as it uses cluster de-
scription (centroids) and does not exchange any local data points. It is also
similar to SMC, as it is an iterative algorithm that protects original data
in a multi-party computation. In the following, we discuss attack scenarios
against PP-AAC.

Single insider attack. A single party knows the local dataset, the number
of data points V; and local sensitive information Si,i describing sum and
number of points at local clusters, and the global cluster centroids pg. Ad-
ditionally, the graph describing the connections among the parties is public.
After the protocol, all parties also know the global information G describing
the centroids of each cluster. No other information about the data is avail-
able to single peers, such as distance to the centroid or standard deviation of
points in a given cluster. Therefore, single peers cannot reconstruct points

from other peers due to a lack of information. We represent this as:
PREE Aoy (D) = o (3.26)

Collusion attack. According to the original paper [108], a group of ma-
licious peers may be able to compute the centroids of a victim peer P;.
The attack is possible if the collusion group shares the information they ex-
changed with the victim P;. In this case, the attackers can cancel out the
noise and subtract each contribution from the global values. However, there

is no global cluster map available to the malicious group. Furthermore, the
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distances from each point to cluster k at P; are never exchanged during
the protocol. Therefore, local data from victim P; cannot be reconstructed

under collusion in PP — AAC'. Therefore, we have:
PRpG A 4cpq(D) = o0 (3.27)

Outsider attack. PP-AAC iteratively compute aggregation of local sen-
sitive information using a noise-based distributed algorithm. An outsider
working with no help from insiders, no collusion group, has access only to
the perturbed information exchanged during the protocol’s execution. There-

fore,

PRPE L ic(0) (D) = 00 (3.28)

3.5 Summary

This chapter introduced new privacy measures for specific data mining tasks
(cf. Sec. 3.3), which are applied in the subsequent chapters. These new
measures were proposed to overcome the limitations identified in the studied
measures. Starting from a set of formal properties, it was shown that the new
measures satisfy all required properties and, therefore, improve pragmatically
over the previous ones. A summary of the properties of the new measures is

presented in Table 3.2.

PRDC’P (D) PRTBK(T)

Application Clustering Time Series
Non-negative Theorem 3.1 Theorem 3.5
P1 (collusion) Theorem 3.2 Theorem 3.6
P2 (point-level) Theorem 3.3 Theorem 3.7
P3 (interpretation) Theorem 3.4 Theorem 3.8

Table 3.2: Summary of New Privacy measures for Distributed Data Clustering
and Time Series Mining

The new measures were applied to some representative privacy-preserving
algorithms, and Table 3.3 presents an overview of the main findings from

studied algorithms. The analysis above shows that collusion is indeed a
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Approach # of TTP Outside attacks Single attacks Collusion attacks

PR PR PR
VC-kmeans [213] 3 00 min{maxC; —minC;} =~0,¢c>2
EC-kmeans [161] 0 0o 00 min{max C; — min C;}, ¢ > 2
DDCGM  [149] 0 % min{2mV Gre" =iy min{2MV G IE e > 9
ITDDC [184] O 00 min{max C; — minC;} min{maxC; — minC;}, ¢ > 2
PP-AAC [108] 0 00 00 00, ¢ > 2

Table 3.3: Summary of privacy-preserving distributed data clustering algorithms. (TTP = Trusted Third Party)
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primary source of privacy breaches and that algorithms can be separated ac-
cording to their vulnerability to collusion groups and the malicious behavior
of a site with a unique role in the protocol, e.g., a central site or an aggre-
gator, or a protocol initiator. VC-kmeans algorithm leaks information if the
central site colludes, whereas EC-kmeans is secure and only discloses range
information under a collusion attack that involves the initiator. DDCGM
has a limited vulnerability to the central site but not to collusion; ITDDC
does not use a central site and only discloses cluster ranges, irrespective of
collusion. PP-AAC is an interesting case where the privacy level is high,
even with collusion. However, PP-AAC trades off privacy for time since it
needs several rounds to compute each step.

Some identified benefits from the new measures are the ability to indi-
cate the vulnerabilities of selected algorithms to collusion in different attack
scenarios and detect point-level privacy breaches. Moreover, the proposed
measures provide an intuitive notion of privacy as the size of the interval
from where a given random variable can be drawn. On the downside, it
is necessary to assume a particular malicious view on the attacked dataset,
which is quite hard to preview in some scenarios. Nonetheless, such analysis
may result in an upper or lower bound on the privacy level, in a process that
can be refined in subsequent analysis.

The subsequent chapters endeavor to investigate inference attacks and
appropriate privacy measures for two specific data mining tasks: clustering
and pattern discovery. In Chapter 4, the case of distributed data clustering
is investigated. Then, in Chapter 5, we focus on the distributed pattern

discovery in time series.
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Chapter 4

Privacy-Preserving Distributed

Data Clustering

“Civilization is the progress toward a society of privacy.”
(Ayn Rand)

“The Milky Way is nothing else but a mass of innumerable stars
planted together in clusters.”
(Galileo Galilei)

The previous chapter discussed the limitations of current privacy-preserving
measures when malicious peers are part of the mining group. This chapter
further develops these initial ideas focusing on distributed data clustering
(DDC). We start this chapter by analyzing the KDEC algorithm for DDC
[118].

KDEC is a density-based clustering algorithm that can find arbitrary
shape clusters with a few rounds of communication between the mining
agents (cf. Sec. 4.2). It uses a kernel estimate density and does not as-
sume any underlying probability model. Therefore, it can be used even
when there is no information about the data distribution. Furthermore, the
communication costs are reduced since only models describing datasets are
exchanged among agents and not raw data.

The kernel density estimation-based approach is interesting because it
promises privacy preservation as no original data point is ever sent over the
network — only a dataset model is communicated. However, as we discuss
later in this chapter (cf. Sec. 4.2.3), under certain circumstances, the density

estimates may be used to reconstruct the original data with high accuracy.
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It follows that sensitive data may have its privacy compromised even if no

data point is transmitted off the original site.

This chapter investigates how to improve density-based DDC so that
users can have control over the potential privacy leakage during a mining
session. We first briefly review kernel-based density estimation and ana-
lyze the privacy level of KDEC employing privacy measures developed in
the previous chapter. As a result, we propose KDEC-S, an algorithm for
privacy-preserving distributed data clustering. KDEC-S uses a kernel den-
sity estimation based on a new kernel approximation function, which allows
for a controlled level of ambiguity during the process of density estimation.
As a direct result, KDEC-S enhances the protection provided by the density
estimation-based approach. We also present a complete privacy analysis of
the said algorithm, sourced from the perspective of inference attack scenar-

ios, as defined in our privacy framework (cf. Ch. 3).

4.1 Clustering Distributed Sensitive Data

In this chapter, the distributed scenario defined in Section 2.3.3 is assumed,
i.e. there is a set of sites {S;}1 |, which are called local sites. Each local site
S; has a local dataset D; and a local mining agent L;. Mining agents are
interconnected to other mining agents forming a pure peer-to-peer architec-
ture. Only the local mining agent L;, residing at site S;, has access to local
dataset D;.

Recall the definition of sensitive data cited in Chapter 3: sensitive data
is any piece of data that an agent decides to keep hidden from other agents.
Here, two privacy constraints are considered: (i) data about individuals
should not be disclosed due to law imposition (e.g., medical data), strategic
decision (e.g., business data), or personal decision (e.g., annual income); (ii)
data about the data collector should not be disclosed as well. To illustrate the
second constraint, consider a group of hospitals planning to share information
about death during heart surgery. Likely, a particular hospital does not
want to be indicated as the one with the highest death rate, even though the

cooperation may represent an opportunity to improve medical research.

In the following, the problem of privacy-preserving distributed data clus-

tering is presented formally.
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Problem 4.1 (PP-DDC) Let A(D) be a clustering algorithm that maps
any dataset D to a cluster map C = {Cy} C 2D whose elements are pairwise
disjoint. C is called a clustering of D. Let D = {x; |i=1,...,N} CR"
be a set of objects. Let L = {L;|,j = 1,...,P} be a finite set of mining
agents. Fach agent L;, residing on site S, has access to one dataset D; of
size N;j. We assume that D = Ule Dj. The PP-DCC problem is to find for
Jj=1,...,P, alocal cluster map C; residing in the data space of L;, such
that:

(i) C; ={Cr N Dj:Cj €C} (correctness requirement );
(1) Time and communications costs are minimized (efficiency requirement );

(iii) At the end of the computation, PR 4 (D;) is not lower than a user

given local privacy threshold. (privacy requirement ).

Notice that the data distribution across sites is assumed to be homo-
geneous, as discussed in Chapter 2. Homogeneity impacts the design of a
solution because it assumes that all sites know the attributes describing the
data objects. The centralized solution to the DDC problem is to collect all
the distributed datasets D, into one centralized repository where the clus-
tering of their union is computed and transmitted back to the sites. This
approach, however, does meet neither communication requirements nor pri-

vacy preservation requirements.

4.2 KDEC Algorithm

This section discusses KDEC, a density-based approach to distributed clus-
tering that is the starting point to our solution. The privacy properties of
KDEC in different attack scenarios are then extensively analyzed. After
this privacy analysis, a new privacy-preserving scheme, called KDEC-S, is

proposed.

4.2.1 Algorithm Overview

Density-based clustering reduces the search for clusters to the search for
dense regions in an n-dimensional data space. The first step is to estimate a

probability density function from which the given dataset is assumed to have
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Figure 4.1: Density estimates using Gaussian kernels. Fach kernel is centered at
a different point. The window width h is set to 0.5 in (a) and 1.0 in (b).

arisen. An important family of methods for density estimation is known as
kernel estimator [94], which does not make any assumptions on underlying
generative models, computing the estimates directly from the data instances.

Clusters, in density-based clustering, are defined by local maxima in the
density surface. Through hill-climbing, each point is assigned to one local
maximum, and all points connected to the same local maxima receive the
same cluster label [102].

Let D ={x; |i=1,...,N} C R” represent a set of data objects. Let
K : R — R be a non-negative, non-increasing function on R with finite
integral over R. Let d : R” x R" — Ry U {0} be a distance function. Let
h € R be a scaling parameter called window width. A kernel-based density
estimate Qg p[D] : R™ = R4 U {0} is defined as follows:

eralblo = 3 oK () )

=1

Equation (4.1) defines the estimate at x € R™ as a weighted sum of
scaled distances of all data points from the neighborhood of x. An example
of kernel function used in density estimation is the restriction of the Gaussian
function to Ry U {0}. Figure 4.1 shows two examples of density estimates
computed with Gaussian kernels. With A = 0.5 the density estimate is more

bumpy and with h = 1 the density is smoother.
KDEC [118] is a distributed mining scheme conceived to perform data
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clustering based on non-parametric kernel density estimate of data [102,
159, 188]. The central idea is built on the fact that kernel density estimates
are: (i) additive for homogeneously distributed datasets; and (i) can be
transmitted in the sampled form to hide the original data points.

Under the KDEC scheme, it is assumed that there is a set £ of agents
willing to start a clustering session, each of which is located at a different
site S;, with access to a local dataset D;. Agents are organized in a pure
peer-to-peer network. All agents in £ agree on using the same distance d,
kernel K, and window width h. Moreover, a distinguished agent is chosen
among the peers to act as a helper, denoted Lpejper (cf. Alg. 4.4).

The negotiation protocol is not explored in further detail in this the-
sis. However, we assume it to be a multiplayer negotiation protocol that
seeks to find a consensus agreement about the parameters’ values, e.g., the
kernel bandwidth. To ensure outsiders will not eavesdrop on the negotia-
tion, we assume an asymmetric key system, like RSA or ElGamal [148, Ch.
8], is in place. The negotiation could consist of two steps in the simplest
form: (a) the initiator broadcasts a call for a mining session in the peer-to-
peer network with proposed parameter values; (b) interested peers answer
to the call accepting the proposed values. A more flexible approach would
allow several rounds of counter-proposals until an agreement or a deadline is
reached. There are several sophisticated negotiation protocols for multiparty
negotiation, e.g. [10, 16, 137, 146] to name a few. After the agreement, the
peers in the mining session are coordinated as indicated in the algorithm
using direct messages between peers.

The KDEC scheme has four main steps, detailed below.

Local Density Estimation. Each agent L; € £ computes its local kernel
density estimate (LDE), which is denoted by ¢k »[D;](+), as follows:

@K’h[Dj](x):% 3 K(d(xhx)) (4.2)

x;ENeigh(x)
where Neigh(x) represents the set of neighbors of point x. LDE represents
a local model of the data distribution at site £; (cf. Fig. 4.2).
The sum of the LDEs equaling the global density estimate (GDE) is
denoted as ¢[D](+). For brevity, this study will omit K, h from the notation

in the following.
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Figure 4.2: LDFE at site j. Density Figure 4.3: Sampled LDE at site j,
describes only local data which will be sent to the Helper Agent.

A
A
A
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Figure 4.4: Sampled GDE at the Figure 4.5: Reconstructed GDE at
Helper site. This sampling represents  Site j. GDE describes the whole dis-
the addition of all LDFEs. tributed dataset.

Sampling. The approach exploits multi-dimensional information sampling
to minimize communications among sites. Before sending its LDE to the
helper, each site transforms it into sampled form. For any x € R”, let
Z1,...,Ty be its components. Let 7 = [r,...,7,] € R™ be a vector of
sampling periods and let z e 7 denote [121,...,T2,], where z € Z™. Let
R(z1,29) C Z™ be the n-dimensional rectangle having diagonal (z1,z2). The
sampled form of ¢[Dj](-) is the finite real sequence {p,[D;]|} defined by:

Pa[Dj] = {pIDjl(z 0 7) : 2 € R(z1,22)} (4.3)

where the sampling parameters z;,z2 € Z™ and 7 € R" are previously agreed

among the mining agents (cf. Fig. 4.3).

Global Density Estimates. The helper site, Ljeper, receives all samples
of local density estimates and computes the sampled global density estimates
(GDE) using Equation (4.4) for all z € R(z1,2z2) as the sum of sampled
LDEs.

P
22[D] =) _ &a[Dj] (4.4)
j=1
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Algorithm 4.1 DECluster

Input: local dataset D;, global sample density estimate globalSam,kernel K, win-
dow width h, initial local cluster map C
Output: final local cluster map C
Method:
1: for i = 1 to Dj.count do
2 if not(C.clustered(i)) then fixedPoint(i, globalSam, K, h, C);
3 end if
4: end for
5: return C

This sum is possible because density estimates in the sampled form are ad-
ditive. Then, the helper sends the sampled GDE back to the peers (cf. Figs.
4.4 and 4.5).

Local Clustering. From the sampled global density estimate ¢,[D] the

local agents can approximate the true GDE using the interpolation formula

@[D](x) = Z $g| D] sinc <xl - z1> .- sinc <$n — zn> (4.5)

T T
z€R(z1,22) 1 "

1 if x =0,

sin T
T

sinc(x) =
otherwise.

Expression (4.5) is an application of the well-known Whittaker-Shannon
interpolation formula (see, e.g., [101]) to the domain of density estimates.
Note that the function represented by Equation (4.5) is not extensionally
equal to the kernel global estimate ¢[D](-), both because kernel estimates
are not band-limited to any frequency region, and because of the truncation
in the series. However, it was shown in [118] that the approximation only
introduces a small error and, consequently, we can choose 7 so that the
Fourier transform of the estimate ¢[D](-) is negligible outside the region
[—7/T1,m/T1) X «++ X [=7 )Ty, 7/ Ty), and z1,2z2 such that the estimate is
negligible outside the region defined by the corners z; and z,.

Finally, each local mining agent L;, at site S;, can use the reconstructed
global density estimate to cluster its local data (cf. Alg. 4.1). To this end, it
uses a gradient-driven hill-climbing procedure to find local maxima points in
the global density estimate. All points connected to one given local maximum

are labeled to the same cluster. Function uphill() advances a fraction § of
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Algorithm 4.2 DECluster’s Auxiliary Functions

1: function fixedPoint(i, D;, globalSam, 1, C)
2: C.setVisited (i);

3 u < uphill(¢, D;, globalSam, T, epsilon);
4: if C.clustered (u) then

5: C.setLabel(i,C.getLabel (u));

6: else

7 if C.visited (u) then C.setLabel(i, u);
8 else

9: fixedPoint(u, D;, globalSam, T, C);
10: C.setLabel(i, C.getLabel(j));

11: end if

12: end if

13: C.setClustered(i);

14: end function

1: function uphill(i,S, globalSam, T, ¢€)

2: x < S.get(i);

3 v < SeriesGradient(z, globalSam, T); // using Eq. 4.5
4: if ||v|| > ¢ then

5: return x + v 9

6 else

7 return

8: end if

9: end function

the gradient in its direction, if the gradient’s norm exceeds a threshold e.
If a d-neighborhood of the object returned by uphill() contains an already
clustered data object, the current cluster label Id is set from that object’s
label. Otherwise, the act of checking whether uphill() returned the same space
object signals to fixedPoint() that the proximity of the local maximum has
been reached. The maximum is marked by the method setVisited() applied to
the current space object x; this ensures that subsequent paths converging to
the same local maximum will use the same cluster label as the current path.
Algorithm 4.1 shows the pseudo-code for the local clustering procedure.

The pseudo-code for an arbitrary agent L; is shown in Algorithm 4.3,
while Algorithm 4.4 shows the pseudo code for Helper.

4.2.2 Complexity Analysis
Time. KDEC is superlinear in the number of points in the dataset.

Theorem 4.1 KDEC requires O(|G|M; + Nq(N)) steps at a local site and
O(|G]) at helper site, where |G| denotes the number of sampling points and
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Algorithm 4.3 KDEC: Arbitrary Site

Input: a group of mining agents L, local dataset D;, kernel function K, widow
width h, sample rate 7, corners z; and zs

Output: Cluster map C;

Method:

At an arbitrary party j do:

negotiate(L geiper, K,h,T, 21,22);

sam; < sampleDensityEstimate(D;, K, h,7, z1, 22);

send sam; to Lyeciper;

receive globalSam from Lgeper;
return C; < DECluster(D;, globalSam); /] cf Alg. 4.1

Algorithm 4.4 KDEC: Helper Site
Input: a group of mining agents L.
Output: global sampled density estimate globalSam
Method:
At the Helper site do:
1: receive sam; from all agents L; € L;

2: send globalSam = Z‘f:ll sam; to all agent L; € L;

M; average size of the neighbor set, g(N) is the cost of the nearest neighbor
query and N is the size of the data set.

Proof. Density estimates are computed only at |G| sample points (grid
points), spaced by the sampling rate 7. For each sample point, only the
nearest neighbors are considered. Therefore, local estimation and sampling
take O(]G|Mj) steps, where |G| denotes the number of sampling points and
M; is the average size of the neighbor set. In most cases, to obtain rea-
sonable density estimates, h must not be less than a small multiple of the
smallest object distance. As 7 &~ h/2, the number of samples should rarely
exceed the number of objects in D; if only space regions where the density
estimate is not negligible are sampled.

The time complexity of DECluster is O(Ngq(NV)), where ¢(N) is the cost
of a nearest neighbor query. Function DECluster calls N = Dj.count times
fixedPoint(). At the beginning of every iteration in DECluster, the sets of
clustered and visited objects are equal. fixedPoint() is never called with
a clustered object as an argument and visits unclustered objects at most
once. Therefore, even if the number of visited data objects in one call of
fixedPoint() is bounded only by N, the number of visited data objects in all
calls is only N. For each visited point, a single k-nearest neighbor query

suffices to compute the gradient and the next uphill object. The methods
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for nearest neighbor queries can be efficiently implemented by spatial access
structures like the KD-, or MVP-, or M-tree.

Upon receiving all samples from the local sites, the helper adds all sam-
ples up with Eq. 4.4, summing all estimates from different peers for a given
sample point z. Note that |G| is given by the size of the sampling rectangle
defined by the corners z; and zo and sample rate 7.

Therefore, the overall complexity of KDEC at a local site is then O(|G|M;+
Ng(N)). At the helper, it is necessary O(|L||G|) steps to compute global
density, where |£]| is the number of peers. Notice that the cost of clustering
Nq(N) dominates over the cost of density estimation |G|M;.

O

Communication. The size of messages in KDEC is given by sampling

parameters and is independent of the size of the dataset.
Theorem 4.2 KDEC generates message of size O(|G|), where G sampling
grid.

Proof. The sampling points are inside a rectangle defined by the corners z;
and zo and sample rate 7. The size |G| is independent of the size of the
dataset. O

Let us remark that |G| is usually much smaller than the size of a dataset
D; when only space regions with non-negligible density estimates are sam-
pled.

4.2.3 Inference and Collusion Attacks Analysis

In this section, we analyze the extent to which KDEC preserves privacy

under the different attack scenarios presented in Chapter 3.

Insider attacks

In the following, we first analyze single insider attacks and then investigate

attacks under collusion with different formations of malicious groups.
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Single Insider Attack. The most simple attack scenario is the attack per-
formed by a single malicious participant of the mining group. The attacker
is assumed to be a mining peer who executes all steps of the KDEC protocol
as expected and tries to reconstruct the original data points after receiving
the global density. Since this attempt occurs after the protocol termination,
this attack is always likely to occur, and there is no way to detect it. The
question is: what can an insider learn from other parties and to what extent?

Recall that an insider attacker knows the parameter values agreed before
the KDEC protocol starts, i.e., the kernel function K, the window width h,
and the distance function d. The attacker is also assumed to have a local
dataset D;, used during the protocol. Moreover, the sampled global density
estimation is distributed to all agents who cooperate in the data mining
process, including the attacker.

From the above, we can state the basic privacy levels of KDEC, under
the different privacy metrics from the previous chapter. Note that PR;??)QEC
is not applicable in this context since a global cluster map is not disclosed.
Furthermore, a global density estimate is available. In this case, a more
precise metric is PREX . The resulting privacy level will be expressed as

PR%CJ‘D (D), as discussed in the previous chapter.

Lemma 4.1 Given dataset D, with global density estimates ¢|D](x), the

privacy level of KDEC under o single insider attack can be computed as:
PR%%%C[H = PR pep)(D) = (D) (4.6)

with the entropy h(D) computed as

WD) = - [ ¢la)log, é(w)ds (4.7)
where $|D](x) is the global density estimates.

Proof. This is a direct application of Eq. 3.9, using the global density esti-
mates @[D](x) as background knowledge the attacker has on the global data
distribution. The attacker has only samples of the global density. However,
the global estimates ¢[D](x) can be reconstructed using the Eq. 4.5, which
is possible for the single inside attacker because it knows all parameter values

necessary to use the said equation. O
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Algorithm 4.5 Pointhunt

Input: zq, Dy, ¢;

Output: D’;

Method:

1: x « search(xq, Dy, €);

5 « | density(z) — [Do]() |;

D'« Do;

if x # xg then
Snew ¢ reconstruct(z,d);
D' <+ DyU {Snew};

end if

return D’

Algorithm 4.6 Pointhunt’s Auxiliary Functions

: function reconstruct(z, d);
return z + hK1(J);
end function
: function search(z, Dy, €);
Y« {y € [z, maz] : |density(y) — @[Dol(y)| < e}
if Y # 0 then
return minY;
end if
return z;
end function

An important question is: can a malicious peer use a reconstruction
algorithm to infer non-local sensitive data in KDEC? To illustrate the in-
tricacies of an insider attack in KDEC, the pointhunt() algorithm (cf. Alg.
4.5) was developed — a simple data reconstruction method for datasets of
reals. pointhunt() can be used to perform an inference attack given a density

estimate of the victim’s dataset [52].

Lemma 4.2 Given a data set D and its global density estimates ¢[D](x),
if the estimates were computed with a kernel K, an inside attacker is able to
produce D', which is a reconstruction of the original dataset D containing at

least one point, with arbitrary precision using the pointHunt algorithm (cf.
Alg. 4.5).

Proof. As input, pointhunt needs a starting point xg, a (possibly empty) set
of reconstructed data points Dg, and a threshold e representing the deviation
of the current from density. The density function implements the computa-
tion of the global density estimates of any given point with the current kernel

function and dataset D (using Eq. (3.9)). Furthermore, it assumes that the
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parameter values of the mining section being attacked are known, i.e. a func-
tion K and its inverse K !, window width h, the interval [min, maz] D D
such that {density(min),density(maz)} C [0,]. Note that parameter values,
which are defined in the negotiation step, are available to any insider peer.

The algorithm works by reconstructing one data point at a time, from left
to right, as follows. Initially, x¢o = min and Dy must equal a (possibly empty)
set of points that are already known to be in D, e.g. the attackers’ local
dataset. Function search locates the leftmost point x to the right of xg where
the difference between the actual and reconstructed density is not negligible,
i.e. exceeds €. Given x, a point spey, which is likely to be in D, is calculated
by function reconstruct using hK ~1. This heuristic can be informally justified
by noting that x is the leftmost location that is significantly influenced by
D\ Dy and, therefore, x is likely to be significantly influenced by only one
point in D\ Dy.

The ideal case for an attacker occurs when K, and, consequently, the
estimate, has bounded support. Examples of kernels with bounded support
include the triangular pulse kernel! and the Epanechnikov’s kernel?. Then
€ can be set to zero and search returns a point of the border of the support
of the function density(z) — ¢[Dop](z). Assuming, without loss of generality,
that K—1: [0, wimaz] — [0,1], with wye: = K(0), then there must be one
data point that is located at « + hK 1, which is returned by the function
reconstruct. D’ is built by calling pointhunting iteratively using the D’ as

initial guess for the next iteration. O

Whereas the experiments with bounded kernels led to full disclosure of
the dataset, the attacker is less likely to succeed if the kernel has unbounded
support, e.g., the Gaussian kernel. In general, it is fair to affirm that the
best results are obtained when points are not too close to one another given
a value of h. Figure 4.6(a) shows the density estimate and the contribution
of each kernel corresponding to the original data points. Figure 4.6(b) shows
the data points which were correctly reconstructed by pointhunt. Notice that
this simple algorithm could not locate the points in the region where said

points are too close to one another. On the other hand, one cannot ignore

'The triangular pulse kernel is defined as K(u) = (1 — |u|) Iy <1}, where I is the
indicator function.

*The Epanechnikov kernel is defined as K(u) = 23(1 — ) I{ju<1}, where I is the
indicator function.
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(a) Original data (b) Reconstructed data

Figure 4.6: Original data (a): Gaussians centered at each point are indicated
under the density curve. Reconstructed data (b): some points were not reconstructed
where the density is too high.

the effect of the attacker’s local dataset on the global density estimate. The
attacker may use its local dataset as an initial set in the pointhunt, thus
increasing the accuracy of the attack. In this study’s experiments, the better
the initial dataset, the better the reconstruction results were.

This attack leads to a reconstruction of data points with arbitrarily high
precision, which is controlled by the parameter € in the algorithm pointhunt.
Therefore, assuming that the sensitive information is an attribute value, the
single insider attacker may reconstruct it with an arbitrary level of confi-

dence, which is summarized as follows:

e If the kernel is bounded, the single insider attacker can reconstruct
all sensitive points to an arbitrary degree of precision chosen by the

attacker.

o If the kernel is unbounded, the single insider attacker can reconstruct
some sensitive points to arbitrary precision chosen by the attacker.

Points in crowded regions are less likely to be reconstructed by pointhunt.

If the kernel is bounded, the attacker can transverse the density estimates
detecting the kernel borders, one border for each point in the dataset. This
attack is possible since the malicious peer knows which kernel K was used
to produce ¢[D](x), with all relevant parameters to compute its inverse.

In an attack against an unbounded kernel, the attacker needs to apply
pointhunt iteratively. The total computational effort is O(nN) since every

invocation of pointhunt requires the computation of the density around a
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given point x, where n is the size of the dataset being attacked and NV is
the number of neighbors of an arbitrary point z considered by the density
function.

Nonetheless, if there are more than two parties, the attacker cannot assign
the reconstructed data points to the data owner. In the two-party case, the
attacker can subtract its density estimate from the global estimate, and,

therefore, the reconstructed points can be assigned to the other party.

Lemma 4.3 A single insider attack against KDEC with pointhunting results
in privacy level
DCP N
PRy ppopn = PREDpen (D) = € (4.8)

with arbitrarily small €, i.e. € = 0.

Proof. From lemma 4.2 we have that pointhunting produces a reconstructed
dataset D’. The error in the estimation of the true data points is controlled
by e which is given as parameter and is used in the search function (cf.
auxiliary functions in 4.6). Points in the extremity of the data space will
receive influences of fewer neighbors in the density space and will be more
easily detected by pointhunt (cf. Alg. 4.5). Therefore, at least the points in
the less dense regions of the original dataset will be reconstructed into the

dataset D’ within the range of precision with e ~ 0. U

Collusion Attack without Helper. Let £ be a mining group and M C £
a collusion group. Further, M does not include the helper. In this attack, the
members of M coordinate their actions to learn sensitive information owned
by the remaining peers in the group £\ M. The reconstruction method
used by the attackers can be the same as in the insider attack. It is assumed
that colluders know information as in the previous attack scenario, i.e., all
parameter values and a local dataset. Additionally, the assumption is made
that attackers can exchange local density estimates.

As in the single insider attack, a collusion attack may disclose points
located in not overly crowded regions. Moreover, attacker agents exchange
their local density estimates so that the partial density produced by the
summation of attackers can be subtracted from the global density estimate.
The resulting density estimate represents datasets owned by £\ M. Using

pointhunt, the attackers may use their local datasets as an initial set, thereby
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increasing the precision of the reconstructed sensitive data. Therefore, every
peer needs to be sure its local dataset does contain less populated regions to
safeguard against the risk of disclosure.

There is another critical point to mention regarding collusion attacks.
If the number of attackers is |£| — 1, the data ownership is also revealed,
i.e., attackers can assign the data points to a specific peer or data holder,
which is sensitive information in some domains, like health care (knowing
the death rate of a specific hospital is a piece of sensitive information about
that hospital).

In essence, colluders may learn:

e everything a single insider attacker may learn, i.e., sensitive values of

points in regions with low density

e additionally, a collusion group may be able to disclose the data holder’s

identity.

A collusion attack involves an extra message round to exchange extra
knowledge after the protocol is over. The reconstruction procedure, as in the
single insider attack, takes a computational effort which is O(nN'), where n is
the number of points to be disclosed, and N denotes the number of neighbors

of an arbitrary point x.

Collusion Attack with Helper. The helper is a distinguished peer cho-
sen in the negotiation phase, used to collect local densities sent by different
peers and sum them up. The helper in KDEC knows all of the sampled
local densities. However, it does not know the parameters’ values since they
are negotiated directly between the mining peers in the first phase of the
protocol. Consequently, a malicious helper must cooperate with other peers
inside the mining group to get the parameter values.

Assuming that a malicious helper forms a collusion group with a mining
peer, it can use pointhunt to reconstruct sensitive data based on the indi-
vidual local density estimate, as received from the peers. Additionally, this
attack reveals data ownership since the helper can assign each local density
estimate to a specific mining peer. Further, colluders may also send a sub-
set of local datasets to improve the reconstruction results obtained by the

malicious helper.
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The colluding helper attack has the same complexity concerning time

and communication as the collusion attack discussed previously.

Summary of Insider Attacks.

Theorem 4.3 When colluding groups are formed by ¢ > 1 colluders, a col-
lusion attack, with or without the helper, against KDEC with pointhunting
yields privacy level of PRQ%%CM(D) > PRQ%%C[C](D) ~ 0.

Proof. Colluders already have access to the global density. Therefore, using
pointhunting the attackers may reconstruct sensitive data as shown in lemma
4.2. With more information, e.g. local density estimates, the precision of the
attack can be improved, because the initial dataset passed to pointhunting
allows the process to focus only on the data points in D\ D., where D, is

the union of datasets owned by the malicious peers in the collusion. O

Outsider attacks

This study’s scrutiny must now turn to the situation where the attacker is
not a member of the mining group. In this scenario, it is unknown which
information the attacker has. For that reason, the analysis of the different
degrees of reconstruction is based on assumptions made regarding the in-
formation the attacker managed to acquire. It is assumed that the outside
attacker does not collude with any group member; otherwise, the scenario
would be equivalent to an insider attack. Here, the goal is to answer what
can be learned by the outside attacker, assuming it is working alone, without

any insider help.

Extreme Case. An extreme case occurs when the attacker manages to
eavesdrop on all of the parameters’ values. It is assumed that the attacker
can use a reconstruction function like the pointhunt algorithm. Note, how-
ever, that the attacker has no access to any local dataset used to compute
the global density estimate. A local dataset would allow the attacker to re-
construct more data points and improve the reconstructed data’s precision.

Considering every factor combined, the attacker can learn sensitive data

represented by points in less dense regions. Compared to the single insider
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attack, the main difference is that the outsider’s initial set is empty, whereas

the insider uses its local dataset in data reconstruction.

Attack without the window width h. The parameter h defines how the
kernel function will be stretched in the x-axis, i.e., h determines the range
of influence of one point over its neighbors. If A is unknown, it is impossible
to compute ¢[D] and, consequently, pointhunt cannot be used. However, if
there is at least one outlier point we can compute h in the following way.
Let the set X* = {z* : ¢[D](z*) = K(0)} is a set of outliers. Let us choose
a point x. close to z* such that ¢[D](z.) = w < K(0). Using the kernel
inverse K~ 1: [0, Wiae] — Ry U {0}, where w0, = K(0), we can compute
K=Y(¢[D](x.)) = K~ '(w) = d,, representing the distance from z* where
one point x. must be placed to receive the influence w from x*. Nevertheless
x. lies at d(z*, z.) from z* because it was scaled by h in the computation of
©[D]. We have that K(%) = w = K(d,) what give us dﬁ = dy,. After
substitutions we get % = K~1(¢[D](x.)). Finally, h can be computed

with:
d(z*, )

K=Y (p[D](xc))

In this scenario, the extra effort to the attacker comes from computing

h = (4.9)

the parameter h. Building X™* can be done in a single pass through the points
in ¢[D] and involves only looking for the smallest local maxima, which takes

O(n), where n is the number of outliers in the density estimate p[D].

Attack without the distance function. The distance function plays a
crucial role in the computation of the GDE. Its inverse is also critical since
the attack algorithm uses it to reconstruct the points. Assuming that the
distance is unknown to the attacker, he/she may try to use well-known dis-
tance functions, e.g., Euclidean distance. To test the efficiency of the distance
function chosen, the attacker can use hK ~1(¢[D](z;)) = d(z*, z;), where z*
is an outlier point, and z;,7 = 1,...,n are points close to x*. The success
of this approach will depend on how many different candidate functions are
chosen and if there is at least one outlier in the GDE. Once the attacker has

found a suitable distance function, the attack can proceed normally.

Attack without the kernel function. Without the kernel function, the

attacker cannot use the trial-and-error approach used in the inside attack
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to reconstruct the points. There are at least two options; the first involves
attempting to guess the kernel function, while the second option consists of
trying to find the points with methods independent of knowing the kernel

function.

Guessing the kernel can be accomplished if the dataset contains outliers.
In this case, the attacker can build a table with the density of points located
around an outlier point #*. This table can be interpolated to get a candidate
kernel function K. This K is simple to build though it will undoubtedly lead

to many approximation errors, thus compromising its usability in pointhunt.

Finding points without kernel can be accomplished if the kernel function,
or its derivatives, has discontinuities. It is possible to find the points using
a simple observation: the distances between discontinuities on one axis are

equal to the distances between data points on the same axis.

Attack without the sampling parameter. KDEC uses a multidimen-
sional sampling technique to transform the density estimates into a sequence
of indexed values. These indexes allow the peer agents to transmit informa-
tion without explicit reference to the original data points. The sampling
parameter is 7 € R™, which is chosen in the initial phase of the protocol.
Without 7, it is impossible to reconstruct the data points. However, if h

and K are known, two successive values can be chosen with respect to one

axis, w,1,w,2 < K(0) such that hK 1 (w,1) = d; and hK ~!(w,2) = do and
_ |di—ds|
=Tl

attempt to find

It is difficult to pinpoint the accuracy of any given outside attack since it
depends on the attacker’s ability to reconstruct the missing information. The
practical approach is to assume the worst-case scenario (the eavesdropping
of all parameter values) since the consequences of assuming a less dangerous
scenario may have drastic consequences.

The bottom line is that outside attackers will only enjoy an effective
reconstruction if they manage to eavesdrop on all of the relevant information
used by members of the mining group. The main limitation for the attackers
is that, without a good initial set, the pointhunt() algorithm may fail to

disclose points in dense regions, as discussed in previous sections.

Therefore, KDEC provides more privacy level under outsider attack, or
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at least similar, to the privacy level under insider attacks.
PR rc (D) = PRRGpcp (D) ~ 0 (4.10)

with ¢ > 1.

Summary of privacy analysis

The different attack scenarios discussed in the previous section showed that
insider attacks with collusion have the best chance of disclosing sensitive
information. When the attacker is part of the mining group, the accuracy of
reconstructed data may be very high, leading to possible privacy breaches.
Unfortunately, the level of privacy cannot be controlled by the data holder,
and the success of an attack depends only on the attacker’s local dataset and
the particularities of data distribution. For example, data points in dense
regions are more likely to be poorly reconstructed. The following lemma

captures the idea.

Lemma 4.4 Let L be a mining group which s performing KDEC protocol
with ¢ < |L| malicious agents forming a collusion group. Let 7 € R be the
sampling rate chosen by the mining group. Let K be a kernel function and
a densily estimate point y = p[D](x). If y < K(0) there is a reconstruction
procedure such that PR?%%C[C] (D) =PRY peg (D) <7, for allc > 1.

Proof. We assume that the attacker uses pointhunt algorithm (cf. Alg.
4.5). Lemma 4.3 shows that PR;?BEC[” ~ €. Recall that ¢ is chosen to
be arbitrarily small, i.e. ¢ < 7. Thus, PRgppcp) < 7. With collusion
group (lemma 4.3), this reconstruction may be more accurate. Therefore,
PRTKGEEC[C] < PR?}?CDEC[l] < 7, for all ¢ > 0. O

In the next section, we address how to improve the privacy level of KDEC

and propose a novel algorithm, the KDEC-S.

4.3 KDEC-S Algorithm

KDEC-S is a distributed clustering scheme based on the KDEC scheme (cf.
4.2), which aims to provide better privacy-preserving properties than KDEC.
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Recall that, in the KDEC scheme, each site transmits the local density es-
timate to a helper site, which is responsible for building a global density
estimate and sending it back to the mining peers. Using the global density
estimate, the mining peers can locally execute a density-based clustering al-
gorithm. KDEC-S works similarly but replaces the original estimation with
an approximated value. The aim is to preserve data privacy while maintain-

ing enough information to guide the clustering process.

4.3.1 Algorithm Overview

Following the density-based approach for DDC, each peer contributes to the
mining task with a local density estimate of the local dataset. Consequently,
no data point, original or randomized, needs to be exchanged among the
peers. Using estimates instead of raw data is a first step towards making
the distributed mining operation safer concerning data disclosure. Still, as
shown in previous sections, knowing the inverse of kernel function affects the
reconstruction of original sensitive data in some cases.

Once inference and collusion attacks against KDEC have been investi-
gated, the question is how to address said attacks. This study aims to im-
prove the density estimate’s privacy level, proposing to substitute the density
estimate with an approximated (non-invertible) function. By doing this, one
of the attack’s assumptions is removed — namely, the assumption that the
kernel inverse exists. Additionally, this study wants to give the users the
freedom to choose whichever kernel they want to work with, whether it is
bounded or not. In the following, the details of this approach are outlined.

First, it is necessary to present some basic definitions.

Definition 4.1 (Iso-levels) Let f: Ry U{0} — Ry be a decreasing func-
tion. Lel 7 € R be a sampling rate and lel z € N be an index. Denote by
v € R" a vector of iso-levels® of function f, whose each component v,

z=1,2,...,n, is built as follow:
v = f(zr) (4.11)

Moreover v > ... > ¢y > (. O

30ne can understand v as iso-lines used to contour plots
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Figure 4.7: ;. of the Gaussian function.

Definition 4.2 (Kernel Transformation) Let f : Ry U {0} — R be a
decreasing function. Let v be a vector of iso-levels of f. Then we define the

function )y as:

fv(l)’ 'Lf v(l) S f(:r)
Vrv(@) = vl if @) < fz) < 0D (4.12)
0,if f(z) < o™

O

Together, definitions 4.1 and 4.2 define a step function based on the
shape of a given function f. Figure 4.7 shows an example of ;. applied
to a Gaussian® function with 4 = 0 and ¢ = 2, using four iso-levels. Note
that the resulting stepwise function has no inverse, although it resembles
the original shape of the desired function. The number of iso-levels and
the sample rate used controls how close the approximation is to the original
shape. As a direct consequence, it is evident that many different functions
will be transformed to the same 1)y ,. This ambiguity associated with the
function vf  is the key in avoiding the reconstruction attack based on kernel
inverse (cf. Fig. 4.8).

The following lemma formalizes the amount of ambiguity provided by

the transformation vy .

Lemma 4.5 Let 7 € R denote a sampling rate, and z € N be an indez.

1~ (z—p)?/207

*Gaussian function is defined by f(z) = 7=
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X

Figure 4.8: Ambiguity of transformation: given two similar functions fi and f>
and the same iso-levels v the resulting ¢ is the same.

Define f1 : Ry — Ry, a decreasing function and v, a vector of iso-levels. If
we define a function fo(x) = fi(x —k), thenVk € [0,7),Vz € N we will have

wme(ZT) = wh,V(ZT)-

Proof. For k = 0, we get fo(x) = fi(z —0) and it is trivial to see that
the assertion holds. For 0 < k < 7, we have fa(z) = fi(x — k). Without
loss of generality, let z > 0 be some integer and let x = z7. Consequently,
(z— 1)1 <2 =27. So, fo(x) = fo(27) = fi(27 — k). With decreasing f; we
have that fi(27) < fi([z — 1]7) and ¥y, v(27) = fi(27). Now, if we rewrite
(z—1)7 as 27 — 7, and since fi is decreasing, f1(z7) < fi(z7—k) < fi(z7 —
7) = fi((z — 1)7). With 0 < k < 7 we have that fi(27 — k) < fi((z — 1)7).
By Definition 4.2, we can write 5, v(27 — k) = 9p v(27). Additionally,
Jo(21) = filem—k) < fi((z—=1)7) and 2, v(27) = ¢y, v (27— k). Therefore,
Vv (27) = Yy v (27) [

Lemma 4.5 tell us that the inverse of v, v () is undetermined because
several different functions generates the same approximation. All transla-
tions fx(x) of a given function f(x) given by fr(z) = f(z — k) generates the
same transform with k < tau. As a consequence, the attacker cannot de-
termine the exact location of a given point from its density, because several
points generates the same approximated density estimate. We exploit this
feature as a countermeasure to point hunting attacks discussed earlier in this
chapter (cf. Section 4.2.3).

Now we substitute the kernel K by gy for a given sample rate 7, in
the process of estimating the density of the local datasets. Since ¥k v is a
non-increasing function, we can use it as a kernel function. We compute a

rough approximation of the local density estimate using the function ¥k v
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as follows:

ineNz @Z}K,v(%) Jif (x mod 7) =0

0 , otherwise.

pID;](x) = (4.13)
where N, denotes the neighborhood of z. The global approximation can be
computed by:
P
P[D)() =Y 3ID))(x) (4.14)
j=1
According to Lemma 4.5, it is not possible to decide which one of the

original functions produced the approximate kernel ¥ .

Auxiliary Definitions

Definition 4.3 (Grid) Given two vectors ziow, Znigh € Z", which differ in
all coordinates (called the sampling corners), we define a grid G as the filled-
in cube in Z" defined by Zjow, Zhigh. Moreover, for all z € G, define n, € N
as a unique index for z (the index code of z). Assume that zj, has index
code zero.

O

Definition 4.4 (Sampling Set) Let G be a grid and T € R™ be a sampling
rate. We define a sampling S; of ¢[Dj] given a grid G, as:

S;={pgl|Vz€G, & >0} (4.15)

where gbi = @[Dj](z-1). Similarly, the global sampling set will be defined as:
S={¢:.|Vz€G, ¢.>0}
O

Definition 4.5 (Cluster guide) A cluster guide CG;g is a set of index
codes representing the grid points forming a region with density above some
threshold 6:

CGig={n.| ¢. >0} (4.16)

such that Vn.,,n., € CG, g : 21 and 2o are grid neighbors and ﬂi-“:l CGip =
0.
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Algorithm 4.7 KDEC-S: Local Peer

Input: D; (local dataset), £ (list of peers agents), Lreiper;
Output: clusterMap;
Method:

1: negotiate(L, K, h, G, 0);
@[D;] + estimateApprox(K, h, D;, G, ¢
S; < buildSamplingSets(¢[D;], G, 0, v)
send S; to Lyciper;
receive CGy from Lyeciper;
clusterMap < cluster(CGy, D;, G);
return cluster Map

);

?

*

function cluster(CGy, D;, G)
9: for each x € D; do
10: z + nearestGridPoint(x, G);
11: if n, € UG, then
12: cluster M ap(x) « 1i;
13: end if
14: end for
15: return cluster M ap;
16: end function

A complete cluster guide is defined by: CGy = {CG;p| i = 1,...,k}

where k is the number of clusters found using a given 6. O

A cluster guide C'G; g can be viewed as a contour defining the cluster shape
at level 0 (an isoline), but, in fact, it only shows the internal grid points and
not the actual border of the cluster, which should be determined using the
local dataset.

The KDEC-S algorithm is structured in two parts, as discussed in the
following.

Local Peer. (cf. Alg. 4.7) The first step is the function negotiate(),
which only succeeds if an agreement on the parameters is reached. A distin-
guished site is chosen as a helper, denoted Ljejpe,. Note that the helper does
not take part in this phase. In the second step, each local peer L; computes
its local density estimate @[D;|(z - ) for each z - 7, with z € G. Using the
Definition 4.4, each local peer builds its local sampling set S; and sends it to
the helper. The clustering step (line 6 in Alg. 4.7) is performed as a lookup
in the cluster guide CGy received from the helper. The function cluster()
shows the details of the clustering step. The data object x € D; will be
assigned to the cluster ¢, the cluster label of the nearest grid point z, if the

index code of z is in cluster guide 7, i.e. n, € CG,g.
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Algorithm 4.8 KDEC-S: Helper

Input: £ (list of peers); 6 (density threshold);
Output: CGy, a cluster guide a given level 6;
Method:
1: receive S; from L;
@[D;] + recover(S;);
FID] « Y 2[D;;
CGy + buildClusterGuides([D], 0);
send CGy to L;

6: function buildClusterGuides(g[D], 6)
T cge fnalp. > 0k
8: n € cg;
9: CG,p <+ {n};
10: i< 0;
11: for each n € cg do
12: if Ja((a € neighbors(n)) A (a € cg)) then
13: CG,p < {n,a} UCG,p;
14: else
15: 1++;
16: CG,g < {n};
17: end if
18: cg < cg \ CGl p;

19: end for

20: CGQ(-{OG@@HZL...,C};
21: return C'Gy

22: end function

Helper. (cf. Alg. 4.8) For a given value of 6, the helper sums up
all sample sets and, using Definition 4.5, computes the cluster guides CGy.
Function buildClusterGuides() in Algorithm 4.8 shows the details of this step.

4.3.2 Complexity Analysis

Time. The dominant part of the processing in KDEC-S is superlinear on
the size of the dataset.

Theorem 4.4 KDEC-S needs O(|G|M; + log(k)|Dj;|) steps, where |G| is
the grid size, M; 1is the average size of the neighborhood, k is the number of

cluster guides and D; is the set of points owned by peer L;.

Proof. The first steps in local peer algorithm (cf. Alg. 4.7) have complexity
O(|G|M;), since the algorithm computes the density for each point z in the
grid G. This step uses the subset of points in D; which are neighbors from

z, with average size M;. Line 3 has its complexity determined by the size of
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sampling set S, which is a subset of G, i.e., its complexity is O(|G]). Line 5
has complexity O(k). The last step (line 6) has to visit each point in D; and,
for each point, it has to decide its label by searching the corres