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À Lene, por tudo.





Abstract

This thesis is concerned with privacy-preserving distributed data mining al-

gorithms. The main challenges in this setting are inference attacks and the

formation of collusion groups. The inference problem is the reconstruction

of sensitive data by attackers from non-sensitive sources, such as interme-

diate results, exchanged messages, or public information. Moreover, in a

distributed scenario, malicious insiders can organize collusion groups to de-

ploy more e�ective inference attacks. This thesis shows that existing privacy

measures do not adequately protect privacy against inference and collusion.

Therefore, in this thesis, new measures based on information theory are

developed to overcome the identi�ed limitations. Furthermore, a new dis-

tributed data clustering algorithm is presented. The clustering approach

is based on a kernel density estimates approximation that generates a con-

trolled amount of ambiguity in the density estimates and provides privacy to

original data. Besides, this thesis also introduces the �rst privacy-preserving

algorithms for frequent pattern discovery in a distributed time series. Time

series are transformed into a set of n-dimensional data points and �nding

frequent patterns reduced to �nding local maxima in the n-dimensional den-

sity space. The proposed algorithms are linear in the size of the dataset

with low communication costs, validated by experimental evaluation using

di�erent datasets.
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Summary

This thesis is concerned with privacy-preserving distributed data mining al-

gorithms (PPDDM) in environments where a group of insiders can try to

deploy inference attacks against other peers in the mining group. In a dis-

tributed data context, any participant may try to infer sensitive information

about data owned by other parties from intermediate results and other mes-

sages exchanged during the mining session. The reconstruction of sensitive

data by attackers from non-sensitive sources is known as the inference prob-

lem and was �rst studied in the �eld of databases and subsequently by the

data mining community. In a distributed scenario, the inference problem is

even more challenging since malicious insiders can organize collusion groups

to deploy more e�cient inference attacks. Often, mathematical properties

allow for reconstructions, like �ltering out random noise or inverting a given

data transformation.

This thesis shows that existing privacy measures do not satisfy all required

properties for privacy protection in distributed data settings with inference

and collusion. Moreover, we propose new and improved measures and ap-

ply them to some representative privacy-preserving algorithms. The new

measures are based on information theory and can detect vulnerabilities of

selected algorithms to collusion in di�erent attack scenarios.

This thesis analyzes an existing distributed data clustering algorithm, the

KDEC algorithm, to understand how it performs under an inference attack.

KDEC follows a density-based clustering approach and uses a kernel function

to estimate the density of a dataset. As the analysis pointed out, a possible

inference attack against KDEC is achieved by inverting the kernel function

to reconstruct original data. To overcome this class of attacks, we developed

the KDEC-S algorithm. In KDEC-S, the original kernel is substituted by

a kernel approximation function. As a result, a controlled ambiguity level
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is introduced during the density estimation phase. KDEC-S provides more

privacy than KDEC keeping the same mining quality. It is linear in the

number of data points in the dataset and has low communication costs,

validated through several experiments using di�erent datasets.

Furthermore, in this thesis, we present the �rst privacy-preserving algorithms

for frequent pattern discovery in distributed time series: DPD-TS, DPD-

HE, and DPD-FS. All algorithms �rst transform time series into a set of

n-dimensional data points and, then, reduce the problem of �nding frequent

patterns to the problem of �nding local maxima in the n-dimensional density

landscape. Additionally, the n-dimensional data points are discretized to

form strings from a given alphabet. The density is then computed on discrete

data points, which are generally much smaller than the original dataset size.

Di�erent approaches to density estimation were investigated, using heuristics

to prune the number of data points generated from the original time series.

Their privacy properties considering di�erent inference attack scenarios were

also investigated, and it was shown that the proposed algorithms provide

parameter-controlled privacy levels. The algorithms are linear in the size of

a time series and have low communication costs. The approach is validated

by experimental evaluation using di�erent datasets.
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Zusammenfassung

Diese Arbeit befasst sich mit vertraulichkeitsbewahrendem Data Mining in

verteilten Umgebungen mit Schwerpunkt auf ausgewählten N-Agenten-An-

gri�sszenarien für das Inferenzproblem im Data-Clustering und der Zeitrei-

henanalyse. Dabei handelt es sich um Angri�e von einzelnen oder Teil-

gruppen von Agenten innerhalb einer verteilten Data Mining-Gruppe oder

von einem einzelnen Agenten auÿerhalb dieser Gruppe. Zunächst werden

in dieser Arbeit zwei neue Privacy-Maÿe vorgestellt, die im Gegensatz zu

bislang existierenden, die im verteilten Data Mining allgemein geforderte

Eigenschaften zur Vertraulichkeitsbewahrung erfüllen und bei denen sich der

gemessene Grad der Vertraulichkeit auf die verwendete Datenanalysemeth-

ode und die Anzahl von Angreifern bezieht.

Für den Zweck eines vertraulichkeitsbewahrenden, verteilten Data-Clustering

wird ein neues Kernel-Dichteabschätzungsbasiertes Verfahren namens KDEC-

S vorgestellt. KDEC-S verwendet eine Approximation der originalen, lokalen

Kernel-Dichteschätzung, so dass die ursprünglichen Daten anderer Agenten

in der Data Mining-Gruppe mit einer höheren Wahrscheinlichkeit als einem

hierfür vorgegebenen Wert nicht mehr zu rekonstruieren sind. Das Verfahren

ist nachweislich sicherer als Data-Clustering mit generativen Mixture Mod-

ellen und SMC-basiert sicherem k-means Data-Clustering.

Zusätzlich stellen wir neue Verfahren, namens DPD-TS, DPD-HE und DPD-

FS, für eine vertraulichkeitsbewahrende, verteilte Mustererkennung in Zeitrei-

hen vor, deren Komplexität und Sicherheitsgrad wir mit den zuvor erwähnten

neuen Privacy-Maÿen analysieren. Dabei hängt ein von einzelnen Agenten

einer Data Mining-Gruppe jeweils vorgegebener, minimaler Sicherheitsgrad

von DPD-TS und DPD-FS nur von der Dimensionsreduktion der Zeitrei-

henwerte und ihrer Diskretisierung ab und kann leicht überprüft werden.

Einen noch besseren Schutz von sensiblen Daten bietet das Verfahren DPD-
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HE mit Hilfe von homomorpher Verschlüsselung. Neben der theoretischen

Analyse wurden die experimentellen Leistungsbewertungen der entwickelten

Verfahren mit verschiedenen, ö�entlich verfügbaren Datensätzen durchge-

führt.
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Chapter 1

Introduction

This thesis investigates how to extract valuable knowledge from distributed

data sources without compromising the privacy requirements of sensitive

data during the mining process. This question is part of the �eld known

as privacy-preserving distributed data mining and has been an active area

of research for many decades now. The main challenge in this setting is

that even if the original data are not directly disclosed, a skilled attacker

may still manage to reconstruct original sensitive data to some extent via

inference attacks. Moreover, the attackers may be one of the mining partners

and may organize themselves in collusion groups to improve their chance

at reconstructing sensitive data. This is an important line of investigation

with several potential applications in many �elds. We discuss details of our

motivation, research questions, and main contributions in the following.

1.1 Motivation

Distributed data mining (DDM) is a research �eld concerned with devel-

oping algorithms to extract knowledge from distributed data sources. In

many real-world scenarios, datasets are intrinsically distributed across dif-

ferent companies, governments, or organizations, with loosely coupled sites

connected by a network. Good examples are the biomedical informatics �elds

[162] and health care. Data from millions of patients have already been col-

lected and stored in an electronic format [225], e-Health mobile applications

[11, 33, 85], large scale medical studies [142], mobile crowdsensing [39] and

internet of medical things [177, 180]. Smart grids applications [223] and
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the Internet of things (IoT) are also interesting application scenarios with

distributed data and huge economic potential [115, 209].

Distributed data scenarios raise many challenges concerning the privacy

preservation of sensitive data [2, 32, 122]. For example, various countries

have laws and regulations to control how data should be collected and dis-

tributed among di�erent parties, be it institutions or companies. Privacy-

preserving distributed data mining (PPDDM) addresses the question of how

to extract meaningful knowledge from distributed data sources without jeop-

ardizing the privacy of sensitive data.

The main approaches to PPDDM are secure multi-party computation

(SMC), distributed model aggregation (DMA) mining and local di�erential

privacy (LDP). In SMC-based data mining, the idea is to devise secure pro-

tocols for data mining tasks adapting well known algorithms like decision

trees [124, 37], clustering [8, 27, 80, 185], expectation maximization cluster-

ing [129]. DMA approach addresses PPDDM by building local models that

are aggregated into a global model. This approach has been used for classi-

�cation [107, 149, 243] and clustering [22, 108, 118, 184]. Local di�erential

privacy protects privacy by adding noise to original data before using it to

build a model [40, 227]. LDP has been applied to a wide variety of models

and mining tasks including classi�cation [228, 107], clustering [193, 227] and

time series mining [19, 224]. Actually, many works apply di�erential privacy

together with SMC or DMA [229] as an extra layer of protection.

A critical issue in PPDDM is that participants may learn about sensi-

tive data owned by other parties during the protocol. The reconstruction of

sensitive data by attackers from non-sensitive sources is known as the infer-

ence problem and was �rst studied in the �eld of databases [70, 201] and

subsequently by the data mining community [14, 90, 215, 187]. Additionally,

in a distributed scenario, malicious insiders can organize collusion groups

to deploy even more e�cient inference attacks. We discuss this problem in

further details in Section 2.3.2 (p. 25).

SMC-based approaches, for instance, protect sensitive information owned

by each participant from direct disclosure via cryptography but do not ad-

dress inferences from the protocol output [109, 132]. For example, in a pro-

tocol where three parties compute the sum of numbers in a secure multiparty

protocol, the process does not leak directly any input information. However,

when a subset of parties collude, they can subtract their contribution and
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learn the input of the remaining party. Unlike SMC, distributed model ag-

gregation approaches do not utilize cryptography and avoid sensitive data

disclosure by exchanging only partial models of local datasets. However, in

some circumstances, the privacy of single points may be compromised. For

example, in [149] the dataset privacy is based on the average privacy of all

points. Some points will, of course, have a privacy level much lower than the

average privacy level. In this case, an inference attack by an insider might

be able to reconstruct these low privacy points with high accuracy.

This investigation focuses on privacy-preserving distributed data mining

algorithms in environments where a group of insiders can try to deploy in-

ference attacks against other peers in the mining group. In particular, this

research concentrates on distributed data clustering (DDC) and pattern dis-

covery in distributed time series mining (DTS) algorithms. The goal is to

provide DDC and DTS with low network tra�c, good data mining quality,

and high privacy preservation. We assume a network of peers, each of which

owns a local dataset with access denied to other peers.

This thesis investigates current privacy-preserving measures for SMC

and distributed model aggregation approaches and identi�es their limita-

tions when applied to collusion groups and inference attacks scenarios. We

then propose a set of formal properties to capture the requirements a pri-

vacy measure needs to ful�ll and show that the current privacy measures

fail to meet at least one of these requirements. From this analysis, new

and improved measures for DDC and DTS are developed. Besides, the new

measures are applied to some representative privacy-preserving distributed

algorithms making explicit their vulnerabilities to inference and collusion.

Further, new algorithms for DDC and DTS are proposed and their privacy-

preserving properties analyzed concerning the new measures. The proposed

algorithms follow a model-based approach, �rst computing local density es-

timates at each peer and then generating a global model at a distinguished

peer, making it available to all peers in the mining group. Our central hy-

pothesis in this investigation is that a sample of density estimates can be

utilized as surrogate data to perform DDC and DTS. Density estimation is a

non-parametric approach to compute a probability density function given a

dataset. A key observation is that density estimates are additive. Therefore,

we can compute a global sample of the estimates from local estimates. With

this approach, we reduce the bandwidth requirements and avoid publishing
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sensitive data. The mining step works with samples of density estimates to

build the mining results.

As the main result, this investigation shows that density estimates e�ec-

tively attain all three goals: reduce bandwidth, provide good mining results

and guarantee privacy to sensitive data. Additionally, our algorithms are

linear in the size of datasets and scale well on the number of parties in the

mining session.

1.2 Research Questions

In the context of the discussion above, the investigation presented in this

thesis is driven by the following research questions in privacy-preserving

distributed data mining, particularly DDC and DTS:

1. Privacy Measures for DDC and DTS Mining

How to de�ne and formalize the concept of privacy and correspond-

ing privacy measure in a distributed environment taking into account

inference attacks and collusion of malicious insiders? What kind of

attacks to sensitive data owned by each participant in a distributed

data mining setting can take place?

2. Privacy-Preserving Distributed Mining Algorithms

How to develop an algorithm that provides the desired privacy level

of sensitive data, particularly in DDC and DTS, during the mining

sessions? What kind of data transformations or surrogate data can

be used instead of the original sensitive data while maintaining the

quality of mining results to the desired level? Can an algorithm be

privacy-preserving even without cryptography-based protocols? Can

the algorithm be privacy-preserving while being scalable in the number

of parties and the size of datasets?

1.3 Contributions

The main contributions of this thesis are as follows:

1. Privacy Measures for DDC and DTS Mining
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Di�erent existing formalizations of privacy, its assumptions, and limi-

tations are investigated. We start with a set of formal properties and

show that existing privacy measures do not satisfy all required prop-

erties for privacy measures in distributed environments with collusion.

Therefore, new and improved measures are developed and applied to

some representative privacy-preserving algorithms [51]. The new mea-

sures are based on information theory, using the concept of entropy as

a measure of uncertainty. These measures model privacy as the size

of an interval from where values of a given random variable can be

drawn. Some identi�ed bene�ts from the new measures are detect-

ing the vulnerabilities of selected algorithms to collusion in di�erent

attack scenarios and detecting point-level privacy breaches. The new

measures are used in subsequent chapters (Ch. 4 and 5).

This work also discusses two main threats to privacy (Ch. 2, Sec. 2.3):

inference attacks and collusion groups. Inference attacks allow the at-

tacker to reconstruct sensitive data from any piece of data exchanged

among the parties during a mining session. A collusion group consists

of malicious peers who cooperate to improve their attacks. A successful

inference attack reconstructs a given sensitive dataset with little or no

distortion. Often, mathematical properties reveal possible reconstruc-

tions, like �ltering out random noise [111, 219], or inverting a given

data transformation (see, e.g., Sec.4.2.3). We assume that inference

attacks are more powerful when performed by insider agents, which

know all parameter values. Therefore, inference attacks scenarios with

di�erent degrees of available knowledge are developed [47, 48, 52]. Our

privacy analysis follows this framework to assess the privacy �aws of a

given algorithm. Di�erent threats to data privacy in distributed data

mining environments are investigated in Chapters 4 and 5, focusing on

clustering and time series mining, respectively.

This work has been in part published in [47, 48, 51, 52]

2. Privacy-Preserving Distributed Mining Algorithms

Distributed Clustering. This thesis investigates an existing density-

based clustering algorithm, the KDEC scheme, to understand how it

performed under an inference attack using only information exchanged

during a KDEC session. Since KDEC uses kernel density estimation, a
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possible attack is based on computing the inverse of the kernel function.

The KDEC-S algorithm for distributed data clustering is developed to

handle the inverse kernel inference attack (Chapter 4). The main idea

is to replace the original kernel function with a kernel approximation

at the estimation phase. Therefore, a controlled amount of ambiguity

is added to the density estimates. The subsequent results show that

KDEC-S provides more privacy than KDEC keeping the same mining

quality (cf. Theorem 4.7). Moreover, it is linear in the number of data

points in the dataset and has low communication costs. The approach

is validated through several experiments using di�erent datasets. This

work has been in part published in [46, 47, 52, 53]

Pattern Discovery in Time Series. The thesis proceeds to develop the

�rst privacy-preserving algorithms for frequent pattern discovery in

distributed time series: DPD-TS, DPD-HE and DPD-FS (Chapter 5).

The main idea is to transform time series in a set of n-dimensional

data points and, then, reduce the problem of �nding frequent patterns

to the problem of �nding local maxima in the n-dimensional density

landscape. Di�erent approaches to computing the density estimates

are investigated. DPD-TS generates contiguous non-overlapping sub-

sequences of the original series. However, it may miss some patterns

if they are not aligned with the subsequence size n. DPD-FS gener-

ates non-overlapping subsequences but uses a heuristic to prune the

number of data points generated. DPD-HE adds a security layer with

homomorphic encryption. The privacy properties of all algorithms con-

sidering di�erent inference attack scenarios are also investigated. It is

shown that the algorithms provides a controlled privacy levels via clear

de�ned privacy parameters (cf. Theorems 5.4 and 5.12). DTSCluster

is yet another algorithm spun o� the main results of this thesis (also in

Chapter 5). We applied the idea of pattern discovery to the problem

of clustering short time series from genomic experiments. As it turned

out, the approach produced very consistent clusters of short time se-

ries with linear time complexity both in dataset size and the number of

parties in the mining session. The proposed algorithms are linear in the

size of time series and have low communication costs. The approach

is validated by experimental evaluation using di�erent datasets. This

work has been in part published in [45, 49, 50, 54]
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1.4 Thesis Overview

The remainder of this thesis is organized as follows.

Chapter 2 introduces the reader to the basics of knowledge discovery, data

mining, distributed data mining algorithms, and systems. This chap-

ter presents an overview of privacy-preserving distributed data mining

and discusses its privacy de�nitions, highlighting its assumptions, ap-

plicability, and limitations. Furthermore, this chapter introduces the

inference problem, which occurs when unauthorized agents learn sen-

sitive data during a mining session. The inference problem poses a

general question as to how data mining can potentially jeopardize pri-

vacy since data mining is inherently a learning framework. We propose

several general inference attack scenarios and discuss the limitations

of current privacy-preserving data mining solutions to handle said in-

ference attacks. [52]

Chapter 3 introduces a set of privacy properties and applies it to the pri-

vacy measures discussed in the previous chapter. It shows that existing

privacy measures do not satisfy all required properties for privacy mea-

sures in distributed environments with inference collusion groups. New

privacy measures for distributed data clustering and time series, which

address inference and collusion, are also introduced. The new measures

are then applied to some representative distributed privacy-preserving

algorithms.

Chapter 4 presents the privacy-preserving data mining problem reformu-

lated for the particular case of distributed data clustering. We ana-

lyze a distributed clustering algorithm, KDEC, concerning its privacy-

preserving properties through attack scenarios and propose a new algo-

rithm, KDEC-S, which improves the privacy-preserving aspects with-

out compromising mining quality.

Chapter 5 presents the general problem applied to the case of distributed

time series mining. We formulate the problem of privacy-preserving

pattern discovery in time series and propose three algorithms to solve

it, DPD-TS, DPD-FS, and DPD-HE, together with an analysis of their

privacy and performance properties. This chapter also introduces the
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DTSCluster algorithm, which is applied to genomic short time series

data clustering.

Chapter 6 discusses the architecture and implementation of the proposed

algorithms. It also presents an evaluation environment in which the

experiments in this thesis were run. A description of all datasets used

in this thesis is also provided.

Chapter 7 presents the main conclusions and discusses future research di-

rections.
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Chapter 2

Background

�Advanced analysis of data for extracting useful knowledge is

the next natural step in the world of ubiquitous computing."

(H. Kargupta in ACM SIGKDD Tutorial, 2001 )

This chapter introduces fundamental notions of distributed data mining

and privacy issues. Readers familiar with knowledge discovery in databases

(KDD), data mining algorithms (DM), distributed data mining (DDM), and

data mining systems, may skip all or parts of this chapter. It also introduces

privacy-preserving distributed data mining (PPDDM), its central concepts,

problems, approaches, and limitations. It also introduces the main threats to

privacy in a distributed data setting: inference attacks and collusion groups.

2.1 Data Mining

Data mining and knowledge discovery are commonly used to denote �nding

new knowledge from large databases. In this work, however, a clear distinc-

tion is made between the two terms, as discussed in the following sections.

Knowledge Discovery Process Knowledge discovery in databases (KDD)

is a process that aims to automatically �nd new pieces of useful information

from vast amounts of data [93]. Its primary motivation is to automati-

cally discover patterns and relations between data stored in large datasets

that could not feasibly be discovered manually. The process is essentially

an attempt to cope with the massive amount of information that one must

manage, developing complex analysis tools to reach this objective. In KDD,
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Chapter 2. Background

Figure 2.1: KDD phases showing its sub-steps.

the term �huge� usually denotes Terabytes of information. Examples of such

gigantic databases are satellite image databases, medical information repos-

itories, market information databases, social network data, to name a few.

KDD is an interdisciplinary �eld and can be seen as the intersection of the

research in machine learning, statistics, information theory, and databases

[238]. Today, the term KDD is used as a synonym for data mining (DM), and,

indeed, one can �nd many research papers that use the term DM to represent

the entire KDD process. Kargupta and Chan remark, on a �nostalgic note",

that the term KDD was used even before the term DM was coined [110].

Throughout this thesis, the term data mining will be referred to as one of

the phases of the KDD process.

The KDD process consists of four main phases [93]: problem de�nition,

data preprocessing, data mining, and data post-processing. These phases can

be further decomposed into sub-phases, as shown in Figure 2.1 (cf. [72, 238,

242] and [94]).

Data Mining Phase The previous section shows that data mining (DM)

is just one of several steps in the KDD work�ow. This section presents some

of the main issues addressed by DM.

DM is commonly regarded as data analysis of large datasets. Data anal-

ysis shares with DM the goal of searching patterns in data, and it has been

used for a reasonable amount of time by statisticians, economists, biologists,

meteorologists, to name just a few. DM, however, is related to the automated

search in massive datasets, where data is electronically stored and usually

takes the form of a set of examples.

Data mining has two high level goals1[72]: prediction and description (cf.

1This classi�cation is object of discussion in the data mining community.
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Figure 2.2: Data mining tasks.

Fig. 2.2).

Prediction The main goal of prediction tasks is to build models (and pat-

terns) that can predict unknown values of a target attribute from the

known predictor attributes. Examples of prediction tasks are classi�-

cation, regression, and deviation detection.

Description The main goal of description tasks is to summarize the data

that can be used to recognize, for example, how the data is distributed,

whether or not the attributes are correlated, and so forth. Examples

of description tasks include data clustering, association rules, and de-

pendence analysis.

The pieces of information discovered by DM algorithms are represented

by any well-de�ned mathematical structure, two of the most well-known

of which are decision trees and association rules. A variety of DM tech-

niques have been developed in the last decades, including cluster analysis

[3], decision-tree based classi�cation [119], and mining of association rules

[73, 141]. The reader may refer to [174] for introductory material on data

mining tasks and algorithms.

DM also involves computational issues. For example, in DM, one has to

address the scalability of the pattern searching algorithms, data distribution

issues, and memory spaces utilization. The early research addressed these

issues and produced several algorithms for di�erent mining tasks.

One critical dimension of DM pertains to how exactly data is stored,

and it can be stored in a single central repository (e.g., a data warehouse)

or distributed among di�erent locations. Distribution implies a set of new

challenges to DM, which are discussed in the following section.

11
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2.2 Distributed Data Mining

One of the most widely used approaches to mining data from distributed

sources is to apply traditional DM techniques to a collection of integrated

data from the sources in a central repository [76]. This approach presents

several limitations, such as network bandwidth limitation and poor algorithm

scalability.

Most datasets in a distributed setting are too large to be transferred. For

instance, health care clinical data [177, 180], smart grids data generated from

smart meters [223],distributed genomic studies [28, 90], are examples of huge

datasets generated at di�erent locations. Moreover, downloading data to a

central site is impractical when the network is based on a low bandwidth

connection. The downloading of sensitive data may also not be allowed

due to the local security policies of any given data owner. The centralized

approach with classical DM algorithms does not scale well on the size of

datasets or the number of di�erent data sources since they need to access

raw data, requiring many rounds of messages among the sites. For all these

reasons, the centralized approach typically represents the main bottleneck

for mining distributed databases. Distributed Data Mining (DDM) addresses

these limitations, investigating how to enable data mining with extremely

large distributed data sources with limited network bandwidth.

Another challenge posed by a distributed environment is how to handle

the heterogeneity of data. Heterogeneity comes into play in two di�erent

circumstances [76]: (i) when data is represented in di�erent ways on di�erent

sites; (ii) when data is split in a non-trivial way among sites. Di�erent data

representations and distribution possibilities are presented in the following.

There are three main data representation possibilities according to the

data structure (or lack of it):

� Structured data: In this category, data is represented by a rigid, regular

schema, such as a relational database.

� Semi-structured data: In this category, data follows no rigid schema.

Moreover, it can have an irregular and implicit structure. Commonly,

the distinction between schema and data in semi-structured data is

blurred. Examples include XML, BibTex, and JSON data format.

� Unstructured data: In this category, data has no structure at all, e.g.,

12
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Figure 2.3: Homogeneous data distribution: each site stores the same set of fea-
tures (e.g., f1, f2, f3), but has a di�erent set of data objects. In the example, Site
1 stores objects x1, x2 while Site 2 stores objects x3, x4.

plain text, images, sound, genomic data.

With regards to data distribution, data may be spread through dis-

tributed datasets in at least two di�erent ways:

� Homogeneous data distribution: In this case, data objects are dis-

tributed across the sites in such a manner that each location stores

the same features of the data objects. It can be said that the data

objects are grouped by site (cf. Fig. 2.3).

� Heterogeneous data distribution: Each site stores a di�erent set of at-

tributes for each data object, possibly with one or more features in

common among the sites, meaning that each location has only partial

information concerning the data object distributed over the local sites

(cf. Fig. 2.4).

The terminology horizontal and vertical is often used in the literature to

describe a particular case of homogeneous and heterogeneous distribution,

respectively, when data is structured and stored in just one table [76].

A general scheme to solve distributed data mining (DDM) problems is

to perform data mining algorithms at each site to build partial local models

of datasets stored at each location, e.g., [212, 240]. These partial models

are then combined to create a global model. Some data samples may be
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Figure 2.4: Heterogeneous data distribution: each site refers to the same data
objects (e.g., x1, x2, x3, x4, . . . ), but stores a partial view (di�erent set of features)
of them. In the example, Site 1 stores feature f1 and f2 while Site 2 stores features
f3, f4, f5, f6 . . . .

exchanged among the sites to improve the global model. The DDM ap-

proach presents better scalability and less communication overhead than the

centralized approach.

The following sections overview two DDM tasks and discuss their main

challenges, followed by strategies to solve them. A survey on the �eld of

distributed data mining can be found in [76, 214].

2.2.1 Distributed Data Clustering

The distributed data clustering (DDC) problem is informally stated as the

following: to �nd a partition over distributed data such that every data point

in local datasets is assigned to a global cluster. Global clusters are only

discovered when all datasets are considered.

Example 2.1 Figure 2.5 shows two sites and their respective local cluster

map. There are three clusters if we combine the datasets, as shown in Fig.

2.6.

Distributed clustering algorithms can be classi�ed into two subcategories.

The �rst consists of methods requiring multiple rounds of message passing,

which requires a signi�cant amount of synchronization [9, 185]. The sec-

ond subcategory consists of methods that build local clustering models and

transmit them to a central site (asynchronously) [126]. The central site

forms a combined global model. These methods require only a single round

of message passing, thus resulting in modest synchronization requirements.
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(a) Site 1 (b) Site 2

Figure 2.5: A distributed data clustering scenario. Local data clustering may not
�nd all clusters.

Figure 2.6: Global clusters
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When it comes to network architecture, there are many forms in which

peers may get organized: (i) distributed network with central node; and

(ii) distributed network without central node [9]. The peer-to-peer model is

an example of the �rst architecture, and MapReduce is an example of the

second model.

MapReduce [57] is a framework de�ning a shared-nothing memory ar-

chitecture implemented over a network of several loosely coupled machines.

Nonetheless, it is more restrictive than peer-to-peer, requiring all the ma-

chines to be under the same trust domain. In MapReduce, one node act as

coordinator or master, and all the other node act as workers or slaves.

Several MapReduce implementations of clustering algorithms have been

proposed. Yu et al. [237] proposes Cludoop, an e�cient and load-balanced

distributed density-based clustering for big data on the Hadoop platform.

The distributed algorithm incorporates a proposed serial clustering with c-

cluster as a plug-in on mapper and a Merging-Re�nement-Merging 3-step

framework to merge c-cluster on the reducer. Experiments on large-scale

real-world and synthetic data show that Cludoop exhibits better scalability

and e�ciency when compared with its predecessors. Tsapano et al. [210]

improve the performance of Kernel k-Means using a kernel matrix-trimming

algorithm. All small entries in the kernel matrix are discarded to reduce the

kernel matrix size, and the resulting sparse matrix is stored as adjacency

lists instead of the entire matrix. The approach follows the MapReduce

programming model and consists of 3 stages: the kernel matrix computa-

tion, kernel matrix trimming method, and the Kernel k-Means clustering

algorithm. Results showed that the proposed approach performs just as the

Kernel k-means with the whole matrix. Heidari and colleagues developed a

version of MR-VDBSCAN in MapReduce to address the problem of varied

densities in a dataset [100]. It is based on DBSCAN, but MR-VDBSCAN

computed a local density list to help identify points located on di�erent levels

of densities.

Peer-to-peer architecture does not rely on a central node but requires

more coordination among all peers. Altilio et al. [9] addressed the problem

of clustering data distributed in a peer-to-peer network. They developed

a consensus-based expectation-maximization algorithm (CEM). Computa-

tion is split among the parties, where local EM produces a local temporary

solution. A consensus protocol is run at each step to de�ne the global EM
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parameters. It is an iterative algorithm running until a convergence criterion

is reached. A similar approach is explored by Qin et al. [170] who propose a

consensus algorithm applied to cluster distributed data from a wireless sen-

sors network. The base model is a multiclass logistic regression model built

iteratively. The �rst partition is generated by k-means in the �rst round to

ensure the algorithm's convergence. The authors point out that the algo-

rithm can �nd the appropriate number of clusters. On the other hand, the

proposed approach is limited to linear boundaries between clusters. Rosato

et al. [175] proposes the V-DEC algorithm for a decentralized architecture.

In this approach, each peer generates a local cluster and collaborates to �nd

k-means centroids.

2.2.2 Distributed Time Series Mining

Distributed time series analysis and mining encompass a wide variety of

problems and applications, such as smart meter applications [222], collabo-

rative forecasting among di�erent companies [86, 87] public health and clin-

ical research or participatory sensing applications discussed in [172]. In this

setting, participants contribute various time-series data to get useful infor-

mation such as road congestion patterns, micro-weather, load pro�les. We

discuss a few examples of research directions on distributed time series in

the following.

Forecasting is one classical problem in time series. Galicia et al. devel-

oped a scalable approach for multi-step forecasting [75]. The problem is to

predict m steps in the future, given past w values in the time series. The

original time series was split into m subseries and trained in parallel to build

an ensemble of m models to predict forecasts with di�erent time horizons.

The approach was presented as a centralized method but could be imple-

mented as a distributed scheme. Talavera et al. [195] also studied the m

step forecasting problem. They use parallel computing to �nd k nearest time

series from a distributed dataset previously split among several nodes. The

average value of the most similar time series is used as the forecast. We refer

the reader to [164] for an overview of distributed forecasting approaches.

Baldán and Benítez proposed a distributed time series classi�cation al-

gorithm based on MapReduce model [18]. The time series are split between

nodes to distribute the processing load. A time series is transformed via SAX

to a discrete version at each node, and a set of best shaplets is built collabo-
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ratively with information from all nodes. Then, the minimum distance from

each time series to each shaplets is computed, and this information is used

to train a random forest model.

Gong et al. [83] studied clustering of distributed time series and pro-

posed the DBPEC algorithm. DBPEC �rst split the original time series

into several partitions. Using the Apache Spark framework, DBPEC com-

putes the centroids in parallel and �nally produces a global cluster mapping

aggregating information from each partition. Corizzo et al. introduced DEN-

CAST [44]. DENCAST is implemented in Apache Spark and splits the time

series among several nodes. The algorithm uses a distributed local sensitive

hash (LHS) to �nd an approximate solution that clusters the time series.

DENCAST uses the discovered cluster mapping to make predictions using

the average values from time series in a given cluster.

Indexing is a core function for many data mining tasks, like clustering,

motif discovery, and classi�cation. Yagoubi et al. [231] proposed DPiSAX, a

parallel solution to index and query billions of time series. The authors im-

plemented with Apache Spark framework. The DPiSAX splits the time series

datasets into partitions where local indexes are created and combined into a

global index. The solution includes both approximate and exact searches.

2.2.3 Distributed Data Mining Systems

In this section, a couple of DDM systems that have been successfully applied

to real-world cases are reviewed. The main features of these systems � the

mining task, data mining algorithms used, network type, and data distri-

bution � are all given an overview. Table 2.1 is provided to summarize the

systems reviewed.

Kensington system architecture was developed by Chattratichat et al.

[38]. Kensington uses several Enterprise Java Beans to provide data mining,

object management, and storage management for local and remote clients.

The client is implemented as Java Beans and can connect to the server

through the RMI protocol. The system can operate in a TCP/IP Internet,

Intranet, or virtual private network. Additionally, the system incorporates

connection management and secure communication through secure sockets

(SSL). Each node in the system communicates mining results, database

schema, data samples, and even full datasets on demand. Kensington was

demonstrated at the Terabyte Challenge '98, performing data mining in a
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distributed setting, including a Kensington server in London, another in

Chicago, and a client in Orlando.

Papyrus [89] is a Java-based system addressing wide-area DDM over

clusters of heterogeneous data sites and meta-clusters, supporting di�erent

task and predictive models, including C4.5. It uses mobile agents to move

data, intermediate results, and models between clusters. All computation is

performed locally to reduce network load, and a central root produces the

�nal result. Each cluster has one distinguished node, which acts as its clus-

ter's access and control point for the agents. The coordination of the overall

clustering task is either carried out by a central root site or distributed.

Papyrus describes the models and metadata by using a particular markup

language. The authors do not address privacy in Papyrus.

PADMA was developed by Kargupta et al. [112] and deals with the

problem of DDM with homogeneous data sites. Partial data cluster models

are �rst computed by stationary agents locally at di�erent locations. All

local models are collected at a central site that performs a second-level clus-

tering algorithm to generate the global cluster model. That is followed by

individual agents carrying out hierarchical clustering in text document clas-

si�cation and web-based information visualization. Partial concept graphs

are subsequently exchanged among agents. It is worth noting that raw data

is also exchanged to perform parallel join operations. PADMA uses Parallel

Portable File System (PPFS) as its core infrastructure, developed in C++.

No privacy issues are discussed in PADMA.

BODHI was developed by Kargupta and his colleagues based on the

Collective Data Mining (CDM) framework [113]. This system was developed

in Java, uses mobile agents, and intends to be a communication system and

runtime environment used in collective data mining. It is not bound to

any speci�c platform, learning algorithm, or knowledge representation. The

messages are in KQML with embedded data or commands, and the security

is based on RSA.

JAM was proposed by Prodromidis, Chan and Stolfo [192, 168] and is an

agent-based meta-learning system for large-scale data mining applications.

JAM performs high-level classi�ers called meta-classi�ers and can operate

in heterogeneous data. The system exchanges mining results as classi�ers

agents sent as serializable Java objects. The authors do not, however, de-

scribe the privacy features.
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EMADS (Extendible Multi-Agent Data Mining System) [6] is a hybrid

peer-to-peer agent-based system for distributed data mining. It was imple-

mented in JADE and includes data agents, mining agents, task agents, user

agents, and JADE-speci�c agents for mediation and coordination. EMADS

considers three mining tasks: classi�cation, clustering, and association rules

mining, though it is not bound to any speci�c algorithm. Wrappers provide

extensibility, adapting data sources or existing mining systems to operate as

an EMADS agent. Agents communicate partial models and control informa-

tion. Privacy is not particularly well described in EMADS. However, only

local mining agents have access to local datasets, never revealing sensitive

data to non-local mining agents.

JaCa-DDM (Jason and CArtAgO for DDM) follows an agent and arti-

facts approach [127]. It de�nes complex distributed data mining work�ows as

agents interactions and data mining algorithms as artifacts. New algorithms

can be added to JaCa-DDM via artifacts, and work�ows are de�ned as Ja-

son agent programs. Agents in JaCA-DDM are full belive-desire-intention

(BDI). Communication is based on KQML speech acts. JaCA-DDM was

implemented in Java (Jason agents and Weka artifacts). Concerning privacy

and security, the authors mention it as a feature in JaCa-DDM, but it is not

explored in detail.

2.3 Privacy Issues in Distributed Data Mining

Protecting data privacy in today's era of digital information processing is

a challenging task. Data breaches are frequently happening as intentional

attacks, not accidental disclosures. Yahoo was attacked in 2014, LinkedIn in

2012 and 2021, Adobe in 2013, to name a few. The attackers look for credit

card information, user ids, emails, and passwords. Typically, the stolen

information is sold later on the dark web [155]. Nevertheless, there are other

threats to privacy beyond data disclosure.

There have been increasing concerns that data mining is a potential

threat to privacy [187]. A well-known data privacy scandal involved Face-

book and Cambridge Analytica in 2018 [98]. Cambridge Analytica used data

from Facebook users to produce political pro�les during the presidential run

in the United States. In this case, sensitive data was not stolen, released to

the public, or sold by hackers. Nevertheless, it raised ethical and political
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Chapter 2. Background

concerns about how to use and distribute sensitive data. In 2011, a similar

debate emerged around the issue of mining drug prescription data as some

deemed it a violation of privacy [226]. While privacy advocates fear the con-

sequences of privacy breaches, such as civil rights infringement, the industry

wants to keep pro�ting from the knowledge discovered from as many data

sources as possible.

The privacy breach is evident in many cases � personal information was

disclosed. However, generally speaking, what is a privacy breach? Moreover,

what if just a summary of data was released? What if only data mining

results were made public? Does it threaten privacy? These are increasingly

pertinent questions. One of the main di�culties involved in this debate

pertains to the very de�nition of privacy itself and how to guarantee it is

being protected in the context of data mining.

2.3.1 Privacy, Con�dentiality and Sensitive Data

Privacy is an elusive concept; it provokes many interpretations and, as such,

there is plenty of literature attempting to shed further light on its complex-

ities [65, 147, 182, 204, 206, 216, 236]. After the Universal Declaration of

Human Rights de�ned privacy as a right [199, Art. 12] it is well-accepted

that it must be protected.

The term �privacy� itself prompts the intuitive response that it pertains

to a particular individual. Therefore, all information about a person is sub-

ject to the notion of privacy. As a consequence, only an individual has the

right to determine how her or his data should or should not be used [20]. Of

course, the question of what is to be considered private can be interpreted

di�erently depending on one's culture and legislation, but it is the individual

who should have the ultimate decision on the matter [1].

Well-known privacy regulations de�ne any piece of data that is related

to a natural individual and which may be used to identify said individual as

sensitive information. In the USA, there is no federal law covering all aspects

of data privacy. There are a large number of laws regulating di�erent top-

ics and sectors [163]. The Health Insurance Portability and Accountability

Act (HIPAA) establishes regulations for the use and disclosure of Protected

Health Information (PHI). HIPAA de�nes PHI as any information concern-

ing health status, provision of healthcare, or payment for health care that
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2.3 Privacy Issues in Distributed Data Mining

can be linked to an individual2. The disclosure of personal information is also

regulated by many di�erent federal statutes, such as the Fair Credit Report-

ing Act of 1970 (credit records), the Video Privacy Protection Act of 1988

(video rental records), the Family Education Rights and Privacy Act of 1974

(educational records) and the Employee Polygraph Protection Act of 1988

(employee polygraph records). California went further and passed the Cali-

fornia Consumers Privacy Act (CCPA), 2018. For instance, CCPA provides

California residents the right to know what is collected about them, refuse to

sell personal data, or request a company to delete information about them,

among other rights. CCPA de�nes responsibilities, sanctions, and remedies.

In the European Union, privacy is regulated by the General Data Pro-

tection Regulation (GDPR), enforced by each EU country since May, 20183.

In contrast to regulation in the USA, GDPR applies to all business sectors

and de�nes how individuals are to be protected when data is processed and

transferred. GDPR requires businesses to communicate their user agreement

in simple terms and to allow users to have their data removed when requested

[232]. Companies violating the regulation will face severe sanctions.

China [163] created a privacy regulation in 2018 �that is stricter than

the US but not as much as the EU" [163]. In Brazil the National Congress

passed the Lei Geral de Proteção de Dados Pessoais (LGPD) in August,

20184. Brazil's LGPD substitutes previous fragmented legislation about data

privacy and is, in many respects, similar to the EU's GDPR.

According to all privacy regulations, any piece of data concerning a nat-

ural individual is to be considered private and cannot be made available for

any other purpose beyond the one for which it was �rst collected. The fun-

damental idea behind every regulation is that any information that could

identify a person in the real world needs to be protected from unauthorized

access.

One related aspect of privacy is the preservation of sensitive knowledge,

i.e. sensible mining results [147]. In this thesis, the term knowledge essen-

tially denotes models and patterns, i.e., typical mining results, that could

2The complete suite of HIPAA Administrative Simpli�cation Regulations can be found
at 45 Code of Federal Regulations (C.F.R.), Parts 160, 162, and 164.

3Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April
2016. EU countries had to transpose it into their national law by 6 May 2018.

4Lei nº 13.709, August 2018. Accessible from http://www.planalto.gov.br/ccivil_

03/_ato2015-2018/2018/lei/l13709.htm
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reveal sensitive information (such as individual buying habits, a particular

health condition, or even about a company's �nancial situation).

From a more security-minded point of view, privacy is closely related to

the concept of con�dentiality. Ensuring that only authorized agents have

access to sensitive data is one of the objectives of secure systems. Data may

fall under many di�erent levels of con�dentiality, such as public, restricted,

secret, top-secret. Privacy is one such case of con�dentiality where sensitive

data pertains to a person. Every individual has the right to de�ne a desired

level of privacy to its data, and other agents in the system should comply.

Sensitive data, through this thesis, is referred to as a general term, denoting

any piece of data that an agent wants to keep secret from any other agents

to any desired level. If it is not meant to be public, it is sensitive.

Independent of the domain, sensitive data can be roughly categorized

into two main classes in data mining: (i) sensitive inputs; and (ii) sensitive

outputs. Sensitive inputs are the starting point in the data analysis pro-

cedure. Sensitive outputs may consist of statistical summaries, classi�ers,

cluster mappings, regression models, and the like. The outputs themselves

may represent a valuable asset or compromise input privacy if used to infer

sensitive input data.

The same idea applies to business data in a business-to-business scenario.

In some scenarios, information about the data collector is, in itself, sensitive.

Consider, for example, a survey on the rate of deaths in hospitals; it is likely

that hospitals would want to keep their identity secret if they are to partake

in the study.

Following the ideas discussed thus far in this chapter, we, rather infor-

mally, de�ne:

Sensitive data is a piece of data to which a privacy level is assigned for

a given privacy measure. An example of sensitive data is information

about individuals in the context of medical data.

Privacy is the right that an agent has to keep any given piece of information

hidden from other agents.

Privacy measure is a quantitative indication of how hidden a piece of data

is from being accessed by unauthorized agents.

The following section discusses privacy threats to datasets and privacy
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threats in the context of data mining. Later in this chapter, we return to

the topic of privacy formalization (cf. Section 2.3.3), and in Chapter 3 we

introduce new privacy measures for distributed data clustering and time

series mining.

2.3.2 The Inference Problem

Several organizations, like retail stores, hospitals, clinics, census bureaus,

collect and maintain large collections of personal information, for instance,

purchase transactions, medical records, and census data [236]. These data

collections are valuable for research, marketing, fraud detection, to name a

few. However, as discussed in the previous section, data collectors in many

�elds (medicine, for example) cannot publicize data about individuals due

to privacy regulations. In a business-to-business context, allowing a third

party to access a dataset may disclose valuable information that competitors

could use as a business advantage.

The main concern is not direct disclosure of sensitive data, which is

addressed by access control mechanisms such as mandatory access control

(MAC), but rather the threat of indirect disclosures based on inferences that

can be drawn from queries against the database or released data [194]. This

problem is known as the inference problem and appeared �rst in the literature

on Statistical Databases in the mid-1970s [201]. It would now be helpful to

examine various well-known instances of this problem in di�erent contexts,

all of which involve sensitive data.

Inference Problem in Databases

Access to statistics about groups is permitted in a statistical database (SD),

but the data concerning individual entities is not released to preserve con-

�dentiality. However, an attacker might disclose con�dential information

about an individual entity by posing queries on aggregate statistics and per-

forming arithmetic operations on the answers received, using information

about the size and nature of the sets of individuals involved, as shown in

Example 2.2. Inference control in a statistical database has been extensively

studied, and several inference control mechanisms were developed, including

cell suppression, table restriction, and record perturbation [58, 70].

Example 2.2 (from [58]) Suppose there is only one female professor in a
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particular department. If statistics reveal the total salary of all professors

in the department and the total salary of all the male professors, the female

professor's salary can be obtained by subtraction.

A multilevel secure database (MLSDB) is a system in which every user

and each piece of data has a security classi�cation label. Classi�cation labels

form a mathematical lattice structure de�ning a partial order among the

labels [30]. MLSDB ensures that data at a security classi�cation above the

user's level will be invisible to that particular user [152]. An inference attack

in a multilevel secure database allows an attacker to use low classi�ed data to

infer data classi�ed at higher levels. As illustrated in the following example,

a signi�cant class of inference attacks is based on meta-data such as integrity

constraints, functional, multivalued, or join dependencies.

Example 2.3 (adapted from [30]) Assume security classi�cation labels

public < confidential < top-secret, where the relation < induces a par-

tial order among the labels, with x < y meaning x is less secret than y. Let

a table T , holding information on employees, be de�ned as T (name, rank,

salary, experience). Assume that tuples containing both name and salary

are classi�ed at top-secret level and that tuples with name and rank are

classi�ed as con�dential. Further, consider that salary is determined by the

employee's rank, i.e. rank → salary. An attacker with clearance to handle

only con�dential data but not allowed to access data at higher levels, e.g. top-

secret, may issue two queries listing R1(name, rank) and R2(rank, salary),

both at con�dential level. However, with R1 and R2 a user may use the

fact that rank determine salary and disclose the relation R3(name, salary),

which is at top-secret level.

Several approaches to handling inference in MLSDB have been proposed,

including constraint-based security, conceptual structures, and logic-based

approaches. For a survey on MLSD, we refer the reader to [201].

The inference problem is not limited to statistical or multi-level databases.

Research concerning general-purpose databases has been a topic of investi-

gation that has produced several signi�cant contributions. The main goal

is to protect sensitive information from indirect disclosure, but there are no

explicit classi�cation labels to guide a disclosure control mechanism.

Example 2.4 (adapted from [194]) Consider a table de�ned by the re-
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lation T (physician, patient, medication). A query listing physicians and

patients, i.e., the relation R1(physician, patient), may not be sensitive. Sim-

ilarly, a query on medications prescribed by each physician may also be non-

sensitive. However, consider a query associating patients with their pre-

scribed medications, i.e., R2(patient,medication). This query may be sensi-

tive since medications typically correlate with diseases. Although there is no

direct disclosure of any relation like R3(patient, disease), an attacker may

use public data Tpub(medication, disease) to infer that a given patient may

su�er from a given disease.

Approaches to inference in databases typically focus on issues like mini-

mal classi�cation updating, partial disclosure, classifying existing data repos-

itories and how to prevent inferences via knowledge discovery [23, 31, 55, 103,

157, 202]. For a survey on this area, the reader can refer to [66].

Inference Problem in Data Mining

The inference problem has also been investigated by the data mining com-

munity (e.g., [14, 99, 121, 144, 187, 200]). Classical data mining algorithms

typically require access to raw data and, if the miner is a malicious agent, it

may use the queries' answers to infer sensitive information. Countermeasures

to this problem are already discussed in previous paragraphs in the context

of databases. However, data mining opens up new inference possibilities.

With data mining techniques, the inference problem has become even worse.

According to Thuraisingham [200], privacy threats in data mining can be

viewed as a variation of the inference problem in databases:

�[The inference problem] has been discussed a lot over the

past two decades. However, data mining makes this problem

worse. Users now have sophisticated tools that they can use to

get data and deduce patterns that could be sensitive. With-

out these data mining tools, users would have to be fairly so-

phisticated in their reasoning to deduce information from posing

queries to the databases. That is, data mining tools make the

inference problem quite dangerous. (...) we are beginning to see

many parallels between the inference problem and what we now

call the privacy problem.� � B. Thuraisingham
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Data mining results inherently elicit information regarding the data col-

lection [14, 187]. Cluster maps, for instance, describe the overall distribu-

tion of data points in a dataset. Similarly, association rules (AR) reveal

how items co-occur in a shopping basket; a rule about drugs used to treat a

given disease, for example, may disclose sensitive health information about

individuals. Classi�ers also o�er potential privacy threats. To illustrate the

problem, imagine that a health insurance company builds a classi�er allowing

it to identify people with an HIV infection. In this case, if HIV-positive in-

dividuals attempt to attain life insurance from this company, they will have

their health condition disclosed by the classi�er. Therefore, data mining

results may represent a threat to privacy.

The above discussion implicitly assumes that we have a centralized set-

ting with a central dataset being queried by a data miner. To summarize, we

state that in a centralized data mining setting, the inference problem may

pose the following threats:

Threat 1 A malicious miner agent could try to access sensitive information

from a set of queries to the central dataset (or a privacy-preserving

version of them).

Threat 2 A malicious agent may learn sensitive mining results (patterns

or models), which can be used to infer either the identity or sensitive

data stored in the central dataset.

Inference and Collusion in Distributed Data Mining

In a distributed data mining setting, data is spread across di�erent sites, each

of which represents a di�erent party (such as an institution, a company, or

a clinic). Each party owns a local dataset and is unwilling to disclose it to

other parties. In a distributed data mining algorithm, the previous threats

are still present. Further, intermediate results, partial models, and pieces of

sensitive knowledge (or model) may be linked to a speci�c party. Therefore,

we rewrite the previous threats as follows:

Threat 3 A malicious miner agent may try to infer sensitive data or iden-

tity from queries to datasets (or a privacy-preserving version of it),

intermediate mining results, or messages exchanged during the mining

process;
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Threat 4 A malicious miner agent may learn sensitive mining results (pat-

terns or models), which can be used to infer either the identity or

sensitive data stored in datasets owned by other agents.

Threat 5 A malicious miner agent may learn which party produced a given

partial model or local mining result. A partial model could reveal

sensitive information about a speci�c party.

Inference and Collusion Scenarios in Distributed Data Mining

This section endeavors to de�ne a general framework that describes inference

attacks due to the distributed data mining process. The following section

outlines de�nitions and assumptions used throughout this thesis.

In this work, the term agent is assumed to denote a generic piece of

software able to: (i) communicate with other agents, (ii) perceive its en-

vironment, and (iii) carry out a set of activities on behalf of the user it

represents [178]. A distributed data mining algorithm is de�ned as a dis-

tributed process taking a distributed dataset as input and giving a mining

model or pattern as output. A distributed mining algorithm is started by a

�nite group of agents organized, according to the algorithm at hand, into a

temporary coalition called a mining group.

Two roles, in particular, are considered; the data holder (or data collec-

tor) and the data miner, which are played by agents in the system. Data

holders are in charge of the datasets, which contain sensitive information

about individuals, trade secrets, or business strategies. Data miners start

and coordinate mining sessions on behalf of their users. In any given mining

group, each agent may act at the same time as data miner and data holder

as well.

A typical distributed data mining session is illustrated in Figure 2.7.

Starting with the original dataset D, data holders produce intermediate re-

sults I from the original datasets D, which can be local models or statistical

information about D. Then, data miners collaboratively produce and publi-

cize the mining results M to all parties in the mining group.

A malicious agent is an agent that uses information exchanged among

the participants of the mining group to feed a secret reconstruction process,

aiming to disclose sensitive data points from other agents' datasets in the

mining group.
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Figure 2.7: Distributed data mining scenario. Each data holder produces a local
model (or any intermediate result) of its datasets, from which a miner agent pro-
duces the �nal mining result.

Figure 2.8: Inference attack in a distributed data mining scenario. Possible in-
ference attacks occur under the control of a malicious miner agent without being
detected by the data holders.

Furthermore, we de�ne an insider agent, given a mining group L, as an
agent which takes part in the activities of this group. Conversely, an outsider

agent is an agent that is not part of a given mining group. Note that the

terms insider and outsider are relative to a speci�c mining group.

In this thesis, we refer to the inference problem as the threat to data

privacy posed by inference attacks, as stated in the following de�nition.

De�nition 2.1 (Inference Attack) An inference attack in a distributed

data mining setting is a reconstruction algorithm executed in the background

by a malicious miner agent beyond the steps dictated by the mining proto-

col (cf. Figure 2.8) using all information available to him (including par-

tial mining results, intermediate computations, parameter values, and extra

knowledge) to reconstruct sensitive information residing on the data space of

30



2.3 Privacy Issues in Distributed Data Mining

(a) Single peer attack (b) Collusion attack.

Figure 2.9: Insider attack scenarios. (a) Single peer attack: one or more peers try
to learn sensitive information from the other mining peers, but attackers work alone,
i.e., independent from each other. (b) Collusion attack: attackers work together,
exchanging extra messages (dashed line) to improve the con�dence of the disclosed
sensitive data.

other peers in a mining group. □

Inference attacks in distributed settings may represent threats 3, 4, and

5 discussed earlier in this section. In other words, inference attacks could

breach the privacy of sensitive information even when the data holder does

not directly disclose sensitive data to miner agents.

An inference attacks can be further separated the following categories:

insider (possibly with collusion), outsider and mixed attacks.

Insider attack scenario. In this scenario, one member of the mining

group performs the attack. This scenario can be further separated into two

sub-scenarios: (a) single peer attack and (b) collusion attack. In the single

peer attack scenario (cf. Fig. 2.9(a)), one or more peer tries to reconstruct

sensitive information from the other mining peers, but each attacker works

alone without contacting any other attackers. Conversely, in the collusion

attack scenario (cf. Fig. 2.9(b)), there are messages exchanged between (a

subset of) attackers. In this scenario, we assume that the attacker knows

the values of the parameters used in the mining session.

Outsider attack scenario. In this scenario, attacks are performed by

peers that are not members of the mining group � such a peer will henceforth

be referred to as outsider throughout this work (cf. Fig. 2.10). An outsider

attempts to infer sensitive information from data exchanged between mining

peers. It is assumed that the outsider eavesdrops on the communication

among peers in the mining session but forms no collusion with insiders,

i.e., the attacker gets no extra information from insiders other than what is
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Figure 2.10: Outsider attack scenario. An outsider who eavesdrops on the commu-
nication amongst the peers in a mining group, trying to infer sensitive information
from data contained in the messages it manages to intercept.

Figure 2.11: Mixed attack scenario. A collusion of insiders and an outsider
attacker try to infer sensitive information about other peers.

de�ned in the mining protocol being used.

Mixed attack scenario. In real-world applications, it is possible to have

mixed attack scenarios. However, we do not explore this scenario further

on this thesis (cf. Fig. 2.11). For the sake of simplicity, we assume that

outsiders know less information about the mining group than any insider. If

an outsider knows everything about the mining session, just as an insider,

we reduce this situation to an insider attack (single or collusion).

In the next section, we discuss the approaches that can be found in

the literature to counter the privacy threats when mining sensitive data, a

research area known as privacy-preserving distributed data mining.

2.3.3 Privacy-Preserving Approaches for Distributed Data

When data is distributed among multiple parties, privacy and data ownership

play a major role, which calls for a privacy-preserving solution. Privacy

regulations may control how data is used beyond the original purpose for

which it was collected � a situation that applies to sensitive data such as

healthcare, telecommunication, or customer data [22].

Another critical point to consider is competition; even if the mining re-
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sults o�er some bene�ts, giving competitors business data may not be a

viable option. For example, if a group of banks wants to learn typical fraud

patterns, they may have to address the privacy regulation on customers'

data and be sure that the competitors learn nothing that could be used as a

business advantage.

Therefore, data integration or aggregation in a distributed data mining

process introduces concerns regarding inference attacks as a potential pri-

vacy threat. The main question here is whether the data mining process or

data mining results may compromise the privacy of sensitive information in

a distributed setting, even when obtained utilizing privacy-preserving tech-

niques.

To address such concerns, three main approaches have emerged in the

�eld of privacy-preserving distributed data mining: secure multi-party com-

putation (Sec. 2.3.4), distributed model aggregation (Sec. 2.3.5) and pertubation-

based approaches (Sec. 2.3.6). With the secure multi party computation

(SMC) approach, all computations are performed by the group following a

given protocol and using cryptographic techniques to ensure that only the

�nal results will be revealed to the participants. In the distributed model ag-

gregation approach, each site computes a (partial) local model from the local

dataset, and, in a second step, all local models are aggregated to produce a

global model, which is shared with the participants. The perturbation-based

approach adds noise to original data or model parameters to hide sensitive

data against disclosure.

In the following discussion, we assume a set L = {Li}Pi=1 of agents, each

Li residing at site Si. Each agent may communicate with several other agents

forming a pure peer-2-peer architecture. We assume that only Li has access

to local data set Di. The size of collusion of malicious agents is denoted c,

with c ≤ |L| − 1. We often write �site Li� as a simpli�cation to denote �the

agent Li residing at site Si�.

2.3.4 Secure Multi-Party Computation

Secure multi-party computation (SMC) aims to compute a function in such a

distributed fashion that information sharing is minimized, expecting to add

only a small overhead in the overall time complexity. In SMC, only the �nal

result can be shared while intermediate information must be kept hidden

from the parties [81, 68].
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Secure Two-Party Computation was �rst proposed by Yao [233, 234] with

the Millionaires' Problem. The problem is that two millionaires would like

to know who is richer without revealing their net worth to one another. Yao

[233] presented a solution to this comparison problem, generalizing it to any

computable function in the two parties setting. Subsequently, the problem

was generalized to multi-party computation in [82].

In general, an SMC scenario is described by P parties, private information

x1, x2, . . . , xP from each party, a public function f(x1, . . . xP ) that needs to

be computed from the shared data without any of the parties revealing their

private information. Additionally, there is no trusted central server in an

SMC setting. Otherwise, they could send their data to the central server

and wait for the computation result.

A simple example of SMC is secure sum [43]. Consider P sites denoted

Li, each of them holding a private value xi. The goal is to secretly compute:

v =
P∑
i=1

xi

Assume that the value of v, to be computed, is known to lie in the interval

[0,m]. One site is chosen to be the master and is numbered 1. Remaining

sites are numbered 2, . . . , P . Site L1 generates a random number r, uniformly

chosen from [0,m]. Site L1 sends v1 = (r+xi)mod m to site s2. In the sequel,

every site Ll, with l = 2, . . . , P , receives the partial sum vl−1 = r +
∑l−1

i=1 xi

and adds its local value xl and sends vl = (xl+ vl−1) mod m to the next site

Ll+1. The last site sends the last partial vP to the master site, L1. Since L1

knows the value of r, it can compute v = vP − r, which is the output of the

secret sum.

Example 2.5 (Secure Sum) Let P = 3 and x1 = 0, x2 = −5 and x3 = 7.

Let m = 20. Assume r = 17, uniformly chosen from [0, 20]. L1 computes

v1 = 0 + 17 = 17. L2 receives v1 and computes v2 = (−5 + v1) mod 20 =

(−5 + (0 + 17)) mod 20 = 12. L3 computes v3 = (7 + v2) mod 20 =

(7 + (−5 + 0 + 17) mod 20 = 19 and sends it to L1. Finally, L1 computes

v = v3 − r = 2, which is the actual result.

Generic SMC protocols are not e�cient for large inputs [130]. Therefore,

there was an increased interest in �nding e�cient SMC protocols for speci�c

applications of secure computations [62, 88, 133].
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SMC has been applied to privacy-preserving data mining in several dif-

ferent settings, starting with the work of Lindell and Pinkas [130, 131]. They

proposed a modi�ed version of the ID3, called ID3δ, which gives an approxi-

mation of the results generated by the original algorithm. They assume two

parties, holding two horizontally partitioned datasets D1 and D2, respec-

tively. The basic idea is to �nd the attribute that maximizes information

gain, which reduces to �nding the attribute that minimizes the conditional

entropy. In ID3, if two attributes have similar entropy levels, the two dif-

ferent trees resulting from choosing one attribute or the other are expected

to have similar predicting accuracy. ID3δ does not choose the best attribute

but chooses any attribute whose entropy di�ers less than δ from the best one.

The conditional entropy of D given an attribute A for two parties HY (D|A)
can be approximated as a sum of the expressions:

(v1 + v2) · log(v1 + v2)

where v1 is computed by party L1 and v2 is computed by party L2. The

problem lies in how to compute this equation securely. The authors com-

bine secure log, secure polynomial evaluation, and secure comparison sub-

protocols to evaluate this expression and show how to use this function to

build ID3δ. A multi-party version of ID3 is proposed later by Pinkas [165].

Privacy Measure for SMC

SMC protects the exact values of the inputs from being disclosed to the

remaining parties in the group. The protection is achieved via cryptographic

methods, e.g., secret shares, homomorphic encryption, oblivious transfers,

to name a few. SMC does not measure privacy levels directly but provides

analytical proof that a given protocol does not disclose input information

during the protocol execution.

Privacy in SMC is, informally speaking, the equivalent of having a trusted

third party perform the computation and erasing all of the input data after

the computation. An SMC protocol is said to preserve privacy if we can

prove that no party learns anything but the �nal results, as would be the

case with a trusted third party in the setting. The above notion of privacy

is known as the simulation paradigm [81] and is used to de�ne privacy for

SMC protocols formally.

35



Chapter 2. Background

Before a formal de�nition of privacy is put forth, it is necessary to de�ne

some basic concepts.

De�nition 2.2 (Negligible Function [82]) A function µ : N→ R is neg-

ligible if for every positive polynomial p, and all su�ciently large n's,

µ(n) < 1/p(n)

□

A negligible function decreases faster than the reciprocal of any polynomial.

For example, 2−
√
n and n− log2 n are negligible (as functions in n).

De�nition 2.3 (Indistinguishability [132]) Let X and Y be two random

variables and a parameter n de�ning the size of inputs. We say that X

and Y are computationally indistinguishable, denoted X
c≡ Y , if for every

non-uniform polynomial-time algorithm A there exists a function µ(·) that is
negligible in n such that,

|Pr[A(X) = 1]− Pr[A(Y ) = 1]| < µ(n)

where Pr[a] denotes the probability of event a. □

Since X and Y cannot be distinguished by a polynomial-time algorithm

A, they are the same for all practical purposes. Typically, X and Y will

denote the output vectors of the parties in the real (with SMC protocol) and

ideal (with trusted third party) executions, respectively. The outputs are

modeled as random variables since the operation of the parties is typically

probabilistic [132]. Another way to interpret this de�nition is to say that the

output of A is not signi�cantly di�erent for samples drawn from X or Y .

An essential aspect of SMC protocols is the adversary model. The sim-

plest model is the semi-honest adversary model. Semi-honest adversary

refers to an adversary who follows the protocols instructions but keeps a

record of all messages, and intermediate computations [81]. Although semi-

honest is a weak adversary model, it does guarantee that there is no inad-

vertent information leakage. The semi-honest based protocols are designed

as the �rst step towards more secure ones.

De�nition 2.4 (Private Computation from [81, 82]) Assume P parties
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L1, L2, . . . LP . Let f be a random process that maps pairs of inputs into

pairs of outputs, one for each party. We say that a given protocol π pri-

vately computes f in presence of semi-honest adversaries if there exist prob-

abilistic polynomial-time algorithms Si, i ∈ {1, 2, . . . , P}, such that for every

xi ∈ {0, 1}∗ and x = (x1, x2, . . . , xP ), we have:

{(Si(xi, fi(xi)), f(x))}
c≡{(viewπ

i (x), output
π(x))} (2.1)

□

In the above de�nition, Si is a simulator used by party Li. Si receives

as input xi and fi(xi) and must generate output that is (computationally)

indistinguishable from the view of Li in the protocol execution. We use f(x)

to represent the output generated from f with the input from all parties.

Notice that viewπ
i (x), and outputπi (x) are related random variables with

probability taken over the random tapes of all the parties [132].

Essentially, to prove that an SMC protocol is private, using the above

de�nition, one needs to show that each party can simulate its view using

the protocol output alone. If the simulation is not possible, there is an

information leak, and the protocol is not private.

In a multi-party scenario it is possible that dishonest parties form a

collusion (or coalitions) [82, ch. 7]. Members of a collusion group can

exchange local inputs, intermediate messages, or local outputs to breach

the privacy of the information held by honest members in the group. In

the presence of a coalition, the main idea remains the same: a multi-party

protocol privately computes a function f if any piece of information learned

by a set (or a coalition) of semi-honest parties can be learned from the set

of inputs and outputs of said parties.

We stress that the notion of privacy computation is essentially binary; a

protocol is either private or not, and it cannot express intermediate degrees

of privacy. For a discussion on proofs for SMC protocols, the reader may

peruse the discussion in [132] and [82, ch. 7].

The following de�nition rewrites the original de�nition as a binary mea-

sure. We use the notation PRA to denote the privacy level of a given al-

gorithm A. To explicitly indicate privacy measure m in the evaluation of a

given algorithm A we use the notation PRm
A .
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De�nition 2.5 For a given dataset D and an algorithm A and private com-

putation as in De�nition 2.4, let PRPC
A (D) = 1 denote that A privately com-

putes a given function f for all x ∈ D and PRPC
A (D) = 0 otherwise. The

privacy against outsider attacks is denoted by PRPC
A[0](D), to indicate that

the attack has zero participation of insiders. The privacy in the presence of

single inside attackers, without collusion groups, is indicated as PRPC
A[1](D).

Additionally, the privacy level in the presence of collusion group with at most

c members is expressed as PRPC
A[c](D). □

Example 2.6 Example 2.5 presented secure sum protocol where each party

receives a random number in the interval [0, 20]. Each party can simulate

its view by drawing a random number from this interval. The simulated

and actual views cannot be distinguished since both represent random num-

bers drawn from the same interval. Therefore, the protocol is private, i.e.

PRPC
SMCsum[0](D) = 1.

Example 2.7 (from [132]) Two parties run a protocol to decide if their

two inputs are equal (assume that each is of length k). The protocol works by

running a more straightforward protocol that compares two bits. The input

to this simpler protocol is a pair of bits taken from the corresponding location

in both inputs. The �rst comparison is of the most signi�cant bits of both

inputs and, afterward, successive bits are compared until a di�erence is found

or it is decided that the two inputs are equal. If this protocol stops after i

comparisons, the parties can safely conclude that the i − 1 most signi�cant

bits of their inputs are equal. This information cannot be deduced in the

ideal model since the parties are only told if the inputs are equal or not equal.

Consequently, the protocol cannot be simulated by one of the parties given her

input and output alone. The protocol is not private according to the privacy

de�nition above, i.e. PRPC
SMCBitEq[0](D) = 0.

Limitations. According to SMC literature, there are two kinds of infor-

mation leaks in an SMC protocol [109, 132]: (i) the information leak from

the function computed, irrespective of the process used to compute the func-

tion, and (ii) the information leak from the speci�c process of computing

the function. Privacy breaches related to the �rst type of information leak

are unavoidable in an SMC protocol as long as the function has to be com-

puted [187, 208]. In this case, a privacy breach occurs when any party learns
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more than the �nal result, as shown in Example 2.7. For example, when two

parties sum their ages, they may compute each other's age by subtraction.

Similarly, if two millionaires compare their net worth, both parties can have

a lower or an upper bound on the other millionaire's net worth. The second

kind of leak, however, is provably prevented. There is no information leak

whatsoever due to the process, i.e., any outside attacker eavesdropping on the

communications will not be able to learn the inputs from the participants.

In summary, the private computation measure PRPC(D) gives us the

privacy level from the outsider attackers' point of view. However, it does not

indicate the privacy level when malicious insiders are organized as collusion

of attackers or the critical number of malicious that may compromise the

privacy. Moreover, by being binary, PRPC(D) does not quantify the amount

of privacy breach for a given SMC protocol, and it only indicates when a

breach takes place.

Related Work on Secure Multi-Party Computation

SMC has been applied to many data mining techniques. In the following,

we present a sample of the research work in this �eld.

Surveys, Tools, and Frameworks. Clifton et al. [43] described various

SMC-based protocols, which can be combined for speci�c privacy-preserving

data mining applications. As the authors pointed out, the proposed tech-

niques are not secure because some information other than the �nal results

is revealed to the parties. The authors presented secure protocols for sum,

set union, set union size, and scalar product and showed how to apply them

to mine association rules and clustering. Xu and Yi [230] surveyed the �eld

of privacy-preserving distributed data mining and proposed a framework to

synthesize and characterize existing SMC protocols. This framework ana-

lyzes privacy requirements to help developers design e�ective and e�cient

SMC protocols. They use the following dimensions to classify protocols:

data partition, algorithm, secure communication model, privacy-preserving

techniques.

Bogdanov et al. [26] proposes Sharemind, a toolkit allowing a data min-

ing specialist with no cryptographic expertise to develop data mining algo-

rithms with fundamental security guarantees. The building blocks needed

to deploy a privacy-preserving data mining application are listed, and the
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design decisions that make Sharemind applications e�cient in practice are

explained. The Sharemind architecture provides a secure server and a pro-

gramming language Secre-C for application developers, which provides ex-

plicit con�dentiality types: public and private. All private values are se-

cretly shared, and conversion to the public type requires an explicit call of

the declassify operator. Secre-C also automatically parallelizes vector and

matrix operations. The architecture has been tested on real-world datasets

with several algorithms implemented in the framework. Sharemind uses the

secret-sharing cryptographic approach to provide security. Further, it as-

sumes that no two miners will collude.

Teo et al. [197, 198] developed the DAG model: a set of secure operators

(including +, −, ∗, log) that can be combined to produce various functions.

The objective is to use these operators as building blocks to implement SMC

protocols. To demonstrate the applicability of the DAG model, they im-

plemented kernel regression and naive Bayes algorithm. Currently, DAG

operators support only the 2-party case.

We refer the interested reader to [97] for a comprehensive comparison of

ten general-purpose frameworks for secure multi-party computation.

Distributed Data Clustering. Vaidya et al. [213], in a seminal paper,

proposed a protocol for computing distributed data clustering based on the

k-means algorithm. The approach assumes vertically partitioned data and a

multi-party scenario with three non-colluding parties. The authors proposed

secure protocols to �nd the closest cluster for a given point, secure permuta-

tion, and secure comparison. During the secure comparison, homomorphic

encryption ensures the privacy of each data point. Each site learns only its

part of each cluster centroid and the cluster assignment of all points at each

iteration. Doganay et al. [60] proposed a secret sharing approach to compute

the closet cluster in k-means. They achieved better performance than Vaidya

et al. [213] since secret sharing avoids expensive cryptographic computation.

On the other hand, the authors assume four non-colluding parties. Lin et

al. [129] presents a distributed clustering algorithm over horizontally parti-

tioned data, based on the expectation-maximization (EM) algorithm. EM

mixture clustering is an iterative process that produces a new set of cluster

assignments at each iteration. Over time, these centroids converge to cluster

centers. The proposed algorithm does not disclose individual data points,
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and no information can be traced back to a speci�c site. The algorithm uses

secure sum protocol to integrate the estimators across the di�erent sites.

The authors observe that the approach assumes no collusion. Otherwise,

a collusion group could learn the centroids and variances of other parties.

Gheid and Challal [80] proposed a distributed k-means algorithm based on

a secure sum protocol. The mining group securely computes each cluster's

sum and the number of points, iteratively, until convergence as in classical

k-means. The idea is similar to Clifton's secure sum protocol [43] without

the modulo operation. Experimental results indicate that this protocol is

scalable with the size of the dataset and the number of parties. However,

the security is based on the assumption that there are no collusion groups.

Otherwise, the malicious may recover the centroids and number of points

of an honest party. Shewale et al. [185] used elliptic curves for key sharing

and authentication in a distributed version of the k-means algorithm. Each

local party owns a local dataset and shares the sum and count information

to other sites. This approach assumes a trusted third party that receives en-

crypted sums and counting from each party and computes global centroids

at each iteration. The trusted third party also veri�es the digital signature

of each information received. Almutairi et al. [8] extended DBSCAN with

homomorphic encryption. First, local parties produce a distance matrix and

apply Pailler encryption to protect it before sending it to a central server.

The server receives and aggregates all local matrices into a global distance

matrix. The server runs with encrypted data to produce an encrypted cluster

solution. Finally, local parties decrypt only the data relative to their data.

Another secure version of DBSCAN was proposed by Bozdemir et al. [27].

In this case, the authors employed secret sharing to design a ppDBSCAN.

Local parties use secret sharing to split original data before sending it to

the non-colluding cluster servers. The servers run a 2-parties-computation

secure protocol to privately compute distances and discover points in dense

regions as in the original DBSCAN. Local parties receive either labels or

centroids depending on the implementation.

Application of SMC's Measure to Related Work

Now lets us discuss how the SMC's private computation measure, PRPC ,

indicates the privacy level of SMC-based clustering solutions discussed ear-

lier in this section. All subsequent analyses are derived directly from each
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respective work. We consider only distributed clustering approaches (closely

related to our work) for three or more parties, as collusion only makes sense

with three or more parties. Table 2.2 presents a summary of SMC-based

privacy-preserving clustering approaches. This table displays the number of

parties necessary to run a given protocol, the number of trusted third par-

ties assumed by the approach, the sensitive info exchanged during a mining

session, the privacy level under various attack scenarios, and the smallest

collusion group size that causes a privacy leak.

EM-based clustering by Lin et al. [129] works with three or more parties

and no trusted third party. Single attackers are not able to learn anything

beyond the output. However, when there is a collusion between the �rst and

the last parties, the malicious parties can learn the arguments and variances

of honest parties. This represents a breach because the leaked information

cannot be learned from output alone. In this case, PRPC
Lin[2](D) = 0.

Similarly, Vaidya's approach [213] and Doganay's [60] work with three

or more parties without a trusted third party. Collusion of at least two

parties in both schemes also discloses the centroids but not variances. Thus,

PRPC
V aidya[2](D) = 0 and PRPC

Doganay[2](D) = 0.

Gheid and Challal [80] assumes three or more parties and no collusion

among them. The proposed secure sum protocol breaches privacy under the

collusion of two parties and exposes centroids and several points to other

potentially malicious parties. Therefore, PRPC
Gheid[2](D) = 0.

The protocol proposed by Shewale et al. [185] works with three or more

parties and needs a trusted third party. Single attackers cannot breach pri-

vacy because they need information held by a trusted third party to succeed.

However, any collusion between any single malicious party and the trusted

third party reveals other parties' sum and the number of points. In this case,

PRPC
Shewale[2](D) = 0.

Some key points to notice from this brief overview are as follows. First,

SMC is very e�ective in protecting the inputs from outsiders eavesdropping

to the communication. Indeed, all SMC-based data clustering approaches

studied in this section have PRPC
[0] = 1, i.e., secure against outsider attacks.

Furthermore, all approaches are secure against single attackers (no collu-

sion), i.e., PRPC
[1] = 1. However, SMC was not designed to protect against

malicious insiders. As already mentioned, in a scenario where parties may

collude if the majority of parties are corrupted, then an SMC protocol may
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fail to provide the correct output and even fail to guarantee that the result

will be delivered to the honest parties [132].

Another important aspect to notice is that each algorithm resists collu-

sion attacks up to a certain size of collusion groups. A small group of two

malicious may be enough to breach privacy in a given scheme, yet another

algorithm may resist a larger collusion group. For instance, VC-SMC pro-

tocol by Vaidya and Clifton [213] breaches privacy with c = 2 while Patel's

ECC-based approach [160, 161] resists to a collusion attack of all against one

(c = P − 1). The PRPC measure, however, does not indicate if there is a

critical number of malicious that breaks each protocol.

We also stress the binary nature of the PRPC measure. The goal of the

original private computation measure is to indicate if a given SMC protocol

leaks information without any further indication on how much privacy was

compromised. For example, there is no distinction between disclosing cen-

troids, data points, or the number of points in a given cluster. Nevertheless,

each piece of leaked information has a di�erent harm potential to privacy.

Leaking a centroid reveals less information than disclosing a raw data point.

All leaks, however, are treated as equally harmful by PRPC metric.

It is also worthy of note that k-means is the most investigated clustering

algorithm in privacy-preserving distributed data scenarios. The choice of

k-means over other approaches could be related to its simplicity. However,

there is still the need to extend this line of research to other clustering

approaches since k-means present several well-known drawbacks, e.g., the

need to know the number of clusters a priori and the tendency to �nd ball-

shaped clusters.

2.3.5 Distributed Model Aggregation

Model aggregation approaches work by producing local models, later aggre-

gated into a global model. It was �rst proposed in central data settings to

produce models with reduced variance. An aggregated model is computed

from several models built from subsets of the data available [29, 61, 71, 173,

179]. Aggregation of models is often formulated as a �nite mixture model

fλ(x) with k components from a chosen family of models λ [190]:

fλ(x) =
k∑

i=1

βifλi
(x) (2.2)
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Figure 2.12: Two Gaussians �tted from dataset D (cf. Example 2.8)

where
∑k

i=1 βi = 1 and fλi
denotes a individual component model described

by parameters λi.

Example 2.8 (From [96](p. 272)) Assume dataset D = {−0.39, 0.12,

0.94, 1.67, 1.76, 2.44, 3.72, 4.28, 4.92, 5.53, 0.06 , 0.48, 1.01, 1.68, 1.80,

3.25, 4.12, 4.60, 5.28, 6.22}. Consider the family λ of uni-modal Gaussians,

each of which is described by a mean µ and variance σ2. Let us model the

probability distribution function (p.d.f) of this dataset as a mixture of two

Gaussian, since it appears to be two di�erent populations on dataset D. After

�tting the mixture model to D, we have that each Gaussian5 has the following

parameters: λ1 =
(
µ1 = 1.06, σ21 = 0.77

)
and λ2 =

(
µ2 = 4.62, σ22 = 0.87

)
,

respectively (cf. Fig. 2.12). The mixture coe�cients are β1 = 0.45 and

β2 = 0.55. Therefore, the mixture model for D is:

fλ(x) = 0.45fλ1(x) + 0.55fλ2(x)

There are many ways to combine models, like averaging local parameters,

averaging the output of local models, majority voting, or training of a meta-

model from resampling of local models [179]. The most known families of

models used as components are decision trees [71], uni-modal Gaussians and

non-parametric kernel density estimates [190].

The idea was extended to the distributed data setting [12, 22, 149, 169,

184, 212, 240] to speed up computation and reduce communication costs,

5The p.d.f of a Gaussian with parameters λi = (µi, σi) is

fλi(x) =
1√
2πσ2

i

e
− (x−µi)

2

2σ2
i
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as the size of local models exchanged is much smaller than the size of local

datasets. The general setting is similar, but each component fλi
(x) now rep-

resents a local model owned by a di�erent site. Distributed Model Aggrega-

tion has been used for classi�cation [107, 212, 228], clustering [175, 203, 240],

manifold discovery and probabilistic models [91, 92, 136].

In the following sections, we �rst present privacy de�nitions for dis-

tributed model aggregation, and in the subsequent section, we discuss a

sample of distributed model approaches found in the literature.

Privacy Measure for Distributed Model Aggregation

The distributed model aggregation approach seeks to protect the exact values

owned by each participant from being disclosed to other parties in the group.

The protection is achieved by exchanging only data models representing local

datasets and not original data points. The likelihood-based measure has

been proposed in the context of clustering and classi�cation. This measure

interprets privacy as the uncertainty that a given dataset was generated from

a given probability model [149, 150]. For a dataset D with probability model

fλ(x), the likelihood is given by:

L(D, λ) =
∏
x∈D

fλ(x)

Merugu and Ghosh exploit the fact that the uncertainty is related to the

reciprocal of the likelihood. Consequently, when the likelihood is high, i.e.,

if the model accurately represents the dataset, privacy is low and vice-versa.

It is important to remark that this measure pertains to a whole input dataset

and not a single data point. Notice that the geometrical mean can be inter-

preted as the reciprocal of the average likelihood6, for D and fλ(x). Thus,

they de�ne the privacy measure as:

PRlike(D) =

(∏
x∈D

fλ(x)

) −1
|D|

6Given the geometrical mean G = n
√
x1x2x3 . . . xn, it holds that logG = 1

n

∑n
i=1 log xi
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Taking the log of both sides, the previous equation can be rewritten as:

log2(PRlike(D)) = − 1

| D |
∑
x∈D

log2 fλ(x)

Finally,

PRlike(D) = 2

(
− 1

|D|
∑

x∈D log fλ(x)
)

De�nition 2.6 ([149]) Let D be a given dataset and fλ(x) be the probability

density function associated with a given probabilistic model λ. The privacy

PRlike of data set D given model λ is de�ned as:

PRlike(D) = 2

(
− 1

|D|
∑

x∈D log fλ(x)
)

(2.3)

□

From the above de�nition, it follows that a higher likelihood of generating

a given dataset D from the model λ would result in a lower amount of privacy.

For instance, a highly detailed model comprising a mixture of Gaussians with

low variance and centered at each point provides no privacy. Conversely, a

coarse model with few Gaussians and high variance has a low likelihood

of generating a particular dataset and, therefore, provides a higher privacy

level.

Example 2.9 Given a dataset D = {1, 4, 6, 9} and three models λ1, λ2,

and λ3 consisting of a mixture of Gaussians centered at each point x ∈ D,
with variances σ21 = 0.1, σ22 = 0.5 and σ23 = 1, respectively. The probability

density functions of each model are denoted as f1(x), f2(x), and f3(x). Using

Eq. 2.3 we have, for the �rst model:

PRlike(D) = 2

(
− 1

|4| (log2(f1(1))+log2(f1(4))+log2(f1(6))+log2(f1(9)))
)
= 1.0027

Similarly, we compute the privacy level for D using λ2

PRlike(D) = 2

(
− 1

|4| (log2(f2(1))+log2(f2(4))+log2(f2(6))+log2(f2(9)))
)
= 5.0124

and λ3

PRlike(D) = 2

(
− 1

|4| (log2(f3(1))+log2(f3(4))+log2(f3(6))+log2(f3(9)))
)
= 9.3126
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De�nition 2.6 was proposed in the context of distributed data classi�ca-

tion and clustering [149]. In this setting, a dataset owner will publish a model

λ instead of the raw data. Therefore, the question is which model should be

made public, given the quality and privacy constraints. The choice is up to

the dataset owner, who will balance the trade-o� between the constraints.

(a) λ1 is a mixture of 4 Gaussians, cen-
tered at each point, with variance σ2 =
0.1

(b) λ3 is also a mixture of 4 Gaussians,
centered at each point, with variance
σ2 = 1

Figure 2.13: Two di�erent models λ1 and λ3 for dataset D = {1, 4, 6, 9}, as
de�ned in Example 2.9.

Intuitively, lower values of PRlike(D)mean that an insider attacker could

reconstruct the dataset D with high likelihood. Consider, for example, the

model λ1 in the previous example, which is a very detailed mixture model

(cf. Fig. 2.13(a)). If we generate datasets R from λ1 with a high likelihood

they will be very similar to D, since the variance is very small σ2 = 0.1. Still

worse, an attacker can choose the dataset generated, which has a maximum

likelihood for the given model, optimizing the precision of this reconstruction

attack. With higher variances and coarser models, as in the model shown

in Fig. 2.13(b), generated datasets will be more dissimilar to the original

dataset since the model may produce datasets with a high likelihood in a

much wider region around the initial dataset.

This approach provides adequate protection against outsider attacks since

it does not exchange original data points, only models. Assuming that out-

siders have no information on the model or other relevant parameters, they

cannot reconstruct the original dataset.
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Limitations. One limitation of the likelihood measure is that it does not

consider individual points. Thus, if only a few points are highly likely to be

reconstructed with high precision, the overall measure may still indicate a

low likelihood for the whole dataset. Therefore, privacy breaches at the data

point level may not be detected. One better approach would enforce the

minimum privacy level found, not the average level. Moreover, it does not

address malicious insiders, which may expose the participants to a malicious

central entity attack.

Related Work on Distributed Model Aggregation

Distributed Model Aggregation has been applied to many data mining tech-

niques. In the following, we present a sample of the research work in this

�eld. We grouped the work by the family of models used to represent un-

derlying data.

Parametric representations. One common approach to represent data

is via parametric models [92, 136, 239, 240]. Zhang et al. [240] describe how

global data models could be learned from local ones, e.g., latent variable

model from Gaussian Mixture Model for clustering and manifold discovery

[239]. The method does not need resampling from local models and produces

a hierarchy of abstracted models, from more �ne-grained to a more coarse

global model. Liu et al. [136] investigate how to learn probabilistic principal

components analysis (PPCA) and Gaussian Mixture Models (GMM). The

aggregation is obtained by KL-averaging the local models using Kullback-

Leibler distance instead of linear averaging. The authors propose a simple

bootstrap approach to generate samples from local models to compute the

KL-averaging. Han et al [92] and Han [91] proposes methods to minimize

noise when drawing bootstrap samples from local models. We refer the

reader to [104] for a survey on distributed model aggregation with parametric

models.

Non-parametric approaches. Local data can also be modeled with non-

parametric models, e.g., kernel density estimates. Liang et al. [126] proposed

REMOLD for distributed data clustering. REMOLD �rst computes local

kernel density estimates and models them as Gaussian distributions, merged

based on a connection value de�ned on the kernel nearest neighbor graph.
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The globally merged Gaussian model is �nally applied to all points to get a

�nal cluster map. The approach was implemented in Spark on a cluster with

one master and four slaves. Lodi et al [140] investigate distributed clustering

in a peer-to-peer network. Initially, each peer computes a local kernel density

estimate and then queries the value of the local maxima estimates computed

at neighboring peers in the network. Each peer can label its local dataset

considering all identi�ed maxima in the density estimate.

Other representations. Adjacency graphs and discriminative functions

can also be used to represent clusters. Scardapane et al. [181] proposes a

distributed spectral clustering algorithm for peer-to-peer networks. First, an

Euclidean Distance Matrix (EDM) is computed via a distributed gradient

descent optimization algorithm. At each step, local sites exchange a small

portion of their local data and a low-rank factorization of the local distance

matrix during the computation. When the number of iterations is reached,

each local site extracts its Laplacian Matrix from the EDM and applies k-

means locally. Shen et al. [184] use high order statistics to improve the

performance of distributed clustering. Clusters are modeled by discrimina-

tive clustering functions, which de�ne the boundaries of each cluster with no

assumption about the probability distribution of each cluster. The optimiza-

tion problem is solved via distributed gradient descent to �nd the maximal

mutual information for a given set of parameters describing the discrimina-

tive functions. Only mutual information is exchanged among peers during

the process, and the approximate global mutual information is calculated by

a linear combination of local mutual information. The process iterates for a

user-de�ned number of times. Tong et al. [203] propose a distributed clus-

tering algorithm based on boundary information. It �rst identi�es boundary

points from local datasets and performs local clustering with the selected

points. A fusion step is conducted by a central party taking all local labeled

boundaries to produce global boundaries, used locally to cluster local data

points. The approach can work with various classic clustering algorithms

on the local clustering step, e.g., DBSCAN or Spectral Clustering. It is

worth noting that boundary points are not treated to avoid privacy leak-

age. Rosato et al. [175] follow an ensemble approach to cluster a distributed

dataset spread over di�erent sites with the V-DEC algorithm. Each site gen-

erates a local cluster, and in a second step, they exchange clusters similarity
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index and centroids until convergence is reached. V-DEC can work with any

clustering algorithm in the local phase, but the authors demonstrated the

idea with k-means. The main goal is performance, not privacy, which is not

explored in detail.

Privacy-preserving approaches. The study of privacy-preserving dis-

tributed model aggregation has been an active research �eld. Indeed, en-

sembles learning has received most of the attention from the data mining

community (e.g. [22, 107, 123, 125, 228] and references therein).

Merugu and Gosh [149, 150] present a general framework for distributed

learning with privacy. Assuming a given family of parametric models, each

party builds a model of its local dataset and sends it to a central location

where all models are aggregated. The central location �rst computes a mean

model from local ones, and then arti�cial data is generated from the mean

model. A �nal model is �tted on the arti�cial data. Both local and central

location models are �tted with the EM algorithm run multiple times to pick

the best solution. The authors also propose a privacy measure based on

information theory to quantify the privacy of local datasets given the model.

The proposed measure is such that if the local models are more detailed,

generating a more accurate model, the privacy will decrease. On the other

hand, privacy will increase with less detailed local models.

Xiang and colleagues [228] addresses the problem of combining local

ensembles of classi�ers (e.g., random forests) into a global ensemble with

privacy-preservation. The authors presented di�erential-private versions of

Random Forests (RFsDP) and AdaBoost (AdaBoostDP) algorithms to build

local ensembles. The algorithm computes the weights of a global mixture

of each local ensemble given the size of each local dataset and the accuracy

of each local ensemble. Similar work was proposed by Jia et al. [107]. An

ensemble of trees is computed via AdaBoost with di�erential privacy. How-

ever, the base learners are CART decision trees. This line of work could be

seen as a hybrid of model aggregation and di�erential privacy.

Bhowmik et al. [22] de�ne distributed learning approach when data is

split into several disjoint subsets, and the learner has access only to ag-

gregates. They instantiate the framework to learn Gaussian regression,

binary classi�ers, and generalized linear models using telecommunication

and healthcare data. Each subset originates a weak learner, and the global
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model is generated by combining the results from each learner via averag-

ing. Raw data are used only once to compute the local models and never

accessed again. The authors do not use any privacy measure to quantify

privacy preservation of breaches. Li et al. [125] proposes an algorithm for

semi-supervised learning based on a mixture-model, similar to Merugu and

Ghosh's approach. They �rst compute local mixture models and then use a

secure protocol to propagate data labels securely. SMC protocols guarantee

privacy.

2.3.6 Perturbation-Based Approaches

As discussed earlier in this section (cf. Subsection 2.3.2 on page 28), the

inference problem poses several threats in a distributed data mining scenario,

even when applying SMC or DMA. SMC was designed to protect inputs from

direct disclosure during a distributed computation. However, intermediate

results and outputs may still reveal information via inference attacks [187,

208]. Model aggregation also o�ers an alternative to avoid data disclosure.

However, several inference attacks can be deployed against a learned model

[144, 229].

Data perturbation has long been investigated as an approach to provide

privacy to sensitive data [34, 35]. The idea is to modify original sensitive

data or even the mining results to avoid inference attacks. Numerous privacy

metrics emerged from this line of research, e.g. k-anonymity, l-diversity, or t-

closeness. However, di�erential privacy is the most popular metric to assess

how much privacy is preserved by data perturbation algorithms [59].

Di�erential privacy is a perturbation-based approach proposed by Dwork

[64] as a solution to the privacy-preserving data publishing problem. In this

setting, a data holder answer queries issued by an untrusted miner. The

data holder will add noise to the data to decrease the risk of disclosing mem-

bership of an individual [84]. The goal is to generate summaries that do not

change signi�cantly, even if an individual subject had opted out of the data

collection. In other words, an algorithm is di�erentially private if and only

if the inclusion of a single tuple in the dataset causes only statistically in-

signi�cant changes to the algorithm's output. The primary goal is to protect

the so-called membership privacy of an individual, i.e., to keep private if

a record about a given individual is in the dataset or not.
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De�nition 2.7 (ϵ-Di�erential Privacy [64]) An algorithm A gives ϵ-di�e-

rential privacy if for all data sets D1 and D2 di�ering in one entry, all

outputs O ∈ Range(A) satisfy

Pr[A(D1) ∈ O] ≤ eϵPr[A(D2) ∈ O] (2.4)

where Pr[a] is the probability of event a. □

The above de�nition states that the probabilities of outputs from ϵ-

di�erentially private algorithm are bound to a factor of eϵ. Consequently,

the probability distribution of outputs from A(D1) and A(D2) are very sim-

ilar. Some authors prefer to say that in this context A(D1) and A(D2) are

ϵ-indistinguishable [59]. If ϵ is small enough, an adversary will not know if

the output was computed over database D1 or database D2 [145]. Therefore,

membership privacy is preserved.

The noise added to the data is commonly drawn from a Laplace distribu-

tion. The scale of the distribution is de�ned by the query's sensitivity, which

is the maximum possible di�erence when applying the same query to D1 and

D2 [63]. Higher sensitivity queries are more likely to reveal individual tuples,

and thus they should receive more noise.

One essential aspect of a DP algorithm is the parameter ϵ, also known

as the privacy budget. Each query reduces the privacy budget, and after the

budget is consumed, no further queries can be answered. The challenge is

to pick a value big enough to enable a su�cient number of queries before

breaching privacy. However, the semantics of ϵ is not well understood and it

is an active topic of research [24, 95, 98, 167, 196]. Additionally, there is no

systematic way to chose the value (or the range of values) for ϵ [154, 211]. DP

assumes an honest data holder. In practice, honest data holder is a strong

assumption that motivated the research on distributed di�erential privacy.

In a distributed scenario, no trusted central data holder is assumed.

This approach is called Local Di�erential Privacy (LDP), and each party is

responsible for adding noise to their data before releasing it to other parties

[227]. Choosing ϵ in LDP is even more challenging since the privacy budget is

shared among all the parties and is added up to compose a global ϵ [221]. The

downside of LDP is that it requires more signi�cant amounts of noise than in

central DP [40]. An intermediate trust model between the central and local

is the shu�e privacy. Shu�e-privacy is an alternative de�nition that requires
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less noise at the expense of increased computational cost [24, 41]. In this

model, users apply noise to their data, as in the local model. However, each

data point is transformed by a trusted shu�er to break the link between data

points and individual users. Google's PROCHLO system [24] is a realization

of this model, which is easier to achieve than an equivalent SMC protocol.

For a comprehensive list of extensions and variations of di�erential privacy

de�nition, we refer the reader to [59]. DP has also been combined with

generative adversarial networks (GANs) in the distributed setting to produce

synthetic data as a proxy for local sensitive data. The goal is to train global

models with local synthetic data to avoid model inversion attacks [15, 207].

Limitations As we already mentioned, there are a couple of issues related

to di�erential privacy. First, the choice of ϵ and its semantics is still an

ongoing question [95, 98, 24, 196, 167, 211]. Second, in the distributed

scenario the necessary amount of noise is much larger than in the centralized

case [40, 221].

It is interesting to notice that di�erential privacy has been used in many

works as a complementary line of defense to distributed model aggregation

or SMC, e.g., [229]. The idea of hybrid approaches promises to reduce the

amount of noise added by the di�erential mechanism. Therefore, we will

focus our investigation on the core issues related to SMC and distributed

model aggregation.

2.4 Summary

This chapter presented a brief review of knowledge discovery, data mining,

its main tasks, and algorithms. Advances in communications technology

enabled the development of data mining algorithms for distributed data sce-

narios. In this context, we presented some of the relevant distributed mining

algorithms and discussed the main features of well-known distributed data

mining systems. Data distribution poses new challenges to data mining prac-

titioners and researchers, such as preserving data privacy when data mining

is performed across the boundaries of di�erent institutions with di�erent

authorities' domains.

This chapter also introduced important background concepts, such as

privacy, sensitive data, and potential threats to privacy involved in a data
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2.4 Summary

mining process (cf. Section 2.3.2). It has shown that the threat of direct

sensitive data disclosure is well addressed by secure multi-party computation

and distributed model aggregation. However, the other threats are harder

to address since they involve the inference problem.

Inference attacks are not as easy to control as one wishes, and they are

hard to detect and handle. Functional dependencies among data may re-

veal unexpected inference channels, and mathematical properties may allow

accurate reconstructions even from data aggregation. Furthermore, mali-

cious peers can organize themselves into collusion groups to get more accu-

rate inference results against honest parties. This study de�ned a privacy

framework to analyze distributed data mining algorithms for several general

inference attack scenarios.

Numerous pieces of relevant existing studies on privacy-preserving dis-

tributed data mining have been considered, including both secure multi-party

and distributed model aggregation approaches. The di�erent privacy formal-

izations have also been presented, with their speci�c assumptions and lim-

itations. Existing approaches protect against outsider attacks but may not

be safe against insider attacks. Table 2.3 summarizes the privacy-preserving

approaches and measures discussed in this chapter.

55



Chapter 2. Background

S
M
C

D
ist.

M
o
d
e
l
A
g
g
re
g
a
tio

n
P
e
rtu

rb
a
tio

n
-b
a
se
d

A
p
p
lic
a
tio

n
s

A
sso

cia
tio

n
ru
les,

cla
ssi�

ca
-

tio
n
,
clu

sterin
g

C
lu
sterin

g
,

cla
ssi�

ca
tio

n
,

m
a
n
ifo
ld

d
etectio

n
C
la
ssi�

ca
tio

n
,
clu

sterin
g
,
etc.

P
riv

a
c
y
m
e
a
su
re

P
riva

te
co
m
p
u
ta
tio

n
L
ik
elih

o
o
d
-b
a
sed

m
ea
su
re

D
i�
eren

tia
l
p
riva

cy

P
ro
te
c
ts

E
x
a
ct

va
lu
es

o
f
in
p
u
ts

In
p
u
t
d
a
ta
set

M
em

b
ersh

ip
p
riva

cy

In
te
rp
re
ta
tio

n
P
riva

cy
is
a
ch
iev

ed
w
h
en

rea
l,

a
n
d

th
e
id
ea
l
ex
ecu

tio
n

sce-
n
a
rio

s
a
re

in
d
istin

g
u
ish

a
b
le

P
riva

cy
is

v
iew

ed
a
s
th
e
av
-

era
g
e
lik
elih

o
o
d
o
f
d
a
ta

b
ein

g
g
en
era

ted
fro

m
a
g
iv
en

M
ix
-

tu
re

M
o
d
el

P
riva

cy
is

a
ch
iev

ed
w
h
en

th
e

in
clu

sio
n
o
f
a
sin

g
le
tu
p
le
d
o
es

n
o
t
ch
a
n
g
e
p
ro
b
a
b
ility

d
istri-

b
u
tio

n
o
f
o
u
tp
u
ts

to
o
m
u
ch

A
ssu

m
p
tio

n
s

P
riva

cy
p
ro
o
fs

a
re

b
a
sed

o
n

sim
u
la
tio

n
p
a
ra
d
ig
m

C
lu
ster

m
a
p

m
o
d
eled

a
s

a
m
o
d
el
m
ix
tu
re

N
o
ise

o
n
ly

n
eed

to
b
e
p
ro
-

p
o
rtio

n
a
l
to

q
u
eries

sen
sitiv

-
ity.

N
eed

to
tru

st
in
th
e
en
tity

th
a
t
a
p
p
lies

n
o
ise.

G
o
o
d
a
g
a
in
st

O
u
tsid

er
a
tta

ck
s,
d
u
e
to

cry
p
-

to
g
ra
p
h
ic
tech

n
iq
u
es

O
u
tsid

er
a
tta

ck
s,

sin
ce

o
n
ly

m
o
d
els

a
re

ex
ch
a
n
g
ed

in
stea

d
o
f
d
a
ta

p
o
in
ts

In
sid

ers
a
n
d

o
u
tsid

ers,
d
e-

p
en
d
in
g
o
n
w
h
o
a
p
p
lies

n
o
ise.

L
im

ita
tio

n
s

(i)
D
o
es

n
o
t
co
n
sid

er
m
a
li-

cio
u
s
in
sid

er
a
tta

ck
s;
(ii)

it
is
a

b
in
a
ry

m
ea
su
re

th
a
t
d
o
es

n
o
t

q
u
a
n
tify

th
e
a
m
o
u
n
t
o
f
p
ri-

va
cy

b
rea

ch
(p
.
3
8
)

(i)
D
o
es

n
o
t
co
n
sid

er
m
a
li-

cio
u
s
in
sid

er
a
tta

ck
s;
(ii)

d
o
es

n
o
t
m
o
d
el
p
riva

cy
b
rea

ch
es

a
t

d
a
ta

p
o
in
t
lev

el,
o
n
ly

d
a
ta
set

lev
el
b
rea

ch
es

(p
.
4
9
)

(i)ch
o
ice

o
f
ϵ
a
n
d
its

sem
a
n
-

tics
is

still
a
n
o
n
g
o
in
g
q
u
es-

tio
n
;
(ii)

d
istrib

u
ted

scen
a
rio

req
u
ires

m
o
re

n
o
ise

th
a
n
th
e

cen
tra

lized
ca
se

T
a
b
le
2
.3
:
S
u
m
m
a
ry

o
f
p
riva

cy
m
ea
su
res

fo
r
d
istribu

ted
d
a
ta

m
in
in
g

56



Chapter 3

Privacy Measures Revisited

�She went fairly often to the hut, in the morning or the after-

noon, but he was never there. No doubt, he avoided her on

purpose. He wanted to keep his privacy."

(D. H. Lawrence in Lady Chatterley's Lover)

�We all have a right to privacy," she said. �Nobody should have

found this all out."

(Thelma Arnold in New York Times, 9 August 2006 )

The previous chapter presented the main approaches for privacy-preserving

distributed data mining. It also pointed out the general limitations of current

approaches, mainly related to inference attacks by malicious insiders.

This chapter introduces a set of privacy properties to capture the main

features a privacy measure should have to avoid the limitations identi�ed

thus far. The goal is to formalize the limitations identi�ed informally in the

studied privacy measures allowing the domain experts to de�ne new privacy

measures that improve those limitations.

As the main threats in a distributed mining session come from malicious

insiders trying to infer sensitive information, a privacy measure should con-

sider the presence of collusion groups of malicious peers. Moreover, a privacy

measure should detect the privacy of single data points. Further, this chap-

ter introduces new privacy measures for distributed data clustering and time

series, which address inference and collusion. The new measures are then

applied to some representative distributed privacy-preserving algorithms.
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Chapter 3. Privacy Measures Revisited

3.1 Privacy: Properties and Notations

Classical understanding of privacy sees it as the right to avoid the access to

sensitive information by other agents [20, 65, 147]. In this view of privacy,

the privacy level is given as a binary variable: {private, public}. To say

that some information is private means that other agents have no access to

it. A privacy breach is the unauthorized disclosure of private information.

An alternative de�nition allows us to see privacy as a continuous variable.

For example, Agrawal and Aggarwal [4] propose an information-theoretical

approach to privacy as the uncertainty about sensitive information. Accord-

ing to this view, privacy is the right to avoid disclosing exact values to other

agents. Consequently, other agents should not determine sensitive values

down to a given interval. In this case, the privacy level is zero for public

information and is some positive value for private information. Privacy of

sensitive data is preserved if the privacy level does not decrease when an

agent participates in a data mining protocol.

Example 3.1 Assume a party P1 holds a sensitive variable x ∈ (20, 25)

indicating the age of an individual. The variable x is private if other parties

have no access to its exact value and only know that x is a number between 20

and 25. Privacy of x is preserved if, after executing a data mining protocol,

other agents still only know the original interval, i.e., (20, 25).

Now, the question is how to measure the amount of privacy in a dis-

tributed setting. In this study, we will regard a privacy measure as a

function that, for a given distributed data mining algorithm, maps a dataset

subset and the maximum size of collusion groups of parties to a real number

and satis�es certain properties. We will call the value of such a measure a

privacy level.

Throughout this study, we use the following notation. Let L1, . . . , LP be

sites hosting one element of a partition of a dataset D each, and A be any

distributed data mining algorithm running on L1, . . . , LP . We will assume

that up to P − 1 sites among L1, . . . , LP are malicious, in that they seek

to infer objects of dataset D, or parts thereof, possibly in collusion groups

of at most c < P members, by either exchanging information or violating

the protocol of A, or both. When no party attempts to learn sensitive

information held by other parties, i.e., are honest, there are no inside threats
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3.1 Privacy: Properties and Notations

and c = 0. To explicitly indicate a privacy measure m in the evaluation of

a given algorithm A we use the notation PRm
A . We indicate the privacy of

a given singleton {x}, given an algorithm A and measure m, as PRm
A({x}),

and overload the notation as PRm
A(x); for a dataset D we use PRm

A(D). To

indicate presence of collusion groups of maximum size c we write PRm
A[c](D).

For the sake of simplicity, we omit algorithm, collusion size, measure, dataset,

or data point, when they are implicit in a given context.

By privacy measure for A we mean a computable partial function

PRA : (X, c) ∈ 2D × {0, 1, 2, . . . , P − 1} → PRA[c](X) ∈ [0,∞) (3.1)

which satis�es one or multiple of the following properties:

P1 (inference and collusion) PRA[0](X) > PRA[c](X) when there are at

most c malicious peers colluding, with c ∈ {1, 2, . . . , P − 1}, for all

X ⊆ D;

P2 (point monotonicity) it is nonincreasing from singletons to dataset, i.e.,

PRA[c]({x}) ≥ PRA[c](D) for all c ∈ {0, 1, . . . , P − 1}.

P3 (interpretability): For a given data point x ∈ D, there must be a

mapping from the privacy measure PR({x}) to some property of x or

dataset D.

Property P1 expresses the decrease of privacy level when inference at-

tacks by malicious parties alone or in collusion groups take place. Note that

c = 0 denotes only honest insiders, c = 1 expresses the presence of dishon-

est parties but no collusion, and c > 1 denotes collusion groups with more

than one member. Property P2 constrains PRA to behave as a worst-case

measure: a greater privacy level than the one at singletons is not attainable

for the dataset. We call this property point-level awareness. Property P3

requires a natural interpretation from the privacy measure into the sensitive

data domain. It should be natural for a domain expert to choose the desired

amount of privacy to be preserved expressed with the expert's vocabulary.

For instance, the measure could express the number of points in a subset

of D or if x is present/absent in D. Additionally, Eq. (3.1) requires that

privacy measures have non-negative codomain.
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Chapter 3. Privacy Measures Revisited

There is an increasing interest in the pertinent literature to de�ne desir-

able properties for privacy measures explicitly. Zhao and Wagner [244] pro-

posed four properties in the context of the vehicular communication domain.

Bezzi [21] emphasizes the importance of point-level privacy compared to the

prevailing view of dataset privacy protection. Pu�er�sh privacy [116, 117]

and [59] presents a rigorous framework for privacy de�nitions in the con-

text of data publishing. We share the same motivation, but we focus on

distributed data scenarios.

3.2 Analysis of Existing Privacy Measures

In the following, private computation and likelihood-measure are analyzed

concerning the set of properties proposed in the previous section 1

3.2.1 Private Computation Measure for SMC

In the preceding chapter, it was shown that in the presence of collusion

groups, a secure multi-party protocol (SMC) is likely to fail [132]. SMC fails

because the semantic of privacy computation measure only gives the privacy

level from the outsiders' point of view. Any malicious insiders will receive

the correct output, from which they may try to reconstruct sensitive inputs

owned by other parties [208] or information about these parties [187]. The

private computation measure is non-negative de�nite and ful�lls properties

P2 and P3 but fails to satisfy P1, as discussed below.

PRPC(D) is non-negative. According to the de�nition of private com-

putation (Def. 2.4), a computation is private if no party learns each other's

input. PRPC(D) is a binary measure, indicating if any leak occurred or

not, without any indication of the degree of the privacy breach. Indeed,

Def. 2.5 explicitly uses 0 to indicate that a leak occurred during the pro-

tocol's execution and 1 to indicate that the protocol is private. Therefore,

PRPC(D) ≥ 0.

PRPC(D) does not address inference or collusion (¬P1). The

private computation measure, PRPC(D), was designed to detect leaks from

the protocol and not from outputs. In an SMC protocol, information that is

1As we mentioned previously, we will not discuss perturbation-based measures further
in this thesis.
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leaked from the results is unavoidable as long as the function has to be com-

puted [109]. For that reason, the private computation measure PRPC(D)

concerns only with leaks due to the process of computing the function. This

measure does not address inferences from the output, intermediate messages,

or any advantages due to collusion among the parties.

Example 3.2 Consider example 2.5 where three parties compute the sum of

numbers in an SMC protocol. The process does not leak any information, as

shown in example 2.6. Therefore, with 0 malicious parties,

PRPC
SMCSum[0](x) = 1

Now, suppose that two parties collude. In this case, they can subtract their

input and learn the input of the third party. However, privacy computation

does not care about inferences after the process, and

PRPC
SMCSum[2](x) = 1

meaning that even with two colluders, the process of computation does not

leak information. Notice that PRPC
SMCSum[0](x) = PRPC

SMCSum[2](x) when

PRPC
SMCSum[2](x) should be 0 to indicate that the privacy is not preserved in

the presence of 2 malicious parties working in collusion.

PRPC(D) is point level (P2). By de�nition, if any point x ∈ D,

the dataset of inputs of a given party, is leaked, the protocol is considered

not private, i.e. ∀x ∈ D : PRPC(x) = 0 → PRPC(D) = 0. Therefore,

∀x ∈ D : PRPC(x) ≥ PRPC(D).

PRPC(D) has clear interpretation (P3). The interpretation of the

private computation measure in SMC is that for any input xi ∈ D belonging

to party pi, no party pj learns xi, or anything about xi, with i ̸= j, directly

from protocol execution. A privacy breach occurs when any information

about xi is leaked during the process.

3.2.2 Likelihood-Based Measure

In the previous chapter, we discussed the likelihood-based measure intro-

duced by Merugu et al. [149]. The likelihood-based measure is non-negative

and ful�lls property P1. However, as discussed below, it does not ful�ll
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Chapter 3. Privacy Measures Revisited

properties P2 or P3.

PRlike(D) is non-negative. By de�nition of likelihood-based privacy

measure (Def. 2.3 and Eq. (2.3)), PRlike(D) ≥ 0 because it is de�ned as a

power of 2.

PRlike(D) addresses inference and collusion (P1). It addresses

inside attacks, which may expose the participants to a malicious central

entity attack.

Example 3.3 Consider a dataset D = {1, 4, 6, 9} and a model formed by

the mixture of two Gaussian. Let the �rst Gaussian be centered at x0, i.e.

it has mean µ1 = 1 with variance σ21 = 0.1. The second Gaussian models

the three remaining points, i.e. has mean µ2 = 6.33 and variance σ22 = 1.0.

With probability density function of the mixture model denoted by f(x), using

Eq. (2.3) we have:

PRlike
[0] (D) = 2

(
− 1

|4| (log2(f(1))+log2(f(4))+log2(f(6))+log2(f(9)))
)
= 13.7326

If attackers know the mixture model, it is possible to compute the privacy

level for a given reconstructed set, for example, R = {1}:

PRlike
[1] (R) = 2log2 f(1) = 0.5013

The privacy measure of the original dataset is 13.7326 but drops to 0.5013

when the reconstructed dataset consists of points close to the mean of �rst

Gaussian.2 Therefore, a malicious central entity, which receives the mix-

ture model, may reconstruct the point x0 by choosing a set of points R that

minimizes PRlike(R).

PRlike(D) is not point-wise (¬P2). When only a few points have

a high likelihood of being reconstructed with high precision, PRlike(D)

measure will still indicate high privacy protection. Consequently, privacy

breaches at the data point level may not be detected. The breach is a con-

sequence of PRlike(D) being de�ned as the geometrical mean, as illustrated

in the following example.

Example 3.4 Consider a dataset D = {1, 4, 6, 9} and a mixture of two

2The same behavior occurs if the reconstructed dataset is R = {6}, but in this case,
PRlike(R) drops to 5.299.
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Gaussian as in the previous example. With probability density function of

the mixture model denoted by f(x), using Eq. (2.3) we have:

PRlike(D) = 2

(
− 1

|4| (log2(f(1))+log2(f(4))+log2(f(6))+log2(f(9)))
)
= 13.7326

Let's examine the privacy measure PRlike(x) for each point x ∈ D:

PRlike(1) = 2− log2 f(1) = 0.5013

PRlike(4) = 2− log2 f(4) = 76.272

PRlike(6) = 2− log2 f(6) = 5.299

PRlike(9) = 2− log2 f(9) = 175.500

Notice that the geometrical mean in the privacy measure smoothed out

the measure for x0 = 1, masking a possible privacy breach. In that case,

PRlike(1) = 0.5013 < PRlike(D) = 13.7326

Therefore, PRlike(D) does not ful�ll property P3.

PRlike(D) has no clear interpretation (¬P3). For a given (sensitive

and hidden) dataset D and a public model λ, PRlike(D) is the recipro-

cal of the geometrical average likelihood of points being generated from the

given model. As a consequence, when the model is a good �t for the data,

PRlike(D) is small. In this case, the model is said to leak too much informa-

tion about the original data. Conversely, if the model is not a good �t for the

data, PRlike(D) is large, and the model is said to preserve information. The

problem with this approach is that the average likelihood does not translate

well to the data domain; it is unclear how much protection is provided in

the original data space, i.e., in terms known to a domain expert.

Table 3.1 presents a summary of all studied privacy measures and their

properties.
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Reference Infer. and Collu-
sion (P1)

Point monotonicity
(P2)

Interpretability
(P3)

PRPC [82] no yes yes

PRlike [149] yes no no
PRrange (Def. 3.1) yes yes yes
PRrec (Def. 3.2) yes yes yes
PRBK (Def. 3.3) yes yes yes
PRTBK (Def. 3.6) yes yes yes

Table 3.1: Summary of privacy measures

3.3 New Privacy Measures for Clustering and Time

Series Mining

As discussed in previous sections, the general idea behind privacy measures

involves formalizing the intuitive notion regarding the protection, or lack

thereof, of a piece of sensitive information from unauthorized access. This

section proposes new privacy measures and uses them to analyze speci�c

distributed data mining algorithms in subsequent chapters. These measures

assume that the attacker may be a member of the mining group. Further-

more, these measures also focus on point-level privacy, not only the dataset

level.

3.3.1 Privacy Measures for Distributed Clustering

Due to its inherent descriptive nature, any cluster map reveals information

about the data. Indeed, this is one of the primary purposes of clustering:

to provide an initial idea of the overall data distribution. From a privacy-

focused point of view, the interesting question is: how does one measure the

amount of privacy loss caused by a given cluster map?

We de�ne cluster privacy as the size of the range of values in a given

dimension. For instance, a cluster of data points over the dimension annual

income ranging from US$ 100 000 to US$ 150 000 reveals the value of each

data point with a maximal absolute error of US$ 50 000 and mean absolute

error of US$ 25 000, assuming uniform distribution3. Consequently, if it is

known that a speci�c person is modeled as a point in this cluster, then it

is known, with 100% certainty, this person has an annual income of US$

3The maximal absolute error happens when an attacker guesses a point to be in one
extreme when it is actually in the other extreme of the range.
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125 000± 25 000. This cluster, then, is said to have a privacy level of 25 000

dimension units, US$ in this case.

De�nition 3.1 (Cluster range measure) Given a dataset of reals, i.e.

D ⊂ R and a cluster map C = {Ck} ⊆ 2D, whose elements Ck are pairwise

disjoint. We de�ne the cluster privacy of a given point x in a given cluster

Ck ∈ C as:

PRrange(x) = maxCk −minCk (3.2)

Extending to the whole dataset:

PRrange(D) = min{PRrange(x) : x ∈ D} (3.3)

= min{maxCk −minCk : k = 1, . . . , |C|} (3.4)

□

PRrange serves as a reminder that the cluster map itself gives away

information on the original data. The smaller a given cluster range is, the

greater the amount of information given away about the location of points.

To avoid (or control) this information leakage, privacy-preserving algorithms

must adopt a mechanism that allows the user to control the minimum range

of each cluster.

Assuming the attackers only know the boundary of clusters (revealed

by the cluster map and known by the members of the mining group), they

cannot learn anything new except for the range of values covered by each

cluster. This metric is based on the assumption that points inside a cluster

follow a uniform distribution from the attackers' point of view.

Example 3.5 Consider Figure 3.1, representing a dataset with by 6 points,

D = {0, 0.3, 0.6, 1.0, 2.5, 2.7}. The points in this dataset form two clusters:

C1 = {0, 0.3, 0.6, 1.0} and C2 = {2.5, 2.7}. When the cluster map is made

public after the mining session, attackers know that points in cluster C1 range

from 0 to 1 and that points in cluster C2 range from 2.5 to 2.7. For all points

xi in cluster C1 we have:

PRrange(xi) = 1− 0 = 1
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Figure 3.1: Example of a dataset with two clusters.

Similarly, for all points xj in cluster C2 we have:

PRrange(xj) = 2.7− 2.5 = 0.2

Therefore,

PRrange(D) = min{1, 0.2} = 0.2

This result indicates that at least one region of D may be vulnerable to re-

construction within an interval of size 0.2.

This study proposes another measure, one based on reconstruction. If

a reconstruction method is known, it is possible to measure how close the

reconstructed data gets to the original sensitive data.

De�nition 3.2 (Reconstruction based measure) Let R ⊂ R denote a

set of reconstructed data points such that each ri ∈ R is a reconstructed

version of xi ∈ D ⊂ R. We de�ne the privacy level, given a reconstruction

method, by:

PRrec(xi) =| xi − ri | (3.5)

Extending to the whole dataset:

PRrec(D) = min{PRrec(xi) : xi ∈ D, ri ∈ R, 1 ≤ i ≤ |D|} (3.6)

where |D| is the size of the dataset D ⊂ R. □

Roughly speaking, PRrec indicates the precision with which a data

object xi may be reconstructed for a given cluster map and a reconstruction

method. Note that the reconstruction method does not need to be an exact

function; it can be a heuristic-based method for partially reconstructing the

data. With regards to privacy preservation, even partial reconstructions need

to be considered.

Example 3.6 Assume that we compute the density estimate from the cluster

in Fig. 3.1 using triangle kernel (which is a bounded kernel). Assuming
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that the attackers know the density estimates, they can locate data points by

locating the kernel borders 4. The error in this scenario is down to machine

precision, assuming the attackers know the estimation parameters, which, as

discussed in the previous chapter, is a very reasonable assumption when the

attacker is an insider. Therefore, with triangle kernel, in an inside attack

this cluster has:

PRrec(D) ≈ 0

A similar privacy metric is the relative error, introduced by Lyu et al.

[143]. Relative error uses 2-norm to evaluate how di�erent is the recovered

dataset compared to the original data, while PRrec(D) uses absolute error.

Lyu and colleagues proposed relative error metric in the context of data

perturbation approach for central data setting.

A general de�nition of privacy proposed in the centralized data mining

setting is the bounded knowledge measure [4], which de�nes privacy as the

length of the interval from which a random variable X is generated. This

measure can be expressed in terms of the entropy of X, as follows.

De�nition 3.3 (Bounded Knowledge) Given a random variable X with

probability density function fX and domain ΩX , the privacy of X is given

by its bounded knowledge is:

PRBK(X) = 2h(X) (3.7)

where the di�erential entropy h(X) is given by

h(X) = −
∫
ΩX

fX(x)log2 [fX(x)] dx

□

Example 3.7 A random variable X uniformly distributed between 20 and

70, abbreviated X ∼ U(20, 70), has probability density function given by:

fX(x) =

 1
50 for 20 ≤ x ≤ 70 ,

0 otherwise.

4See Section 4.2.3 for a discussion on single insider attacks using density estimates.
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The entropy of X is h(X) = log2(50). Then, the privacy provided by X

according to bounded knowledge measure is PRBK(X) = 2log2(50) = 50.

This de�nition only assumes that the sensitive attribute can be modeled

as a random variable, i.e., it assumes we can compute the probability distri-

bution of the sensitive attribute. This assumption is general enough to be

used in di�erent data mining contexts, such as cluster analysis and associ-

ation rules [20]. This measure is also known as Inherent Privacy [216] and

denote the number of bits describing each element in the domain of the X.

For a given datapoint x ∈ Ci, a cluster Ci in the cluster map C induced
from dataset D ⊂ R, a random variable Xi with domain Ci and probability

density function fXi(x) being zero outside Ci, let:

PRBK(x) = PRBK(Xi) = 2h(Xi) (3.8)

In the case of a cluster map, we are interested in the smallest interval

size in the said map. Therefore,

PRBK(D) = min{PRBK(x)} = min{2h(Xi)} (3.9)

It is interesting to note that the PRrange and bounded knowledge

measure PRBK (cf. Eq. (3.9)) are related. Indeed, PRrange is a special

case of the bounded knowledge measure PRBK when the probability density

function f(x) is assumed to be the uniform distribution. Therefore, the

privacy level indicated by bounded knowledge measure, PRBK , tends to

be tighter than the privacy level indicated by PRrange because the former

uses more information to compute the privacy level.

When there is no known reconstruction method, the reconstruction error

is bounded to the entire domain of possible values, giving no information to

the attacker. In this case we denote PRrec =∞. Furthermore, if the range

of clusters is not known, we denote it as PRrange = ∞. Similarly, with no

distribution known, we have PRBK =∞.

The following de�nition extends each of the previously de�ned measures

to include collusion groups.

De�nition 3.4 (Distributed Cluster Privacy) Let A be a distributed data

clustering algorithm, D ⊂ R be a dataset, and a privacy measure m ∈
{rec, range,BK}, with collusion groups containing at most c attackers. We
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de�ne:

PRDCP
A[c] (D) = min{PRm

A[i](D) : 0 ≤ i ≤ c} (3.10)

□

The function PRDCP
A[c] (D) represents the minimum privacy level provided

to dataset D when the collusion groups have at most c peers. For example,

PRBK
A[2](D) denotes the smallest privacy level provided by algorithm A to

dataset D when collusion groups contain at most two malicious peers. The

focus on the smallest level represents the idea that the weakest scenario is

the most dangerous one5. When all parties are honest, we have c = 0. In

summary, PRrange measures the privacy level achieved by the disclosure of

the cluster map, assuming that the attacker knows nothing else. Therefore,

PRrange is suited for measuring the privacy level in the single inside attack

scenarios. In a more general setting, PRBK gives the privacy level when the

distribution of data is known to the attacker or collusion group, i.e., PRBK

can be used in a single or collusion attack scenario. When a reconstruction

function is known, the PRrec measure gives a more accurate privacy level.

PRrec can be used in single or collusion attack scenarios. Therefore, decid-

ing which measure is the most appropriate relies on the information that is

assumed to be available to the attacker or collusion group: cluster map only,

data distribution, or reconstruction function.

Properties Analysis of PRDCP
A[c] (D)

In the following, we state that PRDCP
A[c] (D) is non-negative (Theorem 3.1)

and has the following properties:

P1 (inference and collusion): theorem 3.2;

P2 (point level privacy): theorem 3.3;

P3 (interpretation): theorem 3.4.

Lemma 3.1 PRrange(D) ≥ 0, for all dataset D ⊂ R.

Proof. PRrange(D) is de�ned as min{maxCk − minCk }. Notice that the

de�nition uses the di�erence between the max and min values in a given

5This notion comes from the popular idea in computer security that de�nes the security
level of a system as the level of its weakest link.
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cluster. It follows that,

∀Ck ∈ C : maxCk −minCk ≥ 0

□

Lemma 3.2 PRrec(D) ≥ 0, given dataset D ⊂ R and reconstructed set

R ⊂ R.

Proof. PRrec(D) is de�ned as min{|xi − ri| : xi ∈ D, ri ∈ R, 1 ≤ i ≤ N}.
Since |xi − ri| ≥ 0 by de�nition of the absolute function, it follows that

PRrec(D) ≥ 0 □

Lemma 3.3 PRBK(X) ≥ 0, for all random variable X.

Proof. PRBK(X) is de�ned as 2h(X). Since h(X) ∈ R and 2a ≥ 0 for all

a ∈ R, it follows that 2h(X) ≥ 0. □

Theorem 3.1 PRDCP
A[c] (D) ≥ 0, for all dataset D ⊂ R and privacy measures

m ∈ {range,BK, rec}.

Proof. PRDCP
A[c] (D) is de�ned over basic measures PRrange , PRBK , and

PRrec . By lemmas 3.1, 3.3 and 3.2, it holds that PRrange ≥ 0, PRBK ≥ 0,

and PRrec ≥ 0 □

Theorem 3.2 Given an algorithm A, for all dataset D ⊂ R and privacy

measures m ∈ {range,BK, rec}, and c > 1 (presence of collusion groups), if

there is a collusion scenario decreasing the privacy level of dataset D, then

PRDCP
A[1] (D) ≥ PRDCP

A[c] (D).

Proof. Let a = PRDCP
A[1] (D) be the privacy level of dataset D with algorithm

A with no collusion (i.e., c = 1), and b = PRDCP
A[c] (D) be the privacy level

of dataset D with algorithm A in a collusion scenario with c > 1 malicious

peers. By de�nition PRA[c]
DCP (D) is de�ned as the smallest privacy level

considering all collusion scenarios. In that case, PRDCP
A[c] (D) = min{a, b}.

Therefore, if the collusion group decreases the privacy level of the c = 1

scenario, then a ≥ min{a, b}. □
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Lemma 3.4 ∀x ∈ D : PRrange
A[c] (x) ≥ PRrange

A[c] (D), for all dataset D ⊂ R.

Proof. Consider a cluster map C from D, with k clusters C1, C2, . . . , Ck. Let

ri denote ri = maxCi−minCi, the cluster range of Ci. For a given point x ∈
Ci, by de�nition, PRrange(x) = ri and PRrange(D) = min{r1, r2, . . . , rk}.
Therefore,

ri ≥ min{r1, r2, . . . , rk} , i = 1, 2, . . . , k

□

Lemma 3.5 ∀x ∈ D : PRrec
A[c](x) ≥ PRrec

A[c](D), for all dataset D ⊂ R.

Proof. Consider a dataset D ⊂ R and a reconstructed set R ⊂ R. Let

xa be any given point in D and ra its reconstructed counterpart in R. By

de�nition, PRrec
A[c](xa) is |xa − ra| and PRrec

A[c](D) = min{|xi − ri| : xi ∈
D, ri ∈ R, 1 ≤ i ≤ |D|}. Therefore,

|xa − ra| ≥ min{|xi − ri| : xi ∈ D, ri ∈ R}

□

Lemma 3.6 ∀x ∈ D : PRBK
A[c](x) ≥ PRBK

A[c](D), for all dataset D ⊂ R.

Proof. Consider a cluster map C from D, with clusters C1, C2, . . . Ck. Let

Xa be a random variable modeling data points xa ∈ Ca, for any Ca ∈
C. By de�nition, PRBK

A[c](xa) is 2h(Xa) and PRBK
A[c](D) = min{2h(Xi)}, i =

1, 2, . . . , k. Therefore,

PRBK
A[c](xa) = 2h(Xa) ≥ min{2h(Xi)}, i = 1, 2, . . . , a, . . . k

□

Theorem 3.3 ∀x ∈ D : PRDCP
A[c] (x) ≥ PRDCP

A[c] (D), for all dataset D ⊂ R
and any measure m ∈ {rec, range,BK}.

Proof. By lemmas 3.4, 3.5 and 3.6, substituting a speci�c measure m ∈
{rec, range,BK}. □
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Lemma 3.7 Given a sensitive set D ⊂ R, a cluster map C, the privacy

PRrange(D) = ρ means that with no further information ρ is the size of the

smallest interval of where any x ∈ D can be located.

Proof. Assume that a cluster map de�nes the boundaries of each clus-

ter. By de�nition 3.1, PRrange(x) = maxCi − minCi, for x ∈ Ci. Since

PRrange(D) = min{PRrange(x)} = ρ, then ρ is the size of the smallest in-

terval (minCi,maxCi) considering each point x with its respective cluster

Ci ∈ C. □

Lemma 3.8 Given a sensitive set D ⊂ R, a reconstructed set R ⊆ R, the
privacy PRrec(D) = ρ means that ρ is the lower bound of the reconstruction

error, i.e.

|xi − ri| ≥ ρ

for all points xi ∈ D and ri ∈ R.

Proof. By de�nition 3.2, PRrec(D) = min{| xi− ri |} = ρ. Thus | xi− ri |≥
min{| xi − ri |} = ρ, for all xi ∈ D and ri ∈ R. □

Lemma 3.9 Given a sensitive set D ⊂ R, a cluster map C, PRBK(D) = ρ

means that ρ is the size of the smallest interval of where x ∈ D can be located.

Proof. By de�nition (3.3) and equation (3.8), PRBK(x) = 2h(Xi) with ran-

dom variable Xi modeling the points in cluster Ci ∈ C with probability den-

sity function fXi(x). Assuming no knowledge about the distribution of points

in Ci, fXi is the uniform distribution in the interval de�ned by the borders

of cluster Ci. Thus, Xi ∼ U(minCi,maxCi). Let maxCi−minCi = ρi, the

size of the interval of values in cluster Ci. The probability density function

for any point in the cluster Ci with uniform distribution is fXi(x) = 1/ρi.

The entropy of Xi is h(Xi) = log2 (ρi) and, therefore:

2h(Xi) = 2log2 ρi = ρi = maxCi −minCi

with equation (3.9), PRBK(D) = min{PRBK(x)} = min{ρi} = ρ. There-

fore,

maxCi −minCi ≥ min{maxCi −minCi} = ρ
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for all Ci ∈ C. □

Theorem 3.4 Given a sensitive set D, a cluster map C, PRDCP (D) = ρ

has a well-de�ned interpretation, with privacy measuresm ∈ {range,BK, rec},
as the size of the smallest interval containing a given point of the dataset.

Proof. This idea is demonstrated in lemmas 3.7, 3.8 and 3.9 □

Theorem 3.4 above shows that PRDCP (D) represents intervals of values

revealed by a cluster map. Larger values are better because it means more

uncertainty on the exact values of a given point. Also, a domain expert could

be alerted when a cluster map does not satisfy the local privacy constraints.

3.3.2 Privacy Measure for Time Series Mining

The time dimension in data describes how a process evolves through time

[245]. Amplitude is the value of time series at a particular time point and

can be compared to the data value in non-time series data. Amplitude in

time series must be protected if it represents a measurement of a sensitive

variable, such as sales volume or purchase history. Furthermore, peaks are

extreme values assumed in the series and may indicate a sudden change

of normal behavior, e.g., money �ow problems. Predictions (or trends) are

another aspect that may be considered sensitive since they allow the attacker

to anticipate a given value in the future, with a given statistical con�dence

level. Predictions depend on the accuracy of the prediction model available

to the attacker. Thus, predictions might represent a privacy breach if they

are too accurate.

The essential information about all aspects of the time series is the am-

plitude, from which all other aspects can be derived (peaks, trends, and

predictions). If a particular data point is not known or only known to lie in

a given interval, all other aspects will have less accuracy than if the point

was known with exact precision. Therefore, we focus on the amplitude, i.e.,

the raw value at a particular data point.

As discussed in Section 2.3.3, di�erent measures have been proposed in

the privacy-preserving data mining literature. The large majority of the

measure is not de�ned for time series. Wagner et al. [216] surveyed more

than 80 privacy metrics and found that only three measures are proposed
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for time series. Moreover, the time series metrics found on Wagner's survey

are domain-speci�c for smart meters and location-based services. In these

domains the focus is on data point re-identi�cation.

Information theoretical approaches for privacy focus on how con�dent

the attacker can be given the entropy of a random variable. In this study,

we have chosen to propose an information theoretical-based measure for time

series that quanti�es the uncertainty an attacker has concerning the exact

timestamp and amplitude of an original data point.

The privacy measure for time series proposed in this study is an exten-

sion of the entropy-based measure called bounded knowledge, introduced by

Agrawal and Aggarwal [4] and discussed in Section 3.3.1. The privacy level

of a given point in the amplitude dimension of a time series is computed by

modeling it from the attacker's point of view. Therefore, an arbitrary point

xt of the original time series T is modeled as a random variable X, which

allows for the application of the above privacy de�nition. The probability

density function fX(x) may be used to model the attacker's knowledge about

the point xt. If the attacker does not know how X is distributed, the uniform

distribution is used, which gives us PRBK(X) = 2log2(a) = a, the size of

the interval from where X is drawn. Nevertheless, if a better model for xt is

known, it can naturally be incorporated into the privacy level. For example,

when the time series has a reasonable degree of predictability, the privacy

level can be computed using the correct model.

We can apply the same idea to the time dimension perspective. For a

given point xt, its timestamp t can be modeled as a random variable V . The

probability density function fV (t) may be used to model the knowledge the

attacker has about the time point t when xt occurred. Applying the idea

of bounded knowledge, the size of the time interval a speci�c xt occurred

is PRBK(V ) = 2log2(b) = b. Combined, PRBK(X) and PRBK(V ) de�ne

a region in amplitude and time from where a given point xt is drawn. The

combined privacy level is de�ned as the area of this region.

An additional element is included in the extension of the model as this

study accounts for the fact that parties may collude. The following de�nition

gives the details.

De�nition 3.5 (Time Bounded Knowledge) The privacy level of a given

point x in a time series T , with a random variable X modeling the amplitude
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of x, and a random variable V modeling the time stamp where x might occur,

under algorithm A in the presence of c colluders, is given by:

PRTBK
A[c] (x) = PRBK

A[c](X)PRBK
A[c](V ) (3.11)

= 2h(X)2h(V ) (3.12)

where h(·) is the di�erential entropy.
□

Now, we extended the previous de�nition to a complete time series.

De�nition 3.6 Given an algorithm A, the privacy level of a time series T

in presence of c colluders running A is given in terms of Def. 3.5:

PRTBK
A[c] (T ) = min{PRTBK

A[i] (x) | x ∈ T} (3.13)

with c ≥ 0, and i = 1, 2, . . . , c. □

Finally, using the previous measure, it is possible to measure the privacy

level of a time series mining algorithm, assuming that a given point in the

time series is modeled as a random variable.

Properties Analysis of Time Bounded Knowledge Measure

In the following, we state that PRTBK
A[c] (T ) is non-negative (Theorem 3.5)

and has the following properties:

P1 (inference and collusion): theorem 3.6;

P2 (point level privacy): theorem 3.7;

P3 (interpretation): theorem 3.8.

Theorem 3.5 PRTBK
A[c] (T ) ≥ 0, for all dataset T .

Proof. By de�nition 3.6, PRTBK(T ) is de�ned as min{2h(X)2h(V )}. Since

h(·) ∈ R and 2a ≥ 0 for all a ∈ R, it follows that min{2h(X)2h(V )} ≥ 0. □

Theorem 3.6 Given an algorithm A, a time series T , and c > 1 (presence

of collusion groups), if there is a collusion scenario decreasing the privacy

level of dataset T , then PRTBK
A[1] (T ) ≥ PRTBK

A[c] (T ).
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Proof. Let a = PRTBK
A[1] (T ) be the privacy level of time series T with algo-

rithm A with no collusion (i.e., c = 1), and b = PRTBK
A[c] (T ) be the privacy

level of time series T with algorithm A in a collusion scenario with c > 1

malicious peers. By de�nition PRA[c]
TBK(T ) is de�ned as the smallest pri-

vacy level considering all collusion scenarios. Thus, PRTBK
A[c] (T ) = min{a, b}.

Therefore, if the collusion group decreases the privacy level of the c = 1 sce-

nario, then a ≥ min{a, b}. □

Theorem 3.7 Given a time series T , PRTBK
A[c] (xt) ≥ PRTBK

A[c] (T ), xt ∈ T .

Proof. Let Xt be a random variable modeling amplitude datapoint xt ∈ T .
Similarly, consider Vt a random variable for the position of xt in T . By

de�nition, PRTBK(T ) = min{PRTBK(xt) : xt ∈ T} = min{2h(Xt)2h(Vt) :

xt ∈ T}. For a given point xa ∈ T :

PRTBK(xa) = 2h(Xa)2h(Va) ≥ min{2h(Xt)2h(Vt)}, t = 1, 2, . . . , a, . . . , |T |

□

Theorem 3.8 Given a sensitive time series T , PRTBK(T ) = ρ has a well-

de�ned interpretation, as the area, in time and amplitude, where x can be

located.

Proof. By de�nition 3.6 and equation (3.12), PRTBK(x) = 2h(X)2h(V ) with

random variable X modeling the amplitude (the value of x) with probability

density function fX(x) and random variable V modeling the time point t

when x occurred. Let Si ⊑ T be a subsequence of T with x ∈ Si. Assuming

no knowledge about the distribution of points in Si, fXi and fVi are density

functions of uniform distributions in the intervals of size a and b respectively.

Thus, Xi ∼ U(min{Si},max{Si}) and Vi ∼ U(0, |Si|) . Let a be the interval
of values of Si, i.e. ai =| max{Si} −min{Si} |, and bi the interval of time

stamps in Si, i.e. the size of Si. The probability density function for any value

in Si with uniform distribution is fXi(x) = 1/ai. Similarly, fVi(t) = 1/bi for

the time stamp t of x. The entropy of Xi is h(Xi) = log2 (ai) and Vi is

h(Vi) = log2 (bi), therefore:

2h(Xi)2h(Vi) = 2log2 ai2log2 bi = aibi
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with equation (3.13), PRTBK(T ) = min{PRTBK(x)} = min{aibi} = ρ.

Therefore, ρ is area of the smallest rectangle formed by amplitude and sub-

sequence size in T where any point x can be located. □

Theorem 3.8 above shows that PRTBK(T ) represent intervals of values

in time and amplitude revealed by the mining process. Larger intervals are

better because it means more uncertainty on the exact values of a given point

in time or amplitude. Also, a domain expert could be alerted when a time

series mining algorithm does not satisfy the local privacy constraints.

3.4 Privacy Analysis with Inference and Collusion

Attack Scenarios

In the next sections, selected algorithms for distributed data clustering are

brie�y reviewed, and their privacy properties are analyzed in light of our

privacy de�nitions. The algorithm we analyze in this section were chosen

because they are typical instances of each approach. VC-k-means [213] and

EC-kmeans [161] are good representative of the SMC approach. Similarly,

DDCGM [149] and ITDDC [184] are typical examples of distributed model

aggregation. An interesting new approach is PP-AAC [108] which uses clus-

ter description similar to model aggregation but uses a secure sum protocol

to ensure data privacy.

To apply the privacy framework introduced in the previous section, we

need to identify the parties involved in the mining section of a given algo-

rithm, the information held by each party, and the information exchanged

among them. From this point on, we can analyze how each party may use

its local information, combined with information it receives during the pro-

tocol, to develop an inference attack against other parties. Next, we analyze

how collusion groups may improve inference attacks. In general, we want to

answer the following questions:

1. Which parties are involved? Which information does each party hold?

Moreover, which information each party sends and receives?

2. What can be reconstructed from the information held by a single in-

sider attacker?

3. Which information each collusion group holds?
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Algorithm 3.1 Secure Multi-Party k-Means
Input: P parties, k clusters, n points in dataset X.
Output: vector of means {µi}ki=1

Method:

1: initialize centroids µij with random value;
2: initialize clusters Ci ← ∅, i = 1, . . . k;
3: repeat

4: for all x ∈ X do

5: for all parties j = 1 to P do

6: Securely compute the distance vector y⃗ from point x ∈ X to {µi}
with all parties;

7: Securely decide to put x in the nearest cluster Ci with all parties
(with Alg. 3.2);

8: end for

9: end for

10: Update µi as mean of points in cluster Ci, i = 1 to k;
11: until threshold is reached

4. What can be reconstructed from information held by a collusion group?

5. Which privacy measure is the most appropriate to quantify privacy loss

in each case, depending on the information available to the attacker?

3.4.1 Secure Multi-Party k-Means Clustering

Vaidya and Clifton [213] proposed an extension of the classic k-means al-

gorithm to the distributed setting, using cryptographic protocols to achieve

privacy (VC-k-means, cf. Alg. 3.1). Data is assumed to be vertically par-

titioned in a multi-party scenario with three non-colluding parties. The

solution is based on a secure protocol to �nd the closest cluster for any given

point, and it also uses secure permutation and secure comparison. They of-

fer proof that each peer only learns its part of each cluster centroid and the

cluster assignment of all points at each iteration.

The fundamental problem faced in each iteration is securely assigning

each point to its nearest cluster. This problem is non-trivial since each

site owns a part of each tuple, which must remain private. It is solved by

applying the following algorithm (cf. Alg. 3.2) for each point x⃗ (assuming

P ≥ 3 sites).

Let xj and µij be the portions of x⃗ and the ith centroid at the jth

site, respectively. Let y⃗j be the length K vector where yij is the dis-

tance between xj and µij . The problem boils down to securely computing
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Algorithm 3.2 SMC Closest Centroid
Input: P parties, each of which with a length k vector y⃗ of distances. Three parties

are labeled L1, L2 and LP

Output: the closest centroid
Method:

1: L1 generates P random vectors vi summing to 0;
2: L1 generates a random permutation π over k elements;
3: for all i = 2 to P do

4: Ti = π(yi + vi); // each party adds a distance and permutes
5: end for

6: L1 computes T1 = π(y1 + v1);
7: for all i = 1, 3 to P − 1 do
8: Li send Ti to LP ;
9: end for

10: LP computes y⃗ = T1 +
∑p

i=3 Ti;
11: for all i = 1 to k do
12: securely �nd the index l of the minimal distance in the vector y⃗;
13: end for

14: LP sends l to L1;
15: L1 broadcasts the index l, the closest centroid, to all parties;

argminki=1{
∑P

j=1 yij}, i.e. the index of the smallest value in the distance

vector y⃗. Site 1 computes random vectors (length k) v⃗1, . . . , v⃗P whose sum

is zero and, π, a random permutation of {1, . . . , k}. For each 2 ≤ j ≤ p, site
1 then engages in a secure algorithm allowing site Lj to compute π(v⃗j + y⃗j).

At the end of this algorithm, site 1 does not know anything new and site

2 does not know π or v⃗j . This algorithm uses homomorphic encryption to

achieve security. Next, sites 1, 3, . . . , P − 1 send π(v⃗j + y⃗j) to site P . Site

P sums these vectors with its own (note that site p does not know the vec-

tor at site 2). Then, site P and site 2 use SMC to securely determine the

index ℓ of the minimum entry of vector
∑P

j=1 π(v⃗j + y⃗j). After that, site 2

knows the minimum distance but not to which centroid it corresponds (due

to the permutation known only to site 1). Finally, site 2 sends ℓ to site 1,

which then broadcasts π−1(ℓ) to all sites i.e. the closest centroid. They

also presented a modi�ed version of the protocol to handle collusion with an

increased communication cost.

Inference and Collusion Attacks against VC-k-Means

Let L1, L2 and LP , be three trusted parties in the VC-k-means protocol

under study. Let Li be any other non-trusted party in the mining group. The

aim is to ascertain which information each party knows during the protocol
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execution, examined in the following.

Single Insider Attacks. A given party Li knows: (i) µ⃗i, a share of the

centroid; (ii) yij , the distance from the cluster centroid µij to the view of

point xi; (iii) and a random vector v⃗i . The trusted parties know more than

that, as follows.

L1 is the party that starts the protocol. It does know: (i) a partial

view of the cluster centroids, denoted µ⃗1; (ii) the cluster assignment for each

data point x; (iii) a random vector v⃗; and (iv) a permutation π of 1 to k,

used to preserve the privacy of information in the SMC protocol. L2 knows

T⃗2 = π(v⃗2+ y⃗2), the permuted sum of v⃗2 with y⃗2. This information is hidden

from the other parties, and is used only in the clustering step in a protocol

with LP .

LP knows its share of the centroid µ⃗P , and T⃗i = π(v⃗i + y⃗i), with i =

1, 3, 4, . . . , P , the permuted sum of v⃗i with y⃗i of each party but L2. Moreover,

LP knows the combined sum of T⃗i from all parties but L2, i.e. y⃗ = T⃗1 +∑P
i=3 T⃗i

L1 is the party holding the most valuable information, which can be

used to reconstruct sensitive data: the random vector v⃗ and the permutation

π. However, without the permuted sum of distances y⃗i from other parties

(i = 1, 3, 4, . . . , P ), L1 will not learn anything because it cannot reconstruct

data points from other parties. Similarly, L2 and LP will not learn anything

from the information they hold alone. In other words, each party will learn

anything other than the results. With no further information beyond the

cluster map (the output), we can only apply PRrange(D).

Lemma 3.10 Let D be a dataset distributed over a network of peers. When

there are only single insider attacks, algorithm VC-k-means produces a cluster

map C of D with a privacy level given by:

PRDCP
V CkMeans[1](D) = PRrange

V CkMeans[1](D) = min{maxCi −minCi}

with Ci ∈ C and the privacy level, PR, as de�ned in Section 3.3.1 (cf. Def.

3.4).

Proof. Any insider attacker working solo can only learn what is disclosed by

the cluster map itself, namely, that each point x ∈ Ci ranges in the interval

(minCi,maxCi), with Ci ∈ C. □
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The result with no collusion is unsurprising, given that this protocol

was designed to work with three trusted parties � a strong assumption. In

the subsequent attacks, this assumption is dropped as malicious insiders are

introduced into the scenario.

Collusion Attacks. Now, we analyze the privacy level of VC-k-means

when c ≥ 2 malicious insiders form a collusion group.

Attack with Collusion of Insiders L1 and LP . When L1 and LP

collude, they may learn data from other parties with arbitrarily high pre-

cision. Together, L1 and LP hold information on the permuted sum of all

parties except for L2. Moreover, they hold information on the permutation

π and the random vector v⃗. Therefore, this collusion group may compute

the vector y⃗ using the inverse of permutation π and subtracting the random

noise v⃗ from Yi, as indicated below:

y⃗i = π−1(T⃗i)− v⃗i (3.14)

with i = 1, 3, 4, . . . , P

The vector y⃗i represents the distance between a given point x and the

cluster centroid i with mean µi. Once the attacker has the true distance

between all clusters centroids and a given point, every point can be located

with an arbitrary error. Since L1 and LP hold information from all parties

but L2, it is enough to reconstruct data from all parties in the mining group

but L2. With a given reconstruction method, we can apply PRrec(D).

Lemma 3.11 Given a collusion group with L1 and LP , the privacy level of

VC-k-means algorithm, is:

PRDCP
V CkMeans[2](D) = PRrec

V CkMeans[2](D) = min{|x− r| : x ∈ D, r ∈ R} ≈ 0

where D ⊂ R is the original dataset and R ⊂ R is a reconstructed dataset

built using Eq. 3.14.

Proof. When the collusion group includes L1 and LP , they know everything

needed to use Eq. 3.14 and generate the dataset of reconstructed points R
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with arbitrary precision. Therefore, the error in this attack is down to the

minimum error between the original and the reconstructed data. □

For completeness purposes, other potential collusion groups are discussed

in the following.

Attack with Collusion of Insiders L1 and L2. In this collusion group,

there is not much new, useful information. L2 adds its own permuted sum

T2 and nothing more. Consequently, the collusion will learn nothing other

than the results.

Attack with Collusion of Insiders L2 and LP . In this attack scenario,

the collusion holds the permuted sum from all parties but L1. However,

without information from L1, the colluders cannot remove the random noise

from the sum. Hence, nothing can be learned by the collusion group beyond

the results.

Attack with Collusion of Insiders Li, 3 ≤ i ≤ P . Any other collusion

group that does not include L1 and LP will not know the permuted sum from

other parties and will not remove the random noise from the sum. Therefore,

this collusion group will learn nothing.

Lemma 3.12 The single and collusion scenarios in VC-k-means, with c col-

luders, are related as follows:

PRDCP
V CkMeans[1] ≥ PRDCP

V CkMeans[c] ≈ 0

with c ≥ 2.

Proof. By Lemma 3.11 the collusion group of size c = 2 with L1 and LP

reach the lowest level of privacy since they have su�cient information to

reconstruct the data with arbitrary precision. □

Together, these two lemmas reinforce the need for L1 and LP be trusted

parties. If L1 and LP are trusted, the secure multi-party computation pro-

vides a high level of privacy. Otherwise, a collusion group may reconstruct

sensitive data to arbitrary precision.
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Outsider attack. An outsider needs to get all the information held by

the parties, including the permutation π, the random vector v⃗, and the per-

muted sum from each party. Since messages exchanged in this protocol are

encrypted, an outsider needs to secure assistance from L1 and LP to be suc-

cessful. Although this is a theoretical possibility, an outsider is super�uous

if L1 and LP are malicious. Without insider collaboration, an outsider can

not reconstruct any information from the messages it manages to intercept.

The outsider with zero insider collaboration does learn nothing about the

sensitive data during the mining session. We expressed this result as:

PRDCP
V CkMeans[0] =∞

3.4.2 Elliptic Curves-Based k-Means

Patel and colleagues [161] proposes a privacy-preserving distributed k-means

algorithm based on elliptic curves (EC-kmeans). They assume no trusted

party and use elliptic curves to achieve low overhead cryptography. The

authors present no analysis of inference attack or collusion.

Single Insider Attack. Each peer knows its centroids, its cluster bound-

aries, the encrypted version of the global centroids, and the number of points

on each global cluster. Without collusion, a malicious party does not know

the boundaries of clusters from other parties, i.e., privacy is not compro-

mised. Therefore, we assign the highest privacy degree this scenario:

PRDCP
ECkmeans[1](D) = PRrange

ECkmeans[1](D) =∞ (3.15)

Collusion Attacks. The initiator knows the information necessary to de-

crypt data in the mining session. Therefore, a collusion group with the ini-

tiator and any party Li can learn about the centroids and number of points

in each cluster on the party Li−1. With the centroids, cluster boundaries of

dataset D at L could be estimated and

PRDCP
ECkmeans[2](D) = PRrange

ECkmeans[2](D) = min{maxCi −minCi} (3.16)

Outsider Attacks. Any attacker that is not part of the mining session

will not possess the information necessary to decrypt data. Recall that this
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information is held only by the initiator. Therefore, outsiders have less

information than single insiders. In this case, we indicate the impossibility

to know even the range of any cluster as:

PRDCP
ECkmeans[0](D) = PRrange

ECkmeans[1](D) =∞ (3.17)

3.4.3 Generative Models for Privacy-Preserving Clustering

Merugu and Ghosh [149] present an algorithm for distributed clustering and

classi�cation (DDCGM). DDCGM still is a good representative of the dis-

tributed model aggregation approach, which remains a very active area of

interest [12, 22, 91, 92, 136, 169, 176, 241].

DDCGM algorithm outputs an approximate model λ̂c of a true global

model λc from a prede�ned �xed family of models F , , e.g. multivariate

10-component Gaussian mixtures. This model approximates the underlying

probability model that generated the global dataset D. Merugu's generative

models �rst computes local models λi, from which the average global model

λ̄ is generated. The average model λ̄ is given by

pλ̄(x) =
n∑

i=1

νipλi
(x) (3.18)

where pλ(x) is the probability density function of a given model λ. Although

the average model λ̄ is a good approximation of the true model λc, it might

not be very interpretable. Thus, the algorithm �nds the model in a given

family F , which is the closest model to the average model λ̄ in terms of

KL-divergence. The algorithm uses λ̄ to generate a sample dataset D̄ with

a Markov Chain Monte Carlo method. This dataset D̄ is used with an

Expectation-Maximization (EM) approach6 to �nd a good approximation

λ̂c of the true (and unknown) global model λc, i.e., λ̂c maximizes the log-

Likelihood of D̄. The model λ̂c is used as a cluster map, and every point x

is assigned to the cluster that maximizes probability at x. The pseudocode

for this idea is shown in Algorithm 3.3.

6Expectation-Maximization (EM) is a probabilistic approach to learning with missing
values. In this case, the missing value is the cluster assignment of each data point.
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Algorithm 3.3 Distributed Data Clustering with Generative Models
Input: Set of models {λi}Pi=1 with weights {νi}Pi=1, summing to 1, and mixture

model family F .
Output: Estimated global model λ̂c
Method:

1: Obtain mean model λ̄ such that

pλ̄(x) =

P∑
i=1

νipλi
(x)

2: Generate D̄ = {xj}mj=1 from mean model λ̄ using Markov Chain Monte Carlo
sampling.

3: Apply EM algorithm to obtain the estimated global model λ̂c, such that

λ̂c = argmax
λc∈F

L(D̄, λc) = argmax
λc∈F

1

m

m∑
j=1

log(pλc
(xj))

where L(D̄, λc) is the average log-likelihood of D̄ with respect to λc.

Inference and Collusion Attacks against Generative Models

DDCGM does not exchange any points, only models [149]. It is important to

remember that generative models, as proposed by Merugu and Ghosh [149],

do give users a mechanism to enforce any particular level of privacy for local

datasets � namely, the number of models in the mixture. Therefore, a local

site chooses the number of models in the local model and ensures that the

local dataset has the desired level of likelihood of being generated by the

global model (cf. Example 2.9). According to the proposed approach, a low

likelihood means high privacy and vice-versa. Observe that the number of

models is the maximum number of clusters in the �nal model, typically many

orders of magnitude smaller than the dataset size.

Single Insider Attacks. In DDCGM, a central entity receives local gen-

erative models and combines them into an average generative model. Let

us assume that this central entity is a malicious peer. This entity has every

individual generative model from each party in the mining group. With no

further information beyond the output, we can apply PRrange(D).

Lemma 3.13 Let pλ(x) be a mixture model with k elements. The privacy
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level provided by generative models using pλ(x) and with no collusion is

PRDCP
DDCGM [1](D) = PRrange

DDCGM [1](D) = min{maxCi −minCi}

where Ci ∈ C, and C is a cluster map, according to the model pλ(x).

Proof. The central entity has information concerning every local model from

each party. With this information, the central attacker can compute the

min and max element in each dimension of every cluster from each party.

Assume that clusters are modeled by Gaussians. Thus, a given cluster Ci

is modeled with mean µi and variance σ2i . Therefore, the attacker can infer

that the points in this cluster lies in the interval (µi − 3σi, µi + 3σi),i.e. the

interval has size 6σi, with 99.7% con�dence7. □

Each model, in the generative models approach, represents a probability

density function of data points in a given cluster. Thus, PRBK could also

be used to measure the privacy provided by this approach.

For example, assuming each model is given by a Gaussian in a n dimen-

sional data space with covariance matrix Σi for a given model, the entropy

of each model is

hi(x) = ln
√

(2πe)n|Σi|

where |Σi| is the determinant of the covariance matrix of ith model. There-

fore,

PRDCP
DDCGM [1](D) = PRBK

DDCGM [1](D) = min
i
{2hi(x)} = min

i
{2ln
√

(2πe)n|Σi|}
(3.19)

Parties in this scheme can control the precision of attack and, conse-

quently, privacy by choosing the number of generative models used locally.

More local models lead to a more accurate mixture model. Therefore, to

maintain a desired amount of privacy, parties may want to set locally the

max number of models to be used. The amount of privacy preservation can

be controlled by the number of models used and the range of the cluster de-

scribed by any given model. Therefore, any given site can refuse to partake

in any given mining group when the number of generative models agreed by

the mining group is not in agreement with a local privacy policy or if the

7In statistics, the 3σ rule for normal distributions says that 99.7% of the values drawn
from a normal distribution are three standard deviations away from the mean.
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local models are too narrow (a small range implies a low privacy level).

Collusion Attack. When using the generative models approach, a collu-

sion group may learn which models are being utilized by an attacked site.

The attack could be carried out by discarding the models owned by the col-

luders, thereby isolating the models produced by the attacked parties. In

that case, if the central party, which aggregates local models, takes part

in the collusion, the attack is reduced to a single aggregator attack as the

aggregator site holds the local models from all parties.

Lemma 3.14 Central insider attack and collusion attack against generative

models produce the same privacy level.

PRDCP
DDCGM [1](D) = PRBK

DDCGM [1](D) = PRBK
DDCGM [c](D) (3.20)

with c ≥ 2.

Proof. If the collusion group manages to get the local model from an at-

tacked site, the collusion attack reduces to the case where the central party

is malicious. In that case, the attacker's problem is to �nd the boundaries of

each cluster. Since the central site has more information than any site, a col-

lusion attack will not produce a more precise attack than an insider attack

perpetrated by the central site. Therefore, collusion and insider scenarios

produce the same privacy level. □

If the central entity is a malicious party, the privacy of sensitive data

may be at stake. On the other hand, if the central entity is trusted, the

collusion group must garner the local models from the attacked parties. In

an extreme case, a collusion group would involve all parties, excluding the

aggregator and the attacked party.

Outsider Attack. Outsiders need to know the number of mixture models

and the parameters describing each local model. Assuming an outsider does

not have any parameter value, it cannot use the data it gets since generative

models exchange models rather than data. For that reason, intercepting

messages is useless unless the attacker gets the model parameters.

PRDCP
DDCGM [0](D) =∞ (3.21)
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Now, let us assume that an outsider attacker gets the parameter values

about the local model from a group of mining parties. In this case, the

attack has the same initial information as an insider attacker has, with no

improvement on the privacy bounds already discussed in the insider case.

3.4.4 Information Theoretical Approach to DDC

Shen and Li [184] proposed an information-theoretical approach to distributed

clustering (ITDDC). They assume a peer-to-peer network where each node

solves a local clustering problem and updates its neighbors. The clustering

problem is to �t a discriminative model to cluster boundaries that maximize

the mutual information between cluster labels and data points. With low

communication, local clusters are formed based on global information spread

through the network. The algorithm needs several rounds of iterations to

converge.

Inference and Collusion Attacks against ITDDC

When it comes to privacy, the authors do not investigate how the algorithm

would behave under inference attacks and do not investigate how much pri-

vacy this approach does provide. Therefore, we discuss the ITDDC privacy

properties indirectly from the features of the algorithm as presented in its

original paper.

Single Insider Attack. Each party in ITDDC knows a set of discrimi-

native models de�ning the clusters boundaries of points on data sets and

from all its direct neighbors. We can apply PRrange(Dj) to compute how

much privacy is preserved at local dataset Dj for a given model. Each party

estimates p̂j(k|x), a class label distribution de�ned by a local discriminative

model (e.g. logistic regression). The distribution of x in a given cluster is not

disclosed. Thus, each point can only be located in the interval corresponding

to its cluster boundaries. The privacy provided by ITDDC using p̂j(k|x) and
with no collusion is:

PRDCP
ITDDC[1](D) = PRrange

ITDDC[1](D) = min{maxCi −minCi} (3.22)

where maxCi and minCi are inferior and superior elements at the each

cluster, according to the boundaries de�ned by model p̂j(k|x).
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Collusion attack. Local models are the only information being exchanged

among the parties. Moreover, there is no special central entity holding ex-

tra information on data distribution at local datasets. Therefore, even if

malicious parties collude against another party, they cannot improve on the

single insider attack. Therefore,

PRDCP
ITDDC[c](D) = PRrange

ITDDC[c](D) = PRrange
ITDDC[1](D) = PRDCP

ITDDC[1](D)

(3.23)

with c ≥ 1 colluding parties. More directly,

PRDCP
ITDDC[c](D) = PRDCP

ITDDC[1](D) (3.24)

Outsider attack. Any outsider that listens in on the messages may acquire

information about the discriminative models describing clusters' boundaries.

However, if the attackers do not know which family of models were chosen

to describe cluster boundaries, they will not locate said boundaries. In this

case

PRDCP
ITDDC[0](D) =∞ (3.25)

On the other hand, if outsiders know which family of models to model

cluster boundaries, the scenario becomes equivalent to a single insider attack.

3.4.5 Average Consensus-Based Clustering

Jia et al. [108] proposes a general framework to achieve privacy-preserving

distributed clustering. The authors propose a distributed algorithm called

privacy-preserving accelerated average consensus algorithm (PP-AAC). This

algorithm computes summations of terms from di�erent parties without a

trusted third party. The protocol is iterative and is guaranteed to converge.

PP-AAC is based on noise addition to the sum terms to avoid unintentional

data leakage. The noise follows an exponential decay and tends to zero with

the increasing number of iterations.

PP-AAC is used as a building block to implement clustering algorithms.

The proposed framework consists of running a clustering algorithm locally

to compute a local model and using PP-AAC to compute a global model

by the sum of local parameters. The authors implemented k-means, fuzzy

clustering, and Gaussian mixture algorithms following this approach.
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PP-AAC assumes there are M parties organized in a graph known to

all participants. Each peer holds a dataset with Ni data points and local

sensitive information Sk,i about each local cluster, with k = 1, . . . ,K and

i = 1, . . . ,M . Sk,i stores the sum of attribute values, number of points, and

covariance matrix. During the protocol execution, parties send a perturbed

version of Sk,i to other peers until convergence of the global values Gk, with

k = 1, . . . ,K. The summation protocol is repeated at each step of the

clustering algorithm. Moreover, each peer communicates only with its direct

neighbors. When the algorithm ends, each local party knows the global

cluster centroids µk, with k = 1, . . . ,K.

Inference and Collusion Attacks against PP-AAC

PP-AAC's approach is similar to model aggregation as it uses cluster de-

scription (centroids) and does not exchange any local data points. It is also

similar to SMC, as it is an iterative algorithm that protects original data

in a multi-party computation. In the following, we discuss attack scenarios

against PP-AAC.

Single insider attack. A single party knows the local dataset, the number

of data points Ni and local sensitive information Sk, i describing sum and

number of points at local clusters, and the global cluster centroids µk. Ad-

ditionally, the graph describing the connections among the parties is public.

After the protocol, all parties also know the global information G describing

the centroids of each cluster. No other information about the data is avail-

able to single peers, such as distance to the centroid or standard deviation of

points in a given cluster. Therefore, single peers cannot reconstruct points

from other peers due to a lack of information. We represent this as:

PRDCP
PPAAC[1](D) =∞ (3.26)

Collusion attack. According to the original paper [108], a group of ma-

licious peers may be able to compute the centroids of a victim peer Pj .

The attack is possible if the collusion group shares the information they ex-

changed with the victim Pj . In this case, the attackers can cancel out the

noise and subtract each contribution from the global values. However, there

is no global cluster map available to the malicious group. Furthermore, the
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distances from each point to cluster k at Pj are never exchanged during

the protocol. Therefore, local data from victim Pj cannot be reconstructed

under collusion in PP −AAC. Therefore, we have:

PRDCP
PPAAC[c](D) =∞ (3.27)

Outsider attack. PP-AAC iteratively compute aggregation of local sen-

sitive information using a noise-based distributed algorithm. An outsider

working with no help from insiders, no collusion group, has access only to

the perturbed information exchanged during the protocol's execution. There-

fore,

PRDCP
PPAAC[0](D) =∞ (3.28)

3.5 Summary

This chapter introduced new privacy measures for speci�c data mining tasks

(cf. Sec. 3.3), which are applied in the subsequent chapters. These new

measures were proposed to overcome the limitations identi�ed in the studied

measures. Starting from a set of formal properties, it was shown that the new

measures satisfy all required properties and, therefore, improve pragmatically

over the previous ones. A summary of the properties of the new measures is

presented in Table 3.2.

PRDCP (D) PRTBK(T )

Application Clustering Time Series

Non-negative Theorem 3.1 Theorem 3.5

P1 (collusion) Theorem 3.2 Theorem 3.6

P2 (point-level) Theorem 3.3 Theorem 3.7

P3 (interpretation) Theorem 3.4 Theorem 3.8

Table 3.2: Summary of New Privacy measures for Distributed Data Clustering
and Time Series Mining

The new measures were applied to some representative privacy-preserving

algorithms, and Table 3.3 presents an overview of the main �ndings from

studied algorithms. The analysis above shows that collusion is indeed a
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primary source of privacy breaches and that algorithms can be separated ac-

cording to their vulnerability to collusion groups and the malicious behavior

of a site with a unique role in the protocol, e.g., a central site or an aggre-

gator, or a protocol initiator. VC-kmeans algorithm leaks information if the

central site colludes, whereas EC-kmeans is secure and only discloses range

information under a collusion attack that involves the initiator. DDCGM

has a limited vulnerability to the central site but not to collusion; ITDDC

does not use a central site and only discloses cluster ranges, irrespective of

collusion. PP-AAC is an interesting case where the privacy level is high,

even with collusion. However, PP-AAC trades o� privacy for time since it

needs several rounds to compute each step.

Some identi�ed bene�ts from the new measures are the ability to indi-

cate the vulnerabilities of selected algorithms to collusion in di�erent attack

scenarios and detect point-level privacy breaches. Moreover, the proposed

measures provide an intuitive notion of privacy as the size of the interval

from where a given random variable can be drawn. On the downside, it

is necessary to assume a particular malicious view on the attacked dataset,

which is quite hard to preview in some scenarios. Nonetheless, such analysis

may result in an upper or lower bound on the privacy level, in a process that

can be re�ned in subsequent analysis.

The subsequent chapters endeavor to investigate inference attacks and

appropriate privacy measures for two speci�c data mining tasks: clustering

and pattern discovery. In Chapter 4, the case of distributed data clustering

is investigated. Then, in Chapter 5, we focus on the distributed pattern

discovery in time series.
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Chapter 4

Privacy-Preserving Distributed

Data Clustering

�Civilization is the progress toward a society of privacy.�

(Ayn Rand)

�The Milky Way is nothing else but a mass of innumerable stars

planted together in clusters.�

(Galileo Galilei)

The previous chapter discussed the limitations of current privacy-preserving

measures when malicious peers are part of the mining group. This chapter

further develops these initial ideas focusing on distributed data clustering

(DDC). We start this chapter by analyzing the KDEC algorithm for DDC

[118].

KDEC is a density-based clustering algorithm that can �nd arbitrary

shape clusters with a few rounds of communication between the mining

agents (cf. Sec. 4.2). It uses a kernel estimate density and does not as-

sume any underlying probability model. Therefore, it can be used even

when there is no information about the data distribution. Furthermore, the

communication costs are reduced since only models describing datasets are

exchanged among agents and not raw data.

The kernel density estimation-based approach is interesting because it

promises privacy preservation as no original data point is ever sent over the

network � only a dataset model is communicated. However, as we discuss

later in this chapter (cf. Sec. 4.2.3), under certain circumstances, the density

estimates may be used to reconstruct the original data with high accuracy.
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It follows that sensitive data may have its privacy compromised even if no

data point is transmitted o� the original site.

This chapter investigates how to improve density-based DDC so that

users can have control over the potential privacy leakage during a mining

session. We �rst brie�y review kernel-based density estimation and ana-

lyze the privacy level of KDEC employing privacy measures developed in

the previous chapter. As a result, we propose KDEC-S, an algorithm for

privacy-preserving distributed data clustering. KDEC-S uses a kernel den-

sity estimation based on a new kernel approximation function, which allows

for a controlled level of ambiguity during the process of density estimation.

As a direct result, KDEC-S enhances the protection provided by the density

estimation-based approach. We also present a complete privacy analysis of

the said algorithm, sourced from the perspective of inference attack scenar-

ios, as de�ned in our privacy framework (cf. Ch. 3).

4.1 Clustering Distributed Sensitive Data

In this chapter, the distributed scenario de�ned in Section 2.3.3 is assumed,

i.e. there is a set of sites {Si}Pi=1, which are called local sites. Each local site

Si has a local dataset Di and a local mining agent Li. Mining agents are

interconnected to other mining agents forming a pure peer-to-peer architec-

ture. Only the local mining agent Li, residing at site Si, has access to local

dataset Di.

Recall the de�nition of sensitive data cited in Chapter 3: sensitive data

is any piece of data that an agent decides to keep hidden from other agents.

Here, two privacy constraints are considered: (i) data about individuals

should not be disclosed due to law imposition (e.g., medical data), strategic

decision (e.g., business data), or personal decision (e.g., annual income); (ii)

data about the data collector should not be disclosed as well. To illustrate the

second constraint, consider a group of hospitals planning to share information

about death during heart surgery. Likely, a particular hospital does not

want to be indicated as the one with the highest death rate, even though the

cooperation may represent an opportunity to improve medical research.

In the following, the problem of privacy-preserving distributed data clus-

tering is presented formally.
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4.2 KDEC Algorithm

Problem 4.1 (PP-DDC) Let A(D) be a clustering algorithm that maps

any dataset D to a cluster map C = {Ck} ⊆ 2D, whose elements are pairwise

disjoint. C is called a clustering of D. Let D = {xi | i = 1, . . . , N} ⊆ Rn

be a set of objects. Let L = {Lj |, j = 1, . . . , P} be a �nite set of mining

agents. Each agent Lj, residing on site Sj, has access to one dataset Dj of

size Nj. We assume that D =
⋃P

j=1Dj. The PP-DCC problem is to �nd for

j = 1, . . . , P , a local cluster map Cj residing in the data space of Lj, such

that:

(i) Cj = {Ck ∩Dj : Ck ∈ C} ( correctness requirement);

(ii) Time and communications costs are minimized ( e�ciency requirement);

(iii) At the end of the computation, PRA (Dj) is not lower than a user

given local privacy threshold. (privacy requirement).

Notice that the data distribution across sites is assumed to be homo-

geneous, as discussed in Chapter 2. Homogeneity impacts the design of a

solution because it assumes that all sites know the attributes describing the

data objects. The centralized solution to the DDC problem is to collect all

the distributed datasets Dj into one centralized repository where the clus-

tering of their union is computed and transmitted back to the sites. This

approach, however, does meet neither communication requirements nor pri-

vacy preservation requirements.

4.2 KDEC Algorithm

This section discusses KDEC, a density-based approach to distributed clus-

tering that is the starting point to our solution. The privacy properties of

KDEC in di�erent attack scenarios are then extensively analyzed. After

this privacy analysis, a new privacy-preserving scheme, called KDEC-S, is

proposed.

4.2.1 Algorithm Overview

Density-based clustering reduces the search for clusters to the search for

dense regions in an n-dimensional data space. The �rst step is to estimate a

probability density function from which the given dataset is assumed to have
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Figure 4.1: Density estimates using Gaussian kernels. Each kernel is centered at
a di�erent point. The window width h is set to 0.5 in (a) and 1.0 in (b).

arisen. An important family of methods for density estimation is known as

kernel estimator [94], which does not make any assumptions on underlying

generative models, computing the estimates directly from the data instances.

Clusters, in density-based clustering, are de�ned by local maxima in the

density surface. Through hill-climbing, each point is assigned to one local

maximum, and all points connected to the same local maxima receive the

same cluster label [102].

Let D = {xi | i = 1, . . . , N} ⊂ Rn represent a set of data objects. Let

K : R → R be a non-negative, non-increasing function on R with �nite

integral over R. Let d : Rn × Rn → R+ ∪ {0} be a distance function. Let

h ∈ R be a scaling parameter called window width. A kernel-based density

estimate φ̂K,h[D] : Rn → R+ ∪ {0} is de�ned as follows:

φ̂K,h[D](x) =
1

N

N∑
i=1

K

(
d(x,xi)

h

)
(4.1)

Equation (4.1) de�nes the estimate at x ∈ Rn as a weighted sum of

scaled distances of all data points from the neighborhood of x. An example

of kernel function used in density estimation is the restriction of the Gaussian

function to R+ ∪ {0}. Figure 4.1 shows two examples of density estimates

computed with Gaussian kernels. With h = 0.5 the density estimate is more

bumpy and with h = 1 the density is smoother.

KDEC [118] is a distributed mining scheme conceived to perform data
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4.2 KDEC Algorithm

clustering based on non-parametric kernel density estimate of data [102,

159, 188]. The central idea is built on the fact that kernel density estimates

are: (i) additive for homogeneously distributed datasets; and (ii) can be

transmitted in the sampled form to hide the original data points.

Under the KDEC scheme, it is assumed that there is a set L of agents

willing to start a clustering session, each of which is located at a di�erent

site Sj , with access to a local dataset Dj . Agents are organized in a pure

peer-to-peer network. All agents in L agree on using the same distance d ,

kernel K, and window width h. Moreover, a distinguished agent is chosen

among the peers to act as a helper, denoted Lhelper (cf. Alg. 4.4).

The negotiation protocol is not explored in further detail in this the-

sis. However, we assume it to be a multiplayer negotiation protocol that

seeks to �nd a consensus agreement about the parameters' values, e.g., the

kernel bandwidth. To ensure outsiders will not eavesdrop on the negotia-

tion, we assume an asymmetric key system, like RSA or ElGamal [148, Ch.

8], is in place. The negotiation could consist of two steps in the simplest

form: (a) the initiator broadcasts a call for a mining session in the peer-to-

peer network with proposed parameter values; (b) interested peers answer

to the call accepting the proposed values. A more �exible approach would

allow several rounds of counter-proposals until an agreement or a deadline is

reached. There are several sophisticated negotiation protocols for multiparty

negotiation, e.g. [10, 16, 137, 146] to name a few. After the agreement, the

peers in the mining session are coordinated as indicated in the algorithm

using direct messages between peers.

The KDEC scheme has four main steps, detailed below.

Local Density Estimation. Each agent Lj ∈ L computes its local kernel

density estimate (LDE), which is denoted by φ̂K,h[Dj ](·), as follows:

φ̂K,h[Dj ](x) =
1

N

∑
xi∈Neigh(x)

K

(
d(x,xi)

h

)
(4.2)

where Neigh(x) represents the set of neighbors of point x. LDE represents

a local model of the data distribution at site Lj (cf. Fig. 4.2).
The sum of the LDEs equaling the global density estimate (GDE) is

denoted as φ̂[D](·). For brevity, this study will omit K, h from the notation

in the following.
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Figure 4.2: LDE at site j. Density
describes only local data
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Figure 4.3: Sampled LDE at site j,
which will be sent to the Helper Agent.
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Figure 4.4: Sampled GDE at the
Helper site. This sampling represents
the addition of all LDEs.
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Figure 4.5: Reconstructed GDE at
Site j. GDE describes the whole dis-
tributed dataset.

Sampling. The approach exploits multi-dimensional information sampling

to minimize communications among sites. Before sending its LDE to the

helper, each site transforms it into sampled form. For any x ∈ Rn, let

x1, . . . , xn be its components. Let τ = [τ1, . . . , τn] ∈ Rn be a vector of

sampling periods and let z • τ denote [τ1z1, . . . , τnzn], where z ∈ Zn. Let

R(z1, z2) ⊆ Zn be the n-dimensional rectangle having diagonal (z1, z2). The

sampled form of φ̂[Dj ](·) is the �nite real sequence {φ̂z[Dj ]} de�ned by:

φ̂z[Dj ] = {φ̂[Dj ](z • τ) : z ∈ R(z1, z2)} (4.3)

where the sampling parameters z1, z2 ∈ Zn and τ ∈ Rn are previously agreed

among the mining agents (cf. Fig. 4.3).

Global Density Estimates. The helper site, Lhelper, receives all samples

of local density estimates and computes the sampled global density estimates

(GDE) using Equation (4.4) for all z ∈ R(z1, z2) as the sum of sampled

LDEs.

φ̂z[D] =

P∑
j=1

φ̂z[Dj ] (4.4)

100



4.2 KDEC Algorithm

Algorithm 4.1 DECluster
Input: local dataset Dj , global sample density estimate globalSam,kernel K, win-

dow width h, initial local cluster map C
Output: �nal local cluster map C
Method:

1: for i = 1 to Dj .count do
2: if not(C.clustered(i)) then �xedPoint(i, globalSam, K, h, C);
3: end if

4: end for

5: return C

This sum is possible because density estimates in the sampled form are ad-

ditive. Then, the helper sends the sampled GDE back to the peers (cf. Figs.

4.4 and 4.5).

Local Clustering. From the sampled global density estimate φ̂z[D] the

local agents can approximate the true GDE using the interpolation formula

φ̂[D](x) =
∑

z∈R(z1,z2)

φ̂z[D] sinc

(
x1
τ1
− z1

)
· · · sinc

(
xn
τn
− zn

)
(4.5)

where

sinc(x) =

1 if x = 0,

sinπx
πx otherwise.

Expression (4.5) is an application of the well-known Whittaker-Shannon

interpolation formula (see, e.g., [101]) to the domain of density estimates.

Note that the function represented by Equation (4.5) is not extensionally

equal to the kernel global estimate φ̂[D](·), both because kernel estimates

are not band-limited to any frequency region, and because of the truncation

in the series. However, it was shown in [118] that the approximation only

introduces a small error and, consequently, we can choose τ so that the

Fourier transform of the estimate φ̂[D](·) is negligible outside the region

[−π/τ1, π/τ1) × · · · × [−π/τn, π/τn), and z1, z2 such that the estimate is

negligible outside the region de�ned by the corners z1 and z2.

Finally, each local mining agent Lj , at site Sj , can use the reconstructed

global density estimate to cluster its local data (cf. Alg. 4.1). To this end, it

uses a gradient-driven hill-climbing procedure to �nd local maxima points in

the global density estimate. All points connected to one given local maximum

are labeled to the same cluster. Function uphill() advances a fraction δ of
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Algorithm 4.2 DECluster's Auxiliary Functions
1: function �xedPoint(i, Dj , globalSam, τ , C)
2: C.setVisited (i);
3: u ← uphill(i, Dj, globalSam, τ , epsilon);
4: if C.clustered (u) then
5: C.setLabel(i,C.getLabel (u));
6: else

7: if C.visited (u) then C.setLabel(i, u);
8: else

9: �xedPoint(u, Dj, globalSam, τ , C);
10: C.setLabel(i, C.getLabel(j));
11: end if

12: end if

13: C.setClustered(i);
14: end function

1: function uphill(i,S, globalSam, τ , ϵ)
2: x← S.get(i);
3: v ← SeriesGradient(x, globalSam, τ); // using Eq. 4.5
4: if ∥v∥ > ϵ then

5: return x+ v ∗ δ
6: else

7: return x
8: end if

9: end function

the gradient in its direction, if the gradient's norm exceeds a threshold ϵ.

If a δ-neighborhood of the object returned by uphill() contains an already

clustered data object, the current cluster label Id is set from that object's

label. Otherwise, the act of checking whether uphill() returned the same space

object signals to �xedPoint() that the proximity of the local maximum has

been reached. The maximum is marked by the method setVisited() applied to

the current space object x; this ensures that subsequent paths converging to

the same local maximum will use the same cluster label as the current path.

Algorithm 4.1 shows the pseudo-code for the local clustering procedure.

The pseudo-code for an arbitrary agent Lj is shown in Algorithm 4.3,

while Algorithm 4.4 shows the pseudo code for Helper.

4.2.2 Complexity Analysis

Time. KDEC is superlinear in the number of points in the dataset.

Theorem 4.1 KDEC requires O(|G|Mj +Nq(N)) steps at a local site and

O(|G|) at helper site, where |G| denotes the number of sampling points and
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Algorithm 4.3 KDEC: Arbitrary Site
Input: a group of mining agents L, local dataset Dj , kernel function K, widow

width h, sample rate τ , corners z1 and z2
Output: Cluster map Cj
Method:

At an arbitrary party j do:
1: negotiate(LHelper, K,h,τ , z1,z2);
2: samj ← sampleDensityEstimate(Dj, K, h,τ , z1, z2);
3: send samj to LHelper;
4: receive globalSam from LHelper;
5: return Cj ← DECluster(Dj, globalSam); // cf. Alg. 4.1

Algorithm 4.4 KDEC: Helper Site
Input: a group of mining agents L.
Output: global sampled density estimate globalSam
Method:

At the Helper site do:
1: receive samj from all agents Lj ∈ L;
2: send globalSam =

∑|L|
j=1 samj to all agent Lj ∈ L;

Mj average size of the neighbor set, q(N) is the cost of the nearest neighbor

query and N is the size of the data set.

Proof. Density estimates are computed only at |G| sample points (grid

points), spaced by the sampling rate τ . For each sample point, only the

nearest neighbors are considered. Therefore, local estimation and sampling

take O(|G|Mj) steps, where |G| denotes the number of sampling points and

Mj is the average size of the neighbor set. In most cases, to obtain rea-

sonable density estimates, h must not be less than a small multiple of the

smallest object distance. As τ ≈ h/2, the number of samples should rarely

exceed the number of objects in Dj if only space regions where the density

estimate is not negligible are sampled.

The time complexity of DECluster is O(Nq(N)), where q(N) is the cost

of a nearest neighbor query. Function DECluster calls N = Dj .count times

�xedPoint(). At the beginning of every iteration in DECluster, the sets of

clustered and visited objects are equal. �xedPoint() is never called with

a clustered object as an argument and visits unclustered objects at most

once. Therefore, even if the number of visited data objects in one call of

�xedPoint() is bounded only by N , the number of visited data objects in all

calls is only N . For each visited point, a single k-nearest neighbor query

su�ces to compute the gradient and the next uphill object. The methods
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for nearest neighbor queries can be e�ciently implemented by spatial access

structures like the KD-, or MVP-, or M-tree.

Upon receiving all samples from the local sites, the helper adds all sam-

ples up with Eq. 4.4, summing all estimates from di�erent peers for a given

sample point z. Note that |G| is given by the size of the sampling rectangle

de�ned by the corners z1 and z2 and sample rate τ .

Therefore, the overall complexity of KDEC at a local site is thenO(|G|Mj+

Nq(N)). At the helper, it is necessary O(|L||G|) steps to compute global

density, where |L| is the number of peers. Notice that the cost of clustering
Nq(N) dominates over the cost of density estimation |G|Mj .

□

Communication. The size of messages in KDEC is given by sampling

parameters and is independent of the size of the dataset.

Theorem 4.2 KDEC generates message of size O(|G|), where G sampling

grid.

Proof. The sampling points are inside a rectangle de�ned by the corners z1
and z2 and sample rate τ . The size |G| is independent of the size of the

dataset. □

Let us remark that |G| is usually much smaller than the size of a dataset

Dj when only space regions with non-negligible density estimates are sam-

pled.

4.2.3 Inference and Collusion Attacks Analysis

In this section, we analyze the extent to which KDEC preserves privacy

under the di�erent attack scenarios presented in Chapter 3.

Insider attacks

In the following, we �rst analyze single insider attacks and then investigate

attacks under collusion with di�erent formations of malicious groups.
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Single Insider Attack. The most simple attack scenario is the attack per-

formed by a single malicious participant of the mining group. The attacker

is assumed to be a mining peer who executes all steps of the KDEC protocol

as expected and tries to reconstruct the original data points after receiving

the global density. Since this attempt occurs after the protocol termination,

this attack is always likely to occur, and there is no way to detect it. The

question is: what can an insider learn from other parties and to what extent?

Recall that an insider attacker knows the parameter values agreed before

the KDEC protocol starts, i.e., the kernel function K, the window width h,

and the distance function d. The attacker is also assumed to have a local

dataset Dj , used during the protocol. Moreover, the sampled global density

estimation is distributed to all agents who cooperate in the data mining

process, including the attacker.

From the above, we can state the basic privacy levels of KDEC, under

the di�erent privacy metrics from the previous chapter. Note that PRrange
KDEC

is not applicable in this context since a global cluster map is not disclosed.

Furthermore, a global density estimate is available. In this case, a more

precise metric is PRBK
KDEC . The resulting privacy level will be expressed as

PRDCP
[c] (D), as discussed in the previous chapter.

Lemma 4.1 Given dataset D, with global density estimates φ̂[D](x), the

privacy level of KDEC under a single insider attack can be computed as:

PRDCP
KDEC[1] = PRBK

KDEC[1](D) = 2h(D) (4.6)

with the entropy h(D) computed as

h(D) = −
∫
φ̂(x) log2 φ̂(x)dx (4.7)

where φ̂[D](x) is the global density estimates.

Proof. This is a direct application of Eq. 3.9, using the global density esti-

mates φ̂[D](x) as background knowledge the attacker has on the global data

distribution. The attacker has only samples of the global density. However,

the global estimates φ̂[D](x) can be reconstructed using the Eq. 4.5, which

is possible for the single inside attacker because it knows all parameter values

necessary to use the said equation. □
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Algorithm 4.5 Pointhunt
Input: x0, D0, ε;
Output: D′;
Method:

1: x← search(x0, D0, ε);
2: δ ← | density(x)− φ̂[D0](x) |;
3: D′ ← D0;
4: if x ̸= x0 then
5: snew ← reconstruct(x,δ);
6: D′ ← D0 ∪ {snew};
7: end if

8: return D′

Algorithm 4.6 Pointhunt's Auxiliary Functions
1: function reconstruct(x, δ);
2: return x+ hK−1(δ);
3: end function

1: function search(x,D0, ε);
2: Y ← {y ∈ [x,max ] : |density(y)− φ̂[D0](y)| ≤ ε}
3: if Y ̸= ∅ then
4: return minY ;
5: end if

6: return x;
7: end function

An important question is: can a malicious peer use a reconstruction

algorithm to infer non-local sensitive data in KDEC? To illustrate the in-

tricacies of an insider attack in KDEC, the pointhunt() algorithm (cf. Alg.

4.5) was developed � a simple data reconstruction method for datasets of

reals. pointhunt() can be used to perform an inference attack given a density

estimate of the victim's dataset [52].

Lemma 4.2 Given a data set D and its global density estimates φ̂[D](x),

if the estimates were computed with a kernel K, an inside attacker is able to

produce D′, which is a reconstruction of the original dataset D containing at

least one point, with arbitrary precision using the pointHunt algorithm (cf.

Alg. 4.5).

Proof. As input, pointhunt needs a starting point x0, a (possibly empty) set

of reconstructed data points D0, and a threshold ε representing the deviation

of the current from density. The density function implements the computa-

tion of the global density estimates of any given point with the current kernel

function and dataset D (using Eq. (3.9)). Furthermore, it assumes that the
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parameter values of the mining section being attacked are known, i.e. a func-

tion K and its inverse K−1, window width h, the interval [min,max ] ⊇ D

such that {density(min),density(max )} ⊂ [0, ε]. Note that parameter values,

which are de�ned in the negotiation step, are available to any insider peer.

The algorithm works by reconstructing one data point at a time, from left

to right, as follows. Initially, x0 = min andD0 must equal a (possibly empty)

set of points that are already known to be in D, e.g. the attackers' local

dataset. Function search locates the leftmost point x to the right of x0 where

the di�erence between the actual and reconstructed density is not negligible,

i.e. exceeds ε. Given x, a point snew , which is likely to be in D, is calculated

by function reconstruct using hK−1. This heuristic can be informally justi�ed

by noting that x is the leftmost location that is signi�cantly in�uenced by

D \D0 and, therefore, x is likely to be signi�cantly in�uenced by only one

point in D \D0.

The ideal case for an attacker occurs when K, and, consequently, the

estimate, has bounded support. Examples of kernels with bounded support

include the triangular pulse kernel1 and the Epanechnikov's kernel2. Then

ε can be set to zero and search returns a point of the border of the support

of the function density(x) − φ̂[D0](x). Assuming, without loss of generality,

that K−1 : [0, wmax ] → [0, 1], with wmax = K(0), then there must be one

data point that is located at x + hK−1, which is returned by the function

reconstruct. D′ is built by calling pointhunting iteratively using the D′ as

initial guess for the next iteration. □

Whereas the experiments with bounded kernels led to full disclosure of

the dataset, the attacker is less likely to succeed if the kernel has unbounded

support, e.g., the Gaussian kernel. In general, it is fair to a�rm that the

best results are obtained when points are not too close to one another given

a value of h. Figure 4.6(a) shows the density estimate and the contribution

of each kernel corresponding to the original data points. Figure 4.6(b) shows

the data points which were correctly reconstructed by pointhunt. Notice that

this simple algorithm could not locate the points in the region where said

points are too close to one another. On the other hand, one cannot ignore

1The triangular pulse kernel is de�ned as K(u) = (1 − |u|) I{|u|≤1}, where I is the
indicator function.

2The Epanechnikov kernel is de�ned as K(u) = 3
4
(1 − u2) I{|u|≤1}, where I is the

indicator function.
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Figure 4.6: Original data (a): Gaussians centered at each point are indicated
under the density curve. Reconstructed data (b): some points were not reconstructed
where the density is too high.

the e�ect of the attacker's local dataset on the global density estimate. The

attacker may use its local dataset as an initial set in the pointhunt, thus

increasing the accuracy of the attack. In this study's experiments, the better

the initial dataset, the better the reconstruction results were.

This attack leads to a reconstruction of data points with arbitrarily high

precision, which is controlled by the parameter ε in the algorithm pointhunt.

Therefore, assuming that the sensitive information is an attribute value, the

single insider attacker may reconstruct it with an arbitrary level of con�-

dence, which is summarized as follows:

� If the kernel is bounded, the single insider attacker can reconstruct

all sensitive points to an arbitrary degree of precision chosen by the

attacker.

� If the kernel is unbounded, the single insider attacker can reconstruct

some sensitive points to arbitrary precision chosen by the attacker.

Points in crowded regions are less likely to be reconstructed by pointhunt.

If the kernel is bounded, the attacker can transverse the density estimates

detecting the kernel borders, one border for each point in the dataset. This

attack is possible since the malicious peer knows which kernel K was used

to produce φ̂[D](x), with all relevant parameters to compute its inverse.

In an attack against an unbounded kernel, the attacker needs to apply

pointhunt iteratively. The total computational e�ort is O(nN) since every

invocation of pointhunt requires the computation of the density around a
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given point x, where n is the size of the dataset being attacked and N is

the number of neighbors of an arbitrary point x considered by the density

function.

Nonetheless, if there are more than two parties, the attacker cannot assign

the reconstructed data points to the data owner. In the two-party case, the

attacker can subtract its density estimate from the global estimate, and,

therefore, the reconstructed points can be assigned to the other party.

Lemma 4.3 A single insider attack against KDEC with pointhunting results

in privacy level

PRDCP
KDEC[1] = PRrec

KDEC[1](D) ≈ ε (4.8)

with arbitrarily small ε, i.e. ε ≈ 0.

Proof. From lemma 4.2 we have that pointhunting produces a reconstructed

dataset D′. The error in the estimation of the true data points is controlled

by ε which is given as parameter and is used in the search function (cf.

auxiliary functions in 4.6). Points in the extremity of the data space will

receive in�uences of fewer neighbors in the density space and will be more

easily detected by pointhunt (cf. Alg. 4.5). Therefore, at least the points in

the less dense regions of the original dataset will be reconstructed into the

dataset D′ within the range of precision with ε ≈ 0. □

Collusion Attack without Helper. Let L be a mining group andM⊂ L
a collusion group. Further,M does not include the helper. In this attack, the

members ofM coordinate their actions to learn sensitive information owned

by the remaining peers in the group L \ M. The reconstruction method

used by the attackers can be the same as in the insider attack. It is assumed

that colluders know information as in the previous attack scenario, i.e., all

parameter values and a local dataset. Additionally, the assumption is made

that attackers can exchange local density estimates.

As in the single insider attack, a collusion attack may disclose points

located in not overly crowded regions. Moreover, attacker agents exchange

their local density estimates so that the partial density produced by the

summation of attackers can be subtracted from the global density estimate.

The resulting density estimate represents datasets owned by L \M. Using

pointhunt, the attackers may use their local datasets as an initial set, thereby

109



Chapter 4. Privacy-Preserving Distributed Data Clustering

increasing the precision of the reconstructed sensitive data. Therefore, every

peer needs to be sure its local dataset does contain less populated regions to

safeguard against the risk of disclosure.

There is another critical point to mention regarding collusion attacks.

If the number of attackers is |L| − 1, the data ownership is also revealed,

i.e., attackers can assign the data points to a speci�c peer or data holder,

which is sensitive information in some domains, like health care (knowing

the death rate of a speci�c hospital is a piece of sensitive information about

that hospital).

In essence, colluders may learn:

� everything a single insider attacker may learn, i.e., sensitive values of

points in regions with low density

� additionally, a collusion group may be able to disclose the data holder's

identity.

A collusion attack involves an extra message round to exchange extra

knowledge after the protocol is over. The reconstruction procedure, as in the

single insider attack, takes a computational e�ort which is O(nN), where n is

the number of points to be disclosed, and N denotes the number of neighbors

of an arbitrary point x.

Collusion Attack with Helper. The helper is a distinguished peer cho-

sen in the negotiation phase, used to collect local densities sent by di�erent

peers and sum them up. The helper in KDEC knows all of the sampled

local densities. However, it does not know the parameters' values since they

are negotiated directly between the mining peers in the �rst phase of the

protocol. Consequently, a malicious helper must cooperate with other peers

inside the mining group to get the parameter values.

Assuming that a malicious helper forms a collusion group with a mining

peer, it can use pointhunt to reconstruct sensitive data based on the indi-

vidual local density estimate, as received from the peers. Additionally, this

attack reveals data ownership since the helper can assign each local density

estimate to a speci�c mining peer. Further, colluders may also send a sub-

set of local datasets to improve the reconstruction results obtained by the

malicious helper.

110



4.2 KDEC Algorithm

The colluding helper attack has the same complexity concerning time

and communication as the collusion attack discussed previously.

Summary of Insider Attacks.

Theorem 4.3 When colluding groups are formed by c > 1 colluders, a col-

lusion attack, with or without the helper, against KDEC with pointhunting

yields privacy level of PRDCP
KDEC[1](D) ≥ PRDCP

KDEC[c](D) ≈ 0.

Proof. Colluders already have access to the global density. Therefore, using

pointhunting the attackers may reconstruct sensitive data as shown in lemma

4.2. With more information, e.g. local density estimates, the precision of the

attack can be improved, because the initial dataset passed to pointhunting

allows the process to focus only on the data points in D \Dc, where Dc is

the union of datasets owned by the malicious peers in the collusion. □

Outsider attacks

This study's scrutiny must now turn to the situation where the attacker is

not a member of the mining group. In this scenario, it is unknown which

information the attacker has. For that reason, the analysis of the di�erent

degrees of reconstruction is based on assumptions made regarding the in-

formation the attacker managed to acquire. It is assumed that the outside

attacker does not collude with any group member; otherwise, the scenario

would be equivalent to an insider attack. Here, the goal is to answer what

can be learned by the outside attacker, assuming it is working alone, without

any insider help.

Extreme Case. An extreme case occurs when the attacker manages to

eavesdrop on all of the parameters' values. It is assumed that the attacker

can use a reconstruction function like the pointhunt algorithm. Note, how-

ever, that the attacker has no access to any local dataset used to compute

the global density estimate. A local dataset would allow the attacker to re-

construct more data points and improve the reconstructed data's precision.

Considering every factor combined, the attacker can learn sensitive data

represented by points in less dense regions. Compared to the single insider

111



Chapter 4. Privacy-Preserving Distributed Data Clustering

attack, the main di�erence is that the outsider's initial set is empty, whereas

the insider uses its local dataset in data reconstruction.

Attack without the window width h. The parameter h de�nes how the

kernel function will be stretched in the x-axis, i.e., h determines the range

of in�uence of one point over its neighbors. If h is unknown, it is impossible

to compute φ[D] and, consequently, pointhunt cannot be used. However, if

there is at least one outlier point we can compute h in the following way.

Let the set X∗ = {x∗ : φ[D](x∗) = K(0)} is a set of outliers. Let us choose

a point xc close to x∗ such that φ[D](xc) = w < K(0). Using the kernel

inverse K−1 : [0, wmax ] → R+ ∪ {0}, where wmax = K(0), we can compute

K−1(φ[D](xc)) = K−1(w) = dw representing the distance from x∗ where

one point xc must be placed to receive the in�uence w from x∗. Nevertheless

xc lies at d(x∗, xc) from x∗ because it was scaled by h in the computation of

φ[D]. We have thatK(d(x
∗,xc)
h ) = w = K(dw) what give us dc

h = dw. After

substitutions we get d(x∗,xc)
h = K−1(φ[D](xc)). Finally, h can be computed

with:

h =
d(x∗, xc)

K−1(φ[D](xc))
(4.9)

In this scenario, the extra e�ort to the attacker comes from computing

the parameter h. BuildingX∗ can be done in a single pass through the points

in φ[D] and involves only looking for the smallest local maxima, which takes

O(n), where n is the number of outliers in the density estimate φ[D].

Attack without the distance function. The distance function plays a

crucial role in the computation of the GDE. Its inverse is also critical since

the attack algorithm uses it to reconstruct the points. Assuming that the

distance is unknown to the attacker, he/she may try to use well-known dis-

tance functions, e.g., Euclidean distance. To test the e�ciency of the distance

function chosen, the attacker can use hK−1(φ[D](xi)) = d(x∗, xi), where x∗

is an outlier point, and xi, i = 1, ..., n are points close to x∗. The success

of this approach will depend on how many di�erent candidate functions are

chosen and if there is at least one outlier in the GDE. Once the attacker has

found a suitable distance function, the attack can proceed normally.

Attack without the kernel function. Without the kernel function, the

attacker cannot use the trial-and-error approach used in the inside attack
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to reconstruct the points. There are at least two options; the �rst involves

attempting to guess the kernel function, while the second option consists of

trying to �nd the points with methods independent of knowing the kernel

function.

Guessing the kernel can be accomplished if the dataset contains outliers.

In this case, the attacker can build a table with the density of points located

around an outlier point x∗. This table can be interpolated to get a candidate

kernel function K̂. This K̂ is simple to build though it will undoubtedly lead

to many approximation errors, thus compromising its usability in pointhunt.

Finding points without kernel can be accomplished if the kernel function,

or its derivatives, has discontinuities. It is possible to �nd the points using

a simple observation: the distances between discontinuities on one axis are

equal to the distances between data points on the same axis.

Attack without the sampling parameter. KDEC uses a multidimen-

sional sampling technique to transform the density estimates into a sequence

of indexed values. These indexes allow the peer agents to transmit informa-

tion without explicit reference to the original data points. The sampling

parameter is τ ∈ Rn, which is chosen in the initial phase of the protocol.

Without τ , it is impossible to reconstruct the data points. However, if h

and K are known, two successive values can be chosen with respect to one

axis, wz1, wz2 < K(0) such that hK−1(wz1) = d1 and hK−1(wz2) = d2 and

attempt to �nd τ = |d1−d2|
|z1−z2| .

It is di�cult to pinpoint the accuracy of any given outside attack since it

depends on the attacker's ability to reconstruct the missing information. The

practical approach is to assume the worst-case scenario (the eavesdropping

of all parameter values) since the consequences of assuming a less dangerous

scenario may have drastic consequences.

The bottom line is that outside attackers will only enjoy an e�ective

reconstruction if they manage to eavesdrop on all of the relevant information

used by members of the mining group. The main limitation for the attackers

is that, without a good initial set, the pointhunt() algorithm may fail to

disclose points in dense regions, as discussed in previous sections.

Therefore, KDEC provides more privacy level under outsider attack, or
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at least similar, to the privacy level under insider attacks.

PRDCP
KDEC[0](D) ≥ PRDCP

KDEC[c](D) ≈ 0 (4.10)

with c ≥ 1.

Summary of privacy analysis

The di�erent attack scenarios discussed in the previous section showed that

insider attacks with collusion have the best chance of disclosing sensitive

information. When the attacker is part of the mining group, the accuracy of

reconstructed data may be very high, leading to possible privacy breaches.

Unfortunately, the level of privacy cannot be controlled by the data holder,

and the success of an attack depends only on the attacker's local dataset and

the particularities of data distribution. For example, data points in dense

regions are more likely to be poorly reconstructed. The following lemma

captures the idea.

Lemma 4.4 Let L be a mining group which is performing KDEC protocol

with c < |L| malicious agents forming a collusion group. Let τ ∈ R be the

sampling rate chosen by the mining group. Let K be a kernel function and

a density estimate point y = φ[D](x). If y < K(0) there is a reconstruction

procedure such that PRDCP
KDEC[c](D) = PRrec

KDEC[c](D)≪ τ , for all c > 1.

Proof. We assume that the attacker uses pointhunt algorithm (cf. Alg.

4.5). Lemma 4.3 shows that PRrec
KDEC[1] ≈ ε. Recall that ε is chosen to

be arbitrarily small, i.e. ε ≪ τ . Thus, PRKDEC[1] ≪ τ . With collusion

group (lemma 4.3), this reconstruction may be more accurate. Therefore,

PRrec
KDEC[c] ≤ PRrec

KDEC[1] ≪ τ , for all c > 0. □

In the next section, we address how to improve the privacy level of KDEC

and propose a novel algorithm, the KDEC-S.

4.3 KDEC-S Algorithm

KDEC-S is a distributed clustering scheme based on the KDEC scheme (cf.

4.2), which aims to provide better privacy-preserving properties than KDEC.
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Recall that, in the KDEC scheme, each site transmits the local density es-

timate to a helper site, which is responsible for building a global density

estimate and sending it back to the mining peers. Using the global density

estimate, the mining peers can locally execute a density-based clustering al-

gorithm. KDEC-S works similarly but replaces the original estimation with

an approximated value. The aim is to preserve data privacy while maintain-

ing enough information to guide the clustering process.

4.3.1 Algorithm Overview

Following the density-based approach for DDC, each peer contributes to the

mining task with a local density estimate of the local dataset. Consequently,

no data point, original or randomized, needs to be exchanged among the

peers. Using estimates instead of raw data is a �rst step towards making

the distributed mining operation safer concerning data disclosure. Still, as

shown in previous sections, knowing the inverse of kernel function a�ects the

reconstruction of original sensitive data in some cases.

Once inference and collusion attacks against KDEC have been investi-

gated, the question is how to address said attacks. This study aims to im-

prove the density estimate's privacy level, proposing to substitute the density

estimate with an approximated (non-invertible) function. By doing this, one

of the attack's assumptions is removed � namely, the assumption that the

kernel inverse exists. Additionally, this study wants to give the users the

freedom to choose whichever kernel they want to work with, whether it is

bounded or not. In the following, the details of this approach are outlined.

First, it is necessary to present some basic de�nitions.

De�nition 4.1 (Iso-levels) Let f : R+ ∪ {0} → R+ be a decreasing func-

tion. Let τ ∈ R be a sampling rate and let z ∈ N be an index. Denote by

v ∈ Rn a vector of iso-levels3 of function f , whose each component v(z),

z = 1, 2, . . . , n, is built as follow:

v(z) = f(zτ) (4.11)

Moreover v(1) > . . . > v(n) > 0. □

3One can understand v as iso-lines used to contour plots
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Figure 4.7: ψf,v of the Gaussian function.

De�nition 4.2 (Kernel Transformation) Let f : R+ ∪ {0} → R be a

decreasing function. Let v be a vector of iso-levels of f . Then we de�ne the

function ψf,v as:

ψf,v(x) =


v(1), if v(1) ≤ f(x)

v(z), if v(z) ≤ f(x) < v(z−1)

0, if f(x) ≤ v(n)
(4.12)

□

Together, de�nitions 4.1 and 4.2 de�ne a step function based on the

shape of a given function f . Figure 4.7 shows an example of ψf,v applied

to a Gaussian4 function with µ = 0 and σ = 2, using four iso-levels. Note

that the resulting stepwise function has no inverse, although it resembles

the original shape of the desired function. The number of iso-levels and

the sample rate used controls how close the approximation is to the original

shape. As a direct consequence, it is evident that many di�erent functions

will be transformed to the same ψf,v. This ambiguity associated with the

function ψf,v is the key in avoiding the reconstruction attack based on kernel

inverse (cf. Fig. 4.8).

The following lemma formalizes the amount of ambiguity provided by

the transformation ψf,v.

Lemma 4.5 Let τ ∈ R denote a sampling rate, and z ∈ N be an index.

4Gaussian function is de�ned by f(x) = 1

σ
√
2π

e−(x−µ)2/2σ2
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Figure 4.8: Ambiguity of transformation: given two similar functions f1 and f2
and the same iso-levels v the resulting ψf,v is the same.

De�ne f1 : R+ → R+, a decreasing function and v, a vector of iso-levels. If

we de�ne a function f2(x) = f1(x− k), then ∀k ∈ [0, τ),∀z ∈ N we will have

ψf2,v(zτ) = ψf1,v(zτ).

Proof. For k = 0, we get f2(x) = f1(x − 0) and it is trivial to see that

the assertion holds. For 0 < k < τ , we have f2(x) = f1(x − k). Without

loss of generality, let z > 0 be some integer and let x = zτ . Consequently,

(z − 1)τ < x = zτ . So, f2(x) = f2(zτ) = f1(zτ − k). With decreasing f1 we

have that f1(zτ) < f1([z − 1]τ) and ψf1,v(zτ) = f1(zτ). Now, if we rewrite

(z− 1)τ as zτ − τ , and since f1 is decreasing, f1(zτ) ≤ f1(zτ −k) < f1(zτ −
τ) = f1((z − 1)τ). With 0 ≤ k < τ we have that f1(zτ − k) < f1((z − 1)τ).

By De�nition 4.2, we can write ψf1,v(zτ − k) = ψf1,v(zτ). Additionally,

f2(zτ) = f1(zτ−k) < f1((z−1)τ) and ψf2,v(zτ) = ψf1,v(zτ−k). Therefore,
ψf2,v(zτ) = ψf1,v(zτ) □

Lemma 4.5 tell us that the inverse of ψf2,v(x) is undetermined because

several di�erent functions generates the same approximation. All transla-

tions fk(x) of a given function f(x) given by fk(x) = f(x− k) generates the
same transform with k < tau. As a consequence, the attacker cannot de-

termine the exact location of a given point from its density, because several

points generates the same approximated density estimate. We exploit this

feature as a countermeasure to point hunting attacks discussed earlier in this

chapter (cf. Section 4.2.3).

Now we substitute the kernel K by ψK,v for a given sample rate τ , in

the process of estimating the density of the local datasets. Since ψK,v is a

non-increasing function, we can use it as a kernel function. We compute a

rough approximation of the local density estimate using the function ψK,v
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as follows:

φ̃[Dj ](x) =


∑

xi∈Nx
ψK,v(

d(x,xi)
h ) , if (x mod τ) = 0

0 , otherwise.
(4.13)

where Nx denotes the neighborhood of x. The global approximation can be

computed by:

φ̃[D](x) =
P∑

j=1

φ̃[Dj ](x) (4.14)

According to Lemma 4.5, it is not possible to decide which one of the

original functions produced the approximate kernel ψK,v.

Auxiliary De�nitions

De�nition 4.3 (Grid) Given two vectors zlow, zhigh ∈ Zn, which di�er in

all coordinates (called the sampling corners), we de�ne a grid G as the �lled-

in cube in Zn de�ned by zlow, zhigh. Moreover, for all z ∈ G, de�ne nz ∈ N
as a unique index for z (the index code of z). Assume that zlow has index

code zero.

□

De�nition 4.4 (Sampling Set) Let G be a grid and τ ∈ Rn be a sampling

rate. We de�ne a sampling Sj of φ̃[Dj ] given a grid G, as:

Sj =
{
φ̃j
z | ∀z ∈ G, φ̃j

z > 0
}

(4.15)

where φ̃j
z = φ̃[Dj ](z · τ). Similarly, the global sampling set will be de�ned as:

S = {φ̃z | ∀z ∈ G, φ̃z > 0}
□

De�nition 4.5 (Cluster guide) A cluster guide CGi,θ is a set of index

codes representing the grid points forming a region with density above some

threshold θ:

CGi,θ = {nz | φ̃z ≥ θ} (4.16)

such that ∀nz1 , nz2 ∈ CGi,θ : z1 and z2 are grid neighbors and
⋂k

i=1CGi,θ =

∅.
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Algorithm 4.7 KDEC-S: Local Peer
Input: Dj (local dataset), L (list of peers agents), LHelper;
Output: clusterMap;
Method:

1: negotiate(L,K, h,G, θ);
2: φ̃[Dj ]← estimateApprox(K,h,Dj , G, δ);
3: Sj ← buildSamplingSets(φ̃[Dj ], G, θ, v);
4: send Sj to LHelper;
5: receive CGθ from LHelper;
6: clusterMap← cluster(CGθ, Dj , G);
7: return clusterMap

8: function cluster(CGθ, Dj , G)
9: for each x ∈ Dj do

10: z ← nearestGridPoint(x, G);
11: if nz ∈ CGi,θ then

12: clusterMap(x)← i;
13: end if

14: end for

15: return clusterMap;
16: end function

A complete cluster guide is de�ned by: CGθ = {CGi,θ| i = 1, . . . , k}
where k is the number of clusters found using a given θ. □

A cluster guide CGi,θ can be viewed as a contour de�ning the cluster shape

at level θ (an isoline), but, in fact, it only shows the internal grid points and

not the actual border of the cluster, which should be determined using the

local dataset.

The KDEC-S algorithm is structured in two parts, as discussed in the

following.

Local Peer. (cf. Alg. 4.7) The �rst step is the function negotiate(),

which only succeeds if an agreement on the parameters is reached. A distin-

guished site is chosen as a helper, denoted Lhelper. Note that the helper does

not take part in this phase. In the second step, each local peer Lj computes

its local density estimate φ̃[Dj ](z · τ) for each z · τ , with z ∈ G. Using the

De�nition 4.4, each local peer builds its local sampling set Sj and sends it to

the helper. The clustering step (line 6 in Alg. 4.7) is performed as a lookup

in the cluster guide CGθ received from the helper. The function cluster()

shows the details of the clustering step. The data object x ∈ Dj will be

assigned to the cluster i, the cluster label of the nearest grid point z, if the

index code of z is in cluster guide i, i.e. nz ∈ CGi,θ.
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Algorithm 4.8 KDEC-S: Helper
Input: L (list of peers); θ (density threshold);
Output: CGθ, a cluster guide a given level θ;
Method:

1: receive Sj from L;
2: φ̃[Dj ]← recover(Sj);
3: φ̃[D]←

∑
φ̃[Dj ];

4: CGθ ← buildClusterGuides(φ̃[D], θ);
5: send CGθ to L;

6: function buildClusterGuides(φ̃[D], θ)
7: cg ← {nz|φ̂z > θ};
8: n ∈ cg;
9: CGi,θ ← {n};
10: i← 0;
11: for each n ∈ cg do
12: if ∃a((a ∈ neighbors(n)) ∧ (a ∈ cg)) then
13: CGi,θ ← {n, a} ∪ CGi,θ;
14: else

15: i++;
16: CGi,θ ← {n};
17: end if

18: cg ← cg \ CGi,θ;
19: end for

20: CGθ ← {CGi,θ|i = 1, . . . , C};
21: return CGθ

22: end function

Helper. (cf. Alg. 4.8) For a given value of θ, the helper sums up

all sample sets and, using De�nition 4.5, computes the cluster guides CGθ.

Function buildClusterGuides() in Algorithm 4.8 shows the details of this step.

4.3.2 Complexity Analysis

Time. The dominant part of the processing in KDEC-S is superlinear on

the size of the dataset.

Theorem 4.4 KDEC-S needs O(|G|Mj + log(k)|Dj |) steps, where |G| is
the grid size, Mj is the average size of the neighborhood, k is the number of

cluster guides and Dj is the set of points owned by peer Lj.

Proof. The �rst steps in local peer algorithm (cf. Alg. 4.7) have complexity

O(|G|Mj), since the algorithm computes the density for each point z in the

grid G. This step uses the subset of points in Dj which are neighbors from

z, with average size Mj . Line 3 has its complexity determined by the size of
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sampling set Sj , which is a subset of G, i.e., its complexity is O(|G|). Line 5
has complexity O(k). The last step (line 6) has to visit each point in Dj and,

for each point, it has to decide its label by searching the corresponding index

code in one of the cluster guides. There are k cluster guides. Assuming the

look-up time for a given cluster to be log(k) it can be said that O(log(k)|Dj |)
is the complexity of the last step.

The helper (cf. Alg. 4.8) will receive at most |G| sampling points from

P peers and it needs to reconstruct and sum them up (lines 2 and 3), which

takes in the worst-case O(P |G|) steps. Thus, the process of building the

cluster guides (line 4) will take O(|G|) steps in the worst case.

Therefore, local Peer requires O(|G|Mj + log(k)|Dj |) to complete, and

the helper peer has its time complexity mainly determined by the size of the

entire sampling set which requires O(|G|) steps in the worst case. □

Communication. KDEC-S's message size is given by sampling parame-

ters and is independent of the size of the dataset.

Theorem 4.5 KDEC-S message size is O(|G|), where |G| is the size of the
sampling grid.

Proof. KDEC-S algorithm only uses a few rounds of messages. Each site

will have, at most, |Sj | < |G| sampling points (index-codes) to send to the

helper site. The helper site has, at most, |G| index-codes to inform back

to local agents. In the �rst round of communication, each site sends one

message informing the local sampling Sj set to the helper and one (or more,

subsequent) message(s) requesting a cluster guide with some desired θ. Then,

the helper answers back, informing the cluster guides, as requested by local

peers. Therefore, KDEC-S produces messages of size O(|G|). □

4.3.3 Inference and Collusion Attacks Analysis

It is now necessary to return to the core question: does KDEC-S present

any improvement in the privacy level of KDEC scheme? Below, inference

attacks scenarios for KDEC-S are analyzed, and, in the subsequent section,

the KDEC-S' privacy level is scrutinized.
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Single Insider Attack

It is assumed, in this thesis, that the single attacker has a local dataset and

knows the parameter values used to compute the mining results since the

attacker is part of the mining group. Further, it is assumed that the sin-

gle attacker does not exchange attacking information with other (possibly

malicious) mining peers in the group. When the protocol is complete, the

attacker receives, as with all the other members, the set of cluster guides

in the form of an index of connected grid points representing the clusters.

The protection comes from the loss of information caused by using an ap-

proximated kernel function instead of the original kernel. As a result, even

the points at the border of any given cluster cannot be reconstructed with

arbitrary precision. The precision is de�ned by the distance between the grid

points, i.e., sampling rate τ .

Since KDEC-S produces a cluster map at the end of the mining session,

our �rst step in the privacy analysis is to state how much an attacker can

learn from the cluster map alone, without reconstruction. This privacy level

is described by the PRrange measure, which is based on the cluster width

(cf. Eq. 3.2).

Lemma 4.6 Let L be a mining group formed by P > 2 peers and attackers

working alone without forming collusion groups, i.e. c = 1. If τ ∈ R be

a sampling rate then the privacy level of KDEC-S with singleton collusion

groups without reconstruction is PRDCP
KDEC[1] = PRrange

KDEC[1](D) ≥ τ .

Proof. Assume that c = 1, and that each peer only has access to its local

dataset and the cluster guides he receives from the helper. The cluster guides,

produced by the helper, contain only index codes representing grid points

where the threshold θ is reached. From the information in the cluster guides,

it is possible to �nd the grid points for each cluster Ci, which has its width of

leastm grid points spaced by τ in each dimension. ThusPRrange
KDEC−S[1](D) =

mτ , with m ∈ N. Therefore, PRrange
KDEC−S[1](D) ≥ τ , with m > 1. □

Another option to determine the privacy level of KDEC-S is to model

each point in a cluster as a random variable X with probability density

function fX(x).

Lemma 4.7 Let L be a mining group formed by P > 2 peers and attackers

working alone without forming collusion groups, i.e. c = 1. If τ ∈ R be
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a sampling rate then the privacy level of KDEC-S with singleton collusion

groups is PRDCP
KDEC[1](D) = PRBK

KDEC[1](D) ≥ τ .

Proof. Recall that a probability density estimates is not available to parties in

the mining group, but only the cluster guides. In this case, the attacker needs

to assume that the points in a given cluster follow a uniform distribution,

i.e. for a given cluster Ci let Xi ∼ U(mini,maxi). Clusters guides contain

at least one grid point by construction. Each grid point represents a region

in the data space of width greater or equal to τ by construction. Thus, each

cluster guide represents a cluster with at least width τ . By construction,

the cluster width is a multiple of τ . As a consequence, it is possible to

model Xi as Xi ∼ U(0,mτ), with m > 1. The entropy of Xi as a uniform

distribution5 is h(Xi) = − log2
1

(mτ) = log2 (mτ). Now, using Eq. (3.9)

it results in PRBK
KDEC−S[1](D) = min{2h(Xi)} = 2log2 (mτ) = mτ ≥ τ , for

m ≥ 1 (since no cluster is smaller than τ in any dimension). □

Finally, let us to analyze the privacy level of KDEC-S using pointhunt as

reconstruction function.

Lemma 4.8 For a given sampling rate τ , a single insider attack against

KDEC-S using pointhunt results in a privacy level of

PRDCP
KDEC−S[1](D) = PRrec

KDEC−S[1](D) ≥ τ

.

Proof. Each peer inside the mining group knows all parameters negotiated

before the mining session begins. Additionally, it receives the global cluster

guides CGθ at the end of the mining session. Cluster guides, however, do

not contain all information needed by pointhunting. Therefore, this analysis

only makes sense considering a malicious helper attack. A malicious helper

knows sample sets from all peers and cluster guides. Sampling sets contain

only density estimates approximations φ̃[D](z), which are computed with

Eq. 4.13 and the transformation function ψf,v (see Def. 4.12). By lemma

5The entropy of a uniformly distributed random variable X ∼ U(0, a)

h(X) = −
∫ a

0

1

a
log2

1

a
dx = −

[(
1

a
log2

1

a

)
x

]a

0

= − log2
1

a
= log2 a
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4.5, for any value φ̃[D](z) in a sampling set, the process of reconstruction

using pointhunt cannot locate the original point in an interval smaller than

τ . Therefore, PRrec
KDEC−S[1](D) ≥ τ . □

Collusion Attack

The collusion attack involves extra communication between the subgroup

forming the malicious peers. It is assumed that attackers have a local dataset

and know the parameter values used to compute the mining results. Again,

the attacker receives the cluster guides as an index of connected grid points

representing the clusters, as with all the other members. Following the con-

clusion of the normal protocol's execution, colluders may exchange sampling

sets Sj to improve reconstruction precision. However, if the collusion group

includes the helper, it already knows this information. Thus, this scenario

reduces to the malicious helper attack. Similar to the single attack scenario,

the protection comes from the loss of information incurred by using an ap-

proximated kernel function instead of the original kernel. Once more, the

reconstruction precision is given by the sampling rate τ .

Since KDEC-S produces a cluster map at the end of the mining ses-

sion, we analyze the privacy level as described by the PRrange measure in a

collusion scenario.

Lemma 4.9 Let L be a mining group formed by P > 2 peers and 1 <

c ≤ p − 1 malicious peers, which can form collusion groups. If τ ∈ R be a

sampling rate then the privacy level of KDEC-S with collusion groups without

reconstruction is PRDCP
KDEC−S[c](D) = PRrange

KDEC[c](D) ≥ τ .

Proof. PRrange needs only the cluster width, which can be derived

from cluster guides CGθ. This information is already known to all peers,

at the end of the mining session. Thus this proof reduces to the proof of

Lemma 4.6. Thus PRrange
KDEC−S[c](D) = mτ , with m ∈ N, since Therefore,

PRrange
KDEC−S[c](D) ≥ τ , with m > 1. □

As in the single attack scenario, it is possible to determine the privacy

level of KDEC-S with a bounded knowledge measure, modeling each cluster

as a random variable X with probability density function fX(x).
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Lemma 4.10 Let L be a mining group formed by P > 2 peers and 1 <

c ≤ p − 1 malicious peers, which can form collusion groups. If τ ∈ R be

a sampling rate then the privacy level of KDEC-S with collusion groups is

PRDCP
KDEC−S[c](D) = PRBK

KDEC−S[c](D) ≥ τ .

Proof. Similar to the proof of Lemma 4.7, cluster guides are known to all

peers in a mining session. □

In the next, we state the privacy level of KDEC-S using the reconstruction-

based measure PRrec with the function pointhunt.

Lemma 4.11 Let L be a mining group formed by P > 2 peers and 1 <

c ≤ p − 1 malicious peers, including the helper, which can form collusion

groups. For a given sampling rate τ , a collusion attack against KDEC-S using

pointhunt results in a privacy level of PRDCP
KDEC−S[c](D) = PRrec

KDEC−S[c](D) ≥
τ .

Proof. Assume the collusion group includes a malicious helper. This collusion

group has all parameters values, cluster guides CGθ, and sample sets sent

from peers. All this information is already known to the helper. Because of

that, this scenario reduces to a single insider attack carried out by a malicious

helper. As a consequence, the proof is similar to the that of Lemma 4.8.

Therefore, PRrec
KDEC−S[c](D) ≥ τ , with c > 1. □

Outsider Attack

Outsiders need to monitor the communication to collect enough information

before starting a reconstruction process. In an extreme case, it is assumed

that attackers eavesdrop on all the parameter values used to compute the

mining results, intermediate results, and the cluster guides distributed at the

end of the mining session. As in the single attack scenario, the protection

comes from the loss of information incurred using an approximated kernel

function instead of the original kernel. Recall that the reconstruction preci-

sion is determined by the distance between the grid points, i.e., the sampling

rate τ . However, this is the worst-case scenario for an outsider attack. A

milder assumption would be that the attacker does not have access to all

information on parameter values. In that case, the precision of an outsider
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attack will always be worse or equal to the precision produced by a collusion

attack. We expressed this result as follows:

PRDCP
KDEC−S[0](D) ≥ PRDCP

KDEC−S[c](D) (4.17)

with c ≥ 1.

Summary of privacy analysis

Theorem 4.6 Let L be a mining group formed by P > 2 peers, one of

them being the helper, and c < p malicious peers, including the helper, pos-

sibly forming a collusion group in L. If τ ∈ R is a sampling rate then

PRDCP
KDEC−S[c](D) ≥ τ for all c ≥ 1.

Proof. From Lemmas 4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 it was shown that

smallest interval a single point can be located has size of at least τ units in

a given cluster dimension, for all privacy measures in all attack scenarios.

Therefore, PRKDEC−S[c] ≥ τ , for all c ≥ 1. □

4.3.4 Experimental Evaluation

KDEC-S was implemented in Java (JDK 1.7), primarily to keep the imple-

mentation machine-independent and because the main objective is to provide

a proof of concept, as opposed to a performance-oriented implementation.

Datasets. Several datasets were utilized in this batch of experiments.

Sample datasets were created, consisting of points generated from a mixture

model with four Gaussians, each with a variance of σ2 =1 in all dimensions.

The idea is to simulate a dataset with four clusters (cf. Fig. 4.9). A dataset

with 500 points was also generated, built to perform basic tests. Datasets

with 5K, 10K, 15K, 20K, 25K, and 30K points were also created to analyze

time as a function of the size of the dataset. A dataset with 400 points was

also generated, 200 points of which were generated from a Gaussian with

µ = 0 and σ2 = 5 and 200 points generated around the center with radius

R ∼ N(20, 1) and angle uniformly distributed from ∼ U(0, 2π). This dataset

is interesting because its clusters are not easily de�ned (cf. Fig. 4.10). Ad-

ditionally, a synthetic dataset from [74] was utilized, containing 5000 points

distributed in 15 prede�ned clusters (cf. Fig. 4.11). The spiral dataset from
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Figure 4.9: Gaussian dataset: data
points generated from a mixture of 4
Gaussians.

Figure 4.10: Polar dataset: Points
are distributed along an arbitrary shape,
with two clusters.

Figure 4.11: S1 dataset: data points
generated from a mixture of 15 Gaus-
sians.

Figure 4.12: Spiral dataset: data
points form three di�erent spirals.

[36] was also utilized, which contains 312 points and 3 clusters (cf. Fig.

4.12).

Sanity Check. KDEC-S was applied to the datasets with several param-

eter con�gurations. In the following, the best parameter setting for each

dataset is outlined. For the Gaussian dataset with 500 points, the Gaussian

kernel with bandwidth h = 0.5, neighborhood = 1, τ = 0.5, grid corners

((-15,-15), (15, 15)), iso step =1, and threshold θ = 0.5 was used. For the

polar dataset, bandwidth h = 0.5, neighborhood = 4, τ = 0.5, grid corners

((-30, -30),(30,30)) and threshold θ = 0.1 was used. For s1 dataset, h = 104,

neighborhood = 3, with grid corners ((0,0), (106,106)), τ = 104, iso step =

1, and threshold θ = 2.0 was utilized. For spiral dataset, the kernel Gauss

with h = 0.5, neighborhood = 1, corners ((0,0),(100,100)), τ = 1 , iso step

= 1, and θ = 0.1 was employed.

Figures 4.13 to 4.16 depict clusters found on di�erent datasets with

KDEC-S. This worked as a sanity check to validate the approach. As is

clearly evident, KDEC-S was able to �nd all of the clusters, even arbitrary-

shape clusters as in polar and spiral datasets.
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Figure 4.13: Four clusters found in
Gaussian dataset.

Figure 4.14: Two clusters with arbi-
trary shape found in polar dataset: a
central cluster and an external circular
cluster.

Figure 4.15: 15 clusters found in S1

dataset (colors may be repeated by the
plotting software).

Figure 4.16: 3 clusters found in
Spiral dataset.

Clustering Error. The mislabeling error was accounted for, considering

as correct cluster mapping the one obtained with τref = h
2 , which represents a

sampling rate with minimal information loss. The clustering error in terms of

di�erences between the reference cluster mapping and a new one, considering

all pairs of objects in D, is computed as de�ned in [120], as follows:

E =
2

|D|(|D| − 1)

∑
i,j∈{1,2,...,N},i<j

eij (4.18)

where |D| is the size of the dataset and eij , the mislabeling error, is de�ned

as:

eij =


0 if (label(xi) = label(xj) ∧ label′(xi) = label′(xj)) ∨

(label(xi) ̸= label(xj) ∧ label′(xi) ̸= label′(xj))

1 otherwise

(4.19)

where xi and xj represent two di�erent data points in D, label() denotes the

reference cluster label assigned to objects, i.e. the label found using τref ,

and label′() denotes the new label found with τ > τref . Given two data
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Figure 4.17: Error rate in Gaussian

dataset in function of τ , with h = 0.5.
Figure 4.18: Error in Polar dataset
in function of τ , with h = 0.5.

Figure 4.19: Error in S1 dataset in
function of τ , with h = 104.

Figure 4.20: Error in Spiral dataset
in function of τ , with h = 0.5.

points xi and xj , the error is 0 if their relationship does not change, i.e. they

have the same label after and before or have di�erent label after and before.

Otherwise, 1 error is counted.

The experiments suggest that the value of τ up to h can be set with no

error in the clustering results generated by KDEC-S (cf. Figs. 4.17 to 4.20).

In the Gaussian dataset, signi�cant error rate appears just after τ = 2.5h

and in the polar datasets, the rate of error becomes large after τ = 2h.

In general, it was observed that, as the value of sampling rate τ reaches

values beyond the kernel bandwidth, there is an increase in the error rate

because more points are considered outliers. With the Gaussian kernel, it

is known that the kernel goes to zero around 3 ∗ h, therefore meaning that

the iso-levels summation does not reach the given threshold. Consequently,

the corresponding grid point is omitted from the cluster guides, i.e., it is

considered an outlier.
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Figure 4.21: Running time (in sec)
as a function of dataset size for gen-
erating estimates at a local peer. With
neighborhood = 1 and h = 1

Figure 4.22: Running time (in sec)
as a function of privacy parameter τ .
Gaussian dataset (with neighborhood =
1 and h = 0.5)

Performance. Empirical results also con�rm theoretical performance re-

sults (cf. 4.3.2). Estimation only takes a fraction of the dataset and seems

almost linear at the local peer. Synthetic datasets with di�erent sizes were

used, ranging from 5.000 to 30.000 points, with neighborhood = 1 and band-

width h = 1 (cf. Fig. 4.21). The privacy parameter plays a crucial role in

the performance since it determines the number of points in the sampling

grid. Thus, the small values of τ require more computational e�ort since

the grid has more points. Figure 4.22 illustrates the results of experiments

for di�erent values of τ in the Gaussian dataset, with neighborhood = 1

and h = 0.5. Therefore, for the sake of both privacy and time, this study

recommends values of τ greater than the kernel bandwidth, i.e., τ > h.

4.4 Related Work and Discussion

Previous sections presented KDEC-S and how it handles privacy. This

section compares the KDEC-S approach with other privacy-preserving dis-

tributed clustering algorithms. We �rst compare KDEC and KDEC-S and

then discuss Generative Models and SMC k-means clustering.

KDEC

KDEC and KDEC-S are based on density estimates, reducing the clustering

problem to �nding local maxima in a density function. However, KDEC-S

works on a modi�ed version of the density estimate (cf. Sec 4.3.1), one which
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does not carry all the information needed to reconstruct the original dataset

but still has enough information to �nd clusters. Since KDEC and KDEC-S

have already been studied in di�erent attack scenarios in previous sections,

the comparison between the two approaches is, quite simply, stated in the

following theorem.

Theorem 4.7 Let τ ∈ R be a sampling rate parameter. For a given value

of τ we have PRDCP
KDEC−S[c] > PRDCP

KDEC[c], for all c > 0.

Proof. By Lemma 4.6 we know that PRKDEC−S[c] ≥ τ and by Lemma 4.4

we have τ ≫ PRKDEC[c], for all c > 0. Therefore, the assertion holds. □

The Theorem 4.7 states that with the same sample rate τ , KDEC-S will

always provide more privacy than KDEC, no matter how many parties are

malicious. In fact, by Lemma 4.4, the privacy level of KDEC is much less

than τ . On the other hand, τ is a lower bound for KDEC-S' privacy level.

Both algorithms make no assumptions concerning trusted third parties.

Therefore, collusion groups may contain up to P − 1 parties, with P parties

in the mining group. With regards to time complexity, KDEC-S has the

same worst-case complexity as KDEC, which is O(N logN) on the size of

the dataset. Both algorithms require O(|G|) space, where |G| is the size of
the sampled density estimate (or sample sets in KDEC-S).

KDEC-S, just like KDEC, needs only two rounds of message exchange

to complete the protocol. Each message has size O(|G|) on the number of

samples used in the process.

In summary, KDEC-S performs to the same level as KDEC, only with

the added bene�t of an increased level of control over privacy preservation.

Generative Mixture Models

The generative models approach represents an excellent technique for privacy-

preserving distributed data clustering since the privacy level can be con-

trolled by both the number of models in the mixture and the range of cluster

modeled (cf. Sec. 3.4.3). Therefore, even if the central peer is malicious,

the user can control the desired level of privacy. Unfortunately, the gen-

erative models approach loses information about the natural separation in

the dataset. For example, consider a dataset with k natural clusters. Any

mixture model with less than k base models will lose information about
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the natural separation of data points. In general, the number of clusters is

the very information one is looking for when using a clustering algorithm.

KDEC-S also allows the user to control the desired level of privacy without

�rst asking the number of clusters since it follows a density-based approach to

discover clusters. Consequently, the original information about the natural

clusters is preserved.

Generative models clustering requires no trusted parties since only mod-

els are transmitted, and unless models are too detailed, data reconstruction

is bounded to a given level. For the same reasons, KDEC-S also assumes no

trusted parties.

Theorem 4.8 For a given dataset D and assuming possible collusion, c > 1,

KDEC-S may provide the same amount of privacy level as generative models

with k components:

PRDCP
KDEC−S[c](D) ≈ PRDCP

GM [c](D)

The privacy level, PRDCP , was de�ned in Section 3.3.1 (cf. Def. 3.4)

Proof. To show that the assertion holds, we need to show that it is always

possible to con�gure KDEC-S to provide the same level of privacy as genera-

tive models. The key to this proof is to choose τ in KDEC−S that provides

the same privacy as the cluster range in generative models. Thus, we must

pick τ = min |maxCi −minCi|, with maxCi and minCi being the extreme

values in a cluster. It is always possible to compute minCi and maxCi for

a bounded generative model, such as a uniform distribution, since these ex-

tremes are well de�ned as part of the model. For unbounded models, like

Gaussians, it is possible to pick points de�ning a high con�dence interval,

like (µ − 3σ, µ + 3σ), which covers more than 99.73% of the true range (by

the three-sigma rule of normal distributions). Therefore, for a given k exists

a value of τ that makes KDEC-S provide nearly the same amount of privacy

provided by generative models with k components. □

The time complexity of Merugu's generative models is based on two main

steps: (i) building the models and (ii) clustering each data point locally.

The model building step follows an optimization approach involving several

iterations until the algorithm converges. At the local site, each iteration

builds a candidate model until a given stop criterion is reached. KDEC-S
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builds sampling sets locally in O(|G|n), where |G| is the size of the sampling

grid and n is the number of neighbors of each sampling point, with n ≪|
Dj |. Since the generative model approach is iterative, it needs several passes

on the dataset to build candidate models until convergence is reached. In

contrast, KDEC-S only needs one pass to build local sampling sets, i.e.,

KDEC-S has much lower time complexity to build its clustering model than

generative models. When it comes to the clustering step, both generative

models and KDEC-S have the same time complexity.

The generative models approach has space complexity O(|F |), where |F |
denotes the size of the model used to represent each cluster. The authors

propose using Gaussians, which have little representation costs � typically

only the mean and variance. KDEC-S needs more space since it stores the

density for each point in the sampling grid, i.e., it is linear in the size of the

grid O(|G|).
Just as in the case of KDEC-S, only two rounds of messages are necessary

to complete the generative models protocol. First, each peer sends local

models to the aggregator, and then the aggregator sends the global model

to each peer. In the worst-case scenario, the message has size O(F ), where

F is the size of the generative model.

More recent approaches to model a Gaussian mixture from data, e.g.,

[22, 125], still needs several rounds to converge. Moreover, Gaussian Mix-

tures approaches fail to discover arbitrary-shaped clusters, favoring spherical

ones similarly to Merugu's approach. On the other hand, density-based al-

gorithms like KDEC-S can �nd arbitrary-shaped clusters.

Secure Multiparty k-Means

Several SMC algorithms for clustering were discussed in Sec. 2.3.4 and its

security properties under inference attacks were discussed in Sec. 3.4.1.

These algorithms di�er from KDEC-S in its underlying privacy-preserving

approach, focusing its security heavily on cryptographic techniques, aiming

to ensure that an outsider will not learn anything by eavesdropping on the

conversation. In the following, we compare KDEC-S with a representative al-

gorithm of the SMC-based clustering approaches, namely Vaydias' approach

[213], here on referred to as VC-k-Means.

VC-k-Means assumes at least three trusted parties to run this protocol.

These trusted parties play an essential role in the SMC protocol, ensuring
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no other parties will learn anything beyond the mining results. Under col-

lusion, however, the attacker may reconstruct all of the data points from

the remaining parties in the mining group. KDEC-S assumes there are no

trusted parties.

Theorem 4.9 With no trusted parties, KDEC-S provides more privacy than

VC-k-Means:

PRDCP
KDEC−S[c] > PRDCP

V CkMeans[c]

with c > 1. The privacy measure PR was de�ned in Section 3.3.1 (cf. Def.

3.4).

Proof. Privacy in KDEC-S is given by the sampling rate τ , as shown in

Lemma 4.6. According to Lemma 3.11 PRDCP
V CkMeans[2] ≈ 0. Therefore, if we

choose any τ > 0, we have that the assertion holds. □

The message size in SMC k-Means is O(Npk), where N is the number

of parties, and k is the number of clusters. The total number of rounds is

O(P + k). KDEC-S requires a constant number of rounds and message size

de�ned by the size of sampling sets, independent from the number of parties

or the number of clusters.

Other Approaches

Shen and Li [184] proposed an information-theoretical approach to distributed

clustering. They assume a peer-to-peer network where each node solves a

local clustering problem and updates its neighbors. The clustering problem

is de�ned as a linear program that maximizes the mutual information be-

tween cluster labels and data points. This general optimization framework

is instantiated as two concrete algorithms, one using a linear discriminative

model and another using a discriminative kernel model. With low communi-

cation, local clusters are formed based on global information spread through

the network. This work is closely related to KDEC and KDEC-S since they

also use statistical information in the sampled form to keep low communi-

cation costs. However, when compared to KDEC and KDEC-S, the linear

program needs several rounds of iterations to converge, while KDEC and

KDEC-S only need one round of messages. When it comes to privacy, the

authors do not investigate how the algorithm would behave under inference

attacks and do not investigate how much privacy this approach does provide.
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Liu et al. [134, 135] proposed a distributed version of DBSCAN with

privacy-preserving guarantees. The authors use Paillier encryption to de-

velop a secure multiplication protocol to compute the distance between two

points. The theoretical analysis proves the e�ciency and security of the pro-

posed solution. However, no experimental results were presented. KDEC

and KDEC-S are also based on density, but instead of using density to dis-

cover a density path between core points, our approaches assign points to

density regions by hill climbing on the density estimates. Moreover, KDEC

and KDEC-S are not iterative and need only one pass over the local data to

estimate density and one pass to assign labels.

Almutairi et al. [8] generates local chain distance matrices (CDM) and

uses Paillier encryption to produce an order-preserving encrypted version of

it. A central semi-trusted party coordinates the encryption process and runs

a modi�ed DBSCAN algorithm to �nd global clusters. Original data is never

sent in plain text, and the output is decrypted only at local parties to �nd

local clusters. The scheme is linear with the number of parties. Nevertheless,

it presents a computational overhead to encrypt the data at local parties.

KDEC-S does not use encryption, but an approximation of density estimates

that limits original data reconstruction by design. Therefore, KDEC-S does

need to assume a �xed semi-trusted central server.

Bozdemir et al. [27] developed a two-party full private DBSCAN based on

the ABY2 secret sharing framework without encryption. Data from all par-

ties and parameters are split into shares and processed by two non-colluding

cluster servers. The results are precise compared with the original DBSCAN.

However, there is a computational overhead to split original data into shares

during private distance computation in the innermost loop. Moreover, the

protocol requires several rounds of messages to compute all distances. By

comparison, KDEC-S does not assume any central server and has better

running time complexity with only a few rounds of messages.

Wang et al. [217] developed a distributed spectral clustering algorithm

(FMSC) based on homomorphic encryption. FMSC needs a trusted cen-

tral server to generate aggregate statistics and two or more data providers

holding a di�erent view of the data (heterogeneous partition or vertical parti-

tion). The central server uses additive homomorphic encryption to aggregate

statistics without decryption. The central server adds noise to the statistics

before sending them back to data providers to avoid data leakage. It is an
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iterative algorithm that requires many rounds of messages until convergence.

One main drawback compared with KDEC-S is the assumption of a central

trusted party as KDEC-S assumes no trusted central party. Furthermore,

homomorphic encryption implies a computational overhead when compared

to our approach.

Xia et al. [227] follows a random perturbation approach and presents

a distributed k-means algorithm. The proposed algorithm assumes a set

of users providing data to an untrusted server. They �rst add noise to

local data to achieve di�erential privacy and collaboratively build a set of

global centroids. This algorithm is iterative and takes several rounds until

convergence. It does not assume a trusted third party and bene�ts from

the simplicity of its base algorithm k-means. However, unlike KDEC and

KDEC-S, it needs to known the number of clusters a priori. Moreover, it is

not able to �nd arbitrary shaped clusters.

4.5 Summary

This chapter showed that kernel-based density estimation is a feasible tech-

nique for privacy-preserving distributed data clustering. First, it provides

a generic method for �nding clusters with no assumption about the under-

lying probabilistic model or the number of clusters. Secondly, it allows for

low communication costs since the density estimates are much smaller than

the original dataset from which it is computed. Finally, since density esti-

mates are additive, it is possible to utilize them in distributed algorithms.

This chapter also showed that one attacker could reconstruct original sen-

sitive data during a KDEC mining session under certain circumstances. To

overcome this form of attack, we presented KDEC-S, which uses a density

approximation instead of the original density estimate in constructing a den-

sity landscape of the union of the datasets. This approach enables the data

holders to control the privacy level by choosing the sample rate and a suitable

kernel transformation that meets their privacy needs.

Compared to generative models, KDEC-S has similar performance and

allows the user to control how much privacy preservation is needed. The

number of mixture models used to generate the global model can control

the privacy level provided by generative models. In contrast, KDEC-S does

not need the number of clusters a priori and controls privacy via a sampling
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parameter τ .

Di�erently from VC-k-Means, KDEC-S assumes no trusted parties. No-

tice that if the assumption of trusted parties is not met, the privacy of the

VC-k-Means algorithm drops radically since the colluding parties can recon-

struct the original data points. KDEC-S trades o� privacy level for commu-

nication and time e�ciency, while SMC protocols (in general) take an all or

nothing approach to privacy. However, secure multi-party computation does

not avoid attacks by insiders.

VC-k-Means has low time complexity at local clusters in each iteration

since it is a distributed computation. That contrasts with KDEC-S, which

computes local models at each site and sends them to other parties.

Table 4.1 summarizes the comparative analysis of the algorithms dis-

cussed in previous sections.
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Chapter 5

Privacy-Preserving Distributed

Time Series Mining

�Time is free, but it is priceless. You can't own it, but you can

use it. You can't keep it, but you can spend it. Once you've

lost it, you can never get it back.�

(Harvey Mackay)

The previous chapter discussed privacy issues in the context of dis-

tributed data clustering. In this chapter, we continue the investigation of

privacy issues in the context of distributed time series mining.

Time series data is a prevalent type of data, one that is recurrent in

practically every �eld of human activity, spanning such wide-ranging �elds

as science, industry, business, and medicine, among others. Mining this kind

of data has been an active area of research [69, 205] and has produced several

specialized algorithms including association rules discovery [166], classi�ca-

tion [17], clustering [158], anomaly detection [183], motif discovery [205, 235],

to name but a few.

Many time series mining algorithms have pattern-related problems as

core activities. A pattern is an �interesting� subsequence of a time series.

Here, the term �interesting� may contain a di�erent meaning, depending on

the pattern problem one wants to address. A well-investigated problem lies

in �nding patterns similar to a given subsequence, which is known as the

query-by content problem. Another class of pattern problems occurs when

the pattern is unknown. In this case, if the goal is to identify a set of pre-

viously unknown frequently occurring patterns, the problem is called motif

discovery [235]. On the other hand, the problem of �nding non-frequent
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patterns is de�ned as surprise, discord, outlier or anomaly detection [25].

This thesis is only concerned with motif discovery, i.e., �nding previously

unknown frequent patterns.

There are several studies on how to �nd patterns in time series. In

a seminal study, Lin et al. [128] proposed EMMA, a discretization-based

algorithm that generates a string of symbols for each subsequence in the

time series and stores them in a lookup table. By counting the number

of identical strings, EMMA identi�es the most frequent subsequences of a

given time series. The approach employs a technique called ADM to avoid

computing a full distance matrix. However, it requires access to the original

data points to compute the distance between subsequences. Chiu et al. [42]

address the scalability limitations of EMMA and its inability to discover

motifs in the presence of noise and propose a probabilistic approach.

Minnen et al. [151] formulate pattern discovery as a problem of locating

regions of high density in the space of all subsequences of size n from a time

series. Mueen et al. [153] introduced the MK algorithm to �nd the exact

closest pair of subsequences in massive time series databases. MK can be

used as a primitive to �nd all frequent patterns by �nding all subsequences

similar to the �rst closest pair found on the series and applying it k − 1

times until k patterns have been found. Matrix pro�le [5, 235] computes

all distances between subsequences of a given size in a time series and has

been shown to �nd the closest pair of subsequences even faster than the MK

algorithm.

Notice that none of the current state of the art alternatives was designed

to address a distributed data context. Additionally, none of these approaches

address privacy issues. Hence, it is still necessary to investigate pattern dis-

covery without compromising data privacy when time series are distributed.

In the following sections, the problem of frequent pattern discovery in

distributed time series is formalized, privacy and quality metrics for time

series data are discussed, and proposed algorithms are presented. The re-

lated work in the broader �eld of privacy-preserving distributed time series

is surveyed at the end of this chapter.
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5.1 Distributed Pattern Discovery in Time Series

There are numerous application scenarios for distributed time series min-

ing. For example, disease screening for public health from a network of

contributing hospitals [138], dynamic power load in smart grid applications

with smart meter data [222] or real-time data analytics from smart devices

[224], all generate distributed time series data.

In all example scenarios, the underlying problem can be stated informally

as the task of �nding all frequent, or surprise, patterns given the union of the

individual data owned by the di�erent peers. Additionally, considering that

participating peers may be malicious (as recalled from the previous chapter),

preserving the privacy of sensitive data is imperative.

Usually, the value of each point in a time series is the sensitive information

to be protected. For example, if a time series represents the total purchase

made from a given credit card per month, the credit card holder might want

to keep each point undisclosed from other people. Moreover, other aspects

of time series may also be considered sensitive such as peaks, trends, and

periodicity [245]. Additionally, it is worth stressing that the identity of

data owners and data holders is also sensitive. For example, if the data

points represent the doctor-patient mortality ratio at hospitals, no doctor or

hospital wants to be identi�ed as a high mortality ratio doctor or institution.

In the following, we introduce the notation and de�ne the problem of

privacy-preserving pattern discovery from a distributed time series. Then, we

present algorithms to solve the said problem. Finally, a theoretical analysis

is presented based on the algorithms' performances and privacy properties.

De�nition 5.1 (Time Series) Let f : N → R be a function from time

stamps to reals. We de�ne a time series T as a �nite sequence of reals xt
coming from some measurement function f . We denote a time series as

T = ⟨x1, x2, x3, . . . , xm⟩, with xt = f(t), 1 ≤ t ≤ m. We denote the length

of the time series T by |T |. Furthermore, we denote by T [t] the element xt
of T , i.e T [t] = xt.

□

De�nition 5.2 (Subsequence) Let T = ⟨x1, x2, . . . , xm⟩ be a time series

of length m ≥ 1. We say that S is a subsequence with size n starting at

time t of T , denoted Sn
t ⊑ T , if S = ⟨xt, . . . , xt+n−1⟩, for given integers
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1 ≤ n ≤ m and 1 ≤ t ≤ m−n+1. If t and n are clear from context, we may

simply write S, or St, instead of Sn
t . We use the notation T [i : j] to indicate

a subsequence from T starting at position i and ending at position j, with

i ≤ j ≤ m. In particular, T [i : i] denotes the single element subsequence ⟨xi⟩.
Given a subsequence Sn

t of T , we access its elements by Sn
t [i], 1 ≤ i ≤ n, i.e.

Sn
t [i] = T [t+ i− 1] = xt+i−1. □

Example 5.1 Given a time series T = ⟨1, 2, 2, 8, 0, 5, 3, 4, 1⟩, a subsequence

size n = 4 starting at t = 3 is S4
3 = T [3 : 6] = ⟨2, 8, 0, 5⟩, a subsequence

size n = 6 starting at t = 2 is S6
2 = T [2 : 7] = ⟨2, 2, 8, 0, 5, 3⟩, a subsequence

size n = 1 starting at t = 8 is S1
8 = T [8 : 8] = ⟨4⟩. Additionally, S4

3 [1] = 2,

S4
3 [2] = 8, S1

8 [1] = 4, and so on.

Next, we de�ne an occurrence set as the set of time stamps where sub-

sequences start. This de�nition is constructive, showing how to build the

occurrence set of a given subsequence set.

De�nition 5.3 (Occurrence Set) Let T = ⟨x1, . . . , xm⟩ be a time series

and let Sn = {Sn
t }, 1 ≤ t ≤ m − n + 1, be a set of subsequences from T of

equal length n with Sn
t = ⟨xt, . . . , xt+n−1⟩. The occurrence set, given Sn, is

the set of indices I = {t : Sn
t ∈ Sn}. □

Since the subsequences in Sn all have the same length n, for each t ∈ I
there is a unique Sn

t ∈ Sn such that Sn
t = ⟨xt, . . . , xt+n−1⟩. An occurrence

set marks the beginning of each sequence in Sn.

Example 5.2 Let T = ⟨1.3, 2.1, 5.8, 3.9, 0.1, 0.6, 2.7, 2.2, 0.3, 4.1⟩ and a set

of subsequences S3 = {⟨1.3, 2.1, 5.8⟩, ⟨0.1, 0.6, 2.7⟩, ⟨2.7, 2.2, 0.3⟩}, and se-

quence length n = 3. The corresponding occurrence set is I = {1, 5, 7},
the position where each subsequence starts (cf. Fig. 5.1).

De�nition 5.4 An occurrence set I of a set of subsequences Sn in a time

series T is non-overlapping if and only if

min{|i− j| : i ∈ I, j ∈ I, i ̸= j} ≥ n,

where n is the length of each S ∈ Sn. □
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Figure 5.1: Occurrence set {1, 5, 7} relative to given subsequences in a time series.

Example 5.3 Let T as in Example 5.2 and all sequences of length n = 3.

Assume the set of subsequences S3 = {⟨1.3, 2.1, 5.8⟩, ⟨3.9, 0.1, 0.6⟩}. The

corresponding occurrence set I = {1, 4} is non-overlapping, since |1 − 4| ≥
n = 3, i.e, the subsequences do not share any elements. On the other hand,

with the set of subsequences S3 = {⟨2.1, 5.8, 3.9⟩, ⟨3.9, 0.1, 0.6⟩} the resulting
occurrence set I = {2, 4} is overlapping, since |2 − 4| = 2 ≱ n = 3. This

means that at least one element is shared among the subsequences. In this

case, the element T [4] = 3.9 is shared by two sequences.

De�nition 5.5 (Distance) Let d : Rn × Rn → R be a function measuring

the distance between two vectors in Rn, identi�ed here as subsequences of a

time series. □

Example 5.4 A well-known distance function is the Euclidean distance, de-

�ned as

d(S,Q) =

√√√√ n∑
i=1

(S[i]−Q[i])2

given two subsequences S and Q from T , where n is the length of subse-

quences.

De�nition 5.6 (Match) Let T be a time series with size m, d a distance

function, and threshold r ∈ R. Given a query Q = ⟨q1, . . . , qn⟩ with qi ∈ R,
1 ≤ i ≤ n < m, a match for Q with radius r is a subsequence S ⊑ T such

that |S| = n which satis�es d(Q,S) ≤ r. □

Intuitively, the threshold r de�nes a ball of radius r around Q in the Rn

space. Therefore, matches are subsequences inside the ball de�ned by r (cf.

Figure 5.2).
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Figure 5.2: All subsequences from T that are inside a ball radius r are matches
to Q, located at the center.

Example 5.5 Given a time series T = ⟨1.1, 2.1, 2.9, 8.3, 0.1, 5.4, 3.7, 4.2, 1.7,
2.6, 8.1, 0.2, ⟩, a query Q = ⟨3.0, 8.0, 0.0⟩, a threshold r = 1.0 and d is the

Euclidean distance. The subsequence S3
3 = T [3 : 5] = ⟨2.9, 8.3, 0.1⟩ oc-

curring at time stamp t = 3 has distance d(Q,S3
3) = 0.33166. Further,

S3
10 = T [10 : 12] = ⟨2.6, 8.1, 0.2⟩ starting at time stamp t = 10 has dis-

tance d(Q,S3
10) = 0.45826. Therefore, both S3

3 and S3
10, with occurrence set

I = {3, 10}, are matches for Q in T with r = 1.0.

The de�nition of a match helps us to capture the notion of pattern.

De�nition 5.7 (Pattern) Given a time series T , a distance function d,

a radius r and length n, a pattern is a pair (Sn, I), where Sn is a set of

subsequences of length n from T such that any two elements of Sn are a

match for each other, for d and r, and I is non-overlapping occurrence set

for S in T . □

A pattern is a set of subsequences from time series T similar to each

other w.r.t. distance function d and radius r.

The non-overlapping requirement aims to avoid trivial matches. A trivial

match starts only a few points before or after a true match for a given query

Q. Trivial matches occur when the sliding window is large enough so that

one point in time does not amount to a di�erence from Q greater than the

radius r. Figure 5.3 shows a given query Q and its best matches, all di�ering

by one single point in time. Trivial matches may falsely indicate a frequent

subsequence [42, 128, 153]. This constraint helps us to eliminate these false

positives.

De�nition 5.8 (Neighborhood) By neighborhood of a subsequence S of

length n from a time series T with respect to a distance function d and a

radius r ∈ R, we mean a non-overlapping occurrence set for subsequences in
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Figure 5.3: Trivial matches for a given subsequence Q may falsely indicate a
frequent subsequence.

Sn of T , all with the same size n, such that every element of Sn is a match

for S, for d and r. Further, S is in its own neighborhood, by default, since

each subsequence S of T is a match for itself. We denote the neighborhood

by Neigh[T,d](S, r). When the parameters are clear from context, we use the

simpli�ed notation Neigh(S) or Neigh(S, r). □

Example 5.6 Given a time series T = ⟨1.1, 2.1, 2.9, 8.3, 0.1, 5.4, 3.7, 4.2, 1.7,
2.6, 8.1, 0.2, ⟩, with subsequences of size n = 4. Consider the threshold r =

1.0 and d is the Euclidean distance. For subsequence S4
2 = T [2 : 5] =

⟨2.1, 2.9, 8.3, 0.1⟩ the neighborhood Neigh(S4
2) is the occurrence set {2, 9},

which refers to subsequence set {⟨2.1, 2.9, 8.3, 0.1⟩, ⟨1.7, 2.6, 8.1, 0.2⟩}. Sub-

sequence S4
2 is included by default (self match) and S4

9 is included because it

is close to S4
2 . Indeed, the Euclidean distance between them is d(S4

2 , S
4
9) =

0.54772, which is less than r = 1.0.

De�nition 5.9 (Rank) By rank of a pattern P = (Sn, I), from a time

series T with distance function d, radius r ∈ R, we mean the cardinality of

its occurrence set I, i.e. rank(P ) = |I|. □

De�nition 5.10 (k most frequent patterns) By set of the k most fre-

quent patterns of length n of a time series T , we mean a set of size k of

patterns (S, I) of T having the highest k ranks with respect to a distance

function d and radius r. □

Example 5.7 Let a time series T = ⟨3.2, 4.9,0.1, 1.2,2.0, 7.1,0.9, 1.9,3.1, 5.3,
1.1, 2.1⟩, with subsequences of length n = 2. We have the following subse-
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quences S1 = ⟨3.2, 4.9⟩, S2 = ⟨4.9, 0.1⟩, and so on, until S11 = ⟨1.1, 2.1⟩.
With Euclidean distance and radius r = 1, we have two sets of non-overlapping

subsequences that are matches to each other. The �rst one is S1 = {S1, S9}
with occurrence set I1 = {1, 9} and S2 = {S4, S7, S11} with occurrence

set I2 = {4, 7, 11}. Therefore we have two patterns P1 = (S1, I1) and

P2 = (S2, I2). The cardinalities of the occurrence sets are |I1| = 2 and

|I2| = 3. Therefore, the rank of P1 is 2 and the rank of P2 is 3. If we set

k = 1, the k most frequent patterns is given by the set P = {P2}. By the

same token, if k = 2, then P = {P2, P1}. Figure 5.4(a) shows the time series
with highlighted pattern occurrences. Since subsequences in this example have

length n = 2, we can plot them in a 2d graph, as shown in Figure 5.4(b).

(a) Pattern P1 (in red) has three occur-
rences and pattern P2 has two occurrences
(in blue). Other subsequences are plotted
in dashed line.

(b) Occurrences of two patterns plotted in
2d. Subsequences in light gray are not close
enough to each other to form any pattern.

Figure 5.4: A toy time series with pattern occurrences in highlight.

With the previous de�nitions, the problem can now be stated formally.

Underlying Architecture. The basic scenario de�ned in Section 2.3.3 is

assumed, where there are a group sites Li, i = 1, . . . , P , in the mining group.

Each party Li holds a mining and a data agent responsible for participating

in a mining session and accessing local datasets Di, respectively. Further-

more, we assume that the time series data collected at di�erent sites refer

to the same variable and has the same time spacing, i.e., data is horizon-

tally distributed among the parties. Datasets are sensitive and should not

be disclosed to other parties. Each party may set a local privacy threshold

indicating the minimum amount of privacy required to join a speci�c mining

session. Agents are organized into a pure peer-to-peer network, meaning
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that each party may act as an initiator or as an arbitrary party in any given

mining session. It is also assumed that agents are semi-honest, i.e., they

follow the protocol but are curious enough to try to discover any sensitive

data from other parties whenever possible.

Problem 5.1 (PP-DPDTS) Given an integer k, and a set of sites L =

{Li}1≤i≤P , each of them with a local time series Ti, and given a distance

function d and radius r ∈ R, �nd a set P of the k most frequent patterns of

length n found on time series (T1, T2, . . . , TP ), such that:

1. The total communication cost regarding the number of messages and

size of each message is minimized;

2. The result equals the one obtainable on a problem instance in which

L = {L} and L holds the time series (T1, T2, . . . , TP );

3. for all Li, Lj ∈ L, it can be shown that Li learns nothing about the data

owned by Lj, with i ̸= j.

To illustrate the problem statement, consider the following example.

Example 5.8 Let a group of sites L = {L1, L2, L3}, and its respective local
time series T1, T2, T3. Let T1 = ⟨3, 4, 1,−2, 1, 5, 4,−7, 3⟩, T2 = ⟨9,−1, 0,
−3, 0, 2, 3, 4, 1, 0,−5, 1⟩, and T3 = ⟨1, 4,−7, 3,−5, 3, 4, 1, 2⟩. The problem is

to �nd subsequences that globally are reoccurring, even if at local time series

it does not appear to be. In this example, the most frequent reoccurring

pattern is formed by subsequence set {⟨3, 4, 1⟩}, which occurs in T1 at t = 1,

T2 at t = 7, and T3 at t = 6. The second most frequent pattern is formed

by subsequence set {⟨4,−7, 3⟩}, which occurs in T1 at t = 7 and in T3 at

t = 2 but does not occur in T2. Each local site would learn which patterns

are globally frequent, the occurrence set of each pattern at local time series

(if any), but should know nothing about occurrence of global patterns in other

sites.

The PP-DPDTS problem requires that the privacy level from data owned

by Lj does not decrease. Privacy measure for time series were discussed in

Section 3.3.2. Subsequent sections will introduce approaches geared to solve

the PP-DPDTS problem.
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The following sections de�ne three algorithms to discover frequent pat-

terns in distributed time series. These are the �rst algorithms proposed in

the distributed setting to the best of our knowledge. We �rst introduce the

DPD-TS algorithm, swiftly followed by the presentation of the DPD-HE and

DPD-FS algorithms, which is based on a heuristic to prune the number of

subsequences in the search space. Each section provides inference attack

analysis and experimental evaluation of the said algorithms.

5.2 DPD-TS Algorithm

In this section we present our DPD-TS algorithm [50, 45], which is the �rst

step towards a solution to the PP-DPDTS problem ( as stated in Section

5.1).

DPD-TS �rst computes the density of each local time series subsequences

and outputs a list with the top k most dense subsequences. Our approach

exploits the fact that a density estimate can be used to �nd overcrowded

regions in a hyperspace. This study's central hypothesis is that if subse-

quences of time series are represented as points in a multidimensional space,

it is possible to reduce the search for frequent subsequences to the search

for the densest points in a multidimensional space. Consequently, the search

for the most frequent patterns of size n reduces to the search for the densest

points in a Rn space. To cope with the high dimensionality of time series, we

�rst transform the original data to space Rw with reduced dimensionality,

i.e., with w ≪ n. Additionally, the resulting time series is discretized into

a set of symbols from a given alphabet Σ to decrease the computation com-

plexity of comparing subsequences. Within the discrete space, the algorithm

identi�es the densest strings, which are used back in the original Rn space

to locate occurrences of frequent patterns.

De�nition 5.11 (Alphabet and strings) An alphabet Σ is a �nite, to-

tally ordered set of symbols. A string S of size w is an element of Σw. □

De�nition 5.12 (String distance) Let Σ be an alphabet and two strings

S and Q from Σw. A string distance for two strings S and Q is de�ned as a

function d(S,Q) : Σw × Σw → R+ ∪ {0}. □

Example 5.9 (Manhattan String distance) Manhattan distance for two
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strings S and Q is de�ned as d(S,Q) =
∑n

i=1 |(ord(S[i])− ord(Q[i]))|, where
ord(x) returns 1 for the �rst symbol, 2 for the second symbol, and n for the

n-th symbol in Σ.

DPD-TS computes the density over a distributed dataset. A local density

estimate is computed at each peer, and, together, the peers sum up local

densities to produce a global density estimate. Then, each local mining agent

can independently discover frequent subsequences on their local dataset using

the global density estimate.

5.2.1 Algorithm Overview

DPD-TS computes a set of frequent patterns occurring in the collection of

local time series Ti owned by peers in the mining group L. Peers are assumed

to form a peer-to-peer network. DPD-TS needs the following parameters:

Ti is the local dataset, n is the size used to generate subsequences, w is the

number of symbols per string, i.e., the string size, Σ is the alphabet used

to generate strings, and L is the set of peers forming the mining group.

The parameter r de�nes the radius of the hypersphere to be used in the

second step. As its output, DPD-TS returns a set P with the globally most

frequent patterns. The pseudocode for DPD-TS is outlined in Algorithms 5.1

(initiator) and 5.2 (arbitrary party). Details are discussed in the following.

Negotiation. The �rst step in DPD-TS involves a negotiation concerning

the value of the parameters. In this phase, any given peer may decide not

to engage in the mining session if said negotiation is not in accordance with

its local policy. The other peers may decide to continue with the mining

session, even if some original �rst responders decide not to join the group.

All further steps in the algorithm assume that the negotiation was successful.

As we remarked in Chapter 4, we do not explore the negotiation pro-

tocol in further details in this thesis. We assume it to be a multiplayer

negotiation protocol that seeks to �nd a consensus agreement about the pa-

rameters' values. To ensure no outsiders could eavesdrop on the negotiation,

we assume an asymmetric key system, like RSA or ElGamal [148, Ch. 8], is

in place. The basic form of the negotiation consists of two steps: (a) the ini-

tiator broadcasts a call for a mining session with proposed parameter values;

(b) interested peers answer to the call accepting the proposed values. A more
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Algorithm 5.1 DPD-TS: Initiator
Input: k, T1, n, w, Σ, r, L;
Output: P;

At the initiator party L1 do:
1: negotiate(L,k,n,w, Σ,r)
2: φ̂1 ← 0
3: S1 ← ∅
4: for (t← 1; t ≤ |T1| − n; t← t+ n) do // All non-overlapping subsequences
5: S ← T1[t : t+ n]
6: S′ ← reduceDim(S, n,w); // Using Eq. (5.1)
7: S′′ ← discret(S′, w,Σ); // Local dim. reduction and discretization
8: S1 ← S1 ∪ {S′′}
9: end for

10: for all S′′ ∈ S1 do
11: φ̂1(S

′′)← estimateDensity(S′′, w, r) // Update local density estimation
12: end for

13: send φ̂1 to L2; // Cooperative sum
14: receive φ̂P from LP

15: φ̂← φ̂P // Global density estimate
16: M←getCenters(φ̂,k, r) // Discrete space
17: sendM to all agent Li ∈ L
18: P1 ←�ndLocalOccurrences(T1,M) // Original space

�exible approach would allow several rounds of counter-proposals until an

agreement is or a deadline is reached. There are several sophisticated nego-

tiation protocols for multi-party negotiation, e.g. [16, 137, 10, 146] to name

a few. After the agreement, the peers in the mining session are coordinated

as indicated in the algorithm using direct messages between peers.

Dimension Reduction. The for loop splits the original time series Ti
in various non-overlapping subsequences S of size n. Function reduceDim()

takes a subsequence S ⊑ Ti and computes a reduced subsequence S′. Each

point of S′ is the average of a small subsequence of S of size n
w . This operation

(proposed elsewhere [114]) is known as piecewise aggregate approximation

(PAA):

S′[j] =
w

n

 n
w
j∑

k= n
w
(j−1)+1

S[k]

 (5.1)

where S[k] is an element of subsequence S. This transformation reduces the

dimensionality of a given subsequence S from n to w, where n is the size of S

and w is the size of the resulting subsequence S′. The resulting time series T ′

is a concatenation of all reduced subsequences S′ computed from T . Figures
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Algorithm 5.2 DPD-TS: Arbitrary Party
Input: k, Ti, n, w, Σ, r, L
Output: P

At an arbitrary party Li do:
1: negotiate(L,k,n,w, Σ,r);
2: φ̂i ← 0
3: Si ← ∅
4: for (t← 1; t ≤ |Ti| − n; t← t+ n) do // All non-overlapping subsequences
5: S ← Ti[t : t+ n]
6: S′ ← reduceDim(S, n,w); // Using Eq. (5.1)
7: S′′ ← discret(S′, w,Σ); // Local dim. reduction and discretization
8: Si ← Si ∪ {S′′}
9: end for

10: for all S′′ ∈ Si do
11: φ̂i(S

′′)← estimateDensity(S′′, w, r) // Update local density estimation
12: end for

13: receive φ̂i−1 from Li−1;
14: φ̂i ← φ̂i−1 + φ̂i; // Updating with local density
15: send φ̂i to L(i mod P )+1; // Send to next peer and the last one sends to initiator
16: receiveM from L1;
17: Pi ← �ndLocalOccurrences(Ti,M)

5.5 and 5.6 illustrate the dimension reduction of a single subsequence.

The following example illustrates the dimension reduction process.

Example 5.10 Let T = ⟨1.0, 2.0, 3.0, 5.0, 3.0, 4.0, 8.0, 9.0, 5.0, 6.0, 7.0, 2.0⟩,
subsequence size n = 6, and word size w = 3. With these parameters, let

extract the �rst subsequence S1 = ⟨1.0, 2.0, 3.0, 5.0, 3.0, 4.0⟩ from T . Since we

want to reduce the size from 6 to 3, we compute three averages using two val-

ues at time. Therefore we have the reduced subsequences S′
1 = ⟨1.5, 4.0, 3.5⟩.

Figure 5.5: A subsequence S of T is transformed in a subsequence of size w. Each
point is the average value of n/w points of the original sequence S.
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Figure 5.6: Reduced subsequence is composed of w average values.

Figure 5.7: Breakpoints for a 4-symbol alphabet under the normal distribution.

Discretization. Function discret() produces a discretized version of a sub-

sequence S′ � a sequence of symbols in a given alphabet. The discretized

version is referred to as S′′. For each element of S′, a symbol σa ∈ Σ will

be chosen at a corresponding position in the string S′′. The substitution

procedure subst() is accomplished by choosing breakpoints {βa} in the val-

ues dimension of a given subsequence S, such that |{βa}| = |Σ| + 1, and

such that each occurrence of a given value of S′′ has the same probability

[128], assuming they are typically distributed. For example, when consider-

ing a 4-symbol alphabet, 5 breakpoints are needed (including β0 = −∞ and

β5 = +∞), and each region will have a 0.25 probability of appearing in the

time series (cf. Fig. 5.7).
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Figure 5.8: A 4-symbol alphabet is used to discretize a given subsequence, gener-
ating the word �bcaddbdab".

Then, the substitution rule is applied:

S′′[j] = subst(S′[j]) =


σ1 if S′[j] ≤ β1
σa if βa−1 < S′[j] ≤ βa,with 1 < a < |Σ|

σ|Σ| otherwise.
(5.2)

Example 5.11 Figure 5.8 illustrates the discretization process. Each value

in the reduced time series is mapped to a symbol in the alphabet. Considering

the alphabet Σ = {a, b, c, d} and the reduced time series in Fig. 5.6, the

discretized sequence of symbols is S′′ = “bcaddbdab”. Notice that breakpoints

are chosen in the value (amplitude) dimension of time series and include

both −∞ and +∞.

Estimating Density of Strings. Function estimateDensity() computes

the density estimates of each string S′′ generated from time series T . An

important requirement is that the density estimate function φ̂ be a non-

negative function over R and that the local maxima represent the densest

regions in the feature space. In practice, the function does not even need to

be a true estimation; an approximation will do.

A general approach to compute the data density function is kernel-based

density estimation (as discussed in a previous chapter, Sec. 4.2.1). For a

given kernel function K such that
∫ +∞
∞ K(x)dx = 1, an estimate of the
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density, for a speci�c dataset D, is given by:

φ̂[D, r](x) =
1

NνK,d(h)

∑
i∈Neigh(x,r)

K

(
d(x, xi)

h

)
(5.3)

where N is the total number of points, d is a distance function. The param-

eter h is a bandwidth parameter and controls the smoothness of the density

estimates1. The term νK,d(h) is a normalization factor for a given kernel K

and distance d. Neigh(x, r) is the set of indices of points in a neighborhood

of point x in a given dataset D, considering only neighbors inside a ball of

radius r computed with distance d.

The triangle kernel K(u) = (1 − |u|)I{|u| ≤ 1} is employed, where I

is the indicator function2. This kernel is chosen for its simplicity, but any

other kernel can be used instead. The kernel bandwidth parameter is set out

as equal to the neighborhood radius, i.e. h = r. The Manhattan distance,

denoted d, is utilized. An arbitrary point x is a string S′′ from T ′′
j , i.e. S

′′ ⊑
T ′′
j . For a given discretized sequence T ′′, there are |T ′′|/w non-overlapping

strings with no gaps to consider. In the Kernel expression we will use the

substitution u = d(S′′, S′′
i )/h.

The set of indexes Neigh(x, r) refers to points in the neighborhood of

subsequence S′′ with radius r, which is a non-overlapping occurrence set for

subsequences from a given time series (see De�nition 5.8).

Putting everything together, we have:

φ̂(S′′) =
w

|T ′′|r
∑

i∈Neigh(S′′,r)

(
1−

∣∣∣∣d(S′′, S′′
i )

r

∣∣∣∣) I {∣∣∣∣d(S′′, S′′
i )

r

∣∣∣∣ ≤ 1

}
(5.4)

=
w

|T ′′|r
∑

i∈Neigh(S′′,r)

(
1−

∣∣∣∣d(S′′, S′′
i )

r

∣∣∣∣) (5.5)

The indicator function was removed in Eq. (5.5) because the set Neigh()

contains only subsequences inside a ball of radius r centered at S′′.

Computing Global Density. The mining group cooperatively computes

the global density by summing up all local densities. This is made possible

1Small values of h yields spikier densities and larger values o h yields smoother density
surfaces.

2The indicator function, also known as characteristic function, returns 1 if the expres-
sion in curly brackets holds and 0 otherwise.
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by the fact that density estimates are additive, which means that the global

density of a given subsequence is the sum of local estimates at each peer Li:

φ̂(S′′) =

|L|∑
i=1

φ̂i(S
′′) (5.6)

Initially, peer L1 sends its local density to L2. After that, each peer Lj

receives a partial density estimate φ̂i from its neighbor Lj−1, with j > 1.

Lj adds its own local density to partial global density, i.e. φ̂j = φ̂j + φ̂j−1.

Then, site Lj sends partial global density φ̂j to the next neighbor Lj+1 in

the mining group. This protocol continues until the partial sum is sent to

L1, which then broadcasts the global density estimate φ̂ to all members of

the mining group.

Finding Patterns by Locating Centers. To �nd the discrete patterns

(dense strings), the initiator uses the function getCenters() in Alg. 5.1, line

16, which works as follows.

Consider the set D′′ of all strings S′′ generated from non-overlapping

subsequences of T with non-zero density, i.e. φ(S′′) > 0. Pick the most

dense S′′ ∈ D′′ and call it S′′
1 . Now, remove S′′

1 and its neighbors from

D′′, i.e., D′′ ← D′′ \ ({S′′
1} ∪ {S′′

i }) with i ∈ Neigh(S′′
1 , r). Again, pick the

most dense S′′ and call it S′′
2 . Additionally, d(S′′

1 , S
′′
2 ) > 2r to avoid any

intersections of neighborhoods. Remove S2 and update D′′ again. Repeat

the process k − 2 times or when only singletons neighborhoods are found.

Ties are broken by the cardinality of neighborhood.

LetM = {S′′
i }, with |M| ≤ k, represent the set of local maxima in the

global density estimate, i.e. the densest strings. For a given density estimate

φ̂, distance function d, we have:

M = {S′′
i | ∀j ∈ Neigh(S′′

i , r) : φ̂(S
′′
i ) > φ̂(S′′

j )} (5.7)

Finding Occurrences of Patterns in Original Local Time Series.

Subsequences of the original time series are in Rn, while the set of global

patterns is in Σw. Therefore we need to identify occurrences of a pattern in

the original local time series Ti (Problem 5.1). This process is carried out

as follows. For each non-overlapping subsequence of Sj ⊑ Ti, generated in

the density estimation step, discretize it to S′′
j and try to match it against
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a string S′′
p ∈ M. SinceM has no repeated elements, there should be only

one match of S′′
j and S′′

p if any. All subsequences that matched to the same

string S′′
p ∈M are identi�ed as local occurrences of a given frequent pattern

Pp ∈ 2R
n
.

5.2.2 Complexity Analysis

Time. DPD-TS has a worst-case time complexity linear in the size of the

local time series Ti, at each party.

Theorem 5.1 Algorithm DPD-TS takes O(|Ti|) steps at each party, where

|Ti| means the size of the original local time series at peer Li.

Proof. DPD-TS generates ⌊ |Ti|
n ⌋ non-overlapping subsequences from Ti. The

reduction step takes each subsequence and compute w averages for each one,

by summing ⌊ nw⌋ points for each mean, i.e. w⌊ nw⌋ = n steps. Discretization is

a straightforward application of the transformation where each point in the

reduced series is substituted by a symbol, which takes w steps. In particular,

the density estimation step requires O(N⌊ |Ti|
n ⌋) calls of the distance function,

where N is the average number of neighbors and |Ti|
n is the maximum number

of subsequences. The discovery step scans O(⌊ |Ti|
n ⌋) non-overlapping strings

generated from the time series searching for the k-most dense regions in the

density estimates. Finally, to �nd the instances on the original time series,

each ⌊ |Ti|
n ⌋ non-overlapping subsequences is tested, which takes O(|Ti|) steps.

Therefore, the overall time complexity is O(⌊ |Ti|
n ⌋(n + w) + N |Ti| + |Ti|).

Notice that normally w < n ≪ |Ti| and also N ≪ |Ti|. Consequently, the

time cost can be simpli�ed to O(|Ti|) in the worst case. □

Space. The density of each string is stored in a lookup table, which is a

very sparse structure requiring one entry for each string corresponding to a

non-overlapping subsequence of Ti, at each party.

Theorem 5.2 Algorithm DPD-TS requires O(|Ti|) space at each party.

Proof. Each subsequence S ⊑ Ti has �xed length n. Consequently, there are

⌊ |Ti|
n ⌋ possible strings to be generated from Ti. Therefore, in the worst-case

scenario, all subsequences S are not similar to any other subsequence in Ti
and all strings have to be stored in the lookup table. Therefore, DPD-TS
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requires O(⌊ |Ti|
n ⌋) space. Given that n ≪ |Ti|, we can write simply O(|Ti|).

□

However, only a few variations of all possible patterns appear in practice

unless the time series is entirely random.

Communication. The size of messages exchanged among peers is linear

in the size of local time series Ti, at each party.

Theorem 5.3 Algorithm DPD-TS generates messages with size O(|Ti|) at
each party.

Proof. Message has size O(|Ti|). Each peer sends one message to a neigh-

bor and receives one from another neighbor. There are only two rounds of

messages, one of which informs the mining results. In the worst case, when

all subsequences are dissimilar, it is necessary to inform the density of every

subsequence in Ti. There are
Ti
n subsequences in Ti. Therefore, each message

has a size of O(|Ti|). □

5.2.3 Inference and Collusion Attacks Analysis

This section analyzes the privacy properties of DPD-TS in insider and out-

sider attack scenarios.

Insider Attacks

Malicious Initiator Attack. Recall that the initiator peer knows all of

the parameters' values, the set of global patterns, its local density estimates,

and the global density estimates. It does not know any local data from other

peers since, by construction, the DPD-TS scheme does not require the parties

to transmit raw data. The only information transmitted by the peers during

the mining session concerns the partial density estimates of subsequences.

Therefore, a malicious initiator will not receive any piece of original sensitive

data from other peers.

The initiator also has access to the global density estimate. However,

the density estimate has no information on the order of each time series

subsequence's occurrence, which is necessary to reconstruct the original time

series.
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The initiator computes the set of global patterns P, from which it can

attempt to infer the original values of the entire time series T . Since the

discretization step is primarily responsible for the privacy level in DPD-TS,

it is possible to deduce (from intuition alone) that the more symbols in the

alphabet Σ, the less privacy is preserved, since the discretized version tends

to ascertain the �shape" of the original time series data. The following result

shows how the size of Σ in�uences the privacy level of a single point in T .

Lemma 5.1 Let T be a time series and S ⊑ T a subsequence of length n.

Let Σ be an alphabet of symbols used by DPD-TS scheme. Let {βj ∈ R}|Σ|+1
j=1

be a set of breakpoints which divides the normal curve in | Σ | +1 equiprobable

regions. Let S′′ ∈ Σw be the transform of S according to the discretization

step of Algorithm DPD-TS. For a given point xt ∈ S if its transformed

counterpart x′′u ∈ S′′ is known, under a single insider attack, DPD-TS has

privacy level given by:

PRTBK
DPD−TS[1](xt) = (βj+1 − βj)

n

w
(5.8)

with x′′u = subst(xt), and βj+1 < xt < βj, 1 < j < |Σ|+ 1, and with PR as

de�ned in Section 3.3.2 (cf. Def. 3.5).

Proof. (Amplitude) First, we show that the privacy of each point xt in T ,

regarding its amplitude, is | βj+1 − βj |. This is a consequence of the dis-

cretization step. Let σj ∈ Σ be the symbol at point x′′u. After discretization,

each original point xt corresponds to a discretized point x′′u. Since the sym-

bol σj comes from the substitution rule (cf. Sec. 5.2), x′′u corresponds to a

value x′u in the reduced subsequence S′ and the amplitude value of x′u lies

in the interval (βj , βj+1). In the absence of further information, the only

suitable option is to model the amplitude of x′u as a random variable X uni-

formly distributed in the given interval, i.e. X ∼ U(βj , βj+1). Now, using

the bounded knowledge privacy Equation (3.9):

PRBK
DPD−TS[1](X) = 2h(X) = 2

∫ βj+1
βj

p(x)log2p(x)dx
= 2log2(βj+1−βj)

= βj+1 − βj

(Time) Each point x′′u in the discretized sequence is associated with a

point x′u in a reduced subsequence S′. Further, each point in the reduced
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subsequence S′ is the average value of n
w points in S. Similarly to the argu-

mentation for the amplitude, in the absence of further information, the only

suitable option is to model the time stamp t of a given xt used to compute

the average x′u as a random variable V uniformly distributed in the reduc-

tion interval, i.e., V ∼ U(t, t+ n/w). Applying bounded knowledge privacy

Equation (3.9) to V :

PRBK
DPD−TS[1](V ) = 2h(V ) = 2

∫ t+n/w
t p(v)log2p(v)dv

= 2log2((t+(n/w))−t)

=
n

w

(Combining) Using Eq. (3.12) from De�nition 3.5, we can write:

PRTBK
DPD−TS[1](xt) = PRBK

DPD−TS[1](X)PRBK
DPD−TS[1](V )

= (βj+1 − βj)
n

w

□

Lemma 5.1 give us a direct relationship between the alphabet size and a

bounding box (amplitude and time) protecting the true value of given point

xt. Breakpoints give the size of this box {βj} and the dimension reduction

factor n
w . So, larger alphabets mean less privacy, and smaller alphabets mean

more privacy. The same holds for w.

Using Lemma 5.1, peers in the mining group can de�ne the minimum

amount of privacy they require to join the mining session. In other words, if

the discretization interval in amplitude and in the time dimension is smaller

than a given local preference, the peer will not join the mining session.

The local peer sets the desired size for the alphabet Σ and, consequently,

the size of the intervals de�ned by the breakpoints {βj} (cf. Fig. 5.8).

Thus, the minimum allowed size of the alphabet becomes a critical decision

factor before joining a mining session. Of course, σ leaks some information

about the amplitude of points (restricted to breakpoints), but no peer can

reconstruct original points with arbitrary precision because the discretization

process loses information, i.e., it is not invertible.
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Single Arbitrary Party Attack. Each party in a DPD-TS mining session

knows all of the parameters' values agreed in the negotiation step3, the set

of global patterns received from the initiator, and its local density estimates.

Without collusion, an arbitrary party has no access to the density estimates

of other peers and, as a consequence, may only try to infer the actual values

xt associated with the symbols in the global patterns. As in the previous

attack, the privacy level is provided by discretization applied to the original

time series T . Therefore, the privacy level of each point in the time series is

the same as in the malicious initiator attack.

Collusion Attack (including initiator). Any collusion group that in-

cludes the initiator peer has information on the parameter values, the local

density estimates of the attacker, and the global density estimates from the

initiator. Thus, any collusion group that includes the initiator has enough

information to isolate the partial density estimates of a group of victims. In

the extreme case where P−1 peers collude against one single victim peer, the

attackers can discover the victim density estimate. Nevertheless, the density

estimate can only be used to �nd the most frequent patterns at any given

peer or group of peers. As discussed in the �rst attack scenario, the density

estimates reveal no information concerning each pattern's order. Because

of that, the attackers cannot reconstruct the entire local times series of any

victim. Again, the privacy of each point is preserved, as in the case of a

single insider attack. This fact can be expressed as:

PRTBK
DPD−TS[c>1](xt) = PRTBK

DPD−TS[1](xt) (5.9)

Collusion Attack (without initiator). Any collusion attack without the

initiator has no access to the global density estimates. Thus, any collusion

without the initiator brings no information to the collusion group beyond the

public information they already have � the parameter values and the local

density estimates, for instance. The privacy level of each point is preserved

to the same level as in previous attacks.

3Cf. Negotiation protocol described at page 149.
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Outsider Attacks

Under DPD-TS scheme, peers exchange parameter information during ne-

gotiation. We assume it is done through a secure channel to avoid leaks to

outsiders. During the protocol, peers exchange density estimates from dis-

cretized subsequences in plain text form, i.e., not encrypted. However, as

discussed in previous sections, the discretization procedure does not leak the

original values. Therefore, an outsider has no information about parameter

values. It can eavesdrop on local density estimates and global patterns, but

this information is not enough to reconstruct the original time series pre-

cisely. From the subsequences in the density estimates, the outsider attacker

may reconstruct the alphabet. On the other hand, it will not infer the values

of parameters n, w, nor the number of breakpoints. Therefore, we consider

that the malicious insider attack is a lower bound to an outsider attack.

PRTBK
DPD−TS[0](xt) ≥ PRTBK

DPD−TS[1](xt) (5.10)

Summary of privacy analysis

Theorem 5.4 Let Σ be an alphabet of symbols, n the subsequence size, and

w the pattern size. Let {βj ∈ R}|Σ|+1
j=1 be a set of breakpoints which divides

the normal curve in | Σ | equiprobable regions. Let T be a time series and

T ′′ ∈ Σw be its transform according to the discretization step. DPD-TS has

privacy level given by:

PRTBK
DPD−TS[c](T ) = min{(βj+1 − βj)

n

w
: ∀j = 1, . . . , |Σ|+ 1} (5.11)

even with collusion attacks, i.e. c > 1.

Proof. Using Eq. 3.13 it is possible to write:

PRTBK
DPD−TS[1](T ) = min{PRTBK

DPD−TS[1](xt) | t = 0, 1, 2, 3, . . . , |T |}

Lemma 5.1 stated that PRTBK
DPD−TS[1](xt) = (βj+1 − βj)n/w. Thus, each

point xt in T has a di�erent level of privacy, given by interval between its

breakpoints. The smallest breakpoint interval gives the smallest privacy

level among all points in T . Since the fraction n/w remains constant during

a mining session, the smallest interval is independent of the time stamp t,
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and can be found by looking at all breakpoint intervals used to discretize T .

With more c > 1 colluders, this privacy level does not change. □

5.2.4 Experimental Evaluation

DPD-TS was implemented in Java 1.7, and all experiments were run in a

machine with Intel Core i3, 2.1 GHz, 4 Gb RAM, with Windows 7 (64 bits).

The results reported here are the averages from 50 runs with each parameter

con�guration.

Datasets. For the experiments reported here, we used the power, sunspot,

and tide datasets. All datasets were downloaded from UCR Time Series

Data Homepage [56], except the synthetic datasets.

� Power dataset presents the electricity consumption from the Nether-

lands Energy Research Foundation (ECN) for one year, recorded every

15 minutes. There are 35 040 data points corresponding to the year of

1997. Figure 5.9 shows an excerpt of the power data. This dataset has

a pattern structure that can be observed visually.

� Sunspot dataset records the monthly average number of sunspots

since January 1749 until 1993. There are 2 880 data points in this

dataset4.

� Tide data set is a collection of 12 years tide �uctuations at Crescent

City, Northern California, recorded by National Ocean Service (NOA)

from January 1980 to December 19915. There are 8 746 data points in

this series, two records per day.

� Synthetic data based on a random walk to evaluate the time perfor-

mance of our algorithms. We generated 10 dataset with sizes 100 000

points, 200 000 points, up to 1 000 000 points.

4For up to date sunspot data visit http://sidc.oma.be/
5https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=

9419750
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Figure 5.9: Excerpt of power data.

E�cacy Test. In this set of experiments, the e�cacy of our proposed

algorithms to �nd patterns is investigated. For all experiments, Σ was {a,

b, c}, except for the experiments on time as a function of alphabet size.

Symbol `a' represents the lowest value and `c' represents the highest value.

The radius was set to r = 1. The kernel bandwidth was set to h = 1.

For power dataset, DPD-TS parameter were con�gured as follows. Sub-

sequence size n = 672, which corresponds to 7 days (with one measurement

every 15 minutes, i.e. 96 measurements per day). We choose pattern size

w = 7, since it represents a week. Fig. 5.10(a) shows the most frequent pat-

terns found in power dataset, �cccaacc�, which corresponds to a normal week,

showing high consumption on 5 workdays and low consumption at weekends

(2 days). Figure 5.10(b) shows power dataset with several occurrences of the

same frequent pattern �cccaacc�, from position 672 to 3360, consecutively.

For sunspot dataset, DPD-TS was con�gured with n = 100 and w =

10. This dataset follows no human-made period, like the power dataset.

Therefore, there is no obvious size w for a pattern in this in sunspot dataset.

The value of w was de�ned after various di�erent values were tried, guided

primarily by the information loss on the dataset and visual inspection of

patterns found. The most frequent pattern found with this con�guration

was �aaabcccccb�, which corresponds to a tilde like shape, shown in Fig.

5.10(c). Several occurrences of the most frequent pattern �aaabcccccb� were

found at 190, 400, 1000, 1400, 2320, and 2700, shown in Fig. 5.10(d).

For tide dataset, DPD-TS was set with n = 480 and w = 8. This

con�guration makes each symbol correspond to 60 measurements (i.e. one

month) and therefore, a pattern corresponds to 8 months. Again, we picked

this con�guration by trial and error, trying to minimize information loss.
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Dataset Size (pts) Avg time (s) Stddev (s)

random100k 100 000 0.003647648 ± 0.000618

random200k 200 000 0.007849766 ± 0.001265

random300k 300 000 0.011790965 ± 0.001857

random400k 400 000 0.019909966 ± 0.005649

random500k 500 000 0.024471226 ± 0.002877

random600k 600 000 0.029427808 ± 0.007662

random700k 700 000 0.034729508 ± 0.008040

random800k 800 000 0.039697080 ± 0.008957

random900k 900 000 0.044820188 ± 0.009452

random1000k 1 000 000 0.049096944 ± 0.005584

Table 5.1: Running time (in sec.) for di�erent time series sizes.

An occurrence of most frequent pattern �aaabbcbb� is shown in Fig. 5.10(e).

Examples of occurrences of frequent patterns found in this dataset are pre-

sented in Fig. 5.10(f), with matches found at positions 3760, 4560 and 5280.

These results indicate that DPD-TS can �nd patterns expected to be

found by visual inspection. However, DPD-TS is dependent on the starting

point since it uses a jumping window strategy instead of a sliding window

strategy. For example, in the power dataset, the most frequent pattern seems

to start on Wednesday, with the weekend at the center ending with two work-

days. On other datasets, which are not related to the human calendar and

workdays, it is harder to tell if the patterns are shifted or not. Nonetheless,

DPD-TS is very useful to �nd patterns when the pattern is aligned with the

window. For example, it can easily �nd patterns in time series that follow

a strict known period, like 24 hours or seven days. Moreover, this behavior

can be improved by starting DPD-TS at di�erent points in the dataset.

Time as a function of time series length. The running time of DPD-TS

was evaluated using synthetic datasets with di�erent sizes. Each synthetic

dataset was generated with random numbers (a random walk) drawn from

a uniform distribution from 0 to 1, i.e., x ∼ U(0, 1). Since this experiment

is purely concerned with running time, no pattern was inserted in these

synthetic datasets. We set n = 10 000 and w = 100 for all synthetic datasets

in this series of experiments. The result is shown in Figure 5.11 and Table

5.1. Time is indicated in seconds.
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(a) An ocurrence of frequent pattern in power

dataset
(b) Several pattern matches (blue) in power

dataset

(c) An occurrence of frequent pattern in
sunspot dataset

(d) Several pattern matches (blue) of frequent
pattern

(e) An occurrence of most frequent pattern in
tide dataset

(f) Three pattern matches (blue) in tide

dataset

Figure 5.10: Frequent patterns found by DPD-TS in di�erent datasets.
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Figure 5.11: Running time (in sec.) as a function of time series size.

Time as a function of parameter n. In this set of experiments, the goal

is to investigate the in�uence of the value of parameter n (the subsequence

size) on the running time for a given �xed con�guration. Figure 5.12 shows

the results for four datasets (sunspot, tide, powerdata, and random1M).

Notice that, with increasing sequence size n, there are fewer subsequences

to process and, therefore, less running time. Larger values of n, with n ≥ w,
makes the ratio n/w increases and, consequently, a higher reduction rate.

Therefore, higher values of n, with a �xed w, result in less overall running

time.

Time as function of pattern size w. In this set of experiments, the goal

is to evaluate the in�uence of pattern with size w on the running time of

DPD-TS for a �xed subsequence size n. We set the subsequence size n with

the same values used in the �rst set of experiments. Figure 5.13 shows the

results for three datasets. In general, a higher value of w leads to a higher

workload.

It can be noticed that the graphs follow a staircase-like shape, more

clearly depicted in Figs. 5.13(b) and 5.13(c). This shape results from the

reduction process that computes averages using ⌊n/w⌋ points for each point

in the reduced time series. The �oor operation gives the same integer value

for di�erent n jumping to the next integer only when the remainder of n/w

is 0.
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(a) sunspot dataset, size=2 880, w = 10 (b) tide dataset, size=8 700, w=10

(c) power dataset, size = 35 000, w=7 (d) random1M dataset, size = 1 000 000, w=100

Figure 5.12: Running time (in seconds) as a function of parameter subsequence
size n. All experiments with alphabet = {abc}.
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(a) sunspot dataset, size=2 880, n = 100 (b) tide dataset, size=8 700, n = 480

(c) power dataset, size = 35 000, n = 672 (d) random1M dataset, size = 1 000 000, n =
10000

Figure 5.13: Running time (in seconds) as a function of pattern size w. All
experiments performed with alphabet = {abc}.

In particular, with just 1 point, there is no average to compute, and

therefore, two approximately constant regions are displayed at the end of

the graphs6, corresponding to values where the ratio ⌊n/w⌋ is 2 and 1, re-

spectively.

Privacy as a function of alphabet size. We use the interval size corre-

sponding to each alphabet symbol in the discretization step to measure the

privacy level of the amplitude.

In the initial case, with just one symbol, the size of the interval from

the minimum xmin to the maximum value xmax observed in a time series

was used. Assuming that max and min values are public, the attacker can

compute the entropy of a random variable X over this interval and, conse-

6Recall that the results correspond to the average of at least 100 runs.
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Alphabet Size Min. Interval

ab 2 0.8614

abc 3 0.6744

abcd 4 0.5066

abdce 5 0.4307

abcdef 6 0.3600

abcdefg 7 0.3186

abcdefgh 8 0.2794

abcdefghi 9 0.2533

abcdefghij 10 0.2283

Table 5.2: Minimum interval between breakpoints with di�erent alphabet sizes.

quently, the privacy level 2h(X) = xmax − xmin, using Eq. (3.13), discussed

in Section 3.3.2. With more symbols in the alphabet, the interval provided

by breakpoints is smaller, and the privacy decreases.

Table 5.2 shows the size of minimal intervals among breakpoints for dif-

ferent alphabet sizes. The values in this table are relative to breakpoints

in a normalized curve. To apply these values to speci�c datasets, we need

to normalize these sizes using the standard deviation and average value of

a given dataset to get their privacy level. Normalization is necessary since

breakpoints are computed over a standardized curve. Recall that our privacy

level is a lower bound on the reconstruction precision. Figure 5.14 shows the

privacy level applied to di�erent datasets. For instance, with 3 symbols we

can provide privacy level about 50 units in sunspot dataset, and a privacy

level of 200 KW/h in power dataset. Therefore, using this table, one could

choose the size of the alphabet which suits the privacy needs.

Information Loss. We compute the information loss as the mean average

error (MAE) between the original time series and the reduced time series, as

suggested elsewhere [189]:

ILMAE(T, T
′) =

√∑|T |
i=1

∣∣∣xi − x′⌊w
n
(i−1)⌋+1

∣∣∣2
|T |

(5.12)

where T is the original time series, T ′ is the reduced time series (see Al-

gorithm DPD-TS in Sec. 5.2), n is the size of the PAA sequence and w is

the size of the pattern size. The involved index expression assures that each
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(a) sunspot dataset (b) power dataset

Figure 5.14: Privacy level (size of reconstruction interval of amplitude) as a
function of alphabet size for di�erent datasets.

point in the original time series T is compared with the correct element in

T ′, smaller than T . This metric is based on Euclidean distance since this

distance is preserved for linear transform, e.g., PAA reduction [189].

Figure 5.15(c) shows the information loss for sunspot, tide and power

datasets. Notice that the smallest error occurs when n is small and a positive

proper divisor of the time series size. Similarly, w should be a positive

proper divisor of n for less information loss. With increasing values of n, the

information loss tends to be stable because the reduced time series is already

so di�erent from the original series that further reduction cannot produce

much more loss.

5.3 DPD-HE Algorithm

The algorithm discussed in the previous section discloses no exact values

since there is no reference to raw data. Nevertheless, avoiding references to

raw data may not be enough to protect privacy. In a distributed environment,

an eavesdropper might be monitoring the conversation among the sites. To

avoid this threat, one can apply a secure multi-party computation technique:

homomorphic encryption [79]. In this section, the DPD-HE algorithm is

put forth as a homomorphic encryption-based solution to the PP-DPDTS

problem [49].

DPD-HE has the same basic assumptions as DPD-TS does, as discussed

in previous sections.
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(a) sunspot dataset (w = 10) (b) tide dataset (w = 8)

(c) power dataset (w = 7)

Figure 5.15: Information loss as a function of subsequence size n.
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Algorithm 5.3 DPD-HE: Initiator
Input: k, T1, n, w, Σ, r, L;
Output: P;

At the initiator do:
1: negotiate(L, k, n, w, r,Σ);
2: LDE1 ← 0
3: S1 ← ∅
4: for (t = 1; t < |T1| − n; t = t+ n) do
5: S ← T1[t : t+ n]
6: S′ ← reduceDim(S, n,w); // Using Eq. (5.1)
7: S′′ ← discret(S′, w,Σ);
8: S1 ← S1 ∪ {S′′}
9: end for
10: for all S′′ ∈ S1 do
11: LDE1(S

′′)←estimateDensity(S′′, w, r);
12: end for
13: (PK1, SK1)← generateKeyPairs();
14: broadcast PK1 to L;
15: EGDE1 ← encrypt(PK1, LDE1)

16: send EGDE1 to L2;
17: for i = 2; i < |L|; i++ do
18: receive PKi from Li

19: end for
20: receive EGDEP from LP

21: GDE ←decrypt(SK1, EGDEP );
22: P ←getCenters(GDE, k, r);
23: for i = 2; i < |L|; i++ do
24: EP ←encrypt(PKi,P); // Encrypts with each peer's public key
25: send EP to Li;
26: end for

5.3.1 Algorithm Overview

DPD-HE scheme is outlined in pseudocode shown in Algorithms 5.3 and 5.4.

Its details are in the following.

The �rst step is the negotiation, where the mining group L needs to agree

on the parameters used in the speci�c mining session. After that, each party

computes the local density of strings generated from the local time series

data, just like in the �rst step of Algorithms 5.1 and 5.2. The initiator, the

peer who proposes and coordinates the mining session, creates a key pair

and publicizes its public key.

The density estimate is computed using a kernel, as in the DPD-TS
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Algorithm 5.4 DPD-HE: Arbitrary Party
Input: k, Ti, n, w, Σ, r, L;
Output: P;

At an arbitrary party Li do:
1: negotiate(L, k, n, w, r,Σ);
2: LDEi ← 0
3: Si ← ∅
4: for (t = 1; t < |Ti| − n; t = t+ n) do
5: S ← Ti[t : t+ n]
6: S′ ← reduceDim(S, n,w); // Using Eq. (5.1)
7: S′′ ← discret(S′, w,Σ);
8: Si ← Si ∪ {S′′}
9: end for
10: for all S′′ ∈ Si do
11: LDEi(S

′′)←estimateDensity(S′′, w, r);
12: end for
13: receive PK1 from L1;
14: receive EGDEi−1 from Li−1;
15: send PKi to L1;
16: ELDEi ←encrypt(PK1, LDEi)

17: send ELDEi · EGDEi−1 to L(i mod P )+1;
18: receive EP from L1;
19: P ← decrypt(SKi, EP );

algorithm. To securely estimate the global density, we apply two secure

multi-party computation techniques are employed: (i) secure sum protocol

and (ii) Paillier encryption scheme [156].

After the density is estimated, the initiator peer sends its public key and

an encrypted density estimate to the second site. The second site produces

an encrypted local density estimate, adding to the encrypted density received

from the �rst site. The partially encrypted sum is passed from site to site

until it reaches the �rst site again. Note that no site needs to (or can) decrypt

the partial sum received from its neighbor.

Each party encrypts its local density estimate using the initiator's pub-

lic key, denoted PK1. Subsequently, each party waits until receiving the

encrypted partial sum from its neighbor and adds its own local encrypted

density estimate. Finally, it sends the updated encrypted partial sum to the

next neighbor in the sequence. Each peer uses a Homomorphic Encryption

(HE) scheme to perform addition without decryption.

A Homomorphic Encryption (HE) scheme allows parties to perform arith-
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metical operation directly on encrypted information without decryption. In

this work, we use Paillier encryption scheme [156], which is an additive homo-

morphic scheme. The additivity property of this scheme means that, given

two messagesm1 andm2, the following holds: E(m1)·E(m2) = E(m1+m2).

The Paillier scheme is also semantic secure, which means that under this

scheme, no function of the plaintext can be computed given the ciphertext

[82, 156].

The Paillier cryptography scheme [156] consists of the following steps:

Key Generation Let p and q be two large primes. Let n = pq be a RSA

modulus and g be an integer of order αn mod n2, for some integer α.

The public key is (n, g) and the private key is the pair (λ, µ), where

λ(n) = lcm ((p− 1), (q − 1)) and µ = L(gλ mod n2)−1 mod n.

Encryption The encryption of message m ∈ ZN is E(m) = gmrN mod N2,

with r randomly selected from ZN

Decryption Given a cipher text c, the message is computed as follows:

m = L(cλ(N) mod n2) · µ mod n

where L(u) = u−1
n .

When all parties have added their local encrypted density estimate, it

is sent back to the initiator. The initiator decrypts it and performs an

algorithm searching for frequent patterns, i.e., local maxima in the global

density estimate. This set of frequent patterns is then sent to the mining

group, encrypted with each peer's public key.

5.3.2 Complexity Analysis

Time. The time complexity of DPD-HE is linear in the size of local time

series Ti with a constant overhead due to the homomorphic encryption.

Theorem 5.5 The time complexity of DPD-HE is O(|Ti|E) at each party,

where |Ti| means the size of the time series at peer Li and E denotes the

overhead due to cryptography operations.

Proof. The initiator calls decrypt() once to decrypt the partial density esti-

mate sent by the last party in the group. The function decrypt() is applied
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to each entry in the density estimate, which is a lookup table with O(|Ti|)
entries. The overhead due to cryptography at the initiator is O(b3), where b

is the bit size of security parameter n, computed as n = pq, with two prime

numbers p and q [156]. Similarly, each arbitrary peer calls encrypt() once

to encrypt each entry in its local density estimate. The overhead is O(b2).

Notice that the overhead is independent of the size of the time series and

depends only on the choice of the security parameters. Consequently, the

worst-case time complexity of DPD-HE is O(|Ti|E), where E is the crypto-

graphic overhead. Discarding the constant overhead E, for a given choice of

security parameter, the time complexity of DPD-HE is then O(|Ti|). □

Space. Ciphertext in Paillier requires the double of space required by the

plaintext [156]. However, it is linear in the size of the local time series.

Theorem 5.6 DPD-HE algorithm requires O(|Ti|) space at each party, where
|Ti| is the size of the local time series.

Proof. Recall that the reduction, discretization and density estimation steps

are similar to DPD-TS and since DPD-TS requires O(Ti) entries in the den-

sity estimate table, DPD-HE requires O(2 · |Ti|). This overhead is constant

and independent of the density estimate's size. Therefore, DPD-HE requires

O(|Ti|). □

Communication. DPD-HE generates messages with a size linear to the

size of local time series Ti. As a consequence of the space requirement, the

messages exchanged by the peers informing the partial density estimate will

require enough space to represent the density estimate.

Theorem 5.7 DPD-HE generates messages with size O(|Ti|) at each party,

where |Ti| is the size of the local time series.

Proof. In DPD-HE each message will need 2 · |Ti| space, which means that

DPD-HE has communication cost given by O(2|Ti|). Therefore, dropping

the constant overhead, we have that the message size complexity is given by

O(|Ti|). □
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5.3.3 Inference and Collusion Attacks Analysis

In this section, the privacy properties of DPD-HE are analyzed concerning

insider and outsider attack scenarios.

Insider Attacks

Malicious Initiator Attack. Similar to DPD-TS analysis, it is assumed

that the initiator in DPD-HE is aware of all of the values of the parameters,

the set of global patterns, and its local density estimates. Additionally, the

malicious initiator can decrypt the global density estimates. Therefore, this

scenario is equivalent to the malicious initiator attack in DPD-TS. Thus, the

privacy level of DPD-HE depends only on the size of the alphabet (cf. Eq.

5.8).

Lemma 5.2 Let T be a time series and n the size of its subsequences. Let

Σ be an alphabet of symbols used by DPD-HE scheme. Let {βj ∈ R}|Σ|+1
j=1

be a set of breakpoints which divides the normal curve in | Σ | equiprobable
regions. Let T be a time series and T ′′ ∈ Σw be its transform according to

the discretization step of DPD-HE. For a given point xt if its transformed

counterpart x′′u is known, under a single insider attack, DPD-HE has privacy

level given by:

PRTBK
DPD−HE[1](xt) = (βj+1 − βj)

n

w
(5.13)

with PRTBK as de�ned in Section 3.3.2 (cf. Def. 3.13).

Proof. Similar to the proof of Lemma 5.1 □

Single Arbitrary Party Attack. An arbitrary party in DPD-HE knows

all of the parameter values, the set of global patterns, and its local density

estimates. It does not have access to the partial global density estimates,

only its encrypted version. Therefore, this scenario is equivalent to the single

arbitrary party attack in DPD-TS. Again, the privacy level of DPD-HE

depends only on the size of the alphabet (cf. Eq. 5.8).

Collusion Attacks. A collusion group with the initiator has access to all

information in the previous scenarios, and it allows the attackers to isolate

the density estimates from peers who are not in the collusion group. As in
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DPD-TS, it is impossible to reconstruct its original time series even with a

given peer's density estimates. Therefore, under a collusion attack, DPD-HE

provides a similar level of privacy to that reached in DPD-TS in an equivalent

scenario.

Outsider Attack

DPD-HE guarantees that an outsider will not learn anything from the data

owned by the group members from the data exchanged during the protocol.

The overall security is a consequence of the security of the Paillier encryption

scheme, which was shown to be semantically secure elsewhere [156]. Semantic

security ensures that no function from the plain text can be learned from

the ciphertext. As a result, all the communication seems to be random data

from the eavesdropper's point of view. Therefore, an eavesdropper cannot

reconstruct the global density estimate or even a partial estimate sent among

the parties. Consequently, an eavesdropper cannot reconstruct the original

data nor estimate con�dence intervals. Then, we have:

PRTBK
DPD−HE[0](T ) =∞ (5.14)

Summary of privacy analysis

Theorem 5.8 Let Σ be an alphabet of symbols, n the subsequence size, and

w the pattern size. Let {βj ∈ R}|Σ|+1
j=1 be a set of breakpoints which divides

the normal curve in | Σ | equiprobable regions. Let T be a time series and

T ′′ ∈ Σw be its transform according to the discretization step. DPD-HE has

privacy level given by:

PRTBK
DPD−HE[c](T ) = min{(βj+1 − βj)

n

w
: ∀j = 1, . . . , |Σ|+ 1} (5.15)

even with collusion attacks, i.e. c > 1.

Proof. By similar argumentation as in Theorem 5.4, Eq. 3.13 can be used

to write:

PRTBK
DPD−HE[1](T ) = min{PRTBK

DPD−HE[1](xt) | t = 0, 1, 2, 3, . . . , |T |}

Lemma 5.2 stated that PRTBK
DPD−HE[1](xt) = (βj+1 − βj)n/w. With more

c > 1 colluders, this privacy level does not change. □
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As expected, encryption protocols do not a�ect the privacy against in-

sider attacks. However, it provides an extra layer of security against attacks

from outsiders.

5.3.4 Experimental Evaluation

The main di�erence between DPD-TS and DPD-HE is the homomorphic

encryption protocol, which allows the peers to securely compute the global

density estimates without the risk of an outsider eavesdropping in on the

conversation. The following experiments investigate how much overhead is

added to the running time due to the cryptographic operations in DPD-HE.

Running time as a function of the Security Parameter. DPD-HE

works with the Paillier cryptosystem to run a secure sum protocol. One of

the most critical parameters of the Paillier cryptosystem is the length (in

bits) of the numbers used to generate the keys, also called modulo length

in the original paper [156]. The larger the modulo length, the more secure

the encryption, but more time is also needed to compute encryption and

decryption. Paillier encryption is quadratic in the modulo length. Therefore,

the encryption overhead in DPD-HE is quadratic in modulo length.

In this experiment, DPD-HE was tested with power, sunspot and tide

datasets. For each dataset DPD-HE was run with mod length starting from

64 bits up to 256 bits. In all experiments alphabet = {abcd}, neighborhood
radius r = 2 and kernel bandwidth h = 1 were employed.

For tide dataset n = 480, w = 8 were used. For power dataset n = 672,

w = 7 were used. For sunspot n = 100, w = 10 were used. These are the

basic settings also used to run DPD-TS experiments.

Figure 5.16 shows that the overhead due to cryptography is quadratic on

the mod length (in bits) for all datasets7.

Running time as a function of dataset size. DPD-HE was tested

with three di�erent �xed modulo lengths, for di�erent dataset size. For this

experiment, the following settings were applied: alphabet = {abc}, n =

10.000, w = 100, r = 1, h = 1. DPD-HE was run with synthetic datasets

7The �tted curve (for tide dataset) of the running time as a function of the mod length
is y = 0.0085x2 − 0.0091x + 0.0237, where x is the length in bits and y is the predicted
running time.
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(a) tide dataset (b) power dataset

(c) sunspot dataset

Figure 5.16: Running time as a function of security parameter mod length.

with sizes ranging from 200.000 data points to 1.000.000 data points. This

are the same basic setting used to run DPD-TS experiments.

DPD-HE was run with three di�erent values for mod length, namely 64,

128, and 256 bits. These are the most common choices for the length of

cryptographic keys.

As shown in Figure 5.17, DPD-HE runs in linear time for di�erent dataset

sizes. Figure 5.17(a) shows the running time without cryptography, which

is used as a comparison benchmark in the analysis of the other experiments.

The �gure shows a running time overhead due to cryptography, but it does

not interfere with the overall linear algorithm's behavior.

5.4 DPD-FS Algorithm

In Section 5.2, we showed that DPD-TS algorithm is able to �nd frequent

patterns in time series. However, DPD-TS is sensitive to the starting time
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(a) no cryptography (b) mod length = 64 bits

(c) mod length = 128 bits (d) mod length = 258 bits

Figure 5.17: Time as a function of dataset size for �xed mod length

point because it generates non-overlapping windows from a given initial po-

sition. Consequently, a frequent pattern can be missed if its occurrences

are not always aligned with the jumping window. Moreover, DPD-TS needs

an explicit alphabet, which is only needed to discretize the original subse-

quences.

In this Section, we propose the DPD-FS algorithm. DPD-FS uses a slid-

ing window approach to avoid missing out frequent patterns that are not

aligned with a given starting position. To prune the search space, DPD-FS

�rst computes the frequency of single discrete values and uses this frequency

as the most promising location during the density estimation. Additionally,

DPD-FS does not need an explicit alphabet; it works with an implicit al-

phabet of integers and projects subsequences of the original time series as

points in a Zw space.

In the following sections, we use the terms discrete subsequence and

discretized sequence as de�ned below:
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Algorithm 5.5 DPD-FS: Initiator
Input: number of patterns k, local series T1, subsequence size n, pattern size w,

discretization τ , radius r, peer group L
Output: P1, a set of local occurrences of global frequent patterns

At the initiator party L1 do:
1: negotiate(L,k,n,w,τ ,r); // as in algorithm DPDTS
2: φ̂1 ← 0
3: S1 ← ∅
4: hotSpots1 ← identifyHotSpots(T1, k); // location of frequent symbols
5: for (t = 1; t ≤ |T1| − n; t← t+ 1) do
6: S ← T1[t : t+ n]
7: S′ ← reduceDimension(S,n,w); // as in algorithm DPDTS
8: S′′ ← discretize(S′, τ); // Using eq. (5.16)
9: S1 ← S1 ∪ {S′′}
10: hotSpots1 ← updateHotSpots(S′′);
11: end for

12: for all S′′ ∈ S1 do
13: φ̂1(S

′′)← estimateDensity(S′′, hotSpots1, w, r); // with hotspots
14: end for

15: send φ̂1 to L2;
16: receive φ̂P from LP ;
17: φ̂← φ̂P

18: S ← getCenters(φ̂, k, r,) // as in algorithm DPDTS
19: send S to all agent Li ∈ L;
20: P1 ← �ndLocalOccurrences(T1, S); // as in algorithm DPDTS

De�nition 5.13 (Discrete subsequence) Given the integer set Z, a dis-

crete subsequence is a �nite list of integers. A subsequence S of size w is an

element of Zw. □

De�nition 5.14 (Discretized sequence) Given the integer set, a discretized

sequence T is a list of integers from Z∗. □

The pseudocode for DPD-FS is given in Algorithms 5.5 and 5.6.

5.4.1 Algorithm Overview

Functions negotiate(), reduceDimension(), getCenters(), and �ndLocalOccur-

rences(), work just as they do in DPD-TS algorithm. The points where

DPD-FS di�ers from DPD-TS are discussed in the following.

Discretization with implicit alphabet. Given a reduced subsequence

S′, the function discretize(S′, τ) produces a discretized subsequence S′′ using

a discretization amount τ , such that every point in the reduced time series
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Algorithm 5.6 DPD-FS: Arbitrary Party
Input: k, Ti, n, w, r,L;
Output: Pi, set of local occurrences of global patterns;

At an arbitrary party Li do:
1: negotiate(L,k,n,w,r); // as in algorithm DPDTS
2: φ̂i ← 0
3: Si ← ∅
4: for (t = 1; t ≤ |Ti| − n; t← t+ 1) do
5: S ← Ti[t : t+ n]
6: S′ ← reduceDimension(S,n,w); // as in algorithm DPDTS
7: S′′ ← discretize(S′, τ); // Using eq. (5.16)
8: Si ← Si ∪ {S′′}
9: hotSpotsi ← updateHotSpots(S′′); // location of frequent symbols

10: end for

11: for all S′′ ∈ Si do
12: φ̂i(S

′′)← estimateDensity(S′′, hotSpotsi, w, r); // with hotspots
13: end for

14: receive φ̂i−1 from Li−1;
15: φ̂i ← φ̂i + φ̂i−1; // Updating with local density
16: send φ̂i to L(i mod P )+1; // Send to next; the last one sends to initiator
17: receive S from L1;
18: Pi ← �ndLocalOccurrences(Ti, S); // as in algorithm DPDTS

is converted to an integer:

discr(x′j , τ) = ⌊
x′j
τ
⌋ (5.16)

where each x′j is a point in reduced subsequence S′. This transformation is

one-way, and information loss is dependent only on τ .

As a result, a discretized version of the reduced S′ is produced without

using an explicit discretization alphabet. Of course, there is an implicit

alphabet � the integers. Every symbol σj in the discretized S′′ is an integer,

given by σj = disc(x′j , τ).

The total number of di�erent symbols is denoted by α. In this implicit

alphabet, the value of α is given by the range covered by the discretized

subsequence S′′ series, i.e. α = |min{S′′} −max{S′′}|.

Example 5.12 As an example, consider T ′′ = ⟨2, 2, 3, 4, 2, 2, 4, 4, 4, 4⟩. Sup-
pose we are looking for patterns of size 2, i.e. w = 2, with a radius r = 2.

Therefore, we will have the density estimate as shown in Figure 5.18. The

two most dense subsequences are �22� and �44�, which are indeed the most
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Figure 5.18: Density of patterns of size 2 in the time series ⟨2, 2, 3, 4, 2, 2, 4, 4, 4, 4⟩
.

frequent discrete subsequences in the given discretized sequence.

Density Estimation of Subsequences Starting with Frequent Sym-

bols. A common approach to pattern discovery is to use a sliding window

of size w over the dataset. The sliding window approach produces |T ′′|−w+1

subsequences, most of which are not good candidates for frequent patterns.

This study proposes focusing only on subsequences that are likely to be fre-

quent (hot spots, cf. Alg. 5.5). The goal is to avoid using all subsequences

produced by a sliding window approach and, at the same time, to minimize

false dismissals.

In a �rst pass, DPD-FS identi�es the positions where the k-most frequent

symbols occur, which are called hot spots. In a second pass, the density

is estimated considering only windows starting at hot spots, i.e., positions

where a frequent symbol occurs. This heuristic is based on the observation

that a frequent pattern necessarily includes a frequent symbol. Moreover,

after marking a given subsequence, DPD-TS skips n points (the subsequence

length) to avoid overlapping subsequences. Thus no trivial matches from

subsequences close to each other in the time dimension contribute to the

density estimation process.

Example 5.13 Let us continue with the discretized sequence given in the

example 5.12. Consider Fig. 5.18 again. In this example, the most frequent

symbols are �2� and �4�. The density is computed only to sequences �2*� �4*�,

where the star indicates any other symbol in the current alphabet. After the

density is estimated, the most frequent patterns are �44�, �22'. Observe that
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�34� has a high density too because pattern �44� contributed to the density of

its neighborhood, which includes �34�. On the other hand, since the pattern

�34� also occurs in the string, it contributes to the density of �44�. Since

patterns must have a minimum distance from each other, we have that �44�

eliminates �34� in this example because they are neighbors within radius r =

1. Under these circumstances, the set of patterns becomes P = {“22”, “44”}.

5.4.2 Complexity Analysis

Time. The �rst step requires a pass through the dataset, which has size

|T |, to produce the reduced subsequences. All other steps only require one

pass through the entire dataset.

Theorem 5.9 Algorithm DPD-FS takes O(|Ti|) steps at each party, where

|Ti| means the size of the original local time series.

Proof. The reduction step takes ⌊ |Ti|
n ⌋ subsequences in Ti and compute the

average for each subsequence. Discretization is a straightforward application

of the transformation at each point in the reduced series. In particular,

the density estimation step requires O(N |Ti|) calls of the distance function,
where N is the average number of neighbors and |Ti|−n+1 is the maximum

number of subsequences. The discovery step is constant, assuming that the

density table is ordered by density value. Therefore, the time complexity is

O(|Ti|+N |Ti|), which can be simpli�ed to O(|Ti|) assuming N ≪ |Ti|. □

Space. The density of each pattern is stored in a lookup table, which is a

very sparse structure requiring one entry for each pattern that is found in

the time series Ti.

Theorem 5.10 Algorithm DPD-FS requires O(|Ti|) space at each party.

Proof. Each subsequence S ⊑ Ti has �xed length n. Consequently, there are

|Ti| − n + 1 possible patterns in Ti. Therefore, in the worst-case scenario,

all subsequences S are not similar to any other subsequence in Ti and all

subsequences of Ti have to be stored in the lookup table. Therefore, DPD-

FS requires O(|Ti| − n+ 1) space, which can be simpli�ed to O(|Ti|). □

In practice, however, only a few variations of all possible patterns appear,

unless the time series is a random walk, i.e., a completely random time series.
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Communication. Similiar to the two other algorithms, DPD-FS needs is

linear on its message size.

Theorem 5.11 DPD-FS generates messages with size O(|Ti|) at each party,
with |Ti| meaning the size of the local time series.

Proof. There are two rounds of messages; the �rst round of messages com-

putes the global sum, while the second shares the frequent patterns found

globally. Every message has the size of the density estimate, which is a

lookup table. This table is always less than (or equal ) to |Ti|. The equality
holds only if every subsequence in the sliding windows is equally frequent.

Therefore, the message size is O(|Ti|). □

DPD-FS requires only two rounds of messages, one of which informs the

mining results.

5.4.3 Inference and Collusion Attacks Analysis

Insider attacks

Malicious Initiator Attack. Malicious initiators know the parameters'

values and local information such as local time series, local hotspots, global

density estimates, and the global set of patterns. Additionally, the initiator

receives the partial density estimates from the last peer in the group. The

density estimates are computed for discretized subsequences, where each

point is obtained as the result of a transformation. The original time series

data has its privacy protected by the ambiguity provided by the data trans-

formation (reduction and discretization) and can be located only in a region

of arbitrary size, controlled by the parameters n and τ . The following lemma

gives the details.

Lemma 5.3 For a given subsequence size n and discretization amount τ

and a given mining group with single attackers, i.e. c=1, for each point xt
in the original time series DPD-FS provides the following privacy level:

PRTBK
DPD−FS[1](xt) = τn (5.17)

Proof. Let T be a time series. In the reduction step, each subsequence
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Si = ⟨xi+1, · · · , xi+n−1⟩ ⊑ T is replaced by ri, the subsequence average:

ri =

∑n
j=i xj

n

(Amplitude) In the discretization step, each point ri is replaced by an integer

ai = ⌊ riτ ⌋. As a consequence of the �oor operation in the discretization pro-

cess, from the point of view of an attacker the amplitude of ri can be modeled

as a random variable X uniformly distributed in the interval (aiτ, (ai+1)τ ],

i.e. X ∼ U(aiτ, (ai + 1)τ). Now, using the bounded knowledge privacy

Equation (3.9):

PRBK
DPD−FS[1](X) = 2h(X) = 2

∫ (ai+1)τ
aiτ

p(x)log2p(x)dx

= 2log2((ai+1)τ−aiτ)

= τ

(Time) Each point ai in the discretized sequence is associated with a point

ri in the reduced time series T ′. Furthermore, each point in the reduced

time series T ′ is the average value of n points in Si ⊑ T . Similar to the

argumentation for the amplitude, from an an attacker point of view, the

time stamp i of a given xi ∈ Si is a random variable V uniformly distributed

in the reduction interval, i.e. V ∼ U(i, i+n). Applying bounded knowledge

privacy Equation (3.9) to V :

PRBK
DPD−FS[1](V ) = 2h(V ) = 2

∫ i+n
i p(v)log2p(v)dv

= 2log2((i+n)−i)

= n

(Combining) Using Eq. (3.12) from De�nition 3.5:

PRDPD−FS[1](xt) = PRBK
DPD−FS[1](X)PRBK

DPD−FS[1](V )

= τn

□

Without further information, the interval size where the amplitude of ri
lies cannot be reduced. To infer the original data in a tighter interval, the

attacker needs to know the average value ri and its variance σi. However,
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DPD-FS does not disclose the variance.

Single Arbitrary Party Attack. An arbitrary party has slightly less

information than the initiator, and for example, it has no access to the global

density estimates. Therefore, this attack does not improve on the previous

attack scenario.

Collusion attacks. DPD-FS preserves the original values since it only ex-

changes a discretized version of the actual averages. As shown in the lemma

5.3, the size of the interval where a given average may be localized is given

by the discretization amount and subsequence length, i.e., τn. A collusion

attack involving the initiator and arbitrary parties could together have access

to parameter values, local datasets, densities estimates and patterns of ma-

licious parties, and global patterns resulting from the mining session. With

this information, the malicious collusion could isolate the local patterns from

a speci�c peer of a group of peers. Again, since the density and patterns

do not use original data but discretized versions, the additional information

does not help decrease the interval's size for a given value of the original

time series.

Outsider attacks

An eavesdropper might listen in on the conversation between the members of

the mining group. Assuming that the eavesdropper does not have a partner

inside the group, messages do not convey enough information to allow a point

reconstruction.

Summary of privacy analysis

Theorem 5.12 For a given time series T , subsequence size n, discretization

amount τ and number of colluders c ≥ 1 in the mining group, DPD-FS

provides privacy level of at least τ :

PRTBK
DPD−FS[c](T ) = τn, for c ≥ 1 (5.18)

Proof. With Eq. (3.13) it is possible to write:

PRTBK
DPD−FS[1](T ) = min{PRTBK

DPD−FS[1](xt) | t = 0, 1, 2, 3, . . . , |T |}
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By lemma 5.3, PRDPD−FS[1](xt) = τn. By construction, all discrete points

are obtained with the same value τ . Thus, the size of the interval is the same

for all original points in T , i.e.

min{PRTBK
DPD−FS[1](xt)| t = 0, 1, 2, 3, . . . , |T |} = τn

Thus,

PRTBK
DPD−FS[1](T ) = τn

When c ≥ 1, the size of the interval remains the same. Therefore,

PRTBK
DPD−FS[c](T ) = τn

□

5.4.4 Experimental Evaluation

E�cacy Tests. The �rst batch of experiments intended to test the DPD-

FS' ability to �nd the most frequent patterns in the datasets. We use a value

of τ close to the standard deviation of the dataset since it proved to produce

the best results. The subsequence size n and window size w were chosen

according to the values used in DPD-TS experiments so that it produces

similar results8. The radius r = 1 for all experiments.

For the power dataset, DPD-FS was con�gured with n = 96, w = 7 and

discretization amount τ = 100. Figure 5.19(a) shows a normal week, the

most frequent subsequence showing high consumption on workdays and low

consumption at weekends. In Figure 5.19(b) an excerpt of power dataset

with several matches of the same pattern �12 12 12 12 12 9 9� is clearly

exhibited, showing the matches at positions 6528 and 9216.

For tide DPD-FS was con�gured with n = 60, w = 7 and discretization

amount τ = 13. Figure 5.19(c) shows an occurrence of a frequent pattern

with increasing tide level for 7 months. Figure 5.19(d) shows tide dataset

with several matches of the same pattern �-1 -1 -1 -1 0 0 0�, here showing

the matches at positions 4560, 6780 and 7440.

8In DPD-TS the value of n is divided by w to generate the reduced time series. On the
other hand, DPD-FS uses only n and assumes w = 1 in the reduction process. Therefore,
we set n in DPD-FS with smaller values to get the same amount of work as in DPD-TS.
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Dataset Size (pts) Avg time (s) Stddev (s)

random100k 100 000 0.0025352 ± 0.000237

random200k 200 000 0.2046958 ± 0.008428

random300k 300 000 0.3677157 ± 0.010010

random400k 400 000 0.5026984 ± 0.014731

random500k 500 000 0.7461030 ± 0.012815

random600k 600 000 0.9458456 ± 0.008886

random700k 700 000 1.0976415 ± 0.007945

random800k 800 000 1.2588806 ± 0.006263

random900k 900 000 1.4727574 ± 0.009267

random1000k 1 000 000 1.6535516 ± 0.015850

Table 5.3: Running time data for di�erent time series sizes.

For sunspot dataset, DPD-FS was con�gured with n = 10, w = 10

and τ = 50. Figure 5.19(e) shows an occurrence of a frequent pattern,

displaying increasing average number of sun spots. Figure 5.19(f) shows

sunspot dataset with several matches of the same pattern �0 0 0 0 0 1 1 1

1 1�, here showing the matches at positions 70, 890, 1260, 1540, 1660, 1820

and 2070

Patterns found by DPD-FS seem to be more natural than those found

by DPDTS. Moreover, DPD-FS is not a�ected by the starting point since

it checks every potential place (sliding window with hotspots). In power

dataset, it proved able to �nd the pattern corresponding to a typical week

in the correct alignment (5 workdays followed by two days on the weekend).

In general, DPD-FS was able to �nd more occurrences of frequent patterns

than DPD-TS.

Time as a function of time series length. The running time of DPD-

FS was evaluated using the same set of synthetic datasets used to evaluate

DPD-TS. We set n = 1000, w = 10 and τ = 1. The result is shown in Figure

5.20 and Table 5.3. Time is indicated in seconds. Results support our claim

that DPD-FS is linear in the size of time series. Compared to DPD-TS it is

much slower due to the sliding window approach used in DPD-FS. However,

DPD-FS misses less frequent patterns, trading o� performance for e�cacy.

Time as a function of parameter n. In this experiment, the in�uence

of the value of parameter n on the running time of DPD-FS is evaluated.
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(a) A occurrence of a frequent pattern in
power dataset

(b) Matches (blue) of frequent pattern in
power dataset

(c) A occurrence of frequent pattern in tide

dataset
(d) Matches (blue) of frequent pattern in tide

dataset

(e) A occurrence of frequent pattern in
sunspot dataset

(f) Matches (blue) of frequent pattern in
sunspot dataset

Figure 5.19: Frequent patterns found by DPD-FS in di�erent datasets.
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Figure 5.20: Running time (in seconds) as a function of time series size (n =
1000, w = 10).

Figure 5.21 shows the results for four datasets (sunspot, tide, powerdata,

and random1M). Recall that higher values of n produce smaller reduced series

and fewer points to process. Hence, less running time.

Time as function of pattern size w. In this set of experiments, the

in�uence of pattern size w on the running time of DPD-FS is evaluated.

Figure 5.22 shows the results for four datasets. The sliding window approach

followed by DPD-FS can be observed in these results, as it causes a quadratic

overhead with the size of the pattern. Therefore, if we need longer patterns,

we must choose larger n.

Privacy. For DPD-FS, tests on privacy were not performed, since privacy

level is computed as τn, given discretization parameter τ and subsequence

size n.

Discussion. The experiments show that utilizing density estimate is a

meaningful approach to pattern discovery in time series, provided that triv-

ial matches are avoided. How to avoid trivial matches optimally is an open

question.

In particular, the choice of the window size w has a signi�cant in�uence on

the results. The best window width is chosen, guided by the information loss

metric. However, a systematic way to �nd the window width is still needed.

An even better option would involve working with a variable window.
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(a) sunspot dataset, size=2 880, w = 10 (b) tide dataset, size=8 700, w = 7

(c) power dataset, size = 35 000, w = 7 (d) random1M dataset, size = 1 000 000,
w = 10

Figure 5.21: Running time (in seconds) as a function of parameter subsequence
size n.

192



5.4 DPD-FS Algorithm

(a) sunspot dataset, size=2 880, n = 10,
τ = 50

(b) tide dataset, size=8 700, n = 60, τ =
13

(c) power dataset, size = 35 000, n = 96,
τ = 100

(d) random1M dataset, size = 1 000 000,
n = 5000, τ = 1

Figure 5.22: Running time (in seconds) as a function of pattern size w (DPD-
FS).
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5.5 Application to Genomic Data

We applied the main idea of pattern discovery with density estimates, dis-

cussed in this chapter, to cluster genomic data [54]. Biologists want to cluster

gene expression to �nd related genes, hinting at new pathways and regulatory

functions. In this setting, the data points are time series from gene expres-

sion experiments and are typically no longer than 15 time points. Further,

gene expression experiments are costly, constraining a given research team

to produce only a small number of them. Consequently, typical clustering

algorithms, such as k-means or SOM, do not perform well on genomic data

due to data sparsity. Several short time series clustering algorithms were pro-

posed, e.g., STEM, IBCC, SiMM, FBPA, and FCV-TS. Current approaches,

however, have time complexity quadratic on the number of genes, the num-

ber of data points, or both. Moreover, no approach was designed to work on

a distributed data set, and none addressed privacy issues. In this context,

we developed DTSCluster [54], a scalable clustering algorithm to short time

series from genomic experiments. Additionally, as a result of being based on

density estimates, it can work in a distributed data scenario. Additionally,

DTSCluster's data discretization mechanism provides the possibility of pri-

vacy preservation to genomic data, a topic attracting more attention in the

last few years.

5.6 Related Work and Discussion

We proposed the �rst distributed algorithms for pattern discovery in time

series with privacy preservation to the best of our knowledge. Therefore,

we cannot compare our algorithm directly with competitors. In the follow-

ing, we discuss works that are partially related to our algorithms. First, we

discuss pattern discovery approaches. Then we review a few examples of

privacy-preserving approaches for distributed time series forecasting, aggre-

gate statistics, data publishing, and similarity queries.

Pattern Discovery in Time Series. Pattern discovery aims to �nd fre-

quent patterns in sequences of symbols. It has been extensively studied in

bioinformatics, e.g., RNA-seq time series data analysis [191].

A prominent approach to time series related problem is the Matrix Pro-
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�le Index (MPI) [235]. MPI is a data structure that holds all distances

between subsequences of a given size in a time series. It has been shown

that MPI e�ectively �nds the closest pair of subsequences, the most dis-

tance pair, and other features. MPI serves as a primitive operation to solve

several pattern-related problems such as motifs, discords, top-k motifs. Sev-

eral optimizations and extensions on the original idea have been proposed

[5, 105, 246]. However, no distributed MPI or privacy-preserving version has

been investigated to the present date.

Gao and Lin developed HIME, a variable-length motif detector [77].

HIME �rst produces a discretized (symbolic) version of the time series based

on the SAX approach. The authors apply several optimization steps to ac-

celerate the enumeration of all motifs of di�erent lengths. The algorithm

generates a hierarchical motif enumeration structure describing all repeated

subsequences found in the time series. The results show that HIME is linear

in the size of the time series. However, HIME is developed for the centralized

case and does not address privacy.

Gao et al. [78] addressed the problem of anomaly detection (surprise, or

discord) in time series using an ensemble of models generated with di�erent

parameter values. The worst models are discarded, and the �nal model is

generated by combining base models with a median. The ensemble approach

was linear, with similar results to the state-of-the-art approaches. However,

the approach is centralized, and no privacy preservation technique is applied.

We refer the interested reader to a survey [205] on pattern discovery in

time series.

Privacy-preserving Distributed Time Series Approaches. Here we

discuss distributed and privacy-preserving approaches but not related to pat-

tern discovery, including forecasting, computing aggregate statistics, and

time series clustering.

Rajagopalan et al. [171] investigated how to forecast load demand and

optimize pricing structure from smart meter data. They proposed an infor-

mation-theoretical approach to model privacy as information leakage, de�ned

as the mutual information between original and distorted data. The privacy

mechanism that distorts the time-series data is designed and applied o�ine

once over the whole sequence before the release. Addressing a similar prob-

lem, Gonçalves et al. [87] adopt a vector autoregressive-based approach to
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improve the forecast accuracy. Each party builds a local model, and only co-

e�cients are exchanged. Privacy is preserved via multiplicative perturbation

of model coe�cients, and the algorithm runs until a convergence criterion

is met. Imtiaz and colleagues [106] proposed a forecasting algorithm for

distributed health data collected from wearable devices. Time series data

from users are �rst clustered using k-means algorithm to identify groups of

similar users. For each group, an LSTM (long-short term memory) network

is locally trained, and a central server coordinates the upgrade of a global

LSTM model. Local data and LSTM parameters are perturbed with noise

before being sent to the server. The privacy model adopted is ϵ-di�erential

privacy.

Shi et al. [186] consider how an untrusted data aggregator can compute

statistics over multiple participants' time series data, preserving each in-

dividual's privacy. They propose a Di�e-Hellman-based encryption scheme

that does not require establishing (and storing) pairwise keys between nodes.

Each participant perturbs its data with noise from a given probability dis-

tribution and encrypts it using an individual key. The aggregate function

is computed via homomorphic encryption by the aggregator decrypting only

the output. This scheme satis�es a relaxed version of di�erential privacy

de�nition and can handle collusion when a known fraction of the partici-

pants are compromised. Benhamouda et al. [19] de�ne a generic framework

for time series statistics aggregation with tighter di�erential privacy bounds

than [186]. The approach is based on Cramer-Shoup's paradigm of smooth

projective hashing.

Allard et al. [7] proposes Chiaroscuro to address the problem of securely

clustering distributed personal data. The setting assumes a peer-to-peer net-

work of mobile equipment generating personal data, e.g., health information

or smart meters in households. The algorithm relies on distributed di�eren-

tial privacy and additively homomorphic encryption scheme to ensure data

privacy. The main algorithm is based on k-means, computing centroids for

each cluster iteratively until a �xed number of iterations is reached.

Liu et al. [139] addressed the tra�c �ow prediction problem. Each

peer collects time series data but cannot exchange datasets. The proposed

approach trains local models at each party, and a parameter aggregation

algorithm is run collaboratively to compute a global model. Homomorphic

encryption ensures that local parameters are exchanged securely among the
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parties.

Privacy-preserving Time Series Publishing. Here we discuss privacy-

preserving approaches for data publishing. It is an important setting where

sensitive time series generated at di�erent locations must be transferred to

a central location for analysis. Data can be generated in smart meters,

healthcare individual wearable devices, smartphones, or other IoT devices

that do not possess enough computing power to process the acquired data.

Erdogdu et al. [67] investigates privacy in smart meter data. They

assume an online setting where peers frequently want to release time series

data to a central data miner. For example, data is generated from a smart

meter in a smart grid application. Privacy is measured as the amount of

mutual information between the original and distorted time series. They

assume that peers holding data will not attempt inference attacks against

each other. Unfortunately, it is unclear which distortion method was used to

generate the distorted data. Moreover, the privacy analysis does not include

aspects related to time. Wang et al. [218] devised a modi�ed Laplace noise

mechanism to add noise with the same autocorrelation of the original data.

Consequently, noise added to sensitive time series can not be �ltered out.

Arzamasov et al. [13] surveyed privacy metrics applied to smart meters

data. They argue that further research on privacy measures for time series

is necessary to help users select a suited metric for a speci�c application.

Privacy-preserving Similarity Queries. Similarity query is a primitive

operation in time series. It is part of many other tasks like clustering, pattern

discovery, and anomaly detection.

Wang [220] proposed a scheme for k-nearest-neighbor and k-farthest-

neighbor queries for multiple time series in a distributed environment. The

idea is to transform the query into wavelet coe�cients to save bandwidth

and provide similarity bounds on the query sets stored at each machine. Liu

et al. [138] also designed a system for similarity search over distributed time

series. At each local hospital, time series are clustered, and cluster centers

are communicated to a trusted server via secret sharing and additive homo-

morphic encryption. The trusted server also is responsible for pruning the

search space and answering queries securely. Wang et al. [224] introduced

PatternLDP to address the privacy-preserving time series publishing prob-
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lem. They assume a distributed setting with several data providers and a

non-trusted collector. Therefore, PatternLPD helps each data provider to

ensure privacy is not compromised. The main idea is to sample and add

noise only to relevant points that are su�cient to keep the main statistical

information of the data. Privacy is measured with w-event privacy, extend-

ing di�erential privacy for w-sized subsequences of a time series. The goal is

to allow for distributed similarity search without revealing original points.

5.7 Summary

This chapter investigated privacy-preserving pattern discovery in a distributed

time series by transforming the time series into a set of n-dimensional data

points. This approach was chosen because it allows nonparametric density

estimation techniques to compute the most frequent patterns. Therefore,

there is no need to assume any particular probabilistic model a priori. Cur-

rent works on pattern discovery do not address the distributed case and,

more speci�cally, do not address privacy issues. This study's primary con-

tributions to this topic are summarized below.

We demonstrated that density estimates can be helpful in e�ciently �nd-

ing patterns in distributed time series. Our approach exploits the fact that

density estimates are additive, and therefore, it is possible to aggregate local

density estimates without exchanging raw data to obtain a global density

estimate.

Three algorithms for pattern discovery in distributed time series were

proposed: DPD-TS, DPD-FS, and DPD-HE. Since density estimates take

up much less space than the original dataset, the overall approach is space

and time e�cient. It was also shown that the proposed algorithms are linear

in the size of the time series. Table 5.4 depicts a quick comparison between

the proposed algorithms.

Regarding privacy, the proposed algorithms allow users to de�ne the

desired amount of privacy for local datasets. Indeed, the amount of privacy

at individual points in each local time series is controlled by choice of simple

parameters values of alphabet size | Σ |, subsequence size n and discretization
amount τ . The level of privacy is guaranteed even in the presence of inference

attacks by collusion groups in the mining session.
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Chapter 6

pp-Expert: Evaluation Tool

Previous chapters presented new privacy-preserving distributed data mining

algorithms. However, the discussion focused on the algorithmic level and

its properties without giving details on implementation. In this chapter, we

discuss the implementation details of all proposed algorithms. Moreover,

this chapter presents privacy preserving experiments tool (pp-Expert), an

evaluation environment with which the experiments in this study were run.

In the following, an overview of the main features is provided, examining the

underlying architecture and giving details on using pp-Expert. A description

of all datasets used in this study is also provided.

6.1 Overview of pp-Expert

6.1.1 Installation

pp-Expert is implemented in Java 1.8+ and is distributed as a single .jar

�le, which can be executed on any operating system with a Java virtual

machine (JVM). To run pp-Expert, it is necessary to download the .jar �le

to any directory visible to the JVM (Java classpath), and it is ready to run.

The main requirements are the following:

1. Java Virtual Machine (JVM) 1.8 or greater;

2. 4Gb RAM (recommended) or 2Gb RAM (minimum);

3. Core i3 processor or newer (recommended).
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6.1.2 Features

The goal of pp-Expert is to allow for experiments that show how di�erent

parameter con�gurations a�ect execution time and data mining quality for

the algorithms presented in this thesis. It is organized as a set of experiments

presented in a single graphical user interface (cf. Fig. 6.1). The evaluation

scenarios focus on the mining quality in function of privacy level, running

time in function of privacy level, and running time in function of dataset

size. See previous Chapters to recall the details of each experiment speci�c

to each algorithm and Section 6.3 for details on a more detailed explanation

of each parameter needed to run an experiment.

Currently, pp-Expert includes the following set of experiments:

� KDEC and KDEC-S: quality vs. privacy level, shows the in�uence of

sampling parameter τ on the clustering quality given by the clustering

error metric; time vs. privacy level, shows the running time as a func-

tion of sampling parameter τ ; time vs. dataset size, investigates the

running time with di�erent datasets sizes; cf. Sections 4.2 and 4.3 for

an in-depth discussion on each algorithm;

� DPD-TS and DPD-FS: e�cacy test, investigates the ability to �nd

patterns; time vs. time series size, shows the running time as a function

of the length of a time series; and time vs. pattern size, investigates

the in�uence of parameter w on the running time; cf. Sections 5.2 and

5.4 for details on each algorithm;

� DPD-HE only: time vs. cryptography parameter (a power of 2, typ-

ically 128), shows the running time with di�erent cryptographic key

lengths; cf. Section 5.3 to recall the speci�cs of the said algorithm.

Other features of the pp-Expert are:

� Property �les: All parameters used for a given experiment session can

be stored for later use in a java property �le. In the interface, the

buttons labeled load properties and save properties provide this feature.

� Statistics: All statistics generated in an experiment are stored in one

individual �le, and this data is stored in the path the user indicates.

Moreover, all results are stored in simple text format and can be read

by any other mathematical tool, e.g., Matematica, Matlab, or Octave.
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Figure 6.1: pp-Expert's graphical user interface.

� Results chart: after each experiment is completed, a chart summarizing

the experiment's statistics is generated and displayed in the tab named

Results. The chart is also saved as a .jpeg image in the speci�ed

output directory. Figure 6.4 shows an example of results from KDEC-

S, experiment 1, which evaluates the impact of sampling rate tau on

the cluster quality (cluster error).

In the following section, pp-Expert's architecture is discussed. Informa-

tion on how to run experiments is presented in Section 6.3.

6.2 Architecture

6.2.1 pp-Expert Layers

pp-Expert is organized in the following layers: view, controller, model,

persistence and utilities. Figure 6.2 gives an overview of the pp-Expert's

architecture. Next sections discuss each layer1 in details.

1Each layer is implemented in java as a package with the same name
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Figure 6.2: Overview of layers and packages. Arrows indicate dependency.

View Layer. The view layer provides the tool's graphical user interface.

Its main class is ExperToolGui, which is the entry point to the tool and is

composed of several panels, organized by algorithm and experiment (cf. Fig.

6.3). It allows the user to inform all parameters values and perform exper-

iments on each algorithm individually. After each experiment, a line chart

summarizing the experiment's statistics is generated and is displayed as a

separate panel named Results. For instance, experiments measuring quality

vs. sampling rate will display a chart where the x-axis shows the sampling

range and the y-axis displays the error metric. Similarly, experiments mea-

suring time vs. some parameter will display a chart where the x-axis shows

the parameter range and the y-axis displays the time spent on a given run

(cf. Fig. 6.4).

All elements in the interface are from the Java Swing API. The summa-

rizing graph is generated with JFreeChart library.

Controller Layer. The controller layer is the core package of pp-Expert,

where all algorithms are implemented. This layer groups together all classes

that are responsible for coordination and control.

Classes KDEC and KDEC-S implement KDEC and KDEC-S algorithms,

respectively. They coordinate a clustering session, ensure that all precon-

ditions are met before invoking a cluster algorithm and takes care of all

post-conditions following the algorithm completion. Classes Estimator and

SecureEstimator implement density-estimation strategy through the method

estimate() and returns a DensityEstimate object. Classes DPDTS, DPDHE

and DPDFS implement pattern discovery algorithms.
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Figure 6.3: Elements of pp-Expert GUI: algorithms tab, experiments tab, input
parameters and resulting statistics graph.

A group of special controllers for coordinating experiments are also part

of this layer, e.g. KDECLab, DPDTSLab, etc. These controllers run a given

algorithm several times with di�erent parameter values and control the gen-

eration of statistical data for further analysis.

Model Layer. The model layer is composed of a set of classes that repre-

sent data used by other layers.

DataSet is a concrete class providing navigation behavior through data

points. Grid class provides a virtual grid in the data space. It is used mainly

as an index structure, allowing for navigation through a dataset.

DensityEstimate represents a density estimate of a given data set. It is

implemented as a hash table, where each key refers to a list of points around

a given grid point. SecureDensityEstimate stores a density estimate for

any given data set and privacy parameters. In particular, this class provides

the method getClusterGuides(), which returns a set of cluster guides, as

de�ned by the KDEC-S algorithm.

TimeSeries is a class used to manipulate time series data, o�ering meth-

ods like average, min, max, size reduction, discretization. In the model layer,

there is also StringDensityEstimate, a modi�ed version of DensityEstimate

that models density estimates of a discretized time series.

Persistence Layer. The persistence layer provides an abstraction for dif-

ferent storage technology. Its main class is DataSetDAO, an abstract class

that de�nes the basic behavior required for storing and retrieving collections
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Figure 6.4: The results tab in the pp-Expert GUI: after an experiment is running,
the results tab shows a chart with the selected statistics.

of data points. DataSetDAOPlainFile is an implementation of DataSetDAO

that handle numeric data points from a text �les. Similarly, TimeSeriesDAO

is an abstract class for time series data storage and TimeSeriesDAOPlainFile

is a concrete implementation that reads data stored in a simple text �le.

Utility Layer. The utility layer contains all classes that provide general

functionality but do not �t anywhere else.

Distance is a Java interface that de�nes an abstract distance func-

tion. There are currently several implementations of this interface, including

EuclideanDistance, ManhattanDistance, Levenshtein, etc.

Kernel is a Java interface that de�nes an abstract kernel function. Con-

crete classes that implements kernel are Gauss and Triangle.

Paillier is a GNU-licensed implementation of Paillier cryptosystem de-

veloped by Omar Hasan2. It is distributed under the GPLv3 license as a

single java �le, which we included in our util package.

Stats is an implementation of inverse normal cumulative distribution,

ported to Java by Sherali Karimov3, from an original Perl implementation

by Petr J. Acklam.

2http://liris.cnrs.fr/~ohasan/pprs/paillierdemo/
3http://home.online.no/~pjacklam/notes/invnorm/
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Figure 6.5: Sequence diagram of KDEC algorithm with classes from all layers.

Third Party Libraries. We use PtPlot 5.7 for data plots in the primary

GUI. PtPlot is a 2D data plotter and histogram tool developed by Edward

A. Lee and Christopher Brooks at UC Berkeley EECS Dept. as part of the

Ptolemy project4. PtPlot is implemented in Java, which can be used as a

standalone applet or application. It can also be embedded in your applet or

application. The main class used in this study's implementation was Plot.

We use JFreeChart 1.0.14 for plotting charts in the testing tool. JFreeChart5

is a java library distributed under the GLP license. It supports various

charts, including scatter plots and time series charts. JFreeChart is main-

tained by David Gilbert.

6.2.2 Class Interactions

A typical sequence of interactions among the classes pp-Expert is given in

Figure 6.5. This is a sequence diagram for an experiment with KDEC. The

classes involved in this example are: KDECLab, KDEC and Estimator in control

layer; DensityEstimate and DataSet in model layer; and DataSetDAO from

the persistence layer.

The sequence starts when any relevant event is detected at the GUI.

KDECLAb then carries on several preparatory steps before it invokes the spe-

ci�c clustering algorithm, e.g., load data from a �le into a DataSet object

in memory, get the complete experiment speci�cation via parameters. It

also starts the estimation process, which produces a DensityEstimate ob-

ject. Finally, with the dataset and density objects already created, the KDEC

4http://ptolemy.eecs.berkeley.edu/java/ptplot/
5http://www.jfree.org/
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algorithm class is invoked to produce a cluster map.

KDECLAb repeats the process, as indicated by the number of iterations pa-

rameter. After running all iterations, KDECLab generates and saves statistics

on the speci�ed location. After that, KDECLAb returns control to the GUI,

and a chart with a summary of the statistics is generated on the tab labeled

Results.

The same overall idea is used in all other experiments.

6.3 Running an Experiment on pp-Expert

Under Windows, pp-Expert can be started by double-clicking on the .jar

�le. To start it from the command line, type6:

java -jar PPDDMExperTool.jar

After the GUI is displayed, proceed as follows.

1. Select an algorithm from the algorithms tabs, e.g., KDEC-S.

2. Select an experiment. For example, experiment 1, which computes the

quality of data mining as a function of the sampling rate (τ).

3. In the general settings section, inform:

� warmup: the number of iterations to be run before starting the

clock. This is required as JVM tends to have a large variance in

performance early on the �rst iterations.

� iterations: the number of iterations after warm-up; typically 50

(minimum 30 for statistically signi�cant results).

� path: location to the output's directory.

� dataset: name of the dataset to be used in this experiment, e.g.

�polar.dat�

4. In the grid settings section, inform:

� origin: a tuple indicating where the grid is centered; typically a

tuple with zero in all dimensions, e.g. 0,0,0 for a 3-dimensional

dataset.
6Assuming that this command is issued in the same directory where the PPDDMEx-

perTool.jar �le is located
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� inferior and superior corners: tuples indicating the extreme

points (minimal and maximal) in the hyperrectangle de�ned by

the grid representing the range of values covered by the data;

5. In the density estimation setting section, inform:

� distance function: a string with the name of a distance function,

e.g. Euclidean, Manhattan, etc.

� neighborhood: radius of the neighborhood used to compute the

density of a given point; a typical value is 1.0.

� kernel: a string with the name of kernel function to compute the

density estimates, e.g. Gaussian, triangle, Epanechnickov, etc.

� h: the kernel bandwidth; typically is same as the neighborhood

radius.

6. In the sampling settings section, inform:

� reference τ (tau): is a real number indicating the sampling rate

of each dimension; in experiment 1, a reference cluster map is

generated with this information and subsequent cluster maps are

compared with it when computing its quality;

� initial τ : the starting value of τ used in experiments that inves-

tigates the e�ect of di�erents sampling rates on the quality of the

mining result;

� �nal τ : the �nal value of τ in the experiment, used during exper-

iments that varies this parameter;

� step: the size of each increment, from the �rst until the �nal

value of τ , , used during experiments that varies this parameter;

7. To save all parameters in this session, use the button save properties.

8. Click the start button.

When the experiment is over, an output �le is created. The �le name

indicates the algorithm, experiment number, short description of the exper-

iment, dataset name, and main parameters. For example, assuming KDEC

algorithm was selected, and experiment 1 (quality vs. privacy) was run with
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dataset named �polar.dat" with neighborhood n = 1 and kernel bandwidth

h = 1.0, the resulting �le name7 is:

KDEC_exper1_quali_priv_polar_n1_h1.0.out

A chart with the experiments results showing how the investigated pa-

rameter a�ected a given aspect is also generated with the same name and

extension .jpg. For example, Figure 6.4 shows how cluster error is a�ected

by di�erent values of sampling parameter τ (tau) when running KDEC-S.

6.4 Datasets

This section gives an overview of each dataset utilized in this study.

Datasets for Clustering

We created several synthetic datasets for clustering. Well-known datasets

were also used to evaluate density-based clustering.

Synthetic datasets. Sample datasets were created, consisting of points

generated from a mixture model with four Gaussians, each with vari-

ance σ2 =1 in all dimensions. The idea is to simulate a dataset with

four clusters (cf. Fig. 6.6). A dataset with 500 points was also gener-

ated, built to perform basic tests. Datasets with 5K, 10K, 15K, 20K,

25K, and 30K points were also created to analyze time as a function

of the size of the dataset.

Polar dataset. A dataset with 400 points was also generated, 200 points of

which were generated from a Gaussian with µ = 0 and σ2 = 5 and 200

points generated around the center with radius R ∼ N(20, 1) and angle

uniformly distributed from θ ∼ U(0, 2π). This is a more interesting

dataset because clusters are not easily de�ned (cf. Fig. 6.7).

Synthetic dataset S1 The S1 is a synthetic dataset8 from [74] was uti-

lized, containing 5000 points distributed in 15 prede�ned clusters (cf.

Fig. 6.8).

7All parameter values are indicated in a string of comments in the �rst line of the �le;
the comment line starts with the character '#'.

8http://cs.joensuu.fi/sipu/datasets/
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Figure 6.6: Gaussian dataset: data
points generated from a mixture of 4
Gaussians.

Figure 6.7: Polar dataset: Points
are distributed along an arbitrary shape,
with two clusters.

Figure 6.8: S1 dataset: data points
generated from a mixture of 15 Gaus-
sians.

Figure 6.9: Spiral dataset: data
points form three di�erent spirals.

The Spiral dataset. The spiral dataset9 is a synthetic dataset from [36]

was also utilized, which contains 312 points and 3 clusters (cf. Fig.

6.9).

Datasets for Pattern Discovery

The following time series datasets were utilized in this study: power, sunspot,

and tide datasets. All datasets were downloaded from UCR Time Series

Data Homepage10 [56], except the synthetic ones.

Sunspot dataset. This dataset records the monthly average number of

sunspots from January 1749 until 1993. There are 2 880 data points in

this dataset11 (cf. Fig. 6.10(a)).

Power dataset. This dataset presents the electricity consumption from

Netherlands Energy Research Foundation (ECN) for one year, recorded

9http://cs.joensuu.fi/sipu/datasets/
10https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
11For up to date sunspot data visit http://sidc.oma.be/
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(a) sunspot dataset, size=2 880

(b) power dataset, size = 35 000

(c) tide dataset, size=8 700

(d) Excerpt of random dataset

Figure 6.10: Time series datasets.
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every 15 minutes. There are 35 040 data points corresponding to the

year 1997. This dataset has a pattern structure that can be observed

visually (cf. Fig. 6.10(b)).

Tide dataset. This dataset is a collection of 12 years of tide �uctuations

at Crescent City, Northern California, recorded by the National Ocean

Service (NOA) from January 1980 to December 199112. There are

two records per day: 8 746 data points in this series. Fluctuation is

measured in centimeters in relation to mean low water level (cf. Fig.

6.10(c)).

Synthetic time series dataset collection. We also generated a collec-

tion of datasets based on random data, which was used in experiments

where running time was evaluated in function of dataset size. The col-

lection consists of 10 dataset with 100 000 points, 200 000 points, up

to 1 000 000 points. A small excerpt of a random time series is shown

in Fig. 6.10(d).

6.5 Availability

Source code of pp-Expert and datasets used in this study are available upon

request. All algorithms implemented in this study are integrated into pp-

Expert, distributed as an executable .jar �le. Alternatively, there is a

di�erent distribution with algorithms only, distributed as an API in a non-

executable .jar �le.

12https://tidesandcurrents.noaa.gov/sltrends/sltrends_station.shtml?id=

9419750
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Chapter 7

Conclusion and Outlook

We live in the information era. Using web-based applications like video

streams and social networks is so natural that we do not even think about

the massive amount of information collected about our preferences and be-

haviors.

With all the bene�ts of global networking, individual privacy has become

a hot topic of discussion. On the one hand, we want all the information

available and, in turn, the knowledge that can be derived from it. On the

other hand, we do not want to sacri�ce our privacy in the process. Disclos-

ing strategic information in a business-to-business scenario can even bring

more harm than good, and from an individual point of view, there is an

increasing awareness that personal data is a valuable asset. In this context,

privacy-preserving data mining opens up many possibilities, enabling scenar-

ios where data privacy plays a key role. In intelligent business applications

spanning several organizations, e.g., in a B2B system, datasets are likely to

represent trade secrets. Similarly, medical data records cannot be freely dis-

tributed since rigid privacy regulations protect them. Only with a guarantee

of privacy preservation enterprises or clinics will want to participate in a

distributed mining endeavor.

This thesis investigated the general question of how to provide good min-

ing results while preserving data privacy. This question involves de�ning

what is meant by privacy and good mining result. In the following, the

main contributions of this thesis toward answering this general question are

presented.
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7.1 Summary of Contributions

Before discussing the lessons learned throughout this study, it is best to

revisit the primary research question posed at the beginning of this investi-

gation.

The general question concerned how to provide both privacy and, at the

same time, good mining results in a distributed data environment. The whole

�eld of privacy-preserving data mining is trying to answer this question. This

thesis contributes to the big picture of building a privacy-preserving data

mining system as summarized in the following.

1. Privacy Measures for DDC and DTS Mining

How to de�ne and formalize the concept of privacy and correspond-

ing privacy measure in a distributed environment taking into account

inference attacks and collusion of malicious insiders? Many privacy

de�nitions exist in privacy-preserving data mining literature, re�ecting

di�erent assumptions and focuses of interest. In Chapter 2, the di�er-

ent existing privacy formalizations for distributed data mining, their

assumptions, and limitations are reviewed. It is shown that existing

privacy measures do not satisfy all properties required in distributed

environments with inference attacks and collusion. In Chapter 3, new

privacy measures are proposed to address inference attack scenarios

while providing an intuitive interpretation of privacy. These new pri-

vacy measures are tied to the more speci�c mining tasks � namely,

distributed data clustering and pattern mining in time series.

What kind of attacks to sensitive data owned by each participant in

a distributed data mining setting can take place? This question is

addressed in Chapters 4, analyzing the KDEC scheme, and Chapter

5, analyzing this study's algorithms for pattern discovery (DPD-TS,

DPD-HE and DPD-FS). The main threats identi�ed are inference at-

tacks, allowing for the reconstruction of sensitive data, and the collu-

sion problem, when a subset of the members of a mining group colludes

to improve the results of their attacks. These threats are part of what

is known as insider attacks, named as such since it comes from the

members of a mining group. Another type of attack is also possible,

coming from eavesdroppers � agents that are not part of the mining
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group. These threats are also analyzed, although they have less chance

of happening when current security technology is applied.

2. Privacy-Preserving Distributed Mining Algorithms

How to give a guarantee that DDC and DTS preserve a certain privacy

level? Formalizing privacy is important because it allows for the �nding

of a privacy metric to assess the privacy level of a given dataset or a

data mining algorithm. Di�erent privacy metrics for clustering and

pattern discovery are proposed in this study (in Ch. 3), following the

overall idea that privacy level is the reciprocal of certainty. In this

context, all proposed algorithms allow the user to specify the required

level of reconstructed data using privacy parameters. Therefore, in

a general sense, users can control the size of the interval where the

attacker can be sure a given reconstructed point occurs, trading o�

quality for privacy.

Distributed Data Clustering. The KDEC is analyzed concerning pri-

vacy, and, subsequently, an inference attack is developed against it,

exploiting the fact that density estimates are too precise, even when

sampled. This study proposed an improved algorithm KDEC-S for

distributed data clustering. KDEC and KDEC-S are based on a dis-

tributed density estimation process. The privacy in KDEC-S comes

from the fact that it uses an imprecise estimation process, where the

imprecision leads to a given level of uncertainty via a sampling param-

eter τ . KDEC-S provides more privacy than KDEC keeping the same

mining quality. Moreover, it is linear in the number of data points

in the dataset. Compared to the generative models approach, KDEC-

S does not require the number of clusters a priori can �nd arbitrary

shape clusters while providing the same level of privacy in less time.

Compared to secure multi-party approaches, KDEC-S trades o� pri-

vacy level for communication and time e�ciency, while SMC protocols

are designed to protect input data from outsiders they do not avoid

inference attacks by malicious insiders. KDEC-S guarantees its privacy

levels even in the presence of collusion of malicious insiders.

Distributed Time Series. This thesis also proposed algorithms DPD-

TS, DPD-HE, and DPD-FS for frequent pattern discovery in time se-

ries data. In particular, this study's pattern discovery algorithms are
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particularly innovative in that they are among the �rst to address

privacy in the context of distributed time series. The main assump-

tion is that we can represent subsequences of a time series as a data

point in a n-dimensional space. Moreover, this study tested the hy-

pothesis that �nding frequent patterns could be reduced to �nding

local maxima in a n-dimensional density space. The hypothesis turns

out to be true, and all three algorithms have good scalability on the

number of data points. DPD-TS directly applies these ideas, where

privacy is controlled by a combination of two parameters: alphabet

and subsequence size. DPD-HE goes a step further, using secure sum

and homomorphic encryption to provide an additional security layer,

trading o� performance for security. DPD-FS presents an alternative

approach to improve the pattern discovery process � giving up some

degree of performance. DPD-FS makes fewer assumptions, needs fewer

parameters and has a precise privacy level control mechanism given by

a combination of discretization amount and subsequence size. All three

algorithms are linear on the size of time series, and all of them provide

privacy guarantees under di�erent inference attack scenarios even with

the collusion of malicious insiders.

7.2 Further Directions

Privacy-preserving data mining remains an ongoing topic of research. Many

works have been proposed in recent years, and multiple research e�orts are

being conducted right now. Many new directions of research can be pursued.

An interesting facet of data mining to pursue is how to provide data min-

ing algorithms with the anytimeness property. Anytimeness is the property

of having a partial answer whenever the user may choose to request it [235].

This property is very useful in data mining because it allows the user to

get partial results. Thus, users may decide whether the chosen parameter

values are correct and need not wait a couple of hours to discover that a

given parameter value is wrong.

It would also be worth investigating how to apply di�erential privacy to

the algorithms presented in this thesis and try to link our privacy measures

with the choice of privacy budget ϵ. This extension would provide an extra

layer of privacy protection to our approaches and would be a hybrid approach
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[229].

Federated Learning presents new challenges with a massive number of

devices with limited resources [122]. Thus, extending our proposed algorithm

to the federated learning setting seems a valuable line of research. This

extension could open up many application possibilities, including large-scale

mobile-based applications.
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