9,246 research outputs found

    Enabling Multi-level Trust in Privacy Preserving Data Mining

    Full text link
    Privacy Preserving Data Mining (PPDM) addresses the problem of developing accurate models about aggregated data without access to precise information in individual data record. A widely studied \emph{perturbation-based PPDM} approach introduces random perturbation to individual values to preserve privacy before data is published. Previous solutions of this approach are limited in their tacit assumption of single-level trust on data miners. In this work, we relax this assumption and expand the scope of perturbation-based PPDM to Multi-Level Trust (MLT-PPDM). In our setting, the more trusted a data miner is, the less perturbed copy of the data it can access. Under this setting, a malicious data miner may have access to differently perturbed copies of the same data through various means, and may combine these diverse copies to jointly infer additional information about the original data that the data owner does not intend to release. Preventing such \emph{diversity attacks} is the key challenge of providing MLT-PPDM services. We address this challenge by properly correlating perturbation across copies at different trust levels. We prove that our solution is robust against diversity attacks with respect to our privacy goal. That is, for data miners who have access to an arbitrary collection of the perturbed copies, our solution prevent them from jointly reconstructing the original data more accurately than the best effort using any individual copy in the collection. Our solution allows a data owner to generate perturbed copies of its data for arbitrary trust levels on-demand. This feature offers data owners maximum flexibility.Comment: 20 pages, 5 figures. Accepted for publication in IEEE Transactions on Knowledge and Data Engineerin

    Preserving Differential Privacy in Convolutional Deep Belief Networks

    Full text link
    The remarkable development of deep learning in medicine and healthcare domain presents obvious privacy issues, when deep neural networks are built on users' personal and highly sensitive data, e.g., clinical records, user profiles, biomedical images, etc. However, only a few scientific studies on preserving privacy in deep learning have been conducted. In this paper, we focus on developing a private convolutional deep belief network (pCDBN), which essentially is a convolutional deep belief network (CDBN) under differential privacy. Our main idea of enforcing epsilon-differential privacy is to leverage the functional mechanism to perturb the energy-based objective functions of traditional CDBNs, rather than their results. One key contribution of this work is that we propose the use of Chebyshev expansion to derive the approximate polynomial representation of objective functions. Our theoretical analysis shows that we can further derive the sensitivity and error bounds of the approximate polynomial representation. As a result, preserving differential privacy in CDBNs is feasible. We applied our model in a health social network, i.e., YesiWell data, and in a handwriting digit dataset, i.e., MNIST data, for human behavior prediction, human behavior classification, and handwriting digit recognition tasks. Theoretical analysis and rigorous experimental evaluations show that the pCDBN is highly effective. It significantly outperforms existing solutions

    Privacy-Preserving and Outsourced Multi-User k-Means Clustering

    Get PDF
    Many techniques for privacy-preserving data mining (PPDM) have been investigated over the past decade. Often, the entities involved in the data mining process are end-users or organizations with limited computing and storage resources. As a result, such entities may want to refrain from participating in the PPDM process. To overcome this issue and to take many other benefits of cloud computing, outsourcing PPDM tasks to the cloud environment has recently gained special attention. We consider the scenario where n entities outsource their databases (in encrypted format) to the cloud and ask the cloud to perform the clustering task on their combined data in a privacy-preserving manner. We term such a process as privacy-preserving and outsourced distributed clustering (PPODC). In this paper, we propose a novel and efficient solution to the PPODC problem based on k-means clustering algorithm. The main novelty of our solution lies in avoiding the secure division operations required in computing cluster centers altogether through an efficient transformation technique. Our solution builds the clusters securely in an iterative fashion and returns the final cluster centers to all entities when a pre-determined termination condition holds. The proposed solution protects data confidentiality of all the participating entities under the standard semi-honest model. To the best of our knowledge, ours is the first work to discuss and propose a comprehensive solution to the PPODC problem that incurs negligible cost on the participating entities. We theoretically estimate both the computation and communication costs of the proposed protocol and also demonstrate its practical value through experiments on a real dataset.Comment: 16 pages, 2 figures, 5 table

    RANDOMIZATION BASED PRIVACY PRESERVING CATEGORICAL DATA ANALYSIS

    Get PDF
    The success of data mining relies on the availability of high quality data. To ensure quality data mining, effective information sharing between organizations becomes a vital requirement in today’s society. Since data mining often involves sensitive infor- mation of individuals, the public has expressed a deep concern about their privacy. Privacy-preserving data mining is a study of eliminating privacy threats while, at the same time, preserving useful information in the released data for data mining. This dissertation investigates data utility and privacy of randomization-based mod- els in privacy preserving data mining for categorical data. For the analysis of data utility in randomization model, we first investigate the accuracy analysis for associ- ation rule mining in market basket data. Then we propose a general framework to conduct theoretical analysis on how the randomization process affects the accuracy of various measures adopted in categorical data analysis. We also examine data utility when randomization mechanisms are not provided to data miners to achieve better privacy. We investigate how various objective associ- ation measures between two variables may be affected by randomization. We then extend it to multiple variables by examining the feasibility of hierarchical loglinear modeling. Our results provide a reference to data miners about what they can do and what they can not do with certainty upon randomized data directly without the knowledge about the original distribution of data and distortion information. Data privacy and data utility are commonly considered as a pair of conflicting re- quirements in privacy preserving data mining applications. In this dissertation, we investigate privacy issues in randomization models. In particular, we focus on the attribute disclosure under linking attack in data publishing. We propose efficient so- lutions to determine optimal distortion parameters such that we can maximize utility preservation while still satisfying privacy requirements. We compare our randomiza- tion approach with l-diversity and anatomy in terms of utility preservation (under the same privacy requirements) from three aspects (reconstructed distributions, accuracy of answering queries, and preservation of correlations). Our empirical results show that randomization incurs significantly smaller utility loss

    ODIN: Obfuscation-based privacy-preserving consensus algorithm for Decentralized Information fusion in smart device Networks

    Get PDF
    The large spread of sensors and smart devices in urban infrastructures are motivating research in the area of the Internet of Things (IoT) to develop new services and improve citizens’ quality of life. Sensors and smart devices generate large amounts of measurement data from sensing the environment, which is used to enable services such as control of power consumption or traffic density. To deal with such a large amount of information and provide accurate measurements, service providers can adopt information fusion, which given the decentralized nature of urban deployments can be performed by means of consensus algorithms. These algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take decisions based on the outcome, without the need for the support of a central entity. However, the use of consensus algorithms raises several security concerns, especially when private or security critical information is involved in the computation. In this article we propose ODIN, a novel algorithm allowing information fusion over encrypted data. ODIN is a privacy-preserving extension of the popular consensus gossip algorithm, which prevents distributed agents from having direct access to the data while they iteratively reach consensus; agents cannot access even the final consensus value but can only retrieve partial information (e.g., a binary decision). ODIN uses efficient additive obfuscation and proxy re-encryption during the update steps and garbled circuits to make final decisions on the obfuscated consensus. We discuss the security of our proposal and show its practicability and efficiency on real-world resource-constrained devices, developing a prototype implementation for Raspberry Pi devices
    • …
    corecore