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The large spread of sensors and smart devices in urban infrastructures are motivating research in the

area of Internet of Thing (IoT), to develop new services and improve citizens’ quality of life. Sensors and

smart devices generate large amount of measurement data from sensing the environment, which is used to

enable services, such as control power consumption or tra�c density. To deal with such a large amount of

information, and provide accurate measurements, service providers can adopt information fusion, which, given

the decentralized nature of urban deployments, can be performed by means of consensus algorithms. These

algorithms allow distributed agents to (iteratively) compute linear functions on the exchanged data, and take

decisions based on the outcome, without the need for the support of a central entity. However, the use of

consensus algorithms raises several security concerns, especially when private or security critical information

are involved in the computation.

This paper proposes ODIN, a novel algorithm that allows information fusion over encrypted data. ODIN is

a privacy-preserving extension of the popular consensus gossip algorithm, that prevents distributed agents

have direct access to the data while they iteratively reach consensus; agents cannot access even the �nal

consensus value, but can only retrieve partial information, e.g., a binary decision. ODIN uses e�cient additive

obfuscation and proxy re-encryption during the update steps, and Garbled Circuits to take �nal decisions on

the obfuscated consensus. We discuss the security of our proposal, and show its practicability and e�ciency

on real-world resource constrained devices, developing a prototype implementation for Raspberry Pi devices.
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1 INTRODUCTION
Urban infrastructures are rich of sensors placed in devices, vehicles and buildings connected to the

Internet of Thing (IoT). With smart and forward-looking leadership, IoT has the potential to create

a revolution in city planning and management. By embracing the potential of IoT, governments

can improve service delivery, increase sustainability, and make their cities safer and more livable

places for all residents. As an example, sensors distributed in urban areas can be used to monitor

air and water pollution, or the energy consumption in city buildings and light infrastructures. Two

examples of deployment of urban sensor networks are Chicago’s Array of Things
1

and Dublin’s

City Watch
2
, which use sensors to monitor environmental information, make predictions about

vehicle and pedestrian congestion, and manage incidents. While single sensor measures have

limited interest and can be a�ected by sensor noise, data collection and fusion from many sources

(a.k.a. sensor fusion) has the potential to improve information accuracy, and enable more meaningful

statistics on the resulting data [29].

Sensor fusion can be performed either in centralized or distributed environments. In the former

case, a central server collects and elaborates the data provided by sensor, while in latter case,

agents (i.e., sensors) take full responsibility for fusing the data. In decentralized sensor fusion

protocols, every agent can be viewed as an intelligent asset with some degree of autonomy in

taking decisions [64]. A possible application example could be vehicle-to-vehicle communication
3
,

which is tested by the US Department of Transportation, and aims at enabling cars to avoid crashes,

ease tra�c congestion and improve the environment. Other examples include object or people

tracking, smart meter data fusion, etc. In modern paradigms of decentralized information fusion,

agents (sensors, or other smart devices in distributed IoT deployments) are usually interconnected

and communicate, via wireless [1]. These scenarios are characterized by a dynamic network

topology, and intermittent connectivity among devices. Therefore, distributed signal processing

algorithms performing data fusion must be robust to any changes in network topology. The

consensus paradigm [8, 14, 16–18, 23, 36, 51] �ts well with the decentralized and intermittent nature

of such networks, and allow distributed units to corroborate local observations (e.g., measurements),

with observations made by neighboring agents. In a consensus algorithm, agents exchange data and

update the locally computed statistics, to (asymptotically) reach the agreement about a common

value shared by all the agents, which represents the �nal statistic. In practice, during the average

consensus protocol, agents update their measures by computing the average between their measures

and the one provided by adjacent nodes. After several iterations, each node obtains a new measures,

“close” to the average of all network nodes’ measures. Despite its limited capability of average

estimator, consensus protocol is a building block that has demonstrated its utility in several urban

environment scenarios, such as coordination of groups of mobile agents [34], vehicle formation

[28, 55], tracking and data fusion [58], �ocking [50].

Unfortunately, even if many information are of public domain and the communication protocols

in the network can be considered secure (i.e., using transport layer security techniques), connected

IoT technologies could potentially open up private data to nefarious entities, such as hackers or

cyber criminals. For this reason, private information protected by privacy laws may not be shared

in their plain form to other agents involved in the computation, and sometimes neither in their

aggregated form. Furthermore, there are cases in which, even if the data itself does not need to

be protected, sensor owners can be interested to not reveal the original measures to protect some

characteristic of the sensor, such as its accuracy. To solve these problems, some privacy preserving

1
https://arrayofthings.github.io/

2
http://citywatch.ie/

3
https://www.nhtsa.gov/technology-innovation/vehicle-vehicle-communications
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ODIN 1:3

strategies must be applied to perform analysis, so that interaction is achieved by exchanging

encrypted or masked information between agents.

This paper considers a distributed IoT scenario in which agents cooperate, and run a distributed

consensus protocol, but at the same time do not want to reveal each other their own information,

for security reasons and privacy preservation (e.g., classi�ed information, or protection of sensor

characteristics). Similarly to other privacy preserving multi-party applications, such as data mining

[47], biometric matching [6, 11, 25], recommendation systems [24], and biomedical analysis [7], the

consensus protocol can be implemented in the encrypted domain [40] by using secure protocols.

In this way, the consensus on a common value is reached while each agent has access only to its

inputs, and to the �nal decision, obtained by evaluating the protocol on encrypted statistics. To

simply clarify this situation, assume that a pair of agents, say i and j , want to make a binary decision

{H0,H1} based on some functionality L() evaluated on their measures xi and x j , respectively.

Decision can be taken on the average of the statistics. However, both agents i and j do not want

to reveal each other their plain local data, and instead exchange them only in encrypted form

nL(xi, j )o (see Fig. 1). The extension of the above simple example to large distributed networks can

be implemented by relying on privacy preserving consensus algorithms.

JL(xj)K

xi

Binary

Decision

JL(xi)K

L(xi)+L(xj)

2
=
H1
≤
>
H0

thr

Encrypted Domain

xj

Fig. 1. Conceptual scheme of cooperation between agents i and j to solve a binary decision testing problem
in a privacy preserving se�ing. Agents can communicate with each other and exchange only encrypted data,
for instance an encrypted version of nL(xi, j )o, however at the same time they want to have access to the
binary decision based on both the observations xi and x j .

Contribution. In this paper, we present ODIN, a novel and e�cient solution that: (i) allows a

network of devices (agents) to achieve a consensus in a privacy-preserving way; and (ii) works also

in dynamic networks. Our solution involves additive blinding (sometimes referred as obfuscation

or masking) and proxy re-encryption for the iterative update steps, and garbled circuits for the

�nal decision step.

The core idea behind ODIN is that, during the computation, sensitive values provided to an agent

are always masked by random values chosen by another agent. At the end of each update step, each

of the two agents involved, knowing the random value, sends it to the other agent in an encrypted

form. In this way, by using proxy re-encryption protocols [5, 33], the latter can re-encrypt it (but not

access it) into a ciphertext that another node involved in the next consensus step can decrypt. To

the best of our knowledge, ODIN is the �rst protocol that uses obfuscation and proxy re-encryption

for the implementation of a secure multi party computation protocol.

ODIN is secure in the semi-honest model with non-colluding nodes. Every node in the network

can be interested in observing other agents information, but does not deviate from the protocol for

this purpose. Despite its simplicity, designing and evaluating the performance of protocols in the

semi- honest model is a �rst stepping stone towards protocols with stronger security guarantees

for IoT device coordination in a distributed and decentralized setting. Moreover we uderline that

, Vol. 1, No. 1, Article 1. Publication date: March 2017.
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the semi-honest model applies to existing relevant IoT use cases, such as in privacy-preserving

techniques for smart metering systems [22, 26].

We �nally underline that despite operating on blinded values, ODIN algorithm is able to reach

the same �nal binary decision of the equivalent plain gossip algorithm, without errors and without

disclosing the �nal consensus to the agents involved. Previous solutions, such as [15], are only

able to reach an approximated consensus or provide a public consensus from obfuscated inputs

under speci�c assumptions. The only error introduced by the protocol is due to the quantization

necessary to represent inputs as a ratio, that can be made as little as desired.

Related works. In the realm of distributed consensus, some privacy-preserving approaches have

been recently proposed. Many of them [15, 30, 49] propose solutions that protect the measures

in consensus networks by introducing in the �rst step a random noise that decreases during

the protocol so that a consensus close to the correct one is reached. Other works in privacy

preserving data fusion were addressed in [56, 57]. In these works, the authors use additive blinding

or secret sharing to estimate the position of one or more targets, by computing the average of the

measurements of multiple sensors. The �nal result is not a�ected by noise, but the aforementioned

works require that agents are connected through a well de�ned path starting and �nishing at each

agent, and passing through all the agents, as for instance in a ring network.

A �rst step towards a privacy preserving implementation of the consensus algorithm has been

proposed in [44], where authors approach the sensor fusion problem by using the popular iterative

gossip consensus protocol [14, 23] in the encrypted domain. In each step, measures from two

adjacent agents are updated by relying on an expensive homomorphic encryption protocol [52]

that, after any update step, outputs the state of each node encrypted with the public key of all the

adjacent nodes, permitting a node to continue the computation with any other neighbour. Such

solution presents two main concerns. First of all the computation and communication complexity

linearly depends on the number of adjacent nodes of the agents i and j involved in the computation.

This can be acceptable only in sparse scenarios, where each sensor has few neighbor nodes.

Analogously, the complexity of the protocol could be very high in dense networks, such as in urban

environments. Secondly the protocol can be applied only to static networks (application to dynamic

networks implies some changes that make the complexity for each update linear with the total

number of nodes, i.e., impractical in large urban networks).

2 PRELIMINARIES
This section presents the main cryptographic tools that are used in ODIN. We �rst introduce additive

blinding, a simple cryptographic protocol that is used in the update step. Then we present proxy

re-encryption, used to interface two following update steps where di�erent agents are involved.

Finally, we present Garbled Circuit, that we use in the �nal decision step.

2.1 Additive Blinding and Data Representation
The simplest way to protect data provided by a party to another one is through blinding (sometimes

referred to as obfuscation or masking). We say that a blinding y = ax +b preserves the meaning of a

functionality f (x) if a corresponding operation д(y) exists such that f (x) = α(a,b)д(y)+ β(a,b)x +
γ (a,b), where α , β, γ are arbitrary functions of a, b. The idea is that a party can evaluate a function

f ′ on a blinded value, so that the party that blinded the output can remove blinding from the output

of д.

In simple additive blinding, a user i masks his value x by adding a random value b and transmits

x + b to another party. The receiver is not able to obtain x , but whoever knows b can retrieve x . To

make this scheme really secure some assumptions must be made on the representation of x and

, Vol. 1, No. 1, Article 1. Publication date: March 2017.
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b. If the input x is a �oating point number, b cannot be generated uniformly in the set of all the

possible �oating point numbers, because their sum can cause the loss of many signi�cant digits of

x , when b � x . For this reason, it is preferable to represent each input value as an integer number

obtained by quantization, i.e., given an ampli�cation factor K (usually a power of 2), x is mapped

in the integer value x ′ = bK · xc. At this point additive blinding is performed by using integer

numbers. We underline that it is also possible to approximate a value to a close rational number

and then represent each value X as a ratio num/den between an integer numerator num and an

integer denominator den, which can be both represented in Zn . In this paper we both amplify input

values and represent them as a ratio where at the beginning den = 1.

To achieve perfect secrecy, additive blinding must be performed by using modular arithmetic, as

in a one-time pad. Assuming that x ′ ∈ Zn , additive blinding is secure if b is uniformly chosen in

Zn . However, for e�ciency reasons, given the bitlength ` necessary to represent any possible input

x ′ to the protocol, b is often chosen in Z
2
`+t according to a uniform distribution [10], where t is a

number of bits su�ciently large to statistically guarantee low information leakage (usually t = 80).

Additive blinding is commonly used in hybrid protocols, as described in [38], to permit e�cient

evaluation of complex functions for which solutions based on a single cryptographic tool would be

ine�cient (or even impossible). Being addition e�cient in both secure multi-party computation

protocols and homomorphic protocols, the interface between di�erent cryptographic protocols

is performed by using additive blinding. Random values are added by a cryptographic protocol,

the obfuscated value is then disclosed, and used as input to the following cryptographic protocol

that will remove the obfuscation. Several hybrid protocols working on homomorphic encryption

and garbled circuits have been proposed for privacy preserving biometric authentication [6, 11],

biomedical applications [7, 43], etc. Similarly, the implementation of a secure multi-party consensus

gossip algorithm in [44] relies on homomorphic encryption and garbled circuit.

2.2 Proxy Re-encryption
Proxy re-encryption allows a semi-trusted proxy to convert a ciphertext, computed under the public

key of a party, into a ciphertext that can be opened by using the secret key of another party, without

seeing the underlying plaintext. Proxy re-encryption has many applications (secure network �le

storage [5, 69], email forwarding [4], Digital Right Management [61] or secure mailing lists [37]. In

this paper we use proxy re-encryption to allow a node of the consensus network (the recipient) to

decrypt values encrypted under the public key of another node (the sender) so that: (i) the node in

the middle (the proxy) cannot decrypt the message; and (ii) the sender does not know who is the

recipient, which is chosen by the proxy.

A proxy re-encryption scheme is a tuple of (possibly probabilistic) polynomial time algorithms

(KeyGen, Enc, Dec, ReEncGen, ReEnc), where KeyGen, Enc, Dec are standard key generation, encryp-

tion, and decryption algorithms for the underlying cryptosystem, ReEncGen is the algorithm for the

generation of the re-encryption keys, and ReEnc converts a ciphertext for a party into a ciphertext

for another party.

Among many interesting proxy re-encryption protocols such as [19, 20, 46] (and many others),

we focus on the one proposed in [5], because: (1) it guarantees indistinguishability under chosen
ciphertext attacks (CPA), which presumes that an attacker can obtain the ciphertexts for arbitrary

plaintexts without gaining any advantage (guaranteed by the probabilistic component of the

encryption scheme); (2) is unidirectional, i.e., the delegation of a user A to another user B, does not

allow re-encryption from B to A; (3) is non-transitive, the proxy cannot construct a re-encryption

key πA→C from the two keys πA→B and πB→C ; (4) is non-interactive, i.e., a user A cannot construct

a re-encryption key πA→B without the participation of B or of the Private Key Generator; and (5) is

, Vol. 1, No. 1, Article 1. Publication date: March 2017.
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space optimal, i.e., additional communication costs are not needed in order to support re-encryption

(the scheme does not cause ciphertext expansion upon re-encryption and the size of B’s secret

storage remain constant, regardless of how many delegations he accepts).

In order to be self-contained in the description of our protocol, we now brie�y recall the con-

struction in [5]. The scheme operates over two groups G1, G2 of prime order q with a bilinear

map e : G1 × G1 → G2 [13, 35]. The system parameters are random generators д ∈ G1 and

Z = e(д,д) ∈ G2. The scheme is de�ned as follows:

Key Generation (KeyGen). The algorithm outputs a key pair (pkA, skA) for a user A of the form:

pkA = (Za1 ,дa2 ) and skA = (a1,a2);
Re-encryption key genaration (ReEncGen). The algorithm permits user A to generate a re-

encryption key πA→B for a user B, as πA→B ← ReEncGen(pkA, pkB ) = (дb2 )a1 = дa1b2 ∈ G1;

Encryption (Enc1, Enc2). To encrypt a message m ∈ G2 under pkA in such a way that only the

holder of skA can decrypt it, the algorithm outputs nmoA = Enc1(m, pkA) = (Za1k ,mZk )
(First Level Encryption), where k is a random value; to encrypt a message m ∈ G2 under

pkA in such a way it can be decrypted by A and her delegatees (after having performed

proxy re-encryption), the algorithm outputs [m]A = Enc1(m, pkA) = (дk ,mZa1k ) (Second
Level Encryption);

Re-encryption (ReEnc). Anyone can change a second-level ciphertext for A into a �rst-level

ciphertext for B by evaluating nmoB = ReEnc([m]A,πA→B ) = (Zb2k ′,mZk ′), where Zb2k ′ =

Zb2a1k = e(дk ,πA→B ) andmZk ′ =mZa1k
(the second part of [m]a );

Decryption (Dec). A �rst level ciphertext nmoA = (α , β) can be decrypted with the secret key

ai ∈ skA by computing m = Dec1(nmoA, skA) = β/α1/ai
, where i = 1 if the ciphertext is

obtained by �rst level encryption, while i = 2 if the ciphertext is obtained by re-encryption;

a second level ciphertext [m]A = (α , β) is decrypted with the secret key a1 ∈ skA, by

computingm = Dec2([m]A, skA) = β/e(α ,д)a1 .

2.3 Garbled Circuit
First proposed in the seminal work of Yao [66, 67], Garbled Circuit (GC) protocols allow two parties

to jointly evaluate any boolean circuit, on their respective inputs, while protecting them from

each other. Communication and computational overhead of such protocols depend on input bit

length and circuit size. As outlined in [38, 42], a GC protocol comprises three sub-routines: circuit

garbling, data exchange, and evaluation (see Fig. 2).

Fig. 2. Garbled Circuits scheme.

At a high level, a GC protocol works as follows. First, a party, say Bob, creates a boolean circuit,

which represents the �nal function to be (securely) computed. Then, Bob “garbles” gates and wires

composing the circuit, and transmits the garbled circuit, together with the secrets relative to his

, Vol. 1, No. 1, Article 1. Publication date: March 2017.
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inputs, to another party, say Alice. The latter obtains secrets associated to her inputs from Bob

through Oblivious Transfer (OT) protocol (OT) [27] and evaluates the garbled circuit to obtain the

�nal result.

3 SYSTEMMODEL AND ASSUMPTIONS
We consider a network of devices, which we formally describe as an undirected graph G, whose

vertices are the agents (or nodes), and edges are the available communication links, hence each

node i in G can communicate only with nodes in the set of his neighbours Ni ⊆ [1, 2, . . . ,N ].
Furthermore, we denote the adjacency matrix associated to the network graph as A, with {A}i j = 1

if j ∈ Ni , and {A}i j = 0 otherwise. We assume that j ∈ Ni if and only if i ∈ Nj ; as a result, A is

symmetric, i.e., A = AT
. Note that, in dynamic networks, the set of neighbours Ni (τ ) of a generic

agent i may change over time, and therefore also the adjacency matrix A(τ ). In order to simplify the

exposition, in what follows we consider a static network setting. However the protocol described

in Section 4 can be applied to dynamic networks.

Using the adjacency matrix, we de�ne a random averaging consensus matrix W(τ ), at time

τ ; agents update their state y(τ ), based on their previous state y(τ − 1), and on W(τ ), according

to the iterative rule: y(τ ) = W(τ )y(τ − 1), where the initial state is given by the local measures

y(0) = [L(x1),L(x2), . . . ,L(xN )]T .

The consensus procedure has interesting properties. In particular, under mild conditions (e.g.,

low connectivity of the network graph), the convergence is guaranteed to the average of the

initial values, i.e. limτ→inf yi (τ ) = 1

N
∑N

i=1 L(xi ) ∀i = 1, . . . ,N (see details in [14, 51]). After a

given number of steps T , each agent is interested in computing the binary statistical decision

Di (T ) ∈ {H0,H1} given by the test yi (T )R
H1

H0

thri , where thri is a threshold chosen by agent i .

For simplicity this work focuses on the randomized gossip algorithm [14, 23] where at each

consensus step τ a pair of adjacent nodes, say agents i and j, is randomly selected according to

the network graph to perform an update. Fig. 3 shows a possible sequence of update steps in a

consensus networks. While this solution is unpractical because it needs a third party supervising

the choice of communicating agents, it can be used to simply model real scenarios where each

agent, after having �nished an update step, wait for a period and then contact an adjacent agent for

the next update, as shown in Fig. 4. If two updates between two couples of distinct agents are run in

parallel, they can be seen as performed in sequence in the model. In order for a real implementation

to succeed, two agents must not start an update if at least one of the two is still involved in another

update. Moreover, after that agents i and j have performed an update, we avoid that they start

another useless update together until one of them has updated his status with a third agent. Real

strategies related to the waiting time between two updates of the same agent and the choice of the

node to communicate with are not in the scope of this paper.

The agents involved in step τ , exchange their information and update their states by the averaging

rule [14]

yi (τ ) = yj (τ ) =
yi (τ − 1) + yj (τ − 1)

2

, (1)

while the other agents hold their previous value yl (τ ) = yl (τ − 1),∀l , i, j.
Note that, as outlined in Section 2.1, we work with integer numbers. We represent each agent

state yi as a ratio between a numerator ni and a denominator di . In this way, we avoid division,

which would cause a loss of information. Hence, given yi (τ −1) = ni (τ −1)/di (τ −1) and yj (τ −1) =
nj (τ − 1)/dj (τ − 1) and computed the least common multiplier lcm(τ − 1) between di (τ − 1) and

, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:8 M. Ambrosin et al.

Fig. 3. Example of consensus network and possible first update steps.

Fig. 4. Sequence of operations performed by an agent to implement the consensus and get the final decision.

dj (τ − 1), agents update their state by computing:

ni (τ ) = nj (τ ) = ni (τ − 1)
lcm(τ − 1)
di (τ − 1)

+ nj (τ − 1)
lcm(τ − 1)
dj (τ − 1)

,

di (τ ) = dj (τ ) = 2 lcm(τ − 1). (2)

We underline that the numerator carries information related to the inputs, but the denominator

only depends on the number of steps performed; therefore it is not necessary to keep it secret.

Moreover, since di (0) = 1 ∀i , then lcm(0) = 1 and di (1) = 2. During the computation, one can easily

infer that di (τ − 1) are powers of 2 ∀i,τ 4
, and then as a consequence each least common multiplier

can be computed as

lcm(τ − 1) = max{di (τ − 1),dj (τ − 1)}. (3)

In the �nal step T , each agent i evaluates the comparison with his threshold thri , with the help

of an adjacent agent. The choice of when performing the �nal step (after a given interval from the

protocol starts, a given number of updates, etc.) is out of the scope of this paper.

Security Model. Throughout the paper, we consider non-colluding agents operating in the semi-

honest security model. In practice, all the parties involved follow the protocol without deviating

from it, but try to infer as much as possible from their observations, without interacting with

other agents, except for the operations described in the protocol. We consider protection against

external (network) adversaries out of the scope of this work. We do not consider attacks such as

message manipulation, or fake message injection, which target message integrity and authenticity.

However, each device could make use of shared or pairwise keys and apply signatures or message

authentication codes (e.g., HMAC), in order to protect against such attacks.

4 ODIN: OUR PRIVACY-PRESERVING CONSENSUS PROTOCOL
In what follows, we present the details of ODIN, our novel solution for privacy-preserving de-

centralized consensus. Before proceeding with the description of our proposal, we highlight that

4
The protocol can be optimized by using the logarithm of the denominators, but to make the paper more readable, we avoid

this optimization.

, Vol. 1, No. 1, Article 1. Publication date: March 2017.
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ODIN presents a completely innovative algorithm w.r.t. [44], which shares with ODIN only system

model and protocol goals. In fact ODIN replaces homomorphic encryption with simple additive

blinding, reducing the complexity of the protocol operations, but still guaranteeing that nodes do

not have access to any plain numerators (except their own inputs at τ = 0). Moreover, by using

proxy re-encryption, agents are able to operate in further steps with other nodes with constant

communication and computation complexity, as we show in Section 5.2.

ODIN comprises three main phases: a setup phase (Section 4.1), which has the purpose of

generating all the parameters to con�gure the consensus network; an update phase (Section 4.2),

which involves the computation of multiple status update steps between pair of agents in the

network; and a decision phase (Section 4.3), which allows each agent in the network to reach a

decision, in a privacy preserving way.

4.1 Setup phase
We assume each node i in the network owns a proxy re-encryption key pair pki , ski , public and

secret, respectively. Each agent propagates its public key, and other public keys it received, together

with some additional information identifying the owner node, to all the adjacent nodes, until each

node gets the public keys of all the nodes in the network. Once obtained all the public keys, each

node i generates all the re-encryption keys πi→j ∀j ∈ N , j , i and distributes to any adjacent node

j the re-encryption keys πi→k ∀k ∈ Nj ,k , i . In a dynamic network, agent i provides re-encryption

keys to any other node in the network to each neighbour, and shares re-encryption keys through

the network to non adjacent nodes, encrypted with the public keys of the recipients. Whether a

new agent joins the network, the whole networks needs to be updated, by sharing his public key

and generating and distributing all the re-encryption keys to and from him.

The procedure can be simpli�ed if a semi-honest third party participates to the setup phase,

taking care to the distribution of public and re-encryption keys. In the case a trusted party is

available, he can generates all the public, secret and re-encryption keys and then distribute them to

the network.

4.2 Update phase
We now describe the protocol implementing a generic update phase, shown in Fig. 5, focusing on a

step τ involving two agents i and j. We assume that at time τ − 1 i and j performed their previous

status updates with nodes k and l respectively.

At the beginning of step τ , agent i owns ni (τ − 1) + sk (τ − 1), i.e. his numerator obfuscated by a

random value
5

generated by node k , the denominator di (τ − 1) and the encryption [sk (τ − 1)]k of

the random value chosen by k under the public key pkk . Similarly agent j owns nj (τ − 1)+ sl (τ − 1),
[sl (τ − 1)]l and dj (τ − 1). At the end of the step agent i obtains ni (τ ) + sj (τ ), [sj (τ )]j and di (τ ),
while agent j obtains nj (τ ) + si (τ ), [si (τ )]i and dj (τ ). Any other agent h ∀h ∈ N , h , i, j simply

sets the new status equal to the previous one. Note that, in the case agent i (or similarly j) has not

yet updated his status, he inputs ni (τ − 1) = yi (0) and di (τ − 1) = 1. The following protocol can be

simply adapted by considering the masking value sk (τ − 1) = 0. We describe the activities carried

out by agent i (agent j follows the same protocol in parallel).

Part 1 . Agent i generates two new random i.i.d. values ri (τ ) and si (τ ) in Zn where n must be

equal or lower than the order q of the re-encryption scheme. The value ri (τ ) is used to add an

additional mask to the numerator, obtaining ni (τ − 1) + sk (τ − 1) + ri (τ ) mod n. The mask added

by agent k is re-encrypted as: nsk (τ − 1)oj ← ReEnc([sk (τ − 1)]k ,πk→j ), so that agent j can be able

to decrypt it.

5
We assume that all the random values are independent and identically distributed (i.i.d.).
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At this point agent i transmits ni (τ − 1) + sk (τ − 1) + ri (τ ), nsk (τ − 1)oj , di (τ − 1) to agent j and

receives nj (τ − 1) + sl (τ − 1) + r j (τ ), nsl (τ − 1)oi , dj (τ − 1) from j.
Part 2 . Agent i decrypts the �rst-level ciphertext nsl (τ −1)oi by using his secret key and removes

the value by the numerator received, obtaining nj (τ − 1) + r j (τ ) mod n, yet obfuscated by the

random value chosen by agent j . Then it computes the least common multiplier lcm(τ − 1) between

his denominator and the one received by agent j. By reminding that denominators are always

powers of 2, the least common denominator is computed as in Eq. (3) and is used to update the

numerator and denominator. Considering that ni (τ ) = nj (τ ) and that agent i cannot remove the

mask currently applied to the numerator, he computes the numerator for agent j , masked by a term

ob fj (τ ) that agent j can remove. Moreover agent i adds the random value si (τ ), so that at the end

1

Agent i Agent j

Input: ni(τ − 1) + sk(τ − 1), [sk(τ − 1)]k, di(τ − 1) Input: nj(τ − 1) + sl(τ − 1), [sl (τ − 1)]l, dj(τ − 1)

ri(τ), si(τ)←R ZN ; rj(τ), sj(τ)←R ZN ;

Compute ni(τ − 1) + sk(τ − 1) + ri(τ); Compute nj(τ − 1) + sl (τ − 1) + rj(τ);

J sk(τ − 1) Kj ← ReEnc([sk(τ − 1)]k, πk→j); J sl (τ − 1) Ki ← ReEnc([sl (τ − 1)]l, πl→i);

ni(τ − 1) + sk(τ − 1) + ri(τ), J sk(τ − 1) Kj , di(τ − 1)

nj(τ − 1) + sl (τ − 1) + rj(τ), J sl (τ − 1) Ki, dj(τ − 1)

sl (τ − 1)← Dec(J sl (τ − 1) Ki, ppk i); sk(τ − 1)← Dec(J sk(τ − 1) Kj , ppkj);
Compute nj(τ − 1) + rj(τ); Compute ni(τ − 1) + ri(τ);

lcm(τ − 1)← max(di(τ − 1), dj(τ − 1)); lcm(τ − 1)← max(di(τ − 1), dj(τ − 1));

di(τ)← 2lcm(τ − 1); dj(τ)← 2lcm(τ − 1);

Compute nj(τ) + obfj(τ) + si(τ); // as in Eq. (5) Compute ni(τ) + obfi(τ) + sj(τ); // as in Eq. (5)

obfj(τ) = sk(τ − 1)
lcm(τ−1)
di(τ−1)

+ rj(τ)
lcm(τ−1)
dj(τ−1)

; obfi(τ) = sl (τ − 1)
lcm(τ−1)
dj(τ−1)

+ ri(τ)
lcm(τ−1)
di(τ−1)

;

[si(τ)]i ← Enc2(si(τ), ppk i); [sj(τ)]j ← Enc2(sj(τ), ppkj);

nj(τ) + obfj(τ) + si(τ), [si(τ)]i

ni(τ) + obfi(τ) + sj(τ), [sj(τ)]j

Compute obfi(τ);

Compute ni(τ) + sj(τ);

Compute obfj(τ);

Compute nj(τ) + si(τ);

Output: ni(τ) + sj(τ), [sj(τ)]j , di(τ); Output: nj(τ) + si(τ − 1), [si(τ)]i, dj(τ);

3

2

Fig. 5. Step τ of ODIN’s update phase involving agents i and j. We assume i and j previously updated their
status with two di�erent agents k and l , respectively. All the operations are performed in ZN . Outputs of
other agents at step τ are equal to their own inputs.
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agent j is not able to obtain the plain value of nj (τ ):

nj (τ ) + ob fj (τ ) + si (τ ) =

= (ni (τ − 1) + sk (τ − 1))
lcm(τ − 1)
di (τ − 1)

+ (nj (τ − 1) + r j (τ ))
lcm(τ − 1)
dj (τ − 1)

+ si (τ ) mod n

= ni (τ − 1)
lcm(τ − 1)
di (τ − 1)

+ nj (τ − 1)
lcm(τ − 1)
dj (τ − 1)︸                                                   ︷︷                                                   ︸

nj (τ )

+ sk (τ − 1)
lcm(τ − 1)
di (τ − 1)

+ r j (τ )
lcm(τ − 1)
dj (τ − 1)︸                                             ︷︷                                             ︸

obfj (τ )

+si (τ ) mod n, (4)

where we can easily observe that
lcm(τ−1)
di (τ−1) and

lcm(τ−1)
di (τ−1) are integer numbers (powers of 2 ), while

ob fj (τ ) is composed by terms that agents j knows. At this point agent i computes the denominator

di (τ ) as in Eq. (2) and computes the second level encryption of si (τ )with his public key, as [si (τ )]i =
Enc2(si (τ ), pki ), allowing future re-encryption.

The obfuscated numerator nj (τ ) + ob fj (τ ) + si (τ ) and the encrypted random value [si (τ )]i are

transmitted to agent j, while agent i receives ni (τ ) + ob fi (τ ) + sj (τ ) and [sj (τ )]j from j.

Part 3 . Agent i is able to compute ob fi (τ ) = sl (τ −1)
lcm(τ−1)
dj (τ−1) +ri (τ )

lcm(τ−1)
di (τ−1) mod n and remove

it from the received obfuscated numerator, obtaining ni (τ ) + sj (τ ) mod n.

Variant with data size reduction. Being the measures yi (0) mapped in the couple ni (0),di (0),
where the �rst one is represented with ` bits and di (0) = 1, and considering that after each step the

ratio ni (τ )/di (τ ) represents an estimation of the average of all the sensors’ measures, then ni (τ ) can

be represented by using a number of bits equal to ` plus log
2
di (τ ) = log

2
lcm(τ − 1) + 1 ≤ τ . If the

protocol runs for a big number of steps, there is the risk that ni (τ ) exceeds the modulus n. Therefore,

it is necessary to reduce the numerator bitsize by dividing it (and also the denominator) by a given

factor 2
k

when the bitlength exceeds a previous established ` + `1 (a discussion is provided forward

in the section). This can be easily performed by modifying protocol of step τ .

After computing di (τ ) = dj (τ ), if log
2
di (τ ) = `1, agents i and j decide to perform the data size

reduction. For simplicity we describe only the operations performed by agent i , agent j follows the

same protocol in parallel. Given the upperbound of the numerator max(ni (τ )) = max(nj (τ )) = 2
`+`1

and given the statistical security parameter t (usually t = 80) used to guarantee statistic security,

agents i randomly selects si (τ ) in Z
2
`+`

1
+t−k , instead that in Zn , and right appends k zero bits to

it, obtaining s ′i (τ ) ← si (τ )2k ∈ Z2`+`1+t . At this point agent i computes nj (τ ) + ob fj (τ ) + s ′i (τ )
and sends it to agent j together with the encryption of the random value [si (τ )]i , while receives

ni (τ ) + ob fi (τ ) + s ′j (τ ) and [sj (τ )]j from agent j . Agents i computes ob fi (τ ) as in Eq. (4), removes it

from the numerator and divides it by 2
k

(discards the k least signi�cant bits) obtaining

b
ni (τ ) + s ′j (τ )

2
k

c = bni (τ )
2
k
c + sj (τ ), (5)

i.e., the updated numerator, blinded exactly by the value sj (τ ), received encrypted.

The protocol works correctly whether ni (τ )+s ′j (τ ) < n (it does not exceed the modulus n), so that

the protocol performs an integer division, not a modulus division. Given that max(ni (τ )) = 2
`+`1

and s ′i (τ ) ∈ Z2`+`1+t , their sum representation needs ` + `1 + t + 1 bits and `1 must be chosen so

that `1 < blog2 nc − ` − t − 1.
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As stated above, the modi�ed update step of ODIN relies on statistical secrecy, where one party

can deduce the value ni (τ ) with probability 2
−t

. Moreover the k least signi�cant bits (discarded

by the division) are revealed to agents. If higher security is desired, it is possible to use the less

e�cient protocols described in [41, 63], involving homomorphic encryption or GCs.

4.3 Decision phase
The �nal goal of an agent i is to discover whether the value obtained by the consensus protocol

is greater than a given threshold thri. Let suppose that at step T agent i has just updated his

state together with agent j and is interested to evaluate ni (T )/di (T ) R thri. For simplicity, in

what follows we consider < (note that, this does not a�ect the overall protocol complexity). Since

agent i knows di (T ) and ni (T ) + sj (T ), he can evaluate together with agent j a GC implementing(
(ni (T )+sj (T ))−sj (T ) mod n

)
< thri ∗di (T )where agent i inputsni (T )+sj (T ) and thri ∗di (T ), while

agent j inputs sj (T ). The circuit �rst removes the obfuscation sj (T ), then compares the numerator

with thri ∗ di (T ). If also agent j is interested to evaluate the comparison with his threshold thr j , it

is not necessary that a second circuit is evaluated, but the above GC can be modi�ed so that it also

evaluates ni (T ) < thr j ∗ dj (T ), where thr j ∗ dj (T ) is input by agent j.
Despite its simplicity, the above circuit have some associated complexity, because the evaluation

of the modular di�erence with GCs is expensive. Its implementation requires a subtractor that

can return a negative result, to which n is added if the di�erence is negative. The circuit is hence

composed by a subtractor implementing the �rst operation, an adder that adds n and �nally a mul-

tiplexer that selects among their results, according the carry bit of the �rst operation. Considering

that all the operations involve values represented with log
2
n bits, and that adders, subtractors and

multiplexers require a non-xor gate for each input bit [39], we can easily observe that we would

need to evaluate 3 log
2
n non-XOR gates. However, to make the circuit e�cient, it is su�cient that

during the previous update step, agent j generates sj (T ) in Z
2
`+log

2
di (T )+t instead of in Zn , relying on

statistical security. In such a way ni (T ) + sj (T ) < n and GC needs only an integer subtractor that

removes the obfuscation with only `+ log
2
di (T ) non-XOR gates. The �nal comparison is computed

among two values, each of them represented with ` + log
2
di (T ) bits.

5 ANALYSIS
We now brie�y discuss convergence (Section 5.1), complexity (Section 5.2), and security (Section 5.3)

of ODIN.

5.1 Convergence
A commonly accepted choice of T can be based on the concept of ϵ-averaging time [14], i.e. the

earliest gossip time in which the state vector y(τ ) is ϵ away from the normalized true average with

probability greater than 1− ϵ . A su�ciently small ϵ , which guarantees that all agents take the same

decision with high probability, requires an average time T (ϵ) ≤ 3 log ϵ−1

log λ2(EW)−1 , in terms of update

steps, where E [W] is the expected value operator of randomly selected averaging matricesW (t)
and λ2(EW) is its second largest eigenvalue.

As demonstrated in [23], the topology of the network in�uences the consensus convergence,

indeed the matrixE [W] is completely speci�ed by the network topology and the consensus protocol.

Given that the average time needed for the convergence does not depend on the starting values

provided by nodes, it is possible to estimate when the nodes have reached the consensus even

without observing the exchanged messages as in ODIN algorithm. We further stress that ODIN only

adds a privacy layer on top of the gossip protocol, and does not interfere with the properties of the

consensus algorithm. For e�ciency reasons, a wide part of the consensus literature is focused on
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how the consensus protocol (choice of consensus matrices) and the network topology can speedup

the convergence. For instance, in [14] λ2(EW) is minimized subject to the topology and the pairwise

nature of the consensus protocol.

5.2 Complexity analysis
In what follows, we discuss computational and communication complexity of the update step of

ODIN we introduced in Section 4.2, focusing on a generic step τ , and of the �nal decision phase

introduced in Section 4.3.

Step τ complexity. Following step τ description in Section 4, we observe that agent i performs

a modular addition to add ri (τ ) to the numerator; performs a proxy re-encryption on the value

[sk (τ − 1)]k ; transmits the masked numerator (dlog
2
ne bits), the denominator (log

2
di (τ − 1) <

dlog
2
ne bits) and 1 ciphertext to j , while receives masked ciphertexts, denominator and 1 ciphertext

from him, with similar communication complexity; then he performs �rst-level decryption of the

received ciphertext by using PrKi ; removes the obtained masked value with a modular subtraction

and then evaluates eq. (4) that requires a modular product (one or both
lcm(τ−1)
di (τ−1) and

lcm(τ−1)
dj (τ−1) are

equal to 1) and 2 modular additions; encrypts si (τ ) with its public key PuKi ; transmits 1 ciphertexts

and the masked numerator (dlog
2
ne bits) to j while receive 1 ciphertexts and the masked numerator

from j; he computes ob fi (τ ) with a modular product and a modular addition; and �nally removes it

from the masked numerator with another modular addition.

In total the agent i (and also agent j) performs 2 modular products, 6 modular additions, 1

re-encryption, 1 �rst level encryption and 1 second level encryption. The complexity of second

level encryption and �rst level decryption in [5] mainly depends on 2 modular exponentiations,

and 1 modular exponentiation, respectively, while re-encryption requires a pairing operation. From

a communication point of view, the two agents involved in the computation in step k transmit

4 ciphertexts, 4 modular numbers and 2 integer numbers with variable size in 2 communication

rounds. Ciphertexts are composed by 2 messages of prime order q; practical implementations of

bilinear maps use elliptic curves forG1, and elements in Zq2 forG2, hence ciphertext representation

needs 4dlog
2
qe bits.

The complexity of step τ with data size reduction is really similar, because it needs only 2 addi-

tional integer divisions for each agent. However they have negligible complexity, since performed

discarding the least signi�cant k bits. Step τ complexities are summarized in Table 1, where modular

addition (having negligible complexity respect the other operation) is overlooked.

Decision step complexity. The complexity of ODIN’s �nal decision step, mainly depends on the

use of a GC, which in turn depends on the number of its non-XOR gates composing the circuit.

Each non-XOR gate has an associated garbled table, whose garbling and evaluation are performed

by using 3 and 1 Hash functions, respectively (4 for each non-XOR gate in total) [38]. Garbled tables

have size 3t bits each, where t is a security parameter (usually t = 80 bits) and are transmitted

from the garbler to the evaluator. XOR gates have negligible computational and communication

complexity. Secrets associated to the garbler’s input bits (t bits each) are transmitted from the

garbler to the evaluator, after having associated them to the input bits. Evaluator secret transmission

involves Oblivious Transfer that associates the input bits to secrets chosen by the circuit garbler.

Considering that OT can be precomputed [9], many OT’s can be evaluated o�-line on random

values (regardless of the actual values used during the circuit evaluation) and resulting in a lower

on-line communication complexity, only ∼ 2t bits for each input bit. O�ine OT can be performed

before the protocol starts or while two adjacent nodes waits to perform next updat step. Therefore

the complexity of this “o�ine” calculation is not considered here.

, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:14 M. Ambrosin et al.

Table 1. Complexity of each step for all the nodes involved.

Step
Computational complexity Communication complexity

Modular Modular Bilinear
Hash Bits Rounds

Expo Prod Map

τ 6 4 2 0 < 4 × 4 dlog
2
q e + 6 dlog

2
n e 2

Final 0 0 0 12(` + dlog
2
d (T )e) 15(` + dlog

2
d (T )e)t 2

We assume that in the �nal step, agents i and j are evaluating together the GC and that both

of them are interested to obtain the result of the comparison between the numerator and their

respective thresholds. Both of two inputs values are represented with ` + dlog
2
d(T )e < log

2
n bits

(only the least `+ dlog
2
d(T )e bits of ni (T )+sj (T ) and sj (T ) are necessary to remove the obfuscation,

in the worst case dlog
2
ne bits). Hence the association of the evaluator (let suppose agent i) inputs

to secret values through OT requires the transmission of 2(` + dlog
2
d(T )e)(2t) bits, while the

garbler (let suppose agent j) transmits the secrets associated to its input, i.e. 2(` + dlog
2
d(T )e)t

bits. The circuit is composed by a subtracter and two comparison circuit, both of them having

` + dlog
2
d(T )e non-XOR gates, hence 3(` + dlog

2
d(T )e)3t bits are transmitted for the circuit and

4 × 3(` + dlog
2
d(T )e) hash functions are evaluated in total. Complexities of the ODIN’s �nal step

are summarized in Table 1.

Note that, the overall complexity of ODIN is signi�cantly less than the one in [44], which requires

2(|Ni | + |Nj |) + 8 modular exponentiations, and (|Ni | + |Nj | + 2) homomorphic ciphertexts to be

transmitted, where Ni (resp. Nj ) is the number of nodes adjacent to agent i (resp. j). This makes

ODIN really e�cient, especially because its computational complexity is independent from the
number of adjacent nodes (a real bottleneck in dense networks), and is not a�ected by the dynamicity
of the network. On the other hand, however, the space complexity of ODIN is slightly bigger than

the one in [44], due to the need for each agent to store not only the N public keys of all the

nodes, but also the re-encryption keys between other nodes, i.e. (N − 1)(N − 2) re-encryption

keys. However, memory space can be provided at low cost, and this does not a�ect the power

consumption. Firthermore, space complexity can be reduced in static networks, by storing each

agent only the re-encryption keys among adjacent nodes.

5.3 Security discussion
Before discussing the security of ODIN, we brie�y recall the security of its building blocks:

Proxy re-encryption: The security of the proxy re-encryption scheme in [5] relies on an extension

of the Decisional Bilinear Di�e-Hellman (DBDH) assumption [13].

Garbled Circuit: Standard GC construction and execution using a secure OT protocol [9], are

secure in the semi-honest model, as demonstrated in the multiple existing constructions and proofs

in the literature (e.g., [48].

Additive blinding:Additive blinding is secure in an information-theoretical sense [10]. The masked

message y = x + r (i.e., the ciphertext) would provide no information about the original message x
to a cryptanalyst with in�nite computational power, when the mutual information [21] between

ciphertext and plaintext is I (x ;y) = 0 [59]. When our protocol performs modular operations in

Zn and any r is i.i.d. in Zn , additive blinding implements the Vernam system (also named one-

time pad) [62], which guarantees perfect secrecy. Knowing that x ∈ [0,Mx ], if additive blinding

is performed choosing r independently and uniformly distributed in the interval [0,Mr ], with

Mx +Mr < n, a statistical blinding y = x + r , where has mutual information I (X ;Y ) = Mx
2Mr

log e +

o( 1

Mr
) [10]. Hence if Mx = 2

`
and Mr = 2

`+t
, I (X ;Y ) ∼ 2

−t
.
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In ODIN scenario, a (non-colluding) p.p.t. adversaryA, in the semi-honest model, has the goal of

disclosing his input and output values, and the ones of other nodes he interacts with. We formalize

this goal as a security experiment ExpA between the adversary agent A, the current (honest)

agent j interacting with A, and the previous agent k who interacted with A. In this experiment,

A interacts with j usign ODIN (Section 4), and, after a polinomial number of steps, outputs one

or more of the values < ŝk (τ − 1), ŝj (τ ), r̂ j (τ ) >, that can use to infer some input/output of the

protocols.

We de�ne the notion of security for a privacy-preserving consensus algorithm as:

De�nition 5.1 (Security of a privacy-preserving consensus algorithm). A privacy-preserving con-

sensus algorithm is said to be secure in the semi-honest model, and in presence of a non colluding

p.p.t adversary, if P[ŝk (τ −1) = sk (τ −1) | ExpA(1`) = s ′k (τ −1)], P[ŝj (τ ) = sj (τ ) | ExpA(1
`) = ŝj (τ )]

and P[r̂ j (τ ) = r j (τ ) | ExpA(1`) = r̂ j (τ )], are negligible in ` = f (`q , `n , `t ), where f is polinomial in

`q , `n , and `t .

Theorem 5.2. The privacy-preserving consensus algorithm construction of the protocol in Section 4
is secure according to De�nition 5.1, if the adopted proxy re-encryption, garbled circuit, and additive
blinding building blocks are secure.

(Sketch) of Theorem 5.2. We start our proof sketch starting from the update phase of ODIN

(Section 4.2), focusing on one update step. In this case, the goal of a (non colluding) p.p.t. adversary

agentA = i is to disclose the values ni (τ − 1) = nk (τ − 1), nj (τ − 1) or ni (τ ) = nj (τ ). In order to do

so, an adversary i that interacts with another (honest) agent j, must either obtain sk (τ − 1), r j (τ )
or sj (τ ). To obtain sk (τ − 1) (resp. sj (τ )), i can only try to: (1) decrypt the encrypted input value

[sk (τ − 1)]k (resp. [sk (τ )]j ); (2) re-encrypt [sk (τ − 1)]k (resp. [sk (τ )]j ) so that he can decrypt it using

ski ; or (3) infer sk (τ − 1) (resp. sj (τ ) or r j (τ )) from the observed messages.

To be able to achieve (1), excluding the possibility for i to obtain the secret key skk of agent k
(resp. skj ), given the non-colluding nodes assumption, i could only attack the proxy re-encryption

scheme as follows: i selects several values x in the set of values admissible values for ni (τ − 1) (resp.

ni (τ )), and computes the encryption of (ni (τ − 1) + sk (τ − 1)) − x (resp. (ni (τ ) + sj (τ )) − x ); then, i
checks whether the result is equal to the given input value [sk (τ − 1)]k (resp. [sj (τ ))]j ). However,

being proxy re-encryption scheme in [5] CPA-secure (thanks to its probabilistic properties), this

turns out to be computationally unfeasible for any p.p.t. adversary, i.e., the probability of success is

negligible in `q . Similarly, goal (2) is proven to be computationally unfeasible for a p.p.t. adversary,

using the scheme in [5]. In fact if setup has been correctly run, i neither possess πk→i or πj→i ,

nor he can generate them, due to the non-transitive and non-interactive properties of the proxy

re-encryption scheme in [5]. Finally, a p.p.t. adversary i cannot achieve goal (3) since both sk (τ − 1),
sj (τ ) and r j (τ ) are always added to a numerator (i.e., his �nal objective). Adversary i could try to

remove numerators by performing some linear combination of the observed messages. However

we can easily see that any linear combination of messages contains the sum of at least 2 values

unknown to i . We can easily infer that a p.p.t. adversary i can try to decrypt numerators by picking

random values < ŝk (τ − 1), ŝj (τ ), r̂ j (τ ) >. However they will be equal to < sk (τ − 1), sj (τ ), r j (τ ) >
with negligible probability and the attacker is not able to understand if this happens.

Note that, a similar analysis can be carried out to assert the security of step τ with data size

reduction. In this case, we use statistical security, but having t = 80 guarantees a low mutual

information between numerators and their relative ciphertexts.

Finally, the decision phase of ODIN (Section 4.3) can be considered secure, since it relies on both

a GC protocol and additive blinding, which both have been prooven secure against a semi-honest

non-colluding p.p.t. adversary. �

, Vol. 1, No. 1, Article 1. Publication date: March 2017.



1:16 M. Ambrosin et al.

(a) Raspberry Pi 1 Mod B (b) Raspberry Pi 3 (c) USB Power Monitor V2

Fig. 6. Se�ing used for evaluation.

6 PROTOTYPE IMPLEMENTATION AND EVALUATION
In this section, we brie�y present an evaluation of a proof-of-concept implementation of ODIN

on commodity IoT devices, in order to show its practicability. We run our implementation on a

Raspberry Pi 1 Mod B, equipped with a 700 MHz ARM CPU, and 512 MB RAM, and a more recent

Raspberry Pi 3, equipped with a 1.2 GHz quad-core ARM Cortex-A53 CPU, and 1 GB RAM (see

Fig. 6); both devices run Raspbian Jessie Lite OS, with kernel v4.4. These devices represent a typical

example of low cost (the latest model, Raspberry Pi mod 3, can be found at < 35$
6
) and wide spread

IoT boards.

Our code relies on a proxy re-encryption library that implements the scheme in [5]
7
, which is in

turn based on the MIRACL Cryptographic SDK
8
. We used the MIRACL library to implement also the

simple modular arithmetic operations performed in our protocol. We consider runtime performance,

approximate energy consumption (obtained as the average power, which we measured with a USB

Power Monitor V2 device shown in Fig. 6, multiplied by the execution time), and communication

overhead, of the update step of ODIN (Section 4.2) and of its variant with data size reduction.

Furthermore, we measured runtime and approximate energy consumption of the decision phase of

ODIN (Section 4.3).

Runtime and energy consumption. In order to provide an estimate of the overall runtime and

energy consumption of ODIN, we benchmarked the operations involving cryptographic primitives,

which dominate the overall performance. Results are summarized in Table 2. Apart from data

transmissions, we estimate the runtime of one update step of ODIN, and of its variant with data size

reduction, based on our complexity analysis in Section 5.2, and on the measurements in Table 2. The

overall runtime of the update step of ODIN is 111.66 ms, with an energy consumption of 241.19 mJ,

on a Raspberry Pi 1 Mod B; similarly, the runtime on a Raspberry Pi 3 can be approximated as

41.70 ms, with an energy consumption of 88.40 mJ. We further run ODIN on both devices and

benchmarked the Update Phase. The results of this evaluation are shown in Table 3, divided into

three parts. The variant with data size reduction in Section 4 shows a similar complexity, adding

only two divisions. Note that, as previously mentioned in Section 5.2, our divisions involves only

powers of 2, i.e., are performed by discarding less signi�cant bits; this introduces a negligible

complexity on the device, and therefore, we did not consider it in our evaluation. Similarly, as

computing lcm is merely a comparison between two big integers, we did not include it in our

evaluation.

6
https://www.raspberrypi.org/blog/raspberry-pi-3-on-sale/

7
https://isi.jhu.edu/~mgreen/prl/index.html

8
https://github.com/miracl/MIRACL
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The �nal decision step of ODIN involves the evaluation of a GC, which, according to our

complexity analysis in Section 5.2, in the worst case involves 3 × 4 × log
2
q operations (as ` +

dlog
2
d(T )e < log

2
n ≤ log

2
q). Using a 256 bit representation for q, and considering SHA-1 as a

cryptographic primitive, we can estimate the overall runtime as 25.80 ms, and the associated energy

consumption as 55.73 mJ on a Raspberry Pi 1 Mod B, and 19.05 ms runtime and 40.39 mJ energy

consumption on a Raspberry Pi 3.

Communication overhead. During one update step of ODIN (Section 4.2), each node generates

messages of di�erent size. In our prototype implementation, we performed message “serialization”

leveraging the serialization routines provided by the MIRACL library, as well as from the proxy

re-encryption library in use. The result is that in one update step of out protocol, nodes generate

(and receive) messages of size 140 B, and 72 B. These messages are quite small, and can be e�ciently

exchanged even over channels with low data rate. Note that, the actual impact of such messages

on the total transmission overhead highly depends on nodes deployment, protocol in use, and the

physical antenna used for wireless communication. As an example, we consider the use of 6lowPAN

protocol, which provides an adaptation layer to allow the use of UDP and IPv6 on top of the 802.15.4

protocol, which is widely used in the IoT domain [31]. In the simplest case, i.e., where two devices

have local link addresses as in our case, in a 127 B frame we can use up to 108 B of payload [32].

Therefore, sending the �rst message in the update step translates into sending two 127 B frames,

while the other messages simply �t into a single link layer frame. These results con�rm the low

impact our approach has on the overall transmission cost, which makes it particularly suitable for

low power devices.

Simulation. For a better understanding of the feasibility of ODIN on large networks of IoT

devices, similarly to [2, 3], we performed a set of simulations using Omnet++
9
. In our simulations,

we generated random networks of nodes of di�erent size and density; nodes are placed randomly

in an area of 100 m
2
, and connected to neighbors within a range of 10 m through links simulating

the IEEE 802.14.5 protocol (according to the parameters in [60]). We simulated the execution of

ODIN on Rasperry Pi Mod 1 devices using delays, i.e., using the ones in Table 2 and Table 3. We

considered di�erent values for ϵ , from 0.05 to 0.01 with steps of 0.01, and networks of size 400, 500,

9
https://omnetpp.org/

Table 2. Runtime and energy consumption of the operations performed in ODIN; measurements taken from
a Raspberry Pi 1 Mod B and a Raspberry Pi 3

Operation
Raspberry Pi 1 Mod B Raspberry Pi 3

Runtime (ms) Energy (mJ) Runtime (ms) Energy (mJ)

Sum in Zn 0.0069 0.0149 0.0037 0.0078

Sub in Zn 0.0054 0.0117 0.0033 0.0070

Mul in Zn 0.0208 0.0449 0.0138 0.0293

SHA-1 0.0084 0.0181 0.0062 0.0131

Enc2 29.7899 64.3462 11.4394 24.2515

ReEnc 68.5674 148.1056 25.1504 53.3188

Dec1 13.2256 28.5673 5.0657 10.7393
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Table 3. Runtime and energy consumption of the Update phase of ODIN (Section 4.2); measurements taken
from a Raspberry Pi 1 Mod B and a Raspberry Pi 3

Part
Raspberry Pi 1 Mod B Raspberry Pi 3

Runtime (ms) Energy (mJ) Runtime (ms) Energy (mJ)

Part 1 77.3010 166.9702 25.9983 55.1164

Part 2 47.6750 102.9780 16.9280 35.8874

Part 3 0.7400 1.5984 0.3147 0.6672

TOT: 125.72 271.56 43.24 91.67

and 600. For each generated random topology, we computed the necessary number of iterations

T to reach a consensus according to the results in [14] (see Section 5.1). Results are reported in

Fig. 7. Each reported value is the average of 100 executions. We can observe that ODIN execution

needs no more than 18 s in the networks generated. Our simulations show encouraging results,

suggesting that a consensus can be reached even in large networks of hundreds of nodes, in a small

amount of time.

400 500 600
Number of nodes

0
2
4
6
8

10
12
14
16
18

T
im

e
 (

s)

ε= 0. 05 ε= 0. 04 ε= 0. 03 ε= 0. 02 ε= 0. 01

Fig. 7. ODIN runtime varying number of nodes (in an area of 100 m2) and ϵ .

7 CONCLUSIONS
This paper proposes ODIN, an innovative mechanism to fuse private information through a secure

extension of the consensus algorithm. ODIN is based on the randomized gossip algorithm, in which

a pair of agents participate in data exchange in each time frame, and is secure against non-colluding

semi-honest nodes. We believe our construction represents an important step forward towards

the implementation of e�cient and useful algorithms, able to take decisions based on the average

consensus of private inputs. As demonstrated through practical tests, ODIN is e�cient also on

low power devices, and IoT networks can reach the consensus in reasonable time, even without

having access to plain values. This opens the way to its application in distributed and dynamic

urban networks, and to the IoT in general. Tests have been performed in static networks to validate

protocol performances, but can be easily extended to dynamic networks. The duality between plain

and privacy-preserving consensus networks guarantees that the secure implementation can reach

the consensus as the plain implementation does, with a small delay. On the other side variation

of the protocol should be studied to provide a privacy preserving consensus also in consensus

networks with time varying state, where sensor observations change during the protocol evaluation.
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Despite its simple security model, ODIN can already be applied to some IoT scenarios, such as

smart metering systems. Future work has the goal of relaxing the “non-colluding” assumption, to

allow the use of privacy-preserving consensus protocols in a larger set of scenarios. Guaranteeing

security and correctness against misbehaving nodes will be one of the most di�cult steps in future

research. We highlight that malicious nodes can modify the messages exchanged during step τ ,

so that the network reach a wrong consensus. This is a problem of di�cult solution also in the

plain domain where some defense strategies have been proposed [45, 53, 54, 65, 68]. For this reason

the problem could have no e�cient solution in a privacy preserving consensus networks, where

exchanged messages cannot be distinguished from random values. However the possibility to

extend the protocol to malicious users deserves to be exploited. A possible solution can rely on

proxy re-Zero-Knowledge Proof of knowledge (proxy re-ZKP) schemes [12].

Future work also includes the application to practical urban scenarios, such as smart meter data

fusion, object tracking or vehicle coordination, as well as the analysis of the impact of network

topology to the performances of the secure consensus algorithm. We �nally underline that the

protocol could represent the basis for privacy-preserving protocols in other relevant (non-IoT)

domains. For example it can be used to detect replicas in Big Data storage while protecting the

privacy of users, reduce contents excess in networks that use Information-Centric Networking

protocols, without disclosing the content of single caches, or evaluate the quality of contents shared

in peer-to-peer networks while protecting the single user evaluations.
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