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ABSTRACT

LING GUO. Randomization based privacy preserving categorical data analysis.
(Under the direction of DR. XINTAO WU)

The success of data mining relies on the availability of high quality data. To ensure

quality data mining, effective information sharing between organizations becomes a

vital requirement in today’s society. Since data mining often involves sensitive infor-

mation of individuals, the public has expressed a deep concern about their privacy.

Privacy-preserving data mining is a study of eliminating privacy threats while, at the

same time, preserving useful information in the released data for data mining.

This dissertation investigates data utility and privacy of randomization-based mod-

els in privacy preserving data mining for categorical data. For the analysis of data

utility in randomization model, we first investigate the accuracy analysis for associ-

ation rule mining in market basket data. Then we propose a general framework to

conduct theoretical analysis on how the randomization process affects the accuracy

of various measures adopted in categorical data analysis.

We also examine data utility when randomization mechanisms are not provided to

data miners to achieve better privacy. We investigate how various objective associ-

ation measures between two variables may be affected by randomization. We then

extend it to multiple variables by examining the feasibility of hierarchical loglinear

modeling. Our results provide a reference to data miners about what they can do

and what they can not do with certainty upon randomized data directly without the

knowledge about the original distribution of data and distortion information.

Data privacy and data utility are commonly considered as a pair of conflicting re-

quirements in privacy preserving data mining applications. In this dissertation, we

investigate privacy issues in randomization models. In particular, we focus on the

attribute disclosure under linking attack in data publishing. We propose efficient so-

lutions to determine optimal distortion parameters such that we can maximize utility
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preservation while still satisfying privacy requirements. We compare our randomiza-

tion approach with l-diversity and anatomy in terms of utility preservation (under the

same privacy requirements) from three aspects (reconstructed distributions, accuracy

of answering queries, and preservation of correlations). Our empirical results show

that randomization incurs significantly smaller utility loss.
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CHAPTER 1: INTRODUCTION

1.1 Motivation

With the advance of information technologies, the amount of information collected

by different entities is increasing exponentially. Agencies and other organizations of-

ten need to publish microdata, e.g., medical data or census data, for research and

other purposes. Typically, such data is stored in a table, and each record (row) cor-

responds to one individual. Each record has a number of attributes, which can be

divided into the following three categories. (1)identity attributes (ID): attributes

that identify individuals, e.g., Name and SSN. (2) quasi-identifier (QI): attributes

which include demographic attributes such as ZIP code, age, gender. (3) sensitive

attributes: attributes which indicate confidential information of individuals, e.g., dis-

ease and salary. Table 1.1 shows one example of financial microdata.

Table 1.1: Personal information of n customers

ID SSN Name Zip Race · · · Age Gender Balance Income · · · Interest Paid
($1,000) ($1,000) ($1,000)

1 *** *** 28223 Asian · · · 20 M 10 85 · · · 2
2 *** *** 28223 Asian · · · 30 F 15 70 · · · 18
3 *** *** 28262 Black · · · 20 M 50 120 · · · 35
4 *** *** 28261 White · · · 26 M 45 23 · · · 134
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n *** *** 28223 Asian · · · 20 M 80 110 · · · 15

Identifying attributes are typically removed from microdata records prior to release.

But QI attributes may be linked with other public database to disclose the identity of

individuals and their sensitive attributes values. A recent study [66] showed that 87%

of the population of the United States can be uniquely identified using the seemingly

innocuous attributes gender, date of birth, and 5-digit zip code. Authors in [67]
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pointed out that these three attributes in anonymized medical data from GIC1 (which

included gender, zip code, date of birth and diagnosis) can be linked to Massachusetts

voter registration records (which included the name, gender, zip code, and date of

birth). Such ”linking attack” uniquely identified the medical records of the governor

of Massachusetts in the medical data. Privacy is becoming an increasingly important

issue in many data mining applications. This has spawned a new research field called

privacy preserving data mining (PPDM).

One important issue of PPDM is how to transform data such that a good data

mining model can be built on transformed data while preserving privacy at the

record level. Data utility and privacy is a trade-off in PPDM. Many methods have

been proposed in the literature to transform data for privacy preservation, e.g., k-

anonymity [10,42,43,57,58], l-diversity [49], Anatomy [76], randomization [13,48] and

so on. In this dissertation, we focus on the data utility and privacy of randomization

models.

1.2 Research Statement

My research focus on the analysis of data utility and privacy of randomization-

based models in privacy preserving data mining for categorical data. Specifically, my

dissertation aims to

1. Analyze the accuracy of estimations and data mining results on transformed

data for various perturbation models, especially on randomization-based models in

categorical data mining.

2. Analyze data utility of randomized data in privacy preserving data mining

without the information of randomization parameters.

3. Investigate the privacy of randomization-based models in privacy preserving

categorical data mining.

4. Investigate the attribute disclosure of randomization-based models under linking

attacks.
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1.3 Dissertation Contributions

This dissertation presents a formal and comprehensive examination of data utility

and privacy of randomization-based models in privacy preserving categorical data

analysis. The main contributions can be summarized as follows:

• Accuracy analysis for association rule mining in market basket data. We in-

vestigated the accuracy (in terms of bias and variance of estimates) of both

support and confidence estimates of association rules derived from the random-

ized data. We proposed the novel idea of using interquantile range to bound

those estimates derived from the randomized market basket data. We demon-

strated that providing confidence on data mining results from randomized data

is significant to data miners. They can know how accurate their data mining

results are under randomization-based models.

• A general framework to evaluate the accuracy of estimates of various measures

adopted in categorical data analysis . We presented a general approach to derive

variances of estimates of various measures adopted in categorical data analysis.

We applied the idea of using interquantile ranges based on Chebyshevs Theorem

to bound those estimates derived from the randomized data.

• Data utility analysis in randomization with unknown distortion parameters. We

investigated whether data mining or statistical analysis tasks can still be con-

ducted on randomized data when distortion parameters are not disclosed to

data miners. We examined how various objective association measures between

two variables may be affected by randomization. We demonstrated that some

measures have a vertical monotonic property , i.e., the values calculated directly

from the randomized data are always less than or equal to those original ones.

Hence, some data analysis tasks can be executed on the randomized data di-

rectly even without knowing distortion parameters. We then investigated how
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the relative order of two association patterns is affected when the same random-

ization is conducted. We showed that some measures have relative horizontal

order invariant properties, i.e, if one pattern is stronger than another in the

original data, we have that the first one is still stronger than the second one in

the randomized data. We then extended it to multiple variables by examining

the feasibility of hierarchical loglinear modeling. We showed that some classic

data mining tasks (e.g., association rule mining, decision tree learning, naive

bayes classifier) cannot be applied on the randomized data directly.

• Analysis of attribute disclosure under linking attacks. We presented a system-

atic study of randomization method in preventing attribute disclosure under

linking attacks. We proposed a general framework and presented a uniform

definition for attribute disclosure which is compatible for both randomization

and generalization models.

• Efficient solution for randomization parameters under linking attacks. We pro-

posed the use of a specific randomization model. We presented an efficient solu-

tion to derive distortion parameters to satisfy requirements for privacy preser-

vation while maximizing data utilities. We compared randomization model

with other distortion models, k-anonymity, l-diversity and Anonymity. Our

experimental evaluations showed that randomization signicantly outperforms

generalization, i.e., achieving better utility preservation while yielding the same

privacy protection.

1.4 Dissertation Organization

The remainder of this dissertation is organized as follows:

In Chapter 2, the current research on privacy preserving data mining is briefly

reviewed. Various techniques in the privacy preserving data mining, including group
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based anonymization, randomization and synthetic microdata generation are intro-

duced. Distortion framework adopted in this dissertation is presented.

In Chapter 3, the accuracy of estimates of various rules derived from the randomized

market basket data are investigated. A general framework is presented which can

conduct theoretical analysis on how the randomization process affects the accuracy

of various measures adopted in categorical data analysis.

In Chapter 4, data utility of randomized data when distortion parameters are

not disclosed is investigated. Various objective association measures between two

variables are examined and extended to multiple variables by examining the feasibility

of hierarchical loglinear modeling.

In Chapter 5, privacy and utility of randomization model under linking attacks are

investigated. A uniform definition for attribute disclosure which is compatible for both

randomization and generalization models are defined. An efficient solution is proposed

to derive distortion parameters to satisfy requirements for privacy preservation while

maximizing data utilities.

Chapter 6 concludes this dissertation with a brief summary of the research pre-

sented and offers the future directions.



CHAPTER 2: BACKGROUND AND FRAMEWORK

Privacy is becoming an increasingly important issue in many data mining appli-

cations. A number of techniques and algorithms have been proposed to modify or

transform the data so as to obtain valid data mining results while preserving privacy

at different levels. In this chapter, we first overview the existing privacy preserving

data mining techniques and outline the important research issues within them in Sec-

tion 2.1. In Section 2.2, we present the randomized response distortion framework

for categorical data that we implemented in this dissertation.

2.1 Privacy Preserving Data Mining Models and Algorithms

We classify representative privacy preserving data mining techniques into three

categories, group based anonymization, randomization and synthetic microdata gen-

eration.

2.1.1 Group Based Anonymization

In data publishing, uniquely identifying information like names and social security

numbers are usually removed before the data are submitted to third party for mining

or published to the public. However, this first sanitization does not ensure the privacy

of individuals in the data. Attackers may already know the quasi-identifier values of

some individuals in the table. This knowledge can be either from personal knowledge

(e.g., knowing a particular individual in person), or from other publicly-available

databases (e.g., a voter registration list) that include both explicit identifiers and

quasi-identifiers. Table 2.1 provides an example of 8 customers’ personal health in-

formation. Supposing attackers has the personal information (i.e., age 40 and zipcode

13000) of Bob and learn that Bob’s health record is included in Table 2.1. Because
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Table 2.1: The microdata

ID Age Gender Zipcode Disease
1 20 M 11000 pneumonia
2 40 M 13000 flu
3 40 M 59000 flu
4 50 M 12000 flu
5 60 F 54000 pneumonia
6 60 F 25000 pneumonia
7 80 F 25000 flu
8 80 F 30000 flu

only tuple 2 matches Bob’s QI values, the attackers can assert that Bob contracted

flu.

To avoid this problem, group based anonymization methods replace quasi-identifier

values with values that are less-specific but semantically consistent. As a result, more

records will have the same set of quasi-identifier values. Authors in [57] defined an

equivalence class of an anonymized table to be a set of records that have the same

values for the quasi-identifiers.

k-anonymity

To counter linking attacks using quasi identifiers, Samarati and Sweeney [58] pro-

posed a definition of privacy called k-anonymity.

Definition 1 (k-anonymity) A table satisfies k-anonymity if every record in the table

is indistinguishable from at least k−1 other records with respect to every set of quasi-

identifier attributes; such a table is called a k-anonymous table.

In other words, for every combination of values of the quasi-identifiers in the k-

anonymous table, there are at least k records that share those values. This ensures

that individuals cannot be uniquely identified by linking attacks. Table 2.2 shows a

4-anonymity for original Table 2.1. Age are generalized to the interval [20, 50], [60, 80]
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Table 2.2: A 4-Anonymity table with 2-Diversity

ID Age Gender Zipcode Disease
1 [20,50] M [10001,60000] pneumonia
2 [20,50] M [10001,60000] flu
3 [20,50] M [10001,60000] flu
4 [20,50] M [10001,60000] flu
5 [60,80] F [10001,60000] pneumonia
6 [60,80] F [10001,60000] pneumonia
7 [60,80] F [10001,60000] flu
8 [60,80] F [10001,60000] flu

and Zipcode to [10001, 60000]. Because any one of tuple 1 to tuple 4 can be the record

of Bob, Bob can not be identified by attackers from other 3 individuals.

Generalization and suppression algorithms have been well developed to implement

k anonymization in categorical data. Generalization involves replacing specific values

such as ”male” or ”female” with a more general one, such as ”gender”. Suppression

is the process of deleting attribute values or entire tuples.

The first algorithm for AG TS (i.e., generalization over quasi-identifier attributes

and tuple suppression) was proposed by Samarati [57]. He introduced the concept

of minimal generalization. It captures the property of the generalization process not

to distort the data more than needed to achieve k anonymity, and proposed a full-

domain generalization algorithm. Bayardo and Agrawal [10] developed an optimal k

anonymization algorithm and investigated the impacts of various coding techniques

and problem variations on anonymization quality. The proposed algorithm starts

with a fully generalized dataset and systematically specializes the dataset into one

that is minimally k anonymous. LeFevre et al. [42] proposed Incognito to implement

k-anonymous full-domain generalizations using bottom-up aggregation along gener-

alization dimensions and a priori computation. Later in [43], they proposed a new

multidimensional model, which provides an additional degree of flexibility not seen in

previous (single-dimensional) approaches [10,42,57]. Theoretical analysis shows that
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the problem of optimal k-anonymity is NP-hard for k ≥ 3 [1, 10, 51]. A good survey

of the algorithms can be found in [15].

However, the generalization and suppression approach proposed in the literature to

achieve k-anonymity is not equally suited for all types of attributes, e.g., continuous

attributes. Authors in [2] proposed to use data condensation to achieve k-anonymity

for the numerical attributes. Authors in [18] proposed to use categorical microag-

gregation as an alternative to generalization/suppression for nominal and ordinal k-

anonymization; they also proposed to use continuous microaggregation to implement

continuous k-anonymization.

k-anonymity has been widely adopted in data publishing because of its concep-

tual simplicity. Nevertheless the technique is susceptible to the following attacks as

discussed in [49]:

• Homogeneity Attack: In an anonymity table, if there exists an equivalence

class in which all tuples share the same value of sensitive attributes, it will

be exposed to homogeneity attack, for adversaries can easily infer individuals

sensitive values by linking external table. Therefore, although the data is k-

anonymized, the value of the sensitive attribute in that equivalence class is

disclosed.

• Background knowledge attack: An adversary can infer individuals’ sensitive

information from anonymity table using his/her background knowledge. In [49],

the background knowledge that Japanese have an extremely low incidence of

heart disease helped attackers narrow down information of what disease the

patient might have.

l-diversity

To address the limitations of k-anonymity, Machanavajjhala et al. [49] introduced

l-diversity as a stronger notion of privacy.
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Definition 2 (l-diversity) An equivalence class is said to have l-diversity if there are

at least l well-represented values for the sensitive attribute. A table is said to have

l-diversity if every equivalence class of the table has l-diversity.

Table 2.2 shows an example of 2-diversity as each equivalence class has two values

for the sensitive attribute disease.

Machanavajjhala et al. [49] gave a number of interpretations of the term ”well-

represented” in this principle:

• Distinct l-diversity. A table is said to have distinct l-diversity if for every

equivalence class E, there are at least l distinct values for the sensitive attribute.

However, an equivalence class may have one value appear much more frequently

than other values. It makes the attacker to deduce that an entity in the equiv-

alence class is very likely to have that value. This motivated the development

of the following two stronger notions of l-diversity.

• Entropy l-diversity. A table is said to have entropy l-diversity if for every

equivalence class E, Entropy(E) ≥ log l. Entropy(E) is defined to be:

Entropy(E) = −Σs∈Sp(E, s) log p(E, s)

Here S is the domain of the sensitive attribute, and p(E, s) is the fraction of

records in E that have sensitive value s. The entropy of the entire table must

be at least log l to have entropy l-diversity for each equivalence class.

• Recursive (c, l)-diversity. An equivalence class E is said to have recursive

(c, l)-diversity if r1 < c(rl + rl+1 + ... + rm). Here m is the number of sensitive

values and ri (1 ≤ i ≤ m) is the frequency of the ith most frequent sensitive

value. It makes sure that the most frequent value does not appear too fre-

quently, and the less frequent values do not appear too rarely. A table is said
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to have recursive (c, l)-diversity if all of its equivalence classes have recursive

(c, l)-diversity.

Authors in [45] implemented l-diversity on top of Incognito and suggested that any

k-anonymity technique can be adapted for l-diversity. Although l-diversity can better

protect against attribute disclosures than k-anonymity, authors in [45] pointed out

that it is vulnerable to skewness attack and similarity attack, and it is difficult and

unnecessary to achieve for some specific data set.

t-closeness

Li et al. [45] proposed a novel privacy notion called t-closeness, which requires

that the distribution of a sensitive attribute in any equivalence class is close to the

distribution of the attribute in the overall table.

Definition 3 (t-closeness) An equivalence class is defined to have t-closeness prop-

erty if the distance between the distribution of a sensitive attribute in this class and

the distribution of the attribute in the whole table is no more than a threshold t. A

table is said to have t-closeness if all equivalence classes have t-closeness.

The assumption in [45] is that the distribution Q of the sensitive attribute in the

table is known to attackers. Given the anonymized table, the attacker can identified

the equivalence class that the individual’s record is in and learn the distribution P

of the sensitive attribute in that class. The Earth Mover’s distance (EMD) [56] is

adopted to measure the distance between Q and P , which takes into consideration

the semantic closeness of attribute values.

Anatomy

Xiao and Tao [76] proposed anatomy for publishing sensitive data based on the

privacy requirement of l-diversity. Anatomy releases all the quasi-identifier and sen-

sitive values directly in two separate tables. Let T be the microdata which contains d
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quasi-identifier (QI) attributes Aqi
1 , Aqi

2 , . . . , Aqi
d and a sensitive attribute As. For any

tuple t ∈ T , t[i] is the Aqi
i value of t and t[d + 1] is its As value. Anatomy is defined

in [76] as follows:

Definition 4 (Anatomy) Given an l-diverse partition with m QI-groups, anatomy

produces a quasi-identifier table (QIT ) and a sensitive table( ST ).

The QIT has schema (Aqi
1 , Aqi

2 , . . . , Aqi
d , Group − ID) and has a tuple of the form:

(t[1], t[2], . . . , t[d], j) for each QI-group QIj (1 ≤ j ≤ m) and each tuple t ∈ QIj.

The ST has schema (Group−ID, As, Count) and has a record of the form: (j, v, cj(v))

for each QI-group QIj (1 ≤ j ≤ m) and each distinct As value v in QIj.

They developed a linear-time algorithm for computing anatomized tables that min-

imize error of reconstructing the mocrodata while satisfying the l-diversity privacy

requirement. Their experimental results showed that anatomy provide more accuracy

than the generalization based methods. Table 2.3 shows the anatomized tables which

also satisfy 2-diversity for each group. Although attackers can derive from QIT Ta-

ble 2.3(a) that tuple 2 is the record of Bob, they can not deduce which disease he

contracted from Table 2.3(b).

Goodness and Weakness

Although group based anonymization preserves privacy and true information of in-

dividuals, it often loses considerable information in the microdata, which severely

compromises the accuracy of data analysis. Besides, the aonymization process de-

pends on the knowledge of all the records in the data, so it cannot be implemented

at data collection time. It requires a trusted server to perform the anonymization on

the whole data set.

2.1.2 The Randomization Method

Randomization was initially used in the context of survey which have privacy con-

cerns [46, 72]. It was introduced to preserve privacy data mining by Agrawal and
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Table 2.3: The anatomized tables
(a) The quasi-identifier table (QIT)

ID Age Gender Zipcode Group-ID
1 20 M 11000 1
2 40 M 13000 1
3 40 M 59000 1
4 50 M 12000 1
5 60 F 54000 2
6 60 F 25000 2
7 80 F 25000 2
8 80 F 30000 2

(b) The sensitive table (ST)

Group-ID Disease Count
1 flu 3
1 pneumonia 1
2 flu 2
2 pneumonia 2

Srikat [4]. In randomization, noise was added to the data so that the individual val-

ues of the records cannot be recovered. However the probability distribution of the

aggregate data can be recovered and be used for data mining. Representative random-

ization methods include the additive-noise-based perturbation, the projection-based

perturbation and the Randomized Response.

Additive-noise-based perturbation

The additive-noise-based perturbation model was first proposed by Agrawal and

Srikant [4] for building decision-tree classifiers. It can be described as follows:

Y = X + E

We use X to denote the original data, E to denote the additive noise and Y to

represent the perturbed data. Let Xj be the j-th column of the original microdata

table corresponding to a sensitive attribute and suppose that there are N tuples.
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Each value xij (i = 1, . . . , N), is replaced by:

yij = xij + εij

Where εj is a vector of normally distributed errors drawn from a random variable

with mean equals to zero. In uncorrelated noise addition, it satisfies εj ∼ N(0, σ2
εj

)

and σ2
εj

= α · σ2
Xj

( α is the proportional coefficient). This method can preserves

the mean and the co-variance of the original data. In correlated noise addition,

the covariance matrix of errors is proportional to the covariance matrix of original

data (ε ∼ N(0, ασε)), it can preserve the mean and correlation of the original data.

Additive-noise-based perturbation is often combined with linear (for continuous at-

tributes [39]) or non linear (for categorical attributes [65]) transformations to provide

more protection for the data.

However, this kind of randomization is not secure under some attacks. Kargupta

et al. [37] proposed a random matrix-based Spectral Filtering (SF) technique which

can recover the original data from the perturbed data. In [36], Huang et al. proposed

two data reconstruction methods that are based on data correlations. One method

uses the Principal Component Analysis (PCA) technique, while the other one uses

the Bayes Estimate (BE) technique. In [31, 32], Guo et al. analyzed the spectral-

filtering-based method theoretically and improved the spectrum selecting strategy to

achieve the optimal performance. Another contribution is that they provided the

bounds of the reconstruction errors, which is meaningful to both the data miner

and the attacker. They further proposed IQR attack on additive-noise-based model

in [34]. They presented that the individual privacy can be threatened by the estimated

distribution according to the defined privacy quantification.

Projection-based perturbation
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Table 2.4: Randomized data

ID Age Gender Zipcode Disease
1 20 M 11000 pneumonia
2 40 F 13000 flu
3 40 M 59000 pneumonia
4 50 M 12000 flu
5 40 F 25000 pneumonia
6 60 F 13000 flu
7 70 F 25000 flu
8 80 F 30000 flu

The projection-noise-based perturbation model is defined as follows:

Y = RX

Where X ∈ Rp×n is the original data set consisting of n data records and p attributes.

Y ∈ Rq×n is the transformed data set consisting of n data records and q attributes.

R is a q × p transformation matrix.

Chen and Liu [13] proposed a rotation based perturbation method, where the

transformation matrix R is a d×d orthogonormal matrix satisfying RT R = RRT = I.

Under this definition of R, the vector length, Euclidean distance and inner product

between any pair of points are preserved. Three popular classifiers (kernel method,

SVM, and hyperplane-based classifiers) are invariant to such perturbation.

Authors in [47] discussed a Principal Component Analysis(PCA) based attack on

the above transformation. They further proposed a random projection-based multi-

plicative perturbation scheme in [48]. Each entry of R is independent and identically

chosen from some normal distribution with mean zero. Authors in [33] proposed an

A-priori-Knowledge ICA (AK-ICA) reconstruction method, which may be exploited

by attackers when a small subset of sample data is available to attackers.

Randomized Response technique
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Randomized Response technique was first introduced by Warner [72] in 1965 as

a technique to solve the following survey problem: to estimate the percentage of

people in a population that has attribute A. Since the attribute A is related to some

confidential aspects of human life, respondents may decide not to reply at all or to

reply with incorrect answers.

In this model, instead of asking each respondent whether he/she has attribute A,

the interviewer asks each respondent two related questions:

• I have the sensitive attribute A.

• I do not have the sensitive attribute A.

Respondents use a randomizing device to decide which question to answer, without

letting the interviewer know which question is answered. The randomizing device is

designed in such a way that the probability of choosing the first question is θ, and the

probability of choosing the second question is 1− θ. Although the interviewer learns

the responses (e.g. yes or no), he/she does not know which question was answered

by the respondents. Thus the respondents privacy is preserved. To estimate the

percentage of people who has the attribute A, we can use the following equations:

P ∗(A = yes) = P (A = yes) ∗ θ + P (A = no) ∗ (1− θ)

P ∗(A = no) = P (A = no) ∗ θ + P (A = yes) ∗ (1− θ)

where P ∗(A = yes) (resp. P ∗(A = no)) is the proportion of the yes (resp. no)

responses obtained from the survey data, and P (A = yes) (resp. P (A = no)) is

the estimated proportion of the yes (resp. no) responses to the sensitive questions.

Getting P(A = yes) and P(A = no) is the goal of the survey, which can be esti-

mated from the above equations. Further background and more complex randomized

response schemes can be found in [11].
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Authors in [26] proposed the Post RAndomisation Method (PRAM) as a pertur-

bative method for disclosure protection of categorical variables. PRAM can be seen

as applying RR after the data have been collected. They also discussed an invariant

PRAM in which the distribution of the distorted data is the same as the original one,

so most data mining application can be conducted on randomized data directly. A

full comparison between RR and PRAM can be found in [17].

The authors in [54] proposed the MASK scheme, which is based on Randomized

Response. They presented strategies of efficiently estimating the original support val-

ues of frequent itemsets from the randomized data. Their results empirically showed a

high degree of privacy to the user and a high level of accuracy in the mining results can

be simultaneously achieved. Agrawal and Haritsa [6] presented a general framework

of random perturbation in privacy preserving data mining. Du and Zhan [20] studied

the use of randomized response technique to build decision tree classifiers. Zhu and

Liu [85] investigated the construction of optimal randomization schemes for privacy

preserving density estimation and proposed a general framework for randomization

using mixture models. Recently, Huang and Du [35] studied the search of optimal

distortion parameters to balance privacy and utility. Similarly, Xiao et. al. [77] inves-

tigated the optimal random perturbation at multiple privacy levels.

Guo et. al. [27,28] investigated data utility in terms of the accuracy of reconstructed

measures in privacy preserving market basket data analysis. they presented a general

method based on the Taylor series to approximate the mean and variance of esti-

mated variables from the randomized data. They also discussed the data utility of

randomized data for data miners with unknown distortion parameters in [29]. In [30],

they investigated the attribute disclosure under linking attack in privacy preserving

data publishing. They presented an efficient solution to derive distortion parameters

to satisfy requirements for privacy preservation while maximizing data utilities. They

compared randomization model with other distortion models, k-anonymity, l-diversity
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and Anonymity. Their experimental evaluations showed that randomization signif-

icantly outperforms generalization, i.e., achieving better utility preservation while

yielding the same privacy protection.

2.1.3 Synthetic Microdata Generation

Publication of synthetic data is to generate data randomly with the constraint

that certain statistics or correlations of the original data is preserved. The idea was

first proposed in [55] to generate a synthetic dataset based on the original data and

multiple imputation. Later, authors in [59] proposed to use bootstrap method to

generate synthetic microdata and it was used for categorical data in [60].

Wu et al. [71,73–75] proposed a general framework for privacy preserving database

application testing by generating synthetic data sets based on some a-priori knowl-

edge about the production databases. Their approach is to fit the general location

model using various characteristics (e.g., constraints, statistics, rules) extracted from

a production database and then generate synthetic data using model learned. The

generated data is valid and similar to real data in terms of statistical distribution,

hence it can be used for functional and performance testing.

2.2 Distortion Framework for Categorical Data

In this dissertation, we investigate data utility and data privacy in categorical

data under randomization models. In particular, we focus on a simple independent

column perturbation, wherein the value of each attribute in the record is perturbed

independently. Also, the perturbation is done at the level of individual customer

record, without being influenced by the contents of the other records in the database.

We will introduce the distortion framework in this section.

We denote the set of records in the database D by T = {T0, · · · , TN−1} and the set

of variables by I = {A0, · · · , Am−1, B0, · · · , Bn−1}. Note that, for ease of presenta-

tion, we use the terms “attribute” and “variable” interchangeably. Let there be m sen-
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sitive variables A0, · · · , Am−1 and n non-sensitive variables B0, · · · , Bn−1. Each vari-

able Au has du mutually exclusive and exhaustive categories. We use iu = 0, · · · , du−1

to denote the index of its categories. For each record, we apply the Randomized Re-

sponse model independently on each sensitive variable Au using different settings of

distortion, while keeping the non-sensitive ones unchanged.

Table 2.5: 2×3 contingency tables for two variables Gender (QI), Disease (sensitive)

(a) Original

Cancer Flu Anemia
Male π00 π01 π02 π0+

Female π10 π11 π12 π1+

π+0 π+1 π+2 π++

(b) Instance

Cancer Flu Anemia
Male 8 16 48

Female 12 14 2

(c) After randomization

Cancer Flu Anemia
Male λ00 λ01 λ02 λ0+

Female λ10 λ11 λ12 λ1+

λ+0 λ+1 λ+2 λ++

To express the relationship among variables, we can map categorical data sets to

contingency tables. Table 2.5 shows one contingency table for a pair of two variables,

Gender and Disease (d1 = 2 and d2 = 3). The vector π = (π00, π01, π02,π10, π11, π12)
′

corresponds to a fixed order of cell entries πij in the 2 × 3 contingency table. π01

denotes the proportion of records with Male and Flu. The row sum π0+ represents

the proportion of records with Male across all diseases.

Formally, let πi0,··· ,ik−1
denotes the true proportion corresponding to the categorical

combination of k variables (A0i0 , · · · , A(k−1)ik−1
) in the original data, where iu =

0, · · · , du − 1; u = 0, · · · , k − 1, and A0i0 denotes the i0th category of attribute A0.

Let π be a vector with elements πi0,··· ,ik−1
arranged in a fixed order. The combination
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Table 2.6: Notation
Symbol Definition

Au the uth variable which is sensitive
Bl the lth variable which is not sensitive
Pu distortion matrix of Au

p(u) distortion parameter of Au

Ãu variable Au after randomization
χ2

ori χ2 calculated from original data
χ2

ran χ2 calculated from randomized data
πi0,··· ,ik−1

cell value of original contingency table
λi0,··· ,ik−1

cell value of randomized contingency
table

vector corresponds to a fixed order of cell entries in the contingency table formed by

these k variables. Similarly, we denote λi0,··· ,ik−1
as the expected proportion in the

randomized data. Table 2.6 summarizes our notations.

For one sensitive variable Au with du categories, the randomization process is such

that a record belong to the jth category (j = 0, ..., du − 1) is distorted to 0, 1, ... or

du−1th category with respective probabilities p
(u)
j0 , p

(u)
j1 , ..., p

(u)
j du−1, where

∑du−1
c=0 p

(u)
jc =

1. The distortion matrix Pu for Au is shown as below.

Pu =




p
(u)
00 p

(u)
10 · · · p

(u)
du−1 0

p
(u)
01 p

(u)
11 · · · p

(u)
du−1 1

.

.

p
(u)
0 du−1 p

(u)
1 du−1 · · · p

(u)
du−1 du−1




Parameters in each column of Pu sum to 1, but are independent to parameters

in other columns. The sum of parameters in each row is not necessarily equal to

1. The true proportion π = (π0, · · · , πdu−1) is changed to λ = (λ0, · · · , λdu−1) after

randomization. We have

λ = Puπ.
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For the case of k multi-variables, we denote λµ0,··· ,µk−1
as the expected probability

of getting a response (A0µ0 , · · · , A(k−1)µk−1
) and λ the vector with elements λµ0,··· ,µk−1

arranged in a fixed order (e.g., the vector λ = (λ00, λ01, λ02, λ10, λ11, λ12)
′ corresponds

to cell entries λij in the randomized contingency table as shown in Table 2.5(c) ). Let

P = P0 × · · · × Pk−1, we can obtain

λ = Pπ = (P0 × · · · × Pk−1)π (2.1)

where × stands for the Kronecker product1.

The original database D is changed to Dran after randomization. An unbiased

estimate of π based on one given realization Dran follows as

π̂ = P−1λ̂ = (P−1
0 × · · · × P−1

k−1)λ̂ (2.2)

where λ̂ is the vector of proportions calculated from Dran corresponding to λ and

P−1
u denotes the inverse of the matrix Pu.

In Lemma 1, we show that no monotonic relation exists for cell entries of contin-

gency tables due to randomization.

Lemma 1 No monotonic relation exists between λi0,··· ,ik−1
and πi0,··· ,ik−1

.

Proof. We use two binary variables Au, Av as an example. The proof of multiple

variables with multi-categories is immediate. The distortion matrices are defined as:

Pu =




p
(u)
0 1− p

(u)
1

1− p
(u)
0 p

(u)
1


 Pv =




p
(v)
0 1− p

(v)
1

1− p
(v)
0 p

(v)
1




We have:

λ0+ = (p
(u)
0 + p

(u)
1 − 1)π0+ − p

(u)
1 + 1

1It is an operation on two matrices, an m-by-n matrix A and a p-by-q matrix B, resulting in the
mp-by-nq block matrix
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We can see that λ0+−π0+ is a function of π0+ , p
(u)
0 , p

(u)
1 , and its value may be greater

or less than 0 with varying distortion parameters.

Similarly,

λ00 = p
(u)
0 p

(v)
0 π00 + p

(u)
0 (1− p

(v)
1 )π01

+ (1− p
(u)
1 )p

(v)
0 π10 + (1− p

(u)
1 )(1− p

(v)
1 )π11

λ00 − π00 is a function of πij ,p
(u)
0 , p

(u)
1 , p

(v)
0 and p

(v)
1 , no monotonic relation exists.

We follow the Moment Estimation method as shown in Equation 2.2 to get the

unbiased estimate of the distribution for original data. This method has been broadly

adopted in the scenarios where RR is used to perturb data for preserving privacy.

Although it has good properties as computational simplicity and unbiasedness, some

awkward property exists due to random errors [11,17]. That is, the estimate may fall

out of the parameter space, which makes the estimate meaningless. This is one reason

that Maximum Likelihood Estimation (MLE) is adopted to estimate the distribution

in literature [17].

It has been proved in [17] that a good relation holds between these two methods

in the scenarios of RR: The moment estimate is equal to the MLE estimate within

parameter space. Based on that, we can know that moment estimate from Equation

2.2 achieves the Cramér-Rao bound as MLE does. Therefore, moment estimate is

the minimum variance unbiased (MVU) estimator in RR contexts. Our later analysis

on accuracy of data mining results is based on such unbiased estimate under the

assumption that the estimate is within parameter space.

2.3 Summary

The problem of privacy preserving data mining has become more important re-

cently because of the increasing ability of collecting and storing personal data and

the increasing concern of data mining applications to disclose the private informa-

tion. In this chapter, we provided a overview of existing PPDM techniques present in
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the literature. They can be classified into Group Based Anonymization, Randomiza-

tion and Synthetic Microdata Generation. Besides that, we introduced the distortion

model for categorical data that is adopted in this dissertation.



CHAPTER 3: ACCURACY ANALYSIS WITH KNOWN DISTORTION
PROBABILITIES P

One of the main challenges of the privacy preserving data mining (PPDM) al-

gorithms is that they need to keep the data utility to an accepted level after the

anonymization or randomization process. If the data quality is too degraded, the re-

leased database is useless for data mining. Therefore, data quality after perturbation

are very important in the evaluation of PPDM techniques.

In this chapter, we investigate the issue of providing accuracy for data in ran-

domization models in PPDM. We propose a general approach to derive confidence

range of estimates of various measures adopted in PPDM, which is significant to data

miners since they can learn how accurate their reconstructed results are. In Section

3.1, we will discuss some related work in privacy preserving association rule mining.

In Section 3.2, we present our approach for accuracy analysis in privacy preserving

association rule mining. Extension to general categorical data analysis is discussed

in Section 3.3. Some results in this chapter were previously reported in [27,28].

3.1 Introduction

Denoting the set of transactions in the database D by T = {T0, · · · , TN−1} and

the set of items in the database by I = {A0, · · · , Am−1}, an association rule X ⇒ Y ,

where X ,Y ⊂ I and X ∩ Y = φ, has two measures: the support s defined as the

s(100%) of the transactions in T contain X ∪ Y , and the confidence c is defined

as c(100%) of the transactions in T that contain X also contain Y . The rule is

”interesting” if its support and confidence are greater than the user-defined thresholds.

The issue of maintaining privacy in association rule mining has attracted consid-

erable attention in recent years [7, 22, 23, 54]. Most of techniques are based on the
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data perturbation or Randomized Response (RR) approach [11], wherein the 0 or 1

(0 denotes absence of an item while 1 denotes presence of an item) in the original

user transaction vector is distorted in a probabilistic manner that is disclosed to data

miners.

In [54], the authors proposed the MASK technique to preserve privacy for frequent

itemset mining and addressed the issue of providing efficiency in calculating the es-

timated support values. Their results empirically showed a high degree of privacy

to users and a high level of accuracy in the mining results can be simultaneously

achieved. To evaluate the privacy, they defined a privacy metric and presented an

analytical formula for evaluating the privacy obtained under the metric. However,

accuracy metric on data mining results was only defined in an aggregate manner as

support error and identity error computed over all discovered frequent itemsets.

Authors in [7] addressed the efficiency of MASK technique and proposed a new

algorithm that was referred to as EMASK. In EMASK, different distortion parameters

are used for 1’s and 0’s in a transaction. The parameters of distortion are carefully

selected beforehand and a variety of optimizations are applied in the mining process

to improve the efficiency and effectiveness of the algorithm.

Authors in [22,23] analyzed the nature of privacy breaches and presented the uni-

form randomization and select-a-size randomization operators in association rule min-

ing. They derived a formula for an unbiased support estimator and its variance and

investigated how to incorporate these formulae into mining algorithms.

Later, Agrawal et al. [6] proposed FRAPP (FRamework for Accuracy in Privacy-

Preserving mining), a generalized matrix-theoretic framework for the design of ran-

dom perturbation schemes for privacy preserving data mining. They argued that

the prior techniques differ only in their choices for the perturbation matrix elements.

They proposed a novel perturbation mechanism wherein the matrix elements are

themselves characterized as random variables, and demonstrated that this feature
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provides significant improvements in privacy at only a marginal reduction in accu-

racy.

3.2 Accuracy in Privacy Preserving Association Rule Mining

3.2.1 Motivation

Our research moves one step further to address the issue of providing accuracy in

privacy preserving mining of association rules. We investigate the issue of how the ac-

curacy (i.e., support and confidence) of each association rule mined from randomized

data is affected when the randomized response technique is applied.

Specifically, we present an analytical formula for evaluating the accuracy (in terms

of bias and variance of estimates) of both support and confidence measures of asso-

ciation rules derived from the randomized data. From the derived bias and variance

of estimates, we further derive approximate interquantile ranges. Data miners are

ensured that their estimates lie within these ranges with a high confidence, say 95%.

We would emphasize that providing confidence on estimated data mining results is

significant to data miners since they can learn how accurate their reconstructed re-

sults are. We illustrate the importance of those estimated interquantile ranges using

an example.

Figure 3.1 shows the original support values, the estimated support values from the

randomized data, and their corresponding 95% interquantile ranges of 7 association

rules, which are derived from COIL data sets 2. A distortion parameter p = 0.65

and support threshold supmin = 23% are used in the experiment. The interquantile

range of each rule can give data miners confidence about their estimate derived from

randomized data. For example, the estimated support of rule 2 is 31.5% and its

95% interquantile range is [23.8%,39.1%], which suggests that the original support

value lies in this range with 95% probability. Furthermore, we can observe the 95%

interquantile ranges for rules 1-3 are above the support threshold, which guarantees

2http://kdd.ics.uci.edu/databases/tic/tic.html
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Figure 3.1: Accuracy of the estimated support values of association rules derived
from randomized data with p=0.65

those are true frequent itemsets (with at least 95% confidence).

We emphasize providing accuracy of data mining results is important for data

miners during data exploration. When the support threshold is set as 23%, we may

not only take rule 2 and 6 as frequent sets from the estimated support values, but also

conclude rule 6 (35.9%) is more frequent than rule 2 (31.5%). However, rule 2 has the

original support as 36.3% while rule 6 has the original support as 22.1%, we mistakenly

assign the infrequent itemset 6 as frequent. By using the derived interquantile ranges,

we can determine that rule 2 is frequent with high confidence (since its lower bound

23.8% is above the support threshold) and rule 6 may be infrequent (since its lower

bound 12.3% is below the support threshold).

3.2.2 Accuracy on Support s

In the scenario of market basket data mining, for each binary variable Aj, which

only has two categories (0 = absence, 1 = presence), the distortion parameters can

be shown as:
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Pj =




p0 1− p1

1− p0 p1


 (3.1)

If the original value is in the absence (presence) category, it will be kept in such

category with a probability p0 (p1) and changed to presence (absence) category with a

probability 1−p0 (1−p1). To make derivations simple, we follow the original Warner

Model by setting p0 = p1 = pj and use pj to denote the distortion parameters. This

setting indicates users have the same level of privacy for both 1’s and 0’s. In general,

customers may expect more privacy for their 1’s than for their 0’s, since the 1’s denote

specific actions whereas the 0’s are the default options.

Denote π(j) = (π
(j)
0 , π

(j)
1 )′ (λ(j) = (λ

(j)
0 , λ

(j)
1 )′) as the vector of marginal proportions

corresponding to item Aj in the original (randomized) data set, where j = 0, · · · ,m−
1. We have

λ(j) = Pjπ
(j) (3.2)

Note that each vector π(j) has two values π
(j)
0 , π

(j)
1 and the latter corresponds to

the support value of item Aj. For a market data set with N transactions, let λ̂(j) be

the vector of sample proportions corresponding to λ(j). Then an unbiased estimate

of π(j) is π̂(j) = P−1
j λ̂(j).

We can easily extend Equation 3.2, which is applicable to one individual item,

to compute the support of an arbitrary k-itemset. For simplicity, let us assume

that we would compute the support of an itemset which contains the first k items

{A0, · · · , Ak−1} (The general case with any k items is quite straightforward but al-

gebraically messy). Let P = P0 × · · · × Pk−1, an unbiased estimate of π follows

as

π̂ = P−1λ̂ = (P−1
0 × · · · × P−1

k−1)λ̂ (3.3)



29

where λ̂ is the vector of sample proportions corresponding to λ and P−1
j denotes

the inverse of the matrix Pj. π̂1,··· ,1 is the support for the k items. Note that although

the distortion matrices P0, · · · , Pk−1 are known, they can only be utilized to estimate

the proportions of itemsets of the original data, rather than precisely reconstruct the

original 0-1 data.

The whole contingency table is usually modeled as a multinomial distribution in

statistics. When we have k items, the number of cells in the contingency table is 2k.

For each cell d, where d = 1, 2, · · · , 2k, it has a separate binomial distribution with

parameters N and ηi. The binomial distribution is the discrete probability distri-

bution of the number of successes in a sequence of N independent 0/1 experiments,

each of which yields success with probability ηi. When N is large enough (one rule

of thumb is that both nηi and N(1− ηi) must be greater than 5), an approximation

to B(N, ηi) is given by the normal distribution N(Nηi, Nηi(1− ηi)).

Result 1 Since each cell πi1,··· ,ik approximately follows normal distribution, its (1−
α)100% interquantile range can be approximated as

[π̂i1···ik − zα/2 ∗
√

v̂ar(π̂i1···ik), π̂i1···ik + zα/2 ∗
√

v̂ar(π̂i1···ik)]

zα/2 is the upper α/2 critical value for the standard normal distribution.

v̂ar(π̂i1···ik) can be derived from the covariance matrix [11]:

ˆcov(π̂) = Σ1 + Σ2

= (N − 1)−1(π̂δ − π̂π̂
′
) + (N − 1)−1P−1(λ̂δ − Pπ̂δP

′
)P

′−1

Note that Σ1 is the dispersion matrix of the direct estimator of π, which is only

related to the data size for estimation. While the data size is usually large in most

market basket analysis scenarios, it can be neglected. Σ2 represents the component of

dispersion associated with RR distortion.

We can simply use the derived π̂i1···im (from Equation 3.3) as an estimate of µ and
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the derived
√

v̂ar(π̂i1···im) as an estimate of σ, where µ and σ are unknown parameters

of the normal distribution of each cell. An (1 − α)100% interquantile range, say

α = 0.05, shows the interval contains the original πi1,··· ,im with 95% probability.

To illustrate this result, we use a simple example G ⇒ H (rule 2 in Figure 3.1).

The proportion of itemsets of the original data is given as

π = (π00, π01, π10, π11)
′ = (0.415, 0.043, 0.183, 0.359)′

Using the RR scheme presented in the previous section, with the distortion param-

eters p1 = p2 = 0.9 , we get the randomized responses

λ̂ = (0.368, 0.097, 0.218, 0.316)′

By applying Equation 3.3, we derive the unbiased estimate of π as

π̂ = (0.427, 0.031, 0.181, 0.362)′

The covariance matrix of π̂ is unbiasedly estimated as

ˆcov(π̂) =




7.113 −1.668 −3.134 −2.311

−1.668 2.902 0.244 −1.478

−3.134 0.244 5.667 −2.777

−2.311 −1.478 −2.777 6.566



× 10−5

The diagonal elements of the above matrix represent the variances of the estimated

π̂, e.g., v̂ar(π̂00) = 7.113 × 10−5 and v̂ar(π̂11) = 6.566 × 10−5. Those off-diagonal

elements indicate the estimated covariances, e.g., côv(π̂11, π̂10) = −2.777× 10−5.

From Result 1, we can derive 95% interquantile range of sGH as

[π̂11 − z0.025

√
v̂ar(π̂11), π̂11 + z0.025

√
v̂ar(π̂11)] = [0.346, 0.378]

We can also see this derived interquantile range [0.346, 0.378] for rule 2 with p1 =
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p2 = 0.9 is shorter than [0.238, 0.391] with p1 = p2 = 0.65 as shown in Figure 3.1.

3.2.3 Accuracy on Confidence c

We first analyze the accuracy on confidence of a simple association rule A ⇒ B

where A and B are two single items which have 2 mutually exclusive and exhaustive

categories. We denote sA, sB, and sAB as the support values of A, B, and AB

respectively. Accordingly, we denote ŝA, ŝB, and ŝAB as the estimated support values

from randomized data of A, B, and AB respectively.

Result 2 The confidence (c) of a simple association rule A ⇒ B has estimated value

as

ĉ =
ŝAB

ŝA

=
π̂11

π̂1+

with the expectation of ĉ approximated as

Ê(ĉ) ≈ π̂11

π̂1+

+
π̂11

π̂3
1+

v̂ar(π̂10)− π̂10

π̂3
1+

v̂ar(π̂11) +
π̂11 − π̂10

π̂3
1+

côv(π̂11, π̂10) (3.4)

and the variance of ĉ approximated as

v̂ar(ĉ) ≈ π̂2
10

π̂4
1+

v̂ar(π̂11) +
π̂2

11

π̂4
1+

v̂ar(π̂10)− 2
π̂10π̂11

π̂4
1+

côv(π̂11, π̂10) (3.5)

according to the delta method [38].

Confidence can be regarded as a ratio (W ) of two correlated normal random vari-

ables (X,Y ), W = X/Y . However, it is hard to derive the critical value for the

distribution of W from its cumulative density function F (w) [63], we provide an

approximate interquantile range of confidence based on Chebyshev’s Inequality.

Theorem 1 (Chebyshev’s Inequality) For any random variable X with mean µ and

variance σ2

Pr(|X − µ| ≥ kσ) ≤ 1/k2 k > 0
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Figure 3.2: Interquantile Range vs. varying p

Chebyshev’s Inequality gives a conservative estimate. It provides a lower bound to the

proportion of measurements that are within a certain number of standard deviations

from the mean.

Result 3 The loose (1−α)100% interquantile range of confidence (c) of A ⇒ B can

be approximated as

[Ê(ĉ)− 1√
α

√
v̂ar(ĉ), Ê(ĉ) +

1√
α

√
v̂ar(ĉ)]

From Chebyshev’s Inequality, we know for any sample, at least (1 − 1/k2) of the

observations in the data set fall within k standard deviations of the mean. When we

set α = 1
k2 , we have Pr(|X − µ| ≥ 1√

α
σ) ≤ α. Hence, Pr(|X − µ| ≤ 1√

α
σ) ≥ 1 − α.

We can simply use the derived Ê(ĉ) (from Equation 3.4) as an estimate of µ and

the derived
√

v̂ar(ĉ) (from Equation 3.5) as an estimate of σ, where µ and σ are

unknown parameters of the distribution of confidence. An approximate (1− α)100%

interquantile range of confidence c is then derived.
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Note that the interquantile range based on Chebyshev’s Theorem is much larger

than that based on known distributions such as normal distribution for support esti-

mates. This is because that 1√
α
≥ zα/2 where zα/2 is the upper α/2 critical value for

the standard normal distribution. In Figure 3.2, we show how the 95% interquantile

ranges for the estimated support of one particular rule (G ⇒ H from COIL data)

change with varied distortion p from 0.65 to 0.95. We can see the interquantile range

derived based on Chebyshev’s theorem is wider than that derived from known nor-

mal distribution. As expected, we can also observe that the larger the p, the more

accurate the estimate and the tighter the interquantile ranges.

All the above results can be straightforwardly extended to the general association

rule X ⇒ Y and further details can be found in [27].

3.2.4 Empirical Evaluation

In our experiments, we use the COIL Challenge 2000 which provides data from a

real insurance business. Information about customers consists of 86 attributes and

includes product usage data and socio-demographic data derived from zip area codes.

The training set consists of 5822 descriptions of customers, including the information

of whether or not they have a Caravan insurance policy. Our binary data is formed by

collapsing non-binary categorical attributes into binary form (the data can be found

at www.cs.uncc.edu/∼xwu/classify/b86.dat), with n = 5822 baskets and m = 86

binary items. We use ten attributes (denote as A to J) as shown in Table 3.1 to

illustrate our results.

1. Accuracy of individual rule vs. varying p

Table 3.2 shows the 7 randomly chosen association rules derived from the random-

ized COIL data with distortion parameter p = 0.65 . In this table, s (ŝ) indicates the

original (estimated) support value. ŝl (ŝu) denotes the lower bound (upper bound) of

the 95% interquantile range of the estimated support value. Similarly, c (ĉ) indicates

the original (estimated) confidence value. ĉl (ĉu) denotes the lower bound (upper
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Table 3.2: Accuracy of the estimated support and confidence for 7 representative
rules of COIL

ID X Y s ŝ ŝl ŝu c ĉ ĉl ĉu

1 G E 35.9 34.1 26.3 41.8 66.2 64.7 31.3 95.3
2 G H 35.9 31.5 23.8 39.1 66.2 62.2 26.6 90.4
3 EH G 35.8 45.0 31.5 58.5 89.3 77.5 33.5 100
4 EG I 22.1 28.4 14.9 42.0 61.7 75.2 0 100
5 HF I 23.9 17.2 3.7 30.8 100 91.0 0 100
6 EGH F 22.1 36.3 12.3 60.2 61.7 99.4 0 100
7 FGI E 22.1 27.6 3.32 52.0 77.9 86.3 0 100

bound) of the 95% estimated confidence value. We have shown how the accuracy of

the estimated support values varies in Figure 3.1.

One observation is that interquantile ranges of confidence estimates are usually

wider than that of support estimates. For example, the 95% interquantile range of

the estimated confidence for rule 2 is [26.6%, 90.4%], which is much wider than that of

the estimated support [23.8%, 39.1%]. This is due to three reasons. First, we set the

distortion parameter p = 0.65 which implies a relatively large noise (the perturbed

data will be completely random when p = 0.5). Second, the variance of the ratio of

two variables is usually larger than the variance of either single variable. Third, the

estimated support can be modeled as one approximate normal distribution so we can

use the tight interquantile range. On the contrary, we derive the loose interquantile

range of confidence using the general Chebyshev’s Theorem. We expect that the

explicit form of the F (w) distribution can significantly reduce this width. We will

investigate the explicit form of the distribution of confidence and all other measures,

e.g. correlation, lift, etc. to derive tight bounds in our future work.

Our next experiment shows how the derived estimates (support, confidence, and

their corresponding interquantile ranges) of one individual rule vary with the distor-

tion parameter p. We vary the distortion parameter p from 0.65 to 0.95. Figure 3.3(a)

(3.3(b)) shows the accuracy of the estimated support (confidence) values with varied
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distortion p values for a particular rule G ⇒ H. As expected, the larger the p, the

more accurate the estimate and the tighter the interquantile range is. It was empir-

ically shown in [54] that a distortion probability of p = 0.9 (equivalently p = 0.1) is

ideally suited to provide both privacy and good data mining results for the sparse

market basket data. We can observe from Figure 3.3(b) that the 95% interquantile

range of the confidence estimate with p ≥ 0.9 is tight.

2. Accuracy of all rules vs. varying p

The above study of the accuracy of the estimate in terms of each individual rule is

based on the variance as criterion. In the case of all rules together, we can evaluate the

overall accuracy of data mining results using the average support error, the average

confidence error, percentage of false positives, percentage of false negatives etc. as

defined in [7].

The metric ρ = 1
|R|

∑
r∈R

|ŝr−sr|
sr

× 100 represents the average relative error in the

reconstructed support values for those rules that are correctly identified. The identity

error σ reflects the percentage error in identifying association rules. σ+ = |R−F |
|F | ×

100 indicates the percentage of false positives and σ− = |F−R|
|F | × 100 indicates the

percentage of false negatives where R (F ) denotes the reconstructed (actual) set of

association rules. In addition to the support error (ρ) and the identity error (σ+, σ−),

we define the following three measures.

• γ: the confidence error γ = 1
|R|

∑
r∈R

|ĉr−cr|
cr

×100 represents the average relative

error in the reconstructed confidence values for those rules that are correctly

identified.

• s-p: the number of pairs of conflict support estimates. We consider ŝ1, ŝ2 as a

pair of conflict estimates if ŝ1 < ŝ2 but s1 > ŝ1l > smin > s2 where ŝ1l denotes

the lower bound of interqunatile range for s1.

• c-p: the number of pairs of conflict confidence estimates (similarly defined as
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the above s-p).

Errors in support estimation due to the distortion procedure can result in falsely

identified frequent itemsets. This becomes especially an issue when the support

threshold setting is such that the support of a number of frequent itemsets lie very

close to this threshold value (smin). Such border-line itemsets can cause many false

positives and false negatives. Even worse, an error in identifying a frequent itemset

correctly in early passes has a ripple effect in terms of causing errors in later passes.

Table 3.3(a) shows how the above measures are varied by changing distortion pa-

rameter p from 0.65 to 0.95. We can observe all measures (the support error ρ, the

confidence error γ, the false positives σ+, the false negatives σ−) decrease when p

increases. The number of conflict support pairs (s-p) and conflict confidence pairs

(c-p) also have the same trend. Our experiment shows that when p ≥ 0.85, there are

no or very few conflict support (confidence) pairs, which implies the reconstructed

set of association rules is close to the original set. However, when p ≤ 0.80, there are

significant number of conflict pairs, which implies the reconstructed set may be quite

different from the original one. By incorporating the derived interquantile range for

each estimate, we can decrease the error caused by conflict pairs. In Section 3.2.1,

we have shown one conflict support pair: rule 2 and rule 6. We can see that ŝ2 < ŝ6

(but s2 > s6). As ŝ2l > smin and ŝ6l < smin, data miners can safely determine rule 2

is frequent but rule 6 may be infrequent. We would emphasize again that providing

estimates together with their interquantile ranges (especially for those conflict pairs)

through some visualization is very useful for data exploration tasks conducted on the

randomized data.

Table 3.3(b) shows the comparison between the identity errors derived using lower

bound and upper bound respectively. We define σ+
l = |Rl−F |

|F | ×100 (σ+
u = |Ru−F |

|F | ×100)

as the false positives calculated from Rl (Ru) where Rl (Ru) denotes the reconstructed

set of association rules using lower (upper) bound of interquantile range respectively.
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Table 3.3: supmin = 25%, confmin = 65% for COIL

(a)

p ρ σ− σ+ s-p γ c-p
0.65 25.6 34.0 53.8 27817 9.90 737
0.70 12.3 21.2 38.1 4803 6.39 393
0.75 7.35 11.8 30.8 729 4.44 85
0.80 3.64 6.82 16.9 0 2.47 28
0.85 2.64 6.67 7.76 0 1.76 0
0.90 1.91 5.18 4.24 0 1.10 0
0.95 0.84 4.63 1.02 0 0.51 0

(b)

p σ− σ−l σ−u σ+ σ+
l σ+

u

0.65 34.0 98.8 1.25 53.8 0.00 110.7
0.70 21.2 90.9 0.08 38.1 0.08 105.7
0.75 11.8 66.3 0.00 30.8 1.18 96.5
0.80 6.82 50.7 0.31 16.9 0.24 80.9
0.85 6.67 37.7 0.00 7.76 0.55 53.0
0.90 5.18 31.8 0.00 4.24 0.00 35.0
0.95 4.63 26.8 0.00 1.02 0.00 25.7

Similarly we define σ−l and σ−u . We can observe from Table 3.3(b) that σ−u is signif-

icantly lower than σ− while σ+
l is significantly lower than σ+. In other words, using

the upper bound of the derived interquantile range can decrease the false negatives

while using the lower bound can decrease the false positives. In some scenario, we

may emphasize more on decreasing the false positive error. Hence, we can use the

lower bound of the derived interquantile range, rather than the estimated value, to

determine whether the set is frequent or not (i.e., frequent only if ŝl ≥ smin, infrequent

otherwise).

3. Other datasets

Since the COIL Challenge data is very sparse (5822 tuples with 86 attributes),

we also conducted evaluations on the following representative databases used for

association rule mining.
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Table 3.4: supmin = 0.20%, confmin = 20% for BMS-WebView-1

(a)

p ρ σ− σ+ s-p γ c-p
0.65 362.4 64.1 80.6 632 114.7 11
0.75 72.9 39.9 68.7 418 57.9 2
0.85 19.5 27.9 54.0 67 24.5 0
0.95 5.47 9.66 16.5 56 7.23 0

(b)

p σ− σ−l σ−u σ+ σ+
l σ+

u

0.65 63.9 100.0 1.34 81.8 0.0 187.6
0.75 40.1 100.0 1.07 69.8 0.0 155.3
0.85 27.9 99.1 0.40 54.0 0.0 152.8
0.95 9.66 70.6 0.00 16.5 0.0 123.8

Table 3.5: supmin = 0.20%, confmin = 60% for IBM data

(a)

p ρ σ− σ+ s-p γ c-p
0.65 1234.9 73.4 171.9 971 47.8 7
0.75 99.7 57.8 168.0 11 38.3 0
0.85 19.9 49.7 165.6 3 18.6 0
0.95 5.14 21.3 50.3 0 4.61 0

(b)

p σ− σ−l σ−u σ+ σ+
l σ+

u

0.65 73.7 100.0 2.99 172.8 0.0 722.5
0.75 57.8 100.0 1.20 167.9 0.0 674.3
0.85 49.7 100.0 0.90 165.6 0.0 673.4
0.95 21.3 99.7 0.00 50.3 0.0 460.8
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1. BMS-WebView-1 3. Each transaction in the data set is a web session consisting

of all the product detail pages viewed in that session. There are about 60,000

transactions with close 500 items.

2. A synthetic database generated from the IBM Almaden market basket data gen-

erator with parameters T10.I4.D0.1M.N0.1K., resulting in 10k customer tuples

with each customer purchasing about ten items on average.

Tables 3.4 and 3.5 show our results on these two data sets respectively. We can

observe similar patterns as shown in COIL data set.

3.3 Extension to General Categorical Data Analysis

Most data mining problems are based on the analysis of associations between vari-

ables. No matter how the associations are defined, a suitable measure to evaluate

the dependencies between variables is required for such analysis. The problem of

analyzing objective measures used by data mining algorithms has attracted much at-

tention in recent years. Many measures have been proposed for different applications

in the literature. Depending on the specific properties of it, each measure is useful for

some application, but not for others. The objective interestingness measure is usually

computed from the contingency table. Table 3.6 shows various measures defined for

a pair of binary variables [69].

In this section we conduct theoretical analysis on the accuracy of various measures

adopted in categorical data analysis. Our analysis is based on estimating the param-

eters of derived random variables. The estimated measure (e.g., Interest statistics)

is considered as one derived variable. We present a general method in [28], which

is based on the Taylor series, for approximating the mean and variance of derived

variables. We also derive interquantile ranges of those estimates. Hence, data miners

are ensured that their estimates lie within these ranges with a high confidence.

3http://www.ecn.purdue.edu/KDDCUP
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3.3.1 Variances of Derived Measures

From Table 3.6, we can see that each measure can be expressed as one derived

random variable (or function) from the observed variables (πij or their marginal totals

πi+, π+j). Similarly, its estimate from the randomized data can be considered as

another derived random variable from the input variables (π̂ij, π̂i+, π̂+j). Since we

know how to derive variances of the input variables (v̂ar(π̂ij)) from the randomized

data, our problem is then how to derive the variance of the derived output variable.

In the following, we first present a general approach based on the Delta method

[38] and then discuss how to derive the variance of chi-square statistics (χ2) as one

example.

Let z be a random variable derived from the observed random variables xi (i =

1, · · · , n): z = g(x). According to the Delta method, a Taylor approximation of the

variance of a function with multiple variables can be expanded as

var{g(x)} =
k∑

i=1

{g′i(θ)}2var(xi) +
k∑∑

i6=j=1

g′i(θ)g
′
j(θ)cov(xi, xj) + o(N−r)

where θi is the mean of xi, g(x) stands for the function g(x1, x2, · · · , xk), g′i(θ) is the

∂g(x)
∂xi

evaluated at θ1, θ2, · · · , θk.

For market basket data with 2 variables, π̂ = (π̂00, π̂01, π̂10, π̂11)
′, the estimated

chi-square is shown as

χ̂2 = N(
(π̂00 − π̂0+π̂+0)

2

π̂0+π̂+0

+
(π̂01 − π̂0+π̂+1)

2

π̂0+π̂+1

+
(π̂10 − π̂1+π̂+0)

2

π̂1+π̂+0

+
(π̂11 − π̂1+π̂+1)

2

π̂1+π̂+1

)



43

Let x1 = π̂00, x2 = π̂01, x3 = π̂10 and x4 = π̂11, we have

g(x1, x2, x3, x4) = χ2

= N [
x2

1

(x1 + x2)(x1 + x3)
+

x2
2

(x1 + x2)(x2 + x4)
+

x2
3

(x3 + x4)(x3 + x1)
+

x2
4

(x4 + x3)(x4 + x2)
− 1]

Partial derivatives of the function g() can be calculated respectively. By incorpo-

rating estimated expectations, variances and covariances of variables in function g(),

the variance of function g() can be estimated as

v̂ar(g) ≈ G2
1v̂ar(π̂00) + G2

2v̂ar(π̂01) + G2
3v̂ar(π̂10) + G2

4v̂ar(π̂11)

+2G1G2ĉov(π̂00, π̂01) + 2G1G3ĉov(π̂00, π̂10) + 2G1G4ĉov(π̂00, π̂11)

+2G2G3ĉov(π̂01, π̂10) + 2G2G4ĉov(π̂01, π̂11) + 2G3G4ĉov(π̂10, π̂11)

where

G1 =
∂g

∂x1

= N [
π̂2
00(π̂01+π̂10)+2π̂00π̂01π̂10

π̂2
0+π̂2

+0
− π̂2

01

π̂2
0+π̂+1

− π̂2
10

π̂2
+0π̂1+

]

G2 =
∂g

∂x2

= N [
π̂2
01(π̂00+π̂11)+2π̂00π̂01π̂11

π̂2
0+π̂2

+1
− π̂2

00

π̂2
0+π̂+0

− π̂2
11

π̂2
+1π̂1+

]

G3 =
∂g

∂x3

= N [
π̂2
10(π̂11+π̂00)+2π̂00π̂10π̂11

π̂2
1+π̂2

+0
− π̂2

11

π̂2
1+π̂+1

− π̂2
00

π̂2
+0π̂0+

]

G4 =
∂g

∂x4

= N [
π̂2
11(π̂01+π̂10)+2π̂11π̂01π̂10

π̂2
1+π̂2

+1
− π̂2

10

π̂2
1+π̂+0

− π̂2
01

π̂2
+1π̂0+

]

Since χ2 = Nφ2 where φ denotes correlation (A proof is given in Appendix A

of [62]), φ =
√

χ2/N =
√

g/N . As we know, ∂φ
∂xi

= 1
2
√

gN
∂g
∂xi

. Following the same

procedure above, the variance of correlation φ can be approximated as

v̂ar(φ) ≈ v̂ar(g)

4GE

where

GE = N2[
π̂2

00

π̂0+π̂+0

+
π̂2

01

π̂0+π̂+1

+
π̂2

10

π̂1+π̂+0

+
π̂2

11

π̂1+π̂+1

− 1]
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Similarly we can derive variances of the estimated values of all measures shown in

Table 3.6. Measures such as χ2, interest factor, IS, PS, and Jaccard coefficient can be

extended to more than two variables using the multi-dimensional contingency tables.

We show the estimated chi-square statistics for k-itemset as one example.

χ̂2 = N

1∑
u1=0

· · ·
1∑

uk=0

(π̂u1···uk
−

k∏
j=1

π̂
(j)
uj )2

k∏
j=1

π̂
(j)
uj

(3.6)

It is easy to see χ̂2 can be considered as one derived variable from the observed

elements π̂u1···uk
and the marginal totals π̂

(j)
uj of the 2k contingency table. Following

the same delta method, we can derive its variance.

3.3.2 Interquantile Ranges of Derived Measures

To derive interquantile ranges of estimates, we need to explore the distribution

of those derived variables. In [27], the authors have shown the estimate of support

follows an approximate normal distribution and the estimate of confidence (i.e., a

ratio of two correlated normal variables) follows a very complex F (w) distribution.

In general, we can observe that every element (e.g., π̂ij) in the derived measure

expressions (shown in Table 2) has an approximate normal distribution, however,

the derived measures usually do not have explicit distribution expressions. Hence we

cannot calculate the critical values of distributions to derive the interquantile range.

Chebyshev’s theorem can be used to give a conservative estimate of it as in Section

3.2.3 for confidence.

3.4 Summary

In this chapter, we investigated the issue of providing accuracy in privacy preserving

categorical data analysis. We have presented a general approach to derive variances

of estimates of various measures adopted in categorical data analysis. We applied

the idea of using interquantile ranges based on Chebyshev’s Theorem to bound those
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estimates derived from the randomized categorical data.

Providing the accuracy of discovered patterns from randomized data is important

for data miners. To the best of our knowledge, this has not been previously explored

in the context of privacy preserving data mining although defining the significance of

discovered patterns in general data mining has been studied (e.g., [25]).
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Figure 3.3: Accuracy vs. varying p for rule G ⇒ H



CHAPTER 4: UTILITY ANALYSIS WITH UNKNOWN DISTORTION
PROBABILITIES P

Randomization still runs certain risk of disclosures. Attackers may exploit the

released distortion parameters to calculate the posterior probabilities of the original

value based on the distorted data. It is considered as jeopardizing with respect to

the original value if the posterior probabilities are significantly greater than the a-

priori probabilities. In this chapter, we investigate whether data mining or statistical

analysis tasks can still be conducted on randomized data when distortion parameters

are not disclosed to data miners.

In Section 4.1, we review some related work in randomization. In Section 4.2, we

investigate how various objective measures used for association analysis between two

variables may be affected by randomization. We demonstrate that some measures

(e.g., Correlation, Mutual Information, Likelihood Ratio, Pearson Statistics) have a

vertical monotonic property , i.e., the values calculated directly from the randomized

data are always less than or equal to those original ones. Hence, some data analysis

tasks (e.g., independence testing) can be executed on the randomized data directly

even without knowing distortion parameters. We then investigate how the relative or-

der of two association patterns is affected when the same randomization is conducted.

We show that some measures (e.g., Piatetsky-Shapiro) have relative horizontal order

invariant properties, i.e, if one pattern is stronger than another in the original data,

we have that the first one is still stronger than the second one in the randomized

data.

In Section 4.3, we extend association analysis from two variables to multiple vari-

ables. We investigate the feasibility of loglinear modeling, which is well adopted to
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analyze associations among three or more variables, and examine the criterion on de-

termining which hierarchical loglinear models are preserved in the randomized data.

We also show that several multi-variate association measures studied in the data

mining community are special cases of loglinear modeling.

In Section 4.4, we demonstrate the infeasibility of some classic data mining tasks

(e.g., association rule mining, decision tree learning, näıve Bayesian classifier) on ran-

domized data by showing the non-monotonic properties of measures (e.g.,support/confidence,

gini) adopted in those data mining tasks. Our motivation is to provide a reference

to data miners about what they can do and what they can not do with certainty

upon the randomized data directly without distortion parameters. To the best of our

knowledge, this is the first such formal analysis of the effects of Randomized Response

for privacy preserving categorical data analysis with unknown distortion parameters.

Throughout this chapter, we use the COIL Challenge 2000 which provides data

from a real insurance business. The description of the data set can be found in Table

3.1 of Section 3.2.4. Some results in this chapter were previously reported in [29].

4.1 Introduction

As we discussed in Chapter 3 , most of previous work on randomization models

except [28] investigated the scenario that distortion parameters are fully or partially

known by data miners. Previous work using RR model either focused on evaluating

the trade-off between privacy preservation and utility loss of the reconstructed data

with the released distortion parameters (e.g., [6, 28, 54]) or determining the optimal

distortion parameters to achieve good performance (e.g., [35]). Data mining tasks

were conducted on the reconstructed distribution π̂ calculated from Equation 3.3. In

this Chapter, we investigate the scenario that distortion parameters are not known

by data miners. That is, data mining tasks are conducted on the distribution of

randomized data λ directly. According to our knowledge, it has not been studied in

the literature of privacy preserving data mining.
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In [28], the authors very briefly showed that some measures have vertical mono-

tonic property on the market basket data. We extend studies on association measures

between two binary variables to those on multiple polychotomous variables. More im-

portantly, we also propose a new type of monotonic property, horizontal association,

i.e., according to some measures, if the association between one pair of variables is

stronger than another in the original data, the same order will still be kept in the

randomized data when the same level of randomization is applied.

4.2 Associations between Two Variables

In this section, we investigate how associations between two variables are affected

by randomization. Specifically, we consider two cases:

• Case 1 : Au and Av, association between two sensitive variables.

• Case 2 : Au and Bl, association between a sensitive variable and a non-sensitive

variable.

Case 2 is a special case of case 1 while Pl is an identity matrix, so any results for case

1 will satisfy case 2. However, it is not necessarily true vice versa.

4.2.1 Associations between Two Binary Variables

Table 3.6 shows various association measures for two binary variables (Refer to

[69] for a survey). We can observe that all measures can be expressed as functions

with parameters as cell entries (πij) and their margin totals (πi+ or π+j) in the 2-

dimensional contingency table.

Randomization Setting For a binary variable Au, which only has two categories

(0 = absence, 1 = presence), the distortion parameters can be shown as:

Pj =




p0 1− p1

1− p0 p1



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Vertical Association Variation

We use subscripts ori and ran to denote measures calculated from the original data

and randomized data (without knowing the distortion parameters) respectively. For

example, χ2
ori denotes the Pearson Statistics calculated from the original data D while

χ2
ran corresponds to the one calculated directly from the randomized data Dran.

There exist many different realizations Dran for one original data set D. When the

data size is large, the distribution λ̂ calculated from one realization Dran approaches

its expectation λ, which can be calculated from the distribution π of the original

data set through Equation 2.1. This is because

cov(λ̂) = N−1(λδ − λλ′),

as shown in [11]. cov(λ̂) approaches zero when N is large. Here λδ is a diagonal

matrix with the same diagonal elements as those of λ arranged in the same order.

All our following results and their proofs are based on the expectation λ, rather than

a given realization λ̂. Since data sets are usually large in most data mining scenarios,

we do not consider the effect due to small samples. In other words, our results are

expected to hold for most realizations of the randomized data.

Result 4 For any pair of variables Au, Av perturbed with any distortion matrix Pu

and Pv (p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 ∈ [0, 1]) respectively (Case 1), or any pair of variables

Au, Bl where Au is perturbed with Pu (Case 2), the χ2, G2,M, τ, U, φ, D, PS values

calculated from both original and randomized data satisfy:

χ2
ran ≤ χ2

ori, G2
ran ≤ G2

ori

Mran ≤ Mori, τran ≤ τori

Uran ≤ Uori, |φran| ≤ |φori|

|Dran| ≤ |Dori|, |PSran| ≤ |PSori|
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No other measures shown in Table 3.6 holds monotonic property.

For randomization, we know that the distortion is 1) highest with p = 0.5 which

imparts the maximum randomness to the distorted values; 2) symmetric around p =

0.5 and makes no difference, reconstruction-wise, between choosing a value p or its

counterpart 1−p. In practice, the distortion is usually conducted with p greater than

0.5. The following results show the vertical association variations when p
(u)
0 ,p

(u)
1 ,p

(v)
0

and p
(v)
1 are greater than 0.5.

Result 5 In addition to monotonic relations shown in Result 4, when p
(u)
0 , p

(u)
1 , p

(v)
0 ,

p
(v)
1 ∈ [0.5, 1], we have

|Fran| ≤ |Fori|, |AVran| ≤ |AVori|

|κran| ≤ |κori|, |αran − 1| ≤ |αori − 1|

|Iran − 1| ≤ |Iori − 1|, |Vran − 1| ≤ |Vori − 1|

|Sran − 1| ≤ |Sori − 1|

Proof The Added Value calculated directly from the randomized data without know-

ing Pu, Pv is

AVran =
λ11

λ1+

− λ+1 =
λ11 − λ+1λ1+

λ1+

The original Added Value can be expressed as

AVori =
π11 − π+1π1+

π1+
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As π = (P−1
u × P−1

v )λ, we have:

π1+ =
p

(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+

p
(u)
0 + p

(u)
1 − 1

π+1 =
p

(v)
1 − 1 + (1 + p

(v)
0 − p

(v)
1 )λ+1

p
(v)
0 + p

(v)
1 − 1

π11 − π+1π1+ =
λ11 − λ+1λ1+

(p
(u)
0 + p

(u)
1 − 1)(p

(v)
0 + p

(v)
1 − 1)

Through deduction, AVori is expressed as:

AVori =
λ11 − λ+1λ1+

(p
(v)
0 + p

(v)
1 − 1)[p

(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+]

Let f(p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 , λ1+) = |(p(v)

0 +p
(v)
1 −1)[p

(u)
1 −1+(1+p

(u)
0 −p

(u)
1 )λ1+]|−|λ1+|,

1) When p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 ∈ [0.5, 1], since

π1+ =
p

(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+

p
(u)
0 + p

(u)
1 − 1

≥ 0

then

p
(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+ ≥ 0

we have

f(p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 , λ1+) = (p

(v)
0 + p

(v)
1 − 1)[p

(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+]− λ1+

= (p
(v)
0 + p

(v)
1 − 1)(p

(u)
1 − 1)(1− λ1+)

+ [(p
(v)
0 + p

(v)
1 − 1)p

(u)
0 − 1]λ1+

≤ 0

Hence,

|AVori| = | λ11 − λ+1λ1+

(p
(v)
0 + p

(v)
1 − 1)[p

(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+]

|

≥ |λ11 − λ+1λ1+

λ1+

|

≥ |AVran|
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2) When p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 ∈ [0, 0.5], since

p
(u)
1 − 1 + (1 + p

(u)
0 − p

(u)
1 )λ1+ ≥ 0

we have

f(p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 , λ1+) = (p

(v)
0 + p

(v)
1 − 1)(p

(u)
1 − 1)(1− λ1+)

+ [(p
(v)
0 + p

(v)
1 − 1)p

(u)
0 − 1]λ1+

when λ1+ ≥ (p
(v)
0 +p

(v)
1 −1)(p

(u)
1 −1)

1−(p
(u)
0 +p

(v)
1 −1)(1+p

(u)
0 −p

(u)
1 )

f(p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 , λ1+) ≤ 0, |AVori| ≥ |AVran|

when λ1+ <
(p

(v)
0 +p

(v)
1 −1)(p

(u)
1 −1)

1−(p
(v)
0 +p

(v)
1 −1)(1+p

(u)
0 −p

(u)
1 )

f(p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 , λ1+) > 0, |AVori| < |AVran|

Similarly, we can prove that |AVori| ≥ |AVran| is not always held when p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 /∈

[0.5, 1].

For all other measures in the above two results, we can prove similarly. We can

see that four measures ( Odds Ratio α, Collective Strength S, Interest PS, and

Conviction V ) are compared with “1” since values of these measures with “1” indicate

the two variables are independent. Next we illustrate this monotonic property using

an example.

Example 1 Figure 4.1(a) and 4.1(b) show how the Cosine and Pearson Statistics

calculated from the randomized data (attributes A and D from COIL data (πAD=(

0.1374, 0.3332, 0.2982, 0.2312)′) vary with distortion parameters p(A) and p(D) (In all

examples, we follow the original Warner model by setting p
(u)
0 = p

(u)
1 = p(u) ). It can

be easily observed that χ2
ran ≤ χ2

ori for all p(A), p(D) ∈ [0, 1] and ISran ≥ ISori for

some p(A), p(D) values.
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One interesting question here is how to characterize those measures that have

this monotonic property. The problem of analyzing objective measures used by data

mining algorithms has attracted much attention in recent years [24,68]. Depending on

the specific properties of it, every measure is meaningful from some perspective and

useful for some application, but not for others. Piatetsky-Shapiro [52] proposed three

principles that should be satisfied by any good objective measure M for variables

X,Y :

• C1: M = 0 if X and Y are statistically independent, that is, Pr(XY ) =

Pr(X)Pr(Y ).

• C2: M monotonically increases with Pr(XY ) when Pr(X) and Pr(Y ) remain

the same.

• C3: M monotonically decreases with Pr(X) (or Pr(Y )) when Pr(XY ) and

Pr(Y ) (or Pr(X)) remain the same.

We can observe that all measures which obey C1 and C2 principles have monotonic

properties after randomization by examining measures shown in Table 3.6.

Horizontal Association Variation

In this section, we investigate the horizontal association variation problem, i.e., if

the association based on a given association measure between one pair of variables is

stronger than another in the original data, whether the same order will still be kept

in the randomized data when the same level of randomization is applied.

We first illustrate this horizontal property using an example and then present our

results.

Example 2 Figure 4.2(a) and 4.2(b) show how the Piatetsky-Shapiro’s measure and

Odds Ratio ( A,B (πA,B=(0.4222, 0.0484, 0.3861, 0.1432)′) and I,J (πI,J=(0.4763,

0.0124, 0.4639, 0.0474)′)) calculated from the randomized data vary with distortion
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parameters p(u) and p(v). It can be easily observed from Figure 4.2(a) that the blue

surface (PSA,B
ran ) is above the brown surface (PSI,J

ran), which means that PSA,B
ran >

PSI,J
ran for all p(u), p(v) ∈ [0.5, 1] with PSA,B

ori > PSI,J
ori ( PSA,B

ori and PSI,J
ori are the

points when pu = pv = 1). Figure 4.2(b) shows although αA,B
ori < αI,J

ori (αA,B
ori =

3.23, αI,J
ori = 3.94), αA,B

ran > αI,J
ran for some distortion parameters p(u) and p(v). For

example, αA,B
ran = 1.32, αI,J

ran = 1.14 when p(u) = p(v) = 0.8.

Result 6 For any two sets of binary variables {Au, Av} and {As, At}, Au and As are

perturbed with the same distortion matrix Pu while Av and At are perturbed with the

same distortion matrix Pv respectively (p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 ∈ [0, 1]) (Case 1), we have

|PSu,v
ori | ≥ |PSs,t

ori| ⇐⇒ |PSu,v
ran| ≥ |PSs,t

ran|

where PSu,v
ori , PSs,t

ori denote Piatetsky-Shapiro’s measure calculated from the original

dataset {Au, Av} and {As, At} respectively and PSu,v
ran, PSs,t

ran correspond to measures

calculated directly from the randomized data without knowing p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 .

Proof For any pair of variables, Piatetsky-Shapiro’s measure calculated directly from

the randomized data without knowing p
(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 is:

PSran = λ11 − λ1+λ+1 = λ00λ11 − λ01λ10

The original Piatetsky-Shapiro’s measure is:

PSori = π11 − π1+π+1 =
PSran

(p
(u)
0 + p

(u)
1 − 1)(p

(v)
0 + p

(v)
1 − 1)

|PSu,v
ori | − |PSs,t

ori| =
|PSu,v

ran| − |PSs,t
ran|

|(p(u)
0 + p

(u)
1 − 1)(p

(v)
0 + p

(v)
1 − 1)|

So ∀p(u)
0 , p

(u)
1 , p

(v)
0 , p

(v)
1 ∈ [0, 1], 1

|(p(u)
0 +p

(u)
1 −1)(p

(v)
0 +p

(v)
1 −1)| ≥ 1. Result 6 is proved.

Result 7 For any two pairs of variables {Au, Bs} and {Av, Bt}, Au and Av are per-

turbed with the same distortion matrix Pu (p
(u)
0 ,p

(u)
1 ∈ [0, 1]) while Bs and Bt are
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unchanged (Case 2), we have

|Du,s
ori| ≥ |Dv,t

ori| ⇐⇒ |Du,s
ran| ≥ |Dv,t

ran|

|AV u,s
ori | ≥ |AV v,t

ori | ⇐⇒ |AV u,s
ran| ≥ |AV v,t

ran|

Proof Since

Dran =
λ00

λ+0

− λ01

λ+1

=
λ00λ11 − λ01λ10

λ+0λ+1

Dori =
π00π11 − π01π10

π+0π+1

=
λ00λ11 − λ01λ10

(p
(u)
0 + p

(u)
1 − 1)λ+0λ+1

We have Dori = 1

(p
(u)
0 +p

(u)
1 −1)

Dran. Hence,

|Du,s
ori| − |Dv,t

ori| =
1

|p(u)
0 + p

(u)
1 − 1|

(|Du,s
ran| − |Dv,t

ran|)

We can show AV also holds. Result 7 is proved.

Through evaluation, no other measure in Table 3.6 except Piatetsky-Shapiros, Risk

Difference, and Added Values measures has this property. Intuitively, if the same

randomness is added to the two pairs of variables separately, the relative order of the

association patterns should be kept after randomization. Piatetsky-Shapiro measure

can be considered as a better measure than others to preserve such property.

4.2.2 Extension to Two Polychotomous Variables

There are five association measures (χ2, G2,M, τ, U) that can be extended to two

variables with multiple categories as shown in Table 4.1.

Vertical Association Variation

Result 8 For any pair of variables Au, Av perturbed with any distortion matrix Pu

and Pv, the χ2, G2,M, τ, U values calculated from both original and randomized data
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Table 4.1: Objective measures for two polychotomous variables

Measure Expression

Mutual Info (M)

∑
i

∑
j πij log

πij
πi+π+j

−∑
i πi+logπi+

Likelihood (G2) 2
∑

i

∑
j πijlog

πij

πi+π+j

Pearson (χ2) N
∑

i

∑
j

(πij−πi+π+j)
2

πi+π+j

Concentration Coefficient (τ)
∑

i

∑
j π2

ij/πi+−
∑

j π2
+j

1−∑
j π2

+j

Uncertainty Coefficient (U) −
∑

i

∑
j πij log

πij
πi+π+j∑

j π+j logπ+j

satisfy:

χ2
ran ≤ χ2

ori, G2
ran ≤ G2

ori

Mran ≤ Mori, τran ≤ τori

Uran ≤ Uori

We would emphasize that this result is important for data analysis tasks such as

hypothesis testing. According to the above result, associations between two sensitive

variables or associations between one sensitive variable with non-sensitive one are

attenuated by randomization. An important consequence of the attenuation results

is that if there is no association between Au, Av or Au, Bl in the original data, there

will also be no association in randomized data.

Result 9 The χ2 test for independence on the randomized Ãu with Ãv or on Ãu with

Bl is a correct α-level test for independence on Au with Av or Au with Bl while with

reduced power.

This result shows testing pairwise independence between the original variables is

equivalent to testing pairwise independence between the corresponding distorted vari-

ables. That is, the test can be conducted on distorted data directly when variables in

the original data are independent. However, the testing power to reject the indepen-
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dence hypotheses is reduced when variables in the original data are not independent.

For independence testing, we have two hypotheses:

• H0: πij = πi+π+j, for i = 0, ..., d1 − 1 and j = 0, ..., d2 − 1.

• H1: the hypotheses of H0 is not true.

The test procedure is to reject H0 with significance level α if χ2 ≥ C. In other

words, Pr(χ2 ≥ C|H0) ≤ α. The probability of making Type I error is defined as

Pr(χ2 ≥ C|H0) while 1− Pr(χ2 ≥ C|H1) denotes the probability of making Type II

error. To maximize the power of the test, C is set as χ2
α, i.e., the 1 − α quantile of

the χ2 distribution with (d1 − 1)(d2 − 1) degrees of freedom.

If two variables are independent in original data, i.e., χ2
ori < χ2

α, when testing

independence on the randomized data, we have χ2
ran < χ2

ori < χ2
α. We can observe

that randomization does not affect the validity of the significance test with level α.

The risk of making Type I error is not increased.

If two variables are dependent in original data, i.e., χ2
ori ≥ χ2

α. The power to

reject H0 (Pr(χ2
ori ≥ χ2

α|H1)) will be reduced to Pr(χ2
ran ≥ χ2

α|H1) when testing on

randomized data. That is, χ2
ran may be decreased to be less than χ2

α. Hence we may

incorrectly accept H0. The probability of making Type II error is increased.

Horizontal Association Variation

Since none of Risk Difference, Added Value, and Piatetsky-Shapiro can be extended

to polychotomous variables, no measure has the monotonic property in terms of

horizontal association variation for a pair of variables with multi categories.

4.3 High Order Association Based on Loglinear Modeling

Loglinear modeling has been commonly used to evaluate multi-way contingency

tables that involve three or more variables [8]. It is an extension of the two-way

contingency table where the conditional relationship between two or more categorical
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variables is analyzed. When applying loglinear modeling on randomized data, we

are interested in the following problems. First, is the fitted model learned from

the randomized data equivalent to that learned from the original data? Second, do

parameters of loglinear models have monotonic properties?

In Section 4.3.1, we first revisit loglinear modeling and focus on the hierarchical

loglinear model fitting. In Section 4.3.2, we present the criterion to determine which

hierarchical loglinear models can be preserved after randomization. In Section 4.3.3,

we investigate how parameters of loglinear models are affected by randomization.

4.3.1 Loglinear Model Revisited

Loglinear modeling is a methodology for approximating discrete multidimensional

probability distributions. The multi-way table of joint probabilities is approximated

by a product of lower-order tables. For a value yi0i1···i(n−1) at position ir of the rth

dimension dr (0 ≤ r ≤ n− 1), we define the log of anticipated value ŷi0i1···i(n−1) as a

linear additive function of contributions from various higher level group-bys as:

l̂i0i1···i(n−1) = log ŷi0i1···i(n−1) =
∑
G⊆I

γG(ir|dr∈G)

We refer to the γ terms as the coefficients of the model. For instance, in a 3-

dimensional table with dimensions A,B,C, Equation 4.1 shows the saturated loglinear

model. It contains the 3-factor effect γABC
ijk , all the possible 2-factor effects (e.g.,γAB

ij ),

and so on up to the 1-factor effects (e.g., γA
i ) and the mean γ.

log ŷijk = γ + γA
i + γB

j + γC
k + γAB

ij + γAC
ik + γBC

jk + γABC
ijk (4.1)

As the saturated model has the same amount of cells in the contingency table as

its parameters, the expected cell frequencies will always exactly match the observed

ones with no degree of freedom. Thus, in order to find a more parsimonious model

that will isolate the effects best demonstrating the data patterns, a non-saturated
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Table 4.2: Goodness-of-Fit tests for loglinear models on A,D, G

Model χ2 df p-Value
A,D, G 435.70 4 <0.001
AD,G 1.60 3 0.66
AG,D 434.40 3 <0.001
DG,A 435.71 3 <0.001

model must be sought.

Fitting Hierarchical Loglinear Models

Hierarchical models are nested models in which when an interaction of d factors is

present, all the interactions of lower order between the variables of that interaction are

also present. Such a model can be specified in terms of the configuration of highest-

order interactions. For example, a hierarchical model denoted as (ABC, DE) for five

variables (A-E) has two highest factors (γABC and γDE). The model also includes all

the interactions of lower order factors such as two factor effects (γAB, γAC , γBC), one

factor effects (γA, γB, γC , γD, γE) and the mean γ.

To fit a hierarchical loglinear model, we can either start with the saturated model

and delete higher order interaction terms or start with the simplest model (indepen-

dence model) and add more complex interaction terms. The Pearson statistic can be

used to test the overall goodness-of-fit of a model by comparing the expected frequen-

cies to the observed cell frequencies for each model. Based on the Pearson statistic

value and degree of freedom of each model, the p-value is calculated to denote the

probability of observing the results from data assuming the null hypothesis is true.

Large p-value means little or no evidence against the null hypothesis.

Example 3 For variables A,D, G in COIL data (πADG=(0.0610, 0.0764, 0.1506,

0.1826, 0.1384, 0.1597, 0.1079, 0.1233)′) in COIL data, Table 4.2 shows Pearson and

p-value of Hypothesis Test for different models. We can see model (AD,G) has the
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Table 4.3: Goodness-of-Fit tests for loglinear models on attributes A,D, G after
Randomization with different (p(A), p(D), p(G))

Model Original (0.9,0.9,0.9) (0.7,0.7,0.7) (0.7,0.8,0.9)
χ2 P -value χ2 P -value χ2 P -value χ2 P -value

A,D, G 435.70 <0.001 177.16 <0.001 10.97 0.03 24.82 <0.001
AD, G 1.60 0.66 0.61 0.89 0.04 0.99 0.15 0.98
AG,D 434.40 <0.001 176.60 <0.001 10.93 0.01 24.68 <0.001
DG,A 435.71 <0.001 177.17 <0.001 10.97 0.01 24.83 <0.001

smallest χ2 value (1.60) and the largest p-value (0.66). Hence the best fitted model

is (AD,G), i.e.,

log ŷijk = γ + γA
i + γD

j + γG
k + γAD

ij (4.2)

4.3.2 Equivalent Loglinear Model

Chen [14] first studied equivalent loglinear models under independent misclassi-

fication in statistics. Korn [40] extended his work and proposed Theorem 2 as a

criterion for obtaining hierarchical loglinear models from misclassified data directly if

the misclassification is non-differential and independent.

Theorem 2 A hierarchical model is preserved by misclassification if no misclassified

variable appears more than once in the specification in terms of the highest order

interactions of the model. A model is said to be preserved if the misclassified data fits

the same model as the original data (i.e., the misclassification induces no spurious

associations between the variables).

Since the Randomized Response in our framework is one kind of such non-differential

and independent misclassification, we can apply the same criterion to check whether

a hierarchical loglinear model is preserved in the randomized data. Theorem 2 clearly

specifies the criterion of the preserved models, i.e., any randomized variable cannot
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Table 4.4: Goodness-of-Fit tests for loglinear models on attributes A,B,E after
Randomization with different (p(A), p(B), p(E))

Model Original (0.9,0.9,0.9) (0.7,0.7,0.7) (0.55,0.9,0.9)
χ2 P -value χ2 P -value χ2 P -value χ2 P -value

A,B,E 280.87 <0.001 95.05 <0.001 4.84 0.30 1.59 0.81
AB, E 18.33 <0.001 6.78 0.08 0.40 0.94 0.21 0.98
AE, B 264.81 <0.001 88.51 <0.001 4.44 0.22 1.49 0.69
BE,A 279.18 <0.001 94.68 <0.001 4.83 0.19 1.48 0.69

AB,AE 2.28 0.32 0.32 0.85 0.01 0.99 0.11 0.95
AB, BE 18.03 <0.001 6.67 0.04 0.40 0.82 0.10 0.95
AE, BE 264.07 <0.001 88.35 <0.001 4.44 0.11 1.38 0.50

appear more than once in the highest order interactions of the model specification.

We first illustrate this criterion using examples and then examine the feasibility of

several widely adopted models on the randomized data.

Example 4 The loglinear model (AD,G) as shown in Equation 4.2 is preserved on all

randomized data with different distortion parameters as shown in Table 4.3. We can

see that the p-value of model (AD,G) is always prominent no matter how we change

the distortion parameters (p(A), p(D), p(G)). On the contrary, the loglinear model

(AB, AE) that best fits the original data with attributes A,B,E (πABE=(0.2429,

0.1793, 0.0258, 0.0227, 0.2391, 0.1470, 0.0903, 0.0529)′) cannot be preserved on all

the randomized data with different distortion parameters as shown in Table 4.4. We

can observe when p(A) = 0.55, p(B) = 0.9 and p(E) = 0.9, the p-value of model (AB, E)

is greater than that of model (AB, AE). Hence, the fitted model on randomized data

is changed to (AB, E).

Independence Model and All-two-factor Model

In [61], the authors proposed the use of the complete independence model (all 1-

factor effects and the mean γ) to measure significance of dependence. In [21], the

authors proposed the use of all-two-factor effects model to distinguish between multi-
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item associations that can be explained by all pairwise associations, and item sets

that are significantly more frequent than their pairwise associations would suggest.

For a 3-dimensional table, the complete independence model (A,B,C) is shown in

Equation 4.3 while the all-two-factor model (AB, AC, BC) is shown in Equation 4.4.

log ŷijk = γ + γA
i + γB

j + γC
k (4.3)

log ŷijk = γ + γA
i + γB

j + γC
k + γAB

ij + γAC
ik + γBC

jk (4.4)

According to the criterion, we can conclude that the independence model can be

applied on randomized data to test complete independence among variables of original

data. However, we cannot test the all-two-factor model on randomized data directly

since the all-two-factor model cannot be preserved after randomization.

Conditional Independence Testing

For a 3-dimensional case, testing conditional independence of two variables, A

and B, given the third variable C is equivalent to the fitting of the loglinear model

(AC, BC). Based on the criterion, we can easily derive that the model (AC, BC) is

not preserved after randomization when variable C is randomized.

In practice, the partial correlation is often adopted to measure the correlation

between two variables after the common effects of all other variables in the data set

are removed.

prAB.C =
rAB − rACrBC√

(1− r2
AC)(1− r2

BC)
(4.5)

Equation 4.5 shows the form for the partial correlation of two variables, A and B,

while controlling for a third variable C, where rAB denotes Pearson’s correlation coef-

ficient. If there is no difference between prAB.C and rAB, we can infer that the control

variable C has no effect. If the partial correlation approaches zero, the inference is

that the original correlation is spurious (i.e., there is no direct causal link between the
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two original variables because the control variable is either the common anteceding

cause, or the intervening variable).

According to the criterion, we have the following results.

Result 10 The χ2 test of the independence on two randomized variables Ãu with Ãv

(or on Ãu with Bl) conditional on a set of variables G (G ⊆ I) is a correct α-level test

for independence on Au with Av (or Au with Bl) conditional on G while with reduced

power if and only if no distorted sensitive variable is contained in G.

Result 11 The partial correlation of two sensitive variables or the partial correlation

of one sensitive variable and one non-sensitive variable conditional on a set of vari-

ables G (G ⊆ I) has monotonic property |prran| ≤ |prori| if and only if no distorted

sensitive variable is contained in G.

Other association measures for multi variables. There are five measures (IS,

I, PS, G2, χ2) that can be extended to multiple variables. Association measures

for multiple variables need an assumed model (usually the complete independence

model). We have shown that G2 and χ2 on the independence model have monotonic

relations. However, we can easily check that IS, I, PS do not have monotonic prop-

erties since they are determined by the difference between one cell entry value and

its estimate from the assumed model. On the contrary, G2 and χ2 are aggregate

measures which are determined by differences across all cell entries.

4.3.3 Variation of Loglinear Model Parameters

Parameters of loglinear models indicate the interactions between variables. For

example, the γAB
ij is two-factor effect which shows the dependency within the distri-

butions of the associated variables A,B.

Result 12 For any k-factor coefficient γGk

(ir|dr∈Gk) in hierarchical loglinear model, no

vertical monotonic property or horizontal relative order invariant property is held after

randomization.
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Proof The proof is given for three binary variables with the saturated model; the

extension to higher dimensions is immediate.

Equation 4.6 shows how to compute the coefficients for the model of variables

A,B,C, where a dot “.” means that the parameter has been summed over the index.

γ = l...

γA
i = li.. − γ

· · ·

γAB
ij = lij. − γA

i − γB
j − γ

· · ·

γABC
ijk = lijk − γAB

ij − γAC
ik − γBC

jk − γA
i − γB

j − γC
k − γ

(4.6)

From randomized data we get:

γA
0ran =

1

8
log

λ000λ001λ010λ011

λ100λ101λ110λ111

Similarly, we have:

γA
0ori =

1

8
log

π000π001π010π011

π100π101π110π111

There is no monotonic relation between λijk and πijk (i, j, k = 0, 1). γA can be greater

or less than the original value after randomization. Same results can be proved for

other γ parameters. Result 12 is proved.

4.4 Effects on Data Mining Applications

In this section, we examine whether some classic data mining tasks can be con-

ducted on randomized data directly.

Association Rule Mining
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Association rule learning is a widely used method for discovering interesting rela-

tions between items in data mining [3]. An association rule X ⇒ Y , where X ,Y ⊂ I
and X ∩ Y = φ, has two measures: the support s defined as s(100%) of the trans-

actions in T that contain X ∪ Y , and the confidence c is defined as c(100%) of the

transactions in T that contain X also contain Y .

From Result 4 and Result 5, we can easily learn that neither support nor confidence

measures of association rule mining holds monotonic relations. Hence, we cannot

conduct association rule mining on randomized data directly since values of support

and confidence can become greater or less than the original ones after randomization.

Decision Tree Learning

Decision tree learning is a procedure to determine the class of a given instance [53].

Several measures have been used in selecting attributes for classification. Among

them, gini function measures the impurity of an attribute with respect to the classes.

If a data set D contains examples from l classes, given the probabilities for each class

(pi), gini(D) is defined as gini(D) = 1−∑l
i=1 p2

i .

When D is split into two subsets D1 and D2 with sizes n1 and n2 respectively, the

gini index of the split data is:

ginisplit(D) =
n1

n
gini(D1) +

n2

n
gini(D2)

The attribute with the smallest ginisplit(D) is chosen to split the data.

Result 13 The relative order of gini values can not be preserved after randomization.

That is, there is no guarantee that the same decision tree can be learned from the

randomized data.

Example 5 For variables A,B,C (πABC=(0.2406, 0.1815, 0.0453, 0.0031, 0.3458,

0.0404, 0.1431, 0.0002)′) in COIL data, we set A,B as two sensitive attributes and C

as class attribute. The gini values of A,B before randomization are:
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ginisplit(A)ori = πAgini(A1) + πAgini(A2)

= πA[1− (
πAC

πA

)2 − (
πAC

πA

)2] + πA[1− (
πAC

πA

)2 − (
πAC

πA

)2]

= 0.30

Similarly, ginisplit(B)ori = 0.33.

After randomization with distortion parameters p
(A)
0 = p

(A)
1 = 0.6 and p

(B)
0 = p

(B)
1 =

0.9 (λABC=(0.2629, 0.1127, 0.1042, 0.0143, 0.2837, 0.0873, 0.1240, 0.0109)′), we get:

ginisplit(A)ran = 0.35

ginisplit(B)ran = 0.34

The relative order of ginisplit(A) and ginisplit(B) can not be preserved after ran-

domization.

Näıve Bayes Classifier

A näıve Bayes classifier is a probabilistic classifier to predict the class label for

a given instance with attributes set X . It is based on applying Bayes’ theorem

(from Bayesian statistics) with strong assumptions that the attributes are conditional

independence given class label C .

Given an instance with feature vector x, the näıve Bayes classifier to determine its

class label C is defined as:

h∗(x) = argmaxi
P (X = x|C = i)P (C = i)

P (X = x)

It chooses the maximum a posteriori probability (MAP) hypothesis to classify the

example.

Result 14 The relative order of posteriori probabilities can not be preserved after
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randomization. That is, instances can not be classified correctly based on the Näıve

Bayes classifier derived from randomized data directly.

Example 6 For variables A,G,H (πAGH=(0.1884 , 0.0232, 0.0802, 0.1788, 0.2264,

0.0199, 0.1031, 0.1800)′) in COIL data, we set A,G as two sensitive attributes and H

as class attribute. For an instance with attributes A = 0, G = 1, the probability of

its class H = 0 before randomization is:

P (H|AG)ori = P (A|H)× P (G|H)× P (H)/P (AG)

=
πAH

πH

× πGH

πH

× πH/πAG

=
πAHπGH

πH

/πAG

= 0.31

Similarly, the probability of its class H = 1 is:

P (H|AG)ori =
πAHπGH

πH

/πAG = 0.69

After randomization with distortion parameters p
(A)
0 =p

(A)
1 =p

(G)
0 =p

(G)
1 = 0.6 (λAGH =

(0.1579,0.0848, 0.1351, 0.1163, 0.1643, 0.0845, 0.1408,0.1162)′), we get:

P (H|AG)ran = 0.54

P (H|AG)ran = 0.46

As none of πAH , πGH , πAH , πGH has monotonic properties after randomization, the

relative order of the two probabilities P (H|AG) and P (H|AG) cannot be kept.

4.5 Summary

The trade-off between privacy preservation and utility loss has been extensively

studied in privacy preserving data mining. However, data owners are still reluctant

to release their (perturbed or transformed) data due to privacy concerns. In this

chapter, we focus on the scenario where distortion parameters are not disclosed to
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data miners and investigate whether data mining or statistical analysis tasks can still

be conducted on randomized categorical data. We have examined how various objec-

tive association measures between two variables may be affected by randomization.

We then extended to multiple variables by examining the feasibility of hierarchical

loglinear modeling. We have shown that some classic data mining tasks (e.g., associ-

ation rule mining, decision tree learning, näıve Bayes classifier) cannot be applied on

the randomized data with unknown distortion parameters. We provided a reference

to data miners about what they can do and what they can not do with certainty

upon randomized data directly without the knowledge about the original distribution

of data and distortion information.

In our future work, we will comprehensively examine various data mining tasks

(e.g., causal learning) as well as their associated measures in detail. We will conduct

experiments on large data sets to evaluate how strong our theoretical results may

hold in practice. We are also interested in extending this study to numerical data or

networked data.
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CHAPTER 5: ATTRIBUTE DISCLOSURE UNDER LINKING ATTACKS

Data utility and privacy of individuals are always a trade-off in privacy preserving

data mining. Perfect privacy can be achieved without sharing any data, but it offers

no utility; perfect utility can be obtained by publishing the data directly, but it

disclose privacy of individuals. In this chapter, we will investigate the privacy of

Randomization method and focus on attribute disclosure under linking attacks.

In Section 5.1, we will overview different measures and research issues on privacy

in randomization models in the literature. In Section 5.2, we quantify attribute

disclosure under linking attacks and then show our theoretical results on maximizing

utility with privacy constraints. In Section 5.3, we conduct empirical evaluations and

compare the randomization based distortion with two representative group based

anonymization approaches (l-diversity [49] and anatomy [76]). We conclude our work

in Section 5.4. Some results in this chapter were previously reported in [30].

5.1 Introduction

The privacy disclosure of randomization was first discussed in [44] for the traditional

Warner model [72]. The posterior probabilities that a respondent belongs to group A

and Ā, respectively, when he reports R are Pr(A|R) and Pr(Ā|R).

Pr(A|R) =
πAPr(R|A)

πAPr(R|A) + (1− πA)Pr(R|Ā)

Pr(Ā|R) = 1− Pr(A|R)

The response R is regarded as jeopardizing with respect to A or Ā if:

Pr(A|R) > πA or Pr(Ā|R) > 1− πA
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The more Pr(A|R) and Pr(Ā|R) depart from original distribution πA and πĀ, the

more privacy will be disclosed. Since:

Pr(A|R)

Pr(Ā|R)

1− πA

πA

=
Pr(R|A)

Pr(R|Ā)

They proposed the following measures of jeopardy carried by R about A and Ā,

respectively:

g(R|A) =
Pr(R|A)

Pr(R|Ā)
g(R|Ā) =

1

g(R|A)

The response R is nonjeopardizing if and only if g(R|A) = 1.

As an unbiased estimate of πA is:

π̂A =
λ̂− Pr(R|Ā)

Pr(R|A)− Pr(R|Ā)

which is defined if and only if Pr(R|A)−Pr(R|Ā) 6= 0, it necessarily makes a response

jeopardic with respect to either A or Ā. The problem becomes one of constrained

optimization which is maximizing data utility with fixing maximal allowable levels of

g(R|A) and g(R|Ā). Extensions to polychotomous models can refer [11].

Evfimievski et. al. [23] extended the concept of posterior probability and defined

the following privacy breach in privacy preserving association rule mining.

Definition 5 An itemset A causes a privacy breach of level ρ if for some item a ∈ A

and some i ∈ 1 . . . N we have Pr[a ∈ ti|A ⊆ t′i] ≥ ρ.

The limitation of this measure is it doesn’t consider the prior probability of a ∈ ti.

It’s not necessarily breach the privacy if Pr[a ∈ ti] is high in the original data set.

Authors in [54] proposed to use Reconstruction Probability to quantify the privacy

in MASK scheme. The proposed metric is to answer the question: ”With what

probability can a given value in the original data be reconstructed?”.

Given that the customer indeed did buy item i, the probability of her original ′1′
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can be reconstructed from the distorted entry was expressed as:

R1(p, si) = Pr{Yi = 1|Xi = 1} × Pr{Xi = 1|Yi = 1}

+ Pr{Yi = 0|Xi = 1} × Pr{Xi = 1|Yi = 0}

Xi denotes the original entry and Yi denotes the distorted entry. This expression

captures the ”round-trip” of going from the true data to the distorted data and

then returning to guess the contents of the true one. They further define the total

reconstruction probability R(p) as:

Rp = aR1(p) + (1− a)R0(p)

The privacy measure is defined as:

Pp = (1−R(p)) ∗ 100

In [22], the privacy disclosure is measured by estimating the change in probability

of a property from original to randomized data. The authors defined a ρ1 − to − ρ2

privacy breach as following:

Definition 6 There is a ρ1 − to− ρ2 privacy breach with respect to property Q(x) if

for some y ∈ VY , we have:

P [Q(x)] ≤ ρ1 and P [Q(x)|Y = y] ≥ ρ2.

Here 0 < ρ1 < ρ2 < 1 and P [Y = y] > 0.

They also discussed the sufficient condition for guaranteeing no (ρ1, ρ2) privacy

breach is:

p[x1 −→ y]

p[x2 −→ y]
≤ γ

This means if we look back from randomized value y, it’s difficult to tell whether it

was distorted from x1 or x2 in the original data. Authors in [6] expressed the notation
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of a ρ1−to−ρ2 privacy breach in terms of properties of the Markov transition matrix.

They further expressed the utility of the scheme in terms of the condition number of

the transition matrix.

5.2 Attribute Disclosure under Linking Attacks

5.2.1 Motivation

In privacy preserving data publishing, identity attributes are often directly removed

in order to preserve privacy of individuals whose data are in the released table. How-

ever, the QI information may be used by attackers to link with other public datasets

to get the private information of individuals, which is recognized as linking attacks in

micro data publishing.

Two types of information disclosures have been identified under linking attacks:

identity disclosure and attribute disclosure [41]. Identity disclosure occurs if attackers

can identify an individual from the released data. Attribute disclosure occurs when

confidential information about an individual is revealed and can be attributed to the

individual. Attribute disclosure may occur when confidential information is revealed

exactly or when it can be closely estimated. Thus, attribute disclosure can both incur

identification of the individual and comprise her confidential information.

To counter linking attacks based on quasi-identifiers, Samarati and Sweeney [58]

proposed k-anonymity model and presented a generalization approach that divides

tuples into QI-group by transforming their QI-values into less specific forms such

that tuples in the same QI-group cannot be uniquely identified by attackers. It was

identified by Machanavajjhala et. al. [49] that k-anonymity is vulnerable to homo-

geneity and background knowledge attacks when data in QI-group lacks diversity

in the sensitive attributes. To protect attribute disclosure, l-diversity [49] as well

as other following models (e.g., t-closeness [45]) were proposed recently. l-diversity

requires that the sensitive attribute has at least l well-represented values for each

equivalence class in the generalized dataset. Later, Xiao and Tao [76] proposed the
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anatomy method to improve the data utility of anonymized data while achieving the

same privacy preservation as l-diversity.

Instead of generalizing QI attribute values to high hierarchies, randomization ap-

proach distorts the original value to other domain value according to some distortion

probabilities. Teng and Du [70] studied the application of randomization technique

to prevent identity disclosure under linking attacks in data publishing. They focused

on evaluating the risk of successfully linking a target individual to the index of his

record given values of QI attributes.

Our research moves one step further to investigate attribute disclosure under link-

ing attacks. We focus on evaluating the risk of successfully predicting the sensitive

attribute value of a target individual given his QI attribute values. We present a

general randomization framework and give efficient solutions to determine optimal

randomization parameters for both QI and sensitive attributes. As a result, we can

maximize data utility while satisfying privacy preservation requirements for sensitive

attributes.

Within the framework, we compare our randomization approach with other anonymiza-

tion approaches (e.g., two representative approaches l-diversity [49] and anatomy [76]

are used in this section). Our result shows that randomization approach can better

recover the distribution of original data set from the disguised one. Thus intuitively,

it might yield a disguised database with higher data utility than l-diversity general-

ization and anatomy.

The remainder of this section is organized as follows. In Section 5.2.2, we present

backgrounds on randomization based distortions including analysis and attacks on the

randomized data. In Section 5.2.3, we quantify attribute disclosure under linking at-

tacks. In Section 5.2.4, we give efficient solutions to determine optimal randomization

parameters for both QI and sensitive attributes.
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5.2.2 Preliminaries

Dataset T contains N records and m+1 categorical attributes: A1, A2, . . . , Am and

S. We use QI = {A1, . . . , Am} to denote the set of quasi-identifier attributes (e.g.,

demographic) whose values may be known to the attacker for a given individual and

use S to denote one sensitive attribute whose value should not be associated with an

individual by attackers. Generally, T may also contain other attributes, which are

neither sensitive nor quasi-identifying. Those attributes are usually kept unchanged

in the released data. We exclude them from our setting since they do not incur privacy

disclosure risk or utility loss. All of the discussions in this section are also explained

in the single sensitive attribute setting and can be generalized to multiple sensitive

attributes.

Attribute Ai(S) has di(ds) categories denoted by 0,1,. . . , di − 1(ds − 1). We

use Ωi(Ωs) to denote the domain of Ai(S), Ωi = {0, 1, . . . , di − 1}, and ΩQI =

Ω1 × · · · × Ωm is the domain of quasi-identifiers. The r-th record Rr is denoted by

(A1r, A2r, . . . , Amr, Sr) or simply (QIr, Sr). Let D = ds

∏m
i=1 di be the total number

of cells in the contingency table.

Let πi1,··· ,im,is denote the true proportion corresponding to the categorical combi-

nation (A1 = i1, · · · , Am = im, S = is). Let π be the column vector with D elements

πi1,··· ,im,is arranged in a fixed order. Table 2.5(b) shows one contingency table instance

derived from the data set with 100 tuples. We will use this contingency table as an

example to illustrate properties of link disclosure.

Distortion Procedure

We use the upper part of Figure 5.1 to illustrate the process of privacy preserving

data publishing. For each records Rj, the data owner independently randomizes

attribute Ai using the distortion matrix Pi. Specifically, for attribute Ai (or S) with

di categories, the randomization process is to change a record belonging to the v-th
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Figure 5.1: Randomization based privacy-preserving data publishing

category (v = 0, . . . , di − 1) to the u-th category with probability p
(i)
uv:

Pr(Ãi = u|Ai = v) = p(i)
uv.

Let Pi =
[
p

(i)
uv

]
di×di

, and we call Pi (or Ps) the distortion matrix for Ai(or S). Nat-

urally, the column sums of Pi are equal to 1. The original database T is changed to

T̃ , and then both the randomized data set and the distortion matrices are published.

The randomization matrices indicate the magnitude of the randomization, which can

help data analysts to estimate the original data distribution.

Let λ denote the contingency table of the randomized data T̃ . We arrange λ into

the column vector with the same order of π. Table 2.5(c) shows one example of

the randomized contingency table. The randomized contingency table has a close

relationship with the original contingency table and the randomization matrices:

E(λ) = P π, (5.1)

where P = P1 ⊗ · · · ⊗ Pm ⊗ Ps, and ⊗ stands for the Kronecker product4.

4It is an operation on two matrices, an m-by-n matrix A and a p-by-q matrix B, resulting in the
mp-by-nq block matrix
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Distortion matrices determine the privacy and utility of the randomized data. Sev-

eral specific distortion matrices have been investigated in the literature [5,6,11]. How

to find optimal distortion parameters with privacy or utility constraints has been

remained as a challenging problem [11]. Huang and Du [35] applied an evolutionary

multi-objective optimization method to search for optimal distortion matrices from

the entire search space for a single attribute. However, the method is difficult to

handle multiple attributes due to its high complexity.

In this section, we limit the choice of randomization parameters for each QI at-

tribute Ai (and sensitive attribute S) as:

Pr(Ãi = u|Ai = v) = p(i)
uv =





pi, u = v,

qi = 1−pi

di−1
, u 6= v.

(5.2)

In other words, for each attribute Ai, all categories have the same probability pi to

remain unchanged, and have the same probability qi to be distorted to a different

category. With this choice limit, we can derive an efficient algorithm (with explicit

formula) to determine the optimal randomization parameters (as shown in Section

5.2.4).

Attacks on Randomized Data

Let X be a content in the data set T with domain ΩX , and X̃ is the randomized

value of X in T̃ . With the randomization process and parameters, it is not reasonable

for attackers to regard the observed value as the true value of X. Instead, attackers

can try to estimate the original value based on the observed data and the released

randomization parameters. Let X̂ denote attackers’ estimation on the original value

of X. Due to the randomization procedure, any value in ΩX is possible. We assume

that the attacker is able to calculate the posterior probability of a content in the data
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set and takes the following probabilistic strategy: for any µ, ν ∈ ΩX ,

X̂ = µ with prob. Pr(X = µ|X̃ = ν), (5.3)

where Pr(X = µ|X̃ = ν) denotes the attacker’s posterior belief on the original value

X = µ when he observes X̃ = ν. With the Bayes’ theorem, it can be calculated by:

Pr(X = µ|X̃ = ν) =
πµ Pr(X̃ = ν|X = µ)∑

ω∈ΩX

πω Pr(X̃ = ν|X = ω)
. (5.4)

The following lemma gives the accuracy of the attacker’s estimation.

Lemma 2 Suppose attackers adopt the probabilistic strategy specified in (5.3) to es-

timate the data. The probability that attackers accurately estimate the original value

of X is given by:

Pr(X̂ = X = µ)

=
∑

ν∈ΩX

Pr(X̃ = ν|X = µ) Pr(X = µ|X̃ = ν). (5.5)

Proof For a particular observed value X̃ = ν ∈ ΩX ,

Pr(X̂ = X = µ, X̃ = ν)

= Pr(X̃ = ν|X = µ) Pr(X = µ|X̃ = ν).

Then, with the law of total probability, we have

Pr(X̂ = X = µ)

=
∑

ν∈ΩX

Pr(X̂ = X = µ, X̃ = ν)

=
∑

ν∈ΩX

Pr(X̃ = ν|X = µ) Pr(X = µ|X̃ = ν).

The probability of attackers’ correct estimation is also defined as the reconstruc-

tion probability, Pr(X = µ → X = µ), in [54, 70]. Rizvi and Haritsa [54] used
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the reconstruction probability to measure privacy protection in randomization based

privacy preserving association rule mining. Teng and Du [70] adopted the reconstruc-

tion probability to evaluate identity disclosure under linking attacks in micro data

publishing. They focused on the problem of successful identification of the record t

given its quasi-identifier values. To make the notation concise and consistent with

the previous work, we adopt the same notation presented in [70], i.e.,

Pr(X = µ → X = µ) = Pr(X̂ = X = µ),

to evaluate the risk of the sensitive attribute disclosure.

5.2.3 Quantification of Attribute Disclosure

We measure privacy in terms of the attribute disclosure risk, whose formal definition

is given as follows:

Definition 7 The attribute disclosure risk under linking attacks is defined to be the

probability that the attacker predicts Sr successfully given QIr of a target individual

r, denoted as Pr(Sr|QIr).

To derive the disclosure probability Pr(Sr|QIr), we need to quantify the background

knowledge of attackers. We have the following standard assumptions for background

knowledge of attackers in this dissertation. We assume that the attacker has access

to the published data set T̃ and he knows that T̃ is a randomized version of some

base table T . The attacker knows the domain of each attribute of T . We also assume

that the attacker can obtain the QI-values of the target individual (e.g., Alice) from

some public database or background knowledge and knows that the target individual

is definitely contained in the published data. However, he has no knowledge on which

record in the published data belongs to the target individual. Finally, we assume that

the distortion matrices Pi are available to the attacker, because they are necessary

for data miners to conduct analysis.
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l-diversity preserves privacy by generalizing the QI attributes to form QI-groups.

Each QI-groups contains at least l well-presented sensitive values. Individuals in

the group are linked to any sensitive attributes with probability at most 1/l, i.e.,

Pr(Sr|QIr) ≤ 1/l . Anatomy achieves the same preservation by publishing QIT and

ST tables separately for each l-diverse partitioned group. Xiao and Tao [76] proved

that, given a pair of QIT and ST, attackers can correctly infer the sensitive value of

any individual with probability at most 1/l. However, randomization based approach

achieves the privacy protection in a probabilistic manner. In the following subsection,

we show how to quantify the attribute disclosure risk in the randomization settings.

Quantifying Attribute Disclosure

When there is no randomization applied, for those records with their quasi-identifiers

equal to QIr, the attacker simply regards that every record has the same probability

to be individual r. Because there are totally πQIr records within the group of QIr

and πQIr,Sr of them have the sensitive value equal to Sr, the risk of sensitive attribute

disclosure is equal to
πQIr,Sr

πQIr
. This case corresponds to the worst case of the attribute

disclosure risk. When randomization is applied, the attribute disclosure risk will be

reduced, because the randomization increases the attacker’s uncertainty.

Randomize S only (RR-S). When data owners only apply randomization to the

sensitive attribute, for each record within the group of QIr, the attacker takes a guess

on its sensitive value using the observed sensitive value and the posterior probability in

(5.4). According to (5.5), the probability of a correct estimation is Pr(Sr → Sr|QIr),

then the risk of sensitive attribute disclosure is
πQIr,Sr

πQIr
Pr(Sr → Sr|QIr).

Randomize QI only (RR-QI ). Similarly as RR-S, when data owners only apply

randomization to the quasi-identifiers, the probability of correctly reconstructing QIr

is given by Pr(QIr → QIr), and hence the risk of sensitive attribute disclosure is

πQIr,Sr

πQIr
Pr(QIr → QIr).
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Randomize QI and S (RR-Both). When data owners apply randomization to

both QI and S, the attacker first need to make sure the values of identifier attributes

are correctly reconstructed. The probability is given by Pr(QIr → QIr). Second, the

attacker needs to make sure the value of the sensitive attribute given the correctly

reconstructed identifier attribute values is correctly reconstructed.

We summarize the risk of sensitive attribute disclosure in RR-Both as well as RR-S

and RR-QI into the following result and give the general calculation of the attribute

disclosure risk in the randomization settings:

Result 15 Assume an individual r has quasi-identifier QIr = α = {i1, i2, . . . , im},
ik ∈ Ωk, and his sensitive attribute Sr = u, u ∈ Ωs. The probability of successful

predicting the sensitive attribute value Sr of the target individual r given his quasi-

identifier values QIr is:

Pr(Sr|QIr) =
πQIr,Sr

πQIr

Pr(QIr → QIr) Pr(Sr → Sr|QIr). (5.6)

We give the formal expressions of the two reconstruction probabilities needed in

calculating Pr(Sr|QIr) in (5.6). The reconstruction probability of the quasi-identifier

is given by:

Pr(QIr = α → QIr = α)

=
∑

β∈ΩQI

Pr(Q̃Ir = β|QIr = α) Pr(QIr = α|Q̃Ir = β)

=
∑

β∈ΩQI

πα

[
Pr(Q̃Ir = β|QIr = α)

]2

∑
γ∈ΩQI

πγ Pr(Q̃Ir = β|QIr = γ)
, (5.7)

where Pr(Q̃Ir = β|QIr = α) =
∏m

k=1 p
(k)
jkik

is the probability that α = {i1, i2, . . . , im}
is distorted to β = {j1, j2, . . . , jm}.
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The reconstruction probability of the sensitive attribute S for the target individual

with the quasi-identifier QIr is given by:

Pr(Sr = u → Sr = u|QIr)

=
∑
v∈Ωs

Pr(S̃ = v|S = u,QIr) Pr(S = u|S̃ = v, QIr)

=
∑
v∈Ωs

p(s)
vu Pr(S = u|S̃ = v, QIr)

=
∑
v∈Ωs

[
p

(s)
vu

]2
πQIr,S=u∑

t∈Ωs
p

(s)
vt πQIr,S=t

. (5.8)

We are interested in when the attribute disclosure reaches the minimum. We show

our results in the following property and include our proof in Appendix.

Property 1 Given QIr of individual r,

• for RR-S, Pr(Sr|QIr) is minimized when ps = 1
ds

, min Pr(Sr|QIr) =
(

πQIr,Sr

πQIr

)2

;

• for RR-QI, Pr(Sr|QIr) is minimized when pi = 1
di

(i = 1, 2, . . . , m), min Pr(Sr|QIr) =

πQIr,Sr ;

• for RR-Both, Pr(Sr|QIr) is minimized when pi = 1
di

(i = 1, 2, . . . , m, and s),

min Pr(Sr|QIr) =
π2

QIr,Sr

πQIr
.

Proof We start with applying RR to the sensitive attribute, Pr(QIr → QIr) =

1. Without loss of generality, we assume that Sr = 1. Combine other categories

0, 2, . . . , ds − 1 into a new categories, and still use 0 to denote the new category. To

make the notation simple, we simply write
πQIr,1

πQIr
as π1 and

πQIr,0

πQIr
as π0 in this proof,

then π1 = 1 − π0. Such adjustment does not change the reconstruction probability

Pr(Sr = 1 → Sr = 1|QIr). After the adjustment, the randomization probabilities are
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given by

Pr(S̃r = 1|Sr = 1) = ps (5.9)

Pr(S̃r = 1|Sr = 0) = qs. (5.10)

By definition, the posterior probabilities are given by

Pr(Sr = 1|S̃r = 1) =
psπ1

psπ1 + qsπ0

, (5.11)

Pr(Sr = 1|S̃r = 0) =
(1− ps)π1

(1− ps)π1 + (1− qs)π0

. (5.12)

Combining (5.9), (5.10), (5.11) and (5.12), we have

Pr(Sr = 1|QIr)

=π1 Pr(Sr = 1 → Sr = 1|QIr)

=π1

∑
i=0,1

Pr(S̃r = i|Sr = 1) Pr(Sr = 1|S̃r = i)

=π2
1

[
p2

s

psπ1 + qsπ0

+
(1− ps)

2

(1− ps)π1 + (1− qs)π0

]
(5.13)

Taking derivative with respect to ps, we have (5.13) is minimized when ps = 1
ds

, and

the minimal value is

π2
1 =

(
πQIr,Sr

πQIr

)2

.

Following similar strategies, we can prove the general case when we randomize both

QI and S.

Example. We use the instance shown in Table 2.5(b) to illustrate this property.

For an individual r with (QIr = Female, Sr = Cancer), we randomize S (Disease)

with ps and QI (Gender) with pG independently. Figure 5.2 shows how the attribute

disclosure is varied when we apply different randomization parameters. We can see

that Pr(Sr|QIr) reaches the maximum (i.e., π10

π1+
= 0.43) when no randomization is

introduced. Figure 5.2(a) shows the scenario when we only randomize S. We can
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see that min Pr(Sr|QIr) = ( π10

π1+
)2 = 0.18 when ps = 1

ds
= 1

3
. Figure 5.2(b) shows the

scenario when we only randomize QI. We can see that min Pr(Sr|QIr) = π10 = 0.12

when pG = 1
dG

= 1
2
. Figure 5.2(c) shows the case where randomization is applied to

both QI and S. Pr(Sr|QIr) reaches the minimum only when both ps = 1
3

and pG = 1
2
,

and min Pr(Sr|QIr) =
π2
10

π1+
= 0.05.

Reducing Computational Cost

The main computation cost in (5.6) comes from calculating Pr(QIr → QIr). Let

PQI be the distortion matrix on quasi-identifers: PQI = P1 ⊗ · · · ⊗ Pm, πQI be the

contingency table on all quasi-identifiers arranged into a column vector, and λQI

denote the expected QI contingency table of the randomized data: λQI = PQI πQI .

Then, the denominator in (5.7) is exactly the cell of λQI corresponding to β. Let

η denote the column vector of the reconstruction probabilities of quasi-identifiers,

arranged in the same order of πQI . We can further express (5.7) in matrix form:

η = πQI ×̇
[(

P 2̇
QI

)T (
λ−̇1

QI

)]
(5.14)

= πQI ×̇
{[
⊗m

i=1

(
P 2̇

i

)T
] [(⊗m

i=1Pi

)
πQI

]−̇1
}

where ×̇ denotes the componentwise multiplication, P 2̇
i is componentwise square of

Pi, and λ−̇1
QI is componentwise inverse of λQI .

In (5.14), we need repeatedly calculate (P1⊗· · ·⊗Pm)x, where x denotes a column

vector. Assume we use the naive algorithm in all matrix multiplications. Calculating

(P1⊗· · ·⊗Pm)x directly results in the time and storage complexity of O(
∏

i d
2
i ). The

main storage complexity is from storing matrix PQI . The following lemma allows us

to reduce the cost of such computation:

Lemma 3 Let A, B and X be the matrices of size n× n, m×m, and m× n. Then

(A⊗B) vec(X) = vec(BXAT ),
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where vec(X) denotes the vectorization of the matrix X formed by stacking the columns

of X into a single column vector.

Applying Lemma 3 recursively, we can reduce the time complexity to O([
∑

i di]
∏

i di).

The storage complexity is also reduced to O(
∏

i di +
∑

i d
2
i ), which is mainly used to

store the contingency table.

5.2.4 Maximizing Utility with Privacy Constraints

Analysis on Randomized Data

One advantage of randomization procedure is that the pure random process allows

data analysts to estimate the original data distribution based on the released data

and the randomization parameters. The bottom part of Figure 5.1 shows how data

analysts estimate the original data distribution. With the randomized data T̃ and

its contingency table λ, according to (5.1), the unbiased estimate of π is given by

π̂ = P−1λ, (5.15)

and the covariance matrix of the estimator in (5.15) is given by

Σ = Cov(π̂)

=
1

N

[
P−1(P π)δ(P T )−1 − π πT

]
, (5.16)

where (P π)δ stands for the diagonal matrix whose diagonal values are P π.

In this way, data analysts derive the estimation for the distribution of original

data (in terms of contingency table) without disclosing the individual information of

each records. Because most of data mining applications are based on the probability

distribution of the data, we choose the accuracy of reconstructed distribution as target

utility function in the following efficient solution.

Efficient Solution
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The ultimate goal of publishing data is to maximize utility while minimizing risk

of attribute disclosure at the same time. Utility of any dataset, whether randomized

or not, is innately dependent on the tasks that one may perform on it. Without

a workload context, it is difficult to say whether a dataset is useful or not. Since

many data mining applications are based on the probability distribution of the data,

it motivates us to focus on the data distribution when evaluating the utility of a

database.

Problem 1 Determine pi, i = 1, · · · ,m, and ps to

minimize E[d(π̂, π)]

s.t. max
r

Pr(Sr|QIr) ≤ τ, pi ∈ (1/di, 1] .
(5.17)

where d(π̂, π) denotes a certain distance between π̂ and π.

To compare the performance of different disguised schemes, we can set the pri-

vacy threshold formalize as the same privacy requirement of l-diversity (i.e., τ =

1
l
). In other words, we would determine the optimal randomization parameters

(p1, p2, . . . , pm and ps) to maximize the utility while ensuring that the sensitive value of

any individual involved in the dataset cannot be correctly inferred by an attacker with

probability more than 1/l. A larger l leads to stronger privacy protection. In general,

privacy constraints may be flexible. For example, different individuals may have dif-

ferent concerns about their privacy so we can set different thresholds for Pr(Sr|QIr).

We can even adopt the Uninformative Principle [49] (i.e., there should not be a large

difference between the prior and posterior beliefs due to the released data) and apply

the relative privacy disclosure measures (e.g., (ρ1, ρ2)-privacy breach [22]).

Problem 1 is a nonlinear optimization problem. In general, we can solve it by using

optimization packages (e.g., trust region algorithm [16]). In Section 5.2.3, we have

discussed how to efficiently calculate the attribute disclosure of target individuals

(shown as constraints in Problem 1). Next, we show how we can efficiently calculate
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E[‖π̂ − π ‖2
2], the expected Euclidean distance difference between the original data

and the estimated one.

Result 16 When d(π̂, π) is the squared Euclidean distance, Problem 1 is equivalent

to: determine pi, i = 1, · · · ,m, and ps to

minimize
∏

i ‖P−1
i ‖2

F

s.t. max
r

Pr(Sr|QIr) ≤ τ, pi ∈ (1/di, 1] .
(5.18)

Proof Lemma 4 If d(π̂, π) = ‖π̂ − π ‖2
2, we have E[d(π̂, π)] = trace(Σ), where Σ

is the covariance matrix of π̂ shown in (5.16).

Proof We know that π̂ asymptotically follows the normal distribution N(π, Σ). Let

Σ = XΛXT be the eigen-decomposition of Σ, where Λ = diag(λ1, . . . , λn) and XT X =

I. Let η = XT (π̂ − π), then η is normally distributed with E(η) = 0 and

Cov(η) = XT Cov(π̂ − π)X = XT ΣX = Λ.

Notice that Λ is a diagonal matrix, and hence Cov(ηiηj) = 0 if i 6= j, and Var(ηi) = λi,

i.e., ηi independently follows the normal distribution N(0, λi). Therefore, we have:

E
[‖π̂ − π ‖2

2

]
= E

[
(π̂ − π)T (π̂ − π)

]

= E
[
(Xη)T (Xη)

]
= E(ηT η) = E(

∑
i η

2
i )

=
∑

i E(η2
i ) =

∑
i {Var(ηi) + [E(ηi)]

2}

=
∑

i λi = trace(Λ) = trace(Σ).

The last equality is due to the fact that

trace(Σ) = trace(XΛXT ) = trace(ΛXT X) = trace(Λ).

We proved the lemma.
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Lemma 5 Let Pi be the randomization matrix specified in (5.2). When pi 6= 1
di

, we

have

P−1
i =

1

pi − qi

(
I − qi11T

)
,

where 1 is the column vector whose cells are all equal to 1. Moreover,

‖P−1
i ‖2

F =
(di − 1)3

(dipi − 1)2
+ 1.

Proof We can re-write Pi as follows:

Pi = (pi − qi)I + qi11T = (pi − qi)

(
I +

qi

pi − qi

11T

)

With qi = 1−pi

di−1
, 1T1 = di, and binomial inverse theorem [64], we can immediately get

P−1
i , and ‖P−1

i ‖2
F can be directly calculated from P−1

i .

Lemma 6 Let (P−1)i denote the i-th column (or row) of P−1. Then, for any i =

1, 2, . . . , D, we have

‖(P−1)i‖2
F =

1

D
‖P−1‖2

F .

Proof With Lemma 5, we observe that every row (or column) of P−1
i has the same

components except for a change of order. Since P−1 = P−1
i ⊗ · · · ⊗ P−1

m ⊗ P−1
s , we

can also conclude that all rows (or columns) of P−1 has the same components except

for a change of order. Therefore, for all i’s,

‖(P−1)i‖2
F =

1

D
‖P−1‖2

F .

Next, we prove the main result. With Lemma 4, when the distance is the squared

Euclidean distance, to minimize E[d(π̂, π)] is equivalent to minimize trace(Σ). With
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(5.16), we have

trace(Σ) = trace

{
1

N

[
P−1(P π)δ(P T )−1 − π πT

]}

∝ trace
[
P−1(P π)δ(P T )−1

]

= trace
[
(P π)δ(P−1)T P−1

]
.

=
D∑

i=1

(P π)i‖(P−1)i‖2
F

= ‖(P−1)1‖2
F

D∑
i=1

(P π)i (with Lemma 6)

∝ ‖P−1‖2
F =

∏
i

‖P−1
i ‖2

F

Notice that the constraint function is an increasing function of pi, the optimal solution

must occur when the equality stands, and we have proved the result.

When the distance is the squared Euclidean distance, with Lemma (4) shown in

Appendix, to minimize d(π̂, π) is equivalent to minimize trace(Σ) where Σ is the

covariance matrix of the estimator of cell values in the contingency table (shown in

Equation 5.16). Calculating trace(Σ) still involves high computational cost. However,

when Pi has the specific form shown in (5.2), we can further reduce the problem to

minimizing
∏

i ‖P−1
i ‖2

F , and with Lemma 5,

P−1
i =

1

pi − qi

(
I − qi11T

)
,

where 1 is the column vector whose cells are all equal to 1. We have

‖P−1
i ‖2

F =
(di − 1)3

(dipi − 1)2
+ 1,

which can be directly calculated.

5.3 Empirical Evaluation

We ran our experiments on the Adult Database from the UCI data mining repos-

itory [9] in our evaluations. The same database has been used in previous work on
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Table 5.1: Description of the Adult dataset used in the evaluation

Attribute Type Categories
Gender (G) QI 2
Race (R) QI 5

Education (E) QI 16
Marital-status (M) QI 7

Workclass (W) Sensitive 7
Occupation (O) Sensitive 14

k-anonymity, l-diversity, t-closeness, and anatomy [42,49,76,84]. The Adult Database

contains 45,222 tuples from US Census data and 14 attributes. Table 5.1 is a sum-

mary description of the data including the attributes we used, the number of distinct

values for each attribute, and the types of the attributes adopted in the evaluation.

It is expected that a good publication method should preserve both privacy and

data utility. We set different l values as privacy disclosure thresholds. To quantify the

utility, we adopt the following standard distance measures to compare the difference

of distributions between the original and reconstructed data. Given two distributions

P = (p1, p2, ..., pm),Q = (q1, q2, ..., qm),

• Variational distance: dV (P,Q) =
∑m

i=1
1
2
|pi − qi|

• L2 norm distance: dL2(P,Q) = (
∑m

i=1 |pi − qi|2)
1
2

• KL distance: dKL(P,Q) =
∑m

i=1 pi log pi

qi

• χ2-distance: dχ2(P,Q) =
∑m

i=1
(pi−qi)

2

pi

5.3.1 Randomization

We treated Education, Martial-status, Gender, Race as the quasi-identifier and

used Work-class as the sensitive attribute. We call this dataset as EMGRW. For

randomization, we distort only QI attributes, or sensitive attribute S, or both in

different application scenarios. Table 5.2 shows the derived randomization parameter
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Table 5.2: Randomization parameters pi for three cases of RR (data set EMGRW)

(a) RR-QI

l E M G R
2 0.824 0.872 0.920 0.941
3 0.548 0.812 0.898 0.985
4 0.382 0.736 0.918 0.961
5 0.314 0.615 0.873 0.938

(b) RR-S

l 2 3 4 5
W 0.650 0.267 0.217 0.167

(c) RR-Both

l E M G R W
2 0.824 0.872 0.920 0.941 1
3 0.573 0.821 0.913 0.973 0.955
4 0.428 0.780 0.926 0.953 0.871
5 0.353 0.688 0.902 0.953 0.813

p for three scenarios (RR-QI, RR-S, and RR-Both). We set l = 2, 3, 4, 5. We can

observe that more distortions (p is away from 1) are needed in order to achieve better

privacy protections (l is increased).

Results on various distance measures are shown in Figure 5.3. Naturally, there is a

trade-off between minimizing utility loss and maximizing privacy protection. Figure

5.3 indicates that the smaller the distance values, the smaller the difference between

the distorted and the original databases, and the better the utility of the distorted

database. We can observe that the utility loss (in terms of distance differences)

increases approximately linearly with the increasing privacy protection across all three

randomization scenarios. RR-Both achieves the best in terms of utility preservation,

because we use the optimal randomization parameters for both QI and the sensitive

attribute.

5.3.2 Effect of Data Sizes in Randomization

As discussed in Section 5.2.4, one advantage of randomization scheme is that the

more data we have, the more accurate reconstruction we can achieve. To investigate
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the impact of data size upon the data utility of the randomized data, we generate four

more datasets with varied sizes by sampling r∗N tuples from the Adult Data randomly

where N is the size of the original Adult dataset and we set r ∈ [0.5, 1.5, 2, 2.5]. All the

four generated datasets have the exact same distribution as the original one. Figure

5.4 shows the accuracy of reconstructed data distribution when data size increases.

We can see that data utility is further improved when more data is available. This

is a promising avenue for future work because the accuracy (in terms of bias and

variance of estimates) of mining results derived from the reconstructed data needs

more attentions. It is worth pointing out that the data size does not affect the

accuracy of the estimated distribution of original data for generalization approaches

(l-diversity and anatomy).

5.3.3 Comparison with Other Models

To compare randomization scheme with l-diversity and anatomy, we chose Edu-

cation, Salary, Gender, Race as QI and Occupation as the sensitive attribute, sim-

ilar to the settings of empirical evaluations in [49, 76]. We call this dataset as ES-

GRO. Because the overall distribution of sensitive attribute values is unchanged after

anonymization in both l-diversity and anatomy, we use RR-QI to compare with these

two group based models.

Generalization approaches usually measure the utility syntactically by the number

of generalization steps applied to quasi-identifiers [57], average size of quasi-identifier

equivalence classes [49], sum of squares of class sizes, or preservation of marginals [42].

Since the randomization scheme is not based on generalization or suppression, in

addition to the previous distribution distance measures, we further examine the utility

preservation from the perspective of answering aggregate queries. We adopt query

answering accuracy, the same metric as the one used in [84]. We also consider the

variation of correlations between the sensitive attribute and quasi-identifiers. In our

experiments, we used an implementation of Incognito algorithm [42] to generate the
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entropy l-diverse tables and used the anatomy algorithm in [76].

Distribution Distance

We compare data utility of reconstructed probability distributions for different

models according to the four distance measures. Figure 5.5 shows distances between

π̂ and π for anatomy, l-diversity and RR-QI on the data set ESGRO. We can observe

that randomization outperforms both anatomy and l-diversity methods. This is be-

cause that we can partially recover the original data distribution in the randomization

scheme, whereas data distribution within each generalized equivalence class is lost in

l-diversity generalization and the relations between the quasi-identifier table (QIT)

and the sensitive table (ST) are also lost in anatomy.

Another observation is that data utility (in term of distance between original and

reconstructed distributions) monotonically decreases with the increment of the pri-

vacy thresholds (l) for randomization and anatomy. This is naturally expected be-

cause more randomness needs to be introduced with the increment of the privacy

requirements for randomization and larger l in anatomy means that more tuples are

included in each group, which decreases the accuracy of estimate for the distribution

of original data. However, there is no similar monotonic trend in l-diversity. This

is because the generalization algorithm choose different attributes for generalization

with various l values, which makes the accuracy of the estimated distribution vary to

different extents.

Query Answering Accuracy

The accuracy of answering aggregate queries is one of the important aspects to

evaluate the utility of distorted data. We compare randomization against other

anonymization approaches using the average relative error in the returned values.

For each value, its relative error equals |act− est|/act, where act is the actual result
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from the original data, and est the estimate derived from the underlying distortion

approach. We consider two types of queries in our evaluation.

• Base queries with the form:

SELECT A1,. . . , Am, S, COUNT(*) FROM data

WHERE A1 = i1 . . . Am = im AND S = is

Where ik ∈ Ωk and is ∈ Ωs. The average relative errors on all the base queries

(with size D = ds

∏m
i=1 di) for l = 1, · · · , 7 are shown in Figure 5.6(a).

• Cube query with the form:

SELECT A1,· · · , Am, S, COUNT(*) FROM data

GROUP BY CUBE (A1, · · · , Am, S)

We use the above CUBE query to describe all the possible hierarchical aggregate

queries. In multidimensional jargon, a cube is a cross-tabulated summary of

detail rows. CUBE enables a SELECT statement to calculate subtotals for all

possible combinations of a group of dimensions. It also calculates a grand total.

The CUBE query here returns aggregate values of all possible combinations of

QI attributes. We calculate the average relative error for each l = 1, · · · , 7 and

show the results in Figure 5.6(b).

Figure 5.6 shows relative errors of queries for anatomy, l-diversity and RR-QI on

data set ESGRO. We can see that randomization permits significantly more accu-

rate aggregate analysis than both l-diversity and anatomy since it can recover more

accurate data distribution.

Correlation Between Attributes

A good publishing method should also preserve data correlation (especially between

QI and sensitive attributes). We use Uncertainty Coefficient (U) to evaluate the
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correlation between two multi-category variables. The expression of U is shown in

(5.19).

U = −
∑

i

∑
j πij log

πij

πi+π+j∑
j π+j log π+j

. (5.19)

The uncertainty coefficient takes values between -1 and 1 and larger values represent a

strong association between variables. When the response variable has several possible

categorizations, these measures tend to take smaller values as the number of categories

increases.

Table 5.3 shows correlation (uncertainty coefficient) values between every pair of

attributes vary under three models (anatomy, l-diversity and RR-QI ) on the data

set ESGRO. We vary l from 2 to 7. Due to space limit, we only include correlation

values for l = 3, 4, 5 in Table 5.3. To study how correlations between QI and S

changes, we use the attribute pair of Salary (S, one QI attribute) and Occupation

(O, the sensitive attribute) as an example (the column with bold fonts in Table 5.3).

The original uncertainty coefficient is 2.74 × 10−2. RR-QI well achieves correlation

preservation, i.e., 2.41, 2.27, and 2.17 (×10−2) for l = 3, 4, 5 respectively. On the

contrary, the uncertainty coefficient value under anatomy is only 0.20, 0.12, and 0.05

(×10−2) correspondingly. For l-diversity, it achieves zero correlation preservation

when l = 3, 5 while it perfectly achieves correlation preservation when l = 4. This is

because the Salary attribute is generalized to “All” when l = 3, 5 while it is unchanged

across all QI-groups when l = 4. Because it is intractable to predict which QI

attributes will be generalized in l-diversity, l-diversity in general cannot well preserve

correlation.

To have a clear understanding of correlation preservation for anatomy, l-diversity,

and RR-QI, we show average values of uncertainty coefficient among attributes on

the data set ESGRO in Figure 5.7. Specifically, Figure 5.7(a) (Figure 5.7(b)) cor-

responds to the case of QI vs S (QI vs QI) while Figure 5.7(c) corresponds to the
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case of all attribute pairs. In summary, randomization achieves the best correlation

preservation between the sensitive attribute and quasi-identifiers across all privacy

thresholds. It is also clearly shown in Figure 5.7(b) that randomization better pre-

serves correlation among quasi-identifiers than l-diversity. Please note that anatomy

can best achieve the correlation among quasi-identifiers since it does not change values

of quasi-identifiers in its released QIT table.

5.3.4 Summary of Evaluation

In summary, the evaluation shows that randomization can better preserve utility

(in terms of distribution reconstruction, accuracy of aggregate query answering, and

correlation among attributes) under the same privacy requirements. Utility loss is

significantly smaller than that of generalization or anatomy approaches. Further-

more, the effectiveness of randomization can be further improved when more data

is available. The evaluation also showed that randomization approach can further

improve the accuracy of reconstructed distribution (and hence utility preservation)

when more data is available while generalization and anatomy approaches do not have

this property.

In the sequel, we compared randomization against l-diversity and anatomy in terms

of computation overhead. The execution time of randomization was usually 10 times

slower than l-diversity and anatomy. While we continue our study of reducing com-

putational cost of randomization, it is our belief that effectiveness is more important

than efficiency since randomization only incurs one-time cost.

5.4 Summary

In this chapter, we presented a systematic study of randomization method in pre-

venting attribute disclosure under linking attacks. We proposed a general framework

and presented a uniform definition for attribute disclosure which is compatible for

both randomization and generalization models. We proposed the use of a specific
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randomization model. We presented an efficient solution to derive distortion param-

eters to satisfy requirements for privacy preservation while maximizing data utili-

ties. We compared randomization model with other distortion models, k-anonymity,

l-diversity and Anonymity. Our experimental evaluations showed that randomiza-

tion significantly outperforms generalization, i.e., achieving better utility preservation

while yielding the same privacy protection.

There are several avenues for future work. We aim to extend our research to handle

multiple sensitive attributes, which usually happens in practice. In this dissertation,

we limit our scope as attackers have no knowledge about the sensitive attribute of

specific individuals in the population and/or the table. In practice, this may not

be true since the attacker may have instance-level background knowledge (e.g., the

attacker might know that the target individual does not have cancer; or the attacker

might know complete information about some people in the table other than the target

individual.) or partial demographic background knowledge about the distribution of

sensitive and nonsensitive attributes in the population. Different forms of background

knowledge have been studied in privacy preserving data publishing recently [12,19,50].

They proposed different approaches (a formal language [12,50] or ME constraints [19])

to express background knowledge of attackers and analyze the privacy risk in data

publishing. We will investigate privacy disclosure under those background knowledge

attacks [19,50]. We will continue our study of further reducing computation overhead

of randomization approach and derive new algorithms to improve the efficiency of the

process.
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Figure 5.3: Distances between π̂ and π for three scenarios of RR (data set EMGRW)
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Figure 5.5: Distances between π̂ and π for anatomy, l-diversity and RR-QI (data set
ESGRO)
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Figure 5.6: Relative errors of queries for anatomy, l-diversity and RR-QI (data set
ESGRO)
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Figure 5.7: Average value of uncertainty coefficients among attributes for anatomy,
l-diversity and RR-QI (data set ESGRO)



CHAPTER 6: SUMMARY AND FUTURE WORK

6.1 Summary

The problem of privacy in data mining has become more important in recent years.

A number of techniques such as randomization and group based generalization have

been suggested to perform privacy preserving data mining. Privacy preserving data

mining aims at providing a trade-off between sharing information for data mining

analysis and protecting confidential information to preserve privacy.

This dissertation presented a formal and comprehensive examination of data utility

and privacy of randomization models in privacy preserving categorical data analysis.

The main contributions can be summarized as follows:

I: Accuracy analysis in randomization model for categorical data analysis.

• Accuracy analysis for association rule mining in market basket data. We in-

vestigated the accuracy (in terms of bias and variance of estimates) of both

support and confidence estimates of association rules derived from the random-

ized data. We proposed the novel idea of using interquantile range to bound

those estimates derived from the randomized market basket data. We demon-

strated that providing confidence on data mining results from randomized data

is significant to data miners. They can know how accurate their data mining

results are under randomization-based models.

• A general framework to evaluate the accuracy of estimates of various measures

adopted in categorical data analysis . We presented a general approach to derive

variances of estimates of various measures adopted in categorical data analysis.
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We applied the idea of using interquantile ranges based on Chebyshevs Theorem

to bound those estimates derived from the randomized data.

II: Data utility analysis in randomization with unknown distortion parameters.

• Data utility analysis in randomization with unknown distortion parameters. We

investigated whether data mining or statistical analysis tasks can still be con-

ducted on randomized data when distortion parameters are not disclosed to

data miners. We examined how various objective association measures between

two variables may be affected by randomization. We demonstrated that some

measures have a vertical monotonic property , i.e., the values calculated directly

from the randomized data are always less than or equal to those original ones.

Hence, some data analysis tasks can be executed on the randomized data di-

rectly even without knowing distortion parameters. We then investigated how

the relative order of two association patterns is affected when the same random-

ization is conducted. We showed that some measures have relative horizontal

order invariant properties, i.e, if one pattern is stronger than another in the

original data, we have that the first one is still stronger than the second one in

the randomized data. We then extended it to multiple variables by examining

the feasibility of hierarchical loglinear modeling. We showed that some classic

data mining tasks (e.g., association rule mining, decision tree learning, naive

bayes classifier) cannot be applied on the randomized data directly.

III: Privacy disclosure analysis in randomization models.

• Analysis of attribute disclosure under linking attacks. We presented a system-

atic study of randomization method in preventing attribute disclosure under

linking attacks. We proposed a general framework and presented a uniform

definition for attribute disclosure which is compatible for both randomization

and generalization models.
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• Efficient solution for randomization parameters under linking attacks. We pro-

posed the use of a specific randomization model. We presented an efficient solu-

tion to derive distortion parameters to satisfy requirements for privacy preser-

vation while maximizing data utilities. We compared randomization model

with other distortion models, k-anonymity, l-diversity and Anonymity. Our

experimental evaluations showed that randomization signicantly outperforms

generalization, i.e., achieving better utility preservation while yielding the same

privacy protection.

6.2 Future Work

Several directions can be exploited as a continuation of this research. We discuss

some extensions we are going to make and technical challenges we would like to

address in this section.

I: Investigate randomization models in categorical data analysis under different

application scenarios.

In privacy preserving data publishing, most of my previous work focused on the gen-

eral scenarios that all quasi-identifying attributes are randomized to preserve privacy

of published data. In practice, there are situations where some sensitive attributes are

randomized while others are released directly, or, some records are randomized while

the remaining is unchanged. In the future, we will investigate data utility and pri-

vacy under such scenarios and plan to develop randomization models with enhanced

flexibility and data utility for these applications.

II: Investigate randomization model under specific background knowledge.

For the attribute disclosure analysis in Chapter 5, we assumed that the attacker has

access to the published data set, and knows values of quasi-identify attributes of some

individuals in the published data set. In practice, however, the attacker may have

instance-level background knowledge or partial demographic background knowledge

about the distribution of sensitive and non-sensitive attributes in the population.
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Different types of background knowledge have been studied in privacy preserving

data publishing recently. We will investigate privacy disclosure of randomization

models under those background knowledge attacks in the future.

III: Extend the results to privacy preserving data mining of numerical data.

Randomization model in my current work is based on the Randomized Response

(RR) method for categorical data. The RR method has been investigated by statis-

tical researchers to estimate the distribution of sensitive quantitative data. However,

it’s not well studied in PPDM area. In the future, we will investigate the RR method

in preserving privacy for numerical data and extend our theoretical results onto it.

IV: Extend the results to privacy and spectral analysis of social network random-

ization.

Social networks are of significant importance in various application domains. Most

previous studies are focused on revealing interesting properties of networks and dis-

covering efficient and effective analysis methods. However, there has been little work

dedicated to privacy preserving social network analysis. Some work has been discussed

in [78–83]. In [78, 79], we investigated the application of graph randomization tech-

niques to protect privacy of individual nodes and their sensitive link relationships.

We conducted theoretical study and empirical evaluation on the trade-off between

utility and privacy of various graph randomization techniques.

V: Extend the empirical evaluation to real data sets on various data mining appli-

cations.

We will evaluate the accuracy and privacy analysis of randomization models on

other data sets, especially real data sets. We plan to investigate other data mining

application in our future work.
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