
Purdue University
Purdue e-Pubs

Cyber Center Publications Cyber Center

12-14-2014

Privacy-Preserving and Outsourced Multi-User k-
Means Clustering
Bharath Samanthula
Purdue University, bsamanth@purdue.edu

Fang-Yu Rao
Purdue University, USA, raof@purdue.edu

Elisa Bertino
Purdue University, bertino@cs.purdue.edu

Xun Yi
RMIT University, Melbourne, xun.yi@rmit.edu.au

Dangxi Liu
CSIRO Computational Informatics, dangxi.liu@csiro.au

Follow this and additional works at: http://docs.lib.purdue.edu/ccpubs

Part of the Engineering Commons, Life Sciences Commons, Medicine and Health Sciences
Commons, and the Physical Sciences and Mathematics Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Samanthula, Bharath; Rao, Fang-Yu; Bertino, Elisa; Yi, Xun; and Liu, Dangxi, "Privacy-Preserving and Outsourced Multi-User k-
Means Clustering" (2014). Cyber Center Publications. Paper 652.
http://dx.doi.org/arXiv:1412.4378

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77940398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/cc?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ccpubs?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1016?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=docs.lib.purdue.edu%2Fccpubs%2F652&utm_medium=PDF&utm_campaign=PDFCoverPages

ar
X

iv
:1

41
2.

43
78

v1
 [

cs
.C

R
]

14
 D

ec
 2

01
4

Privacy-Preserving and Outsourced Multi-User
k-Means Clustering

Bharath K. Samanthula†, Fang-Yu Rao†, Elisa Bertino†, Xun Yi∗, and Dongxi Liu§

†Department of Computer Science, Purdue University, 305 N. University Street, West Lafayette, IN 47907, USA
{bsamanth, raof, bertino}@purdue.edu

∗School of Computer Science and Information Technology, RMIT University, Melbourne, Victoria, Australia
xun.yi@rmit.edu.au

§CSIRO Computational Informatics, Marsfield NSW 2122, Australia
dongxi.liu@csiro.au

Abstract— Many techniques for privacy-preserving data min-
ing (PPDM) have been investigated over the past decade. Often,
the entities involved in the data mining process are end-users
or organizations with limited computing and storage resources.
As a result, such entities may want to refrain from participating
in the PPDM process. To overcome this issue and to take many
other benefits of cloud computing, outsourcing PPDM tasks to
the cloud environment has recently gained special attention. We
consider the scenario wheren entities outsource their databases
(in encrypted format) to the cloud and ask the cloud to perform
the clustering task on their combined data in a privacy-preserving
manner. We term such a process as privacy-preserving and
outsourced distributed clustering (PPODC). In this paper, we
propose a novel and efficient solution to the PPODC problem
based onk-means clustering algorithm. The main novelty of our
solution lies in avoiding the secure division operations required in
computing cluster centers altogether through an efficient trans-
formation technique. Our solution builds the clusters securely
in an iterative fashion and returns the final cluster centers to
all entities when a pre-determined termination condition holds.
The proposed solution protects data confidentiality of all the
participating entities under the standard semi-honest model. To
the best of our knowledge, ours is the first work to discuss
and propose a comprehensive solution to the PPODC problem
that incurs negligible cost on the participating entities. We
theoretically estimate both the computation and communication
costs of the proposed protocol and also demonstrate its practical
value through experiments on a real dataset.

I. I NTRODUCTION

Clustering is one of the commonly used tasks in various
data mining applications. Briefly, clustering [1]–[3] is the
unsupervised classification of data items (or feature vectors)
into groups (or clusters) such that similar data items reside
in the same group. It has immense importance in various
fields, including information retrieval [4], machine learning
[5], pattern recognition [6], image analysis [7], and text mining
[8]. Some real-life applications related to clustering include
categorizing results returned by a search engine in response
to a user’s query, grouping persons into categories based on
their DNA information, etc.

In general, if the data involved in clustering belongs to
a single entity (hereafter referred to as a user), then it can
be done in a trivial fashion. However, in some cases, mul-

tiple users, such as companies, governmental agencies, and
health care organizations, each holding a dataset, may want
to collaboratively perform clustering task on their combined
data and share the clustering results. Due to privacy concerns,
users may not be willing to share their data with the other
users and thus the distributed clustering task1 should be done
in a privacy-preserving manner. This problem, referred to as
privacy-preserving distributed clustering (PPDC), can bebest
explained by the following example:

• Consider two health agencies (e.g., the U.S. CDC and the
public health agency of Canada) each holding a dataset
containing the disease patterns and clinical outcomes of
their patients. Since both the agencies have their own data
collecting methods, suppose that they want to cluster their
combined datasets and identify interesting clusters that
would enable directions for better disease control mech-
anisms. However, due to government regulations and the
sensitive nature of the data, they may not be willing to
share their data with one another. Therefore, they have
to collaboratively perform the clustering task on their
joint datasets in a privacy-preserving manner. Once the
clustering process is done, they can exchange necessary
information (after proper sanitization) if needed.

The existing PPDC methods (e.g., [9]–[12]) incur significant
cost (computation, communication and storage) on the partic-
ipating users and thus they are not suitable if the users do
not have sufficient resources to perform the clustering task.
This problem becomes even more serious when dealing with
big data. To address these issues, it is more attractive for the
users to outsource their data as well as the clustering task to the
cloud. However, the cloud cannot be fully trusted by the users
in protecting their data. Thus, to ensure data confidentiality,
users can encrypt their databases locally (using a common
public key) and then outsource them to the cloud. Then, the
goal is for the cloud to perform clustering over the aggregated
encrypted data. We refer to the above process asprivacy-
preserving and outsourced distributed clustering (PPODC).

1Note that, a direct application of clustering algorithm locally by each party
is of no use since global evolution of clusters [9] should be taken into account.

http://arxiv.org/abs/1412.4378v1

It is worth noting that if all the encrypted data resides
on a single cloud, then the only way through which the
cloud can perform the clustering task (assuming that users
do not participate in the clustering process), without ever
decrypting the data, is when the data is encrypted using fully
homomorphic encryption schemes (e.g., [13]). However, recent
results [14] show that fully homomorphic encryption schemes
are very expensive and their usage in practical applications
are decades away. Hence, we believe that at least two cloud
service providers are required to solve the PPODC problem.

In this paper, we propose a new and efficient solution to
the PPODC problem based on the standardk-means clustering
algorithm [15], [16] by utilizing two cloud service providers
(say Amazon and Google) which together form a federated
cloud environment. Our proposed solution protects data con-
fidentiality of all the participating users at all times. We
emphasize that the concept of federated clouds is becoming
increasingly popular and is also identified as one of the
ten High Priority Requirements for U.S. cloud adoption in
the NIST U.S. Government Cloud Computing Technology
Roadmap [17]. Therefore, we believe that developing privacy-
preserving solutions under federated cloud environment will
become increasingly important in the near future.

A. System Model and Problem Definition

In our problem setting, we considern users denoted by
U1, . . . , Un. Suppose userUi holds a databaseTi with mi data
records andl attributes, for1 ≤ i ≤ n. Consider a scenario
where then users want to outsource their databases as well as
the k-means clustering process on their combined databases
to a cloud environment. In our system model, we consider
two different entities: (i) the users and (ii) the cloud service
providers. We assume that the users choose two cloud service
providersC1 and C2 (say Amazon and Google) to perform
the clustering task on their combined data.

In this paper, we explicitly assume thatC1 and C2 are
semi-honest [18] and they do not collude. After proper service
level agreements with the users,C2 generates a public-secret
key pair(pk, sk) based on the Paillier cryptosystem [19] and
broadcastspk to all users andC1. A more robust setting would
be forC1 andC2 to jointly generate the public keypk based on
the threshold Paillier cryptosystem (e.g., [20], [21]) such that
the corresponding secret keysk is obliviously split between
the two clouds. Under this case, the secret keysk is unknown
to both clouds and only (random) shares of it are revealed to
C1 andC2. For simplicity, we consider the former asymmetric
setting whereC2 generates(pk, sk) in the rest of this paper.
However, our proposed protocol can be easily extended to
the above threshold setting without affecting the underlying
privacy guarantees.

Given the above system architecture, we assume that user
Ui encryptsTi attribute-wise usingpk and outsources the
encrypted database toC1. Another way to outsource the data
is that users can split each attribute value in their database
into two random shares and outsource the shares separately
to each cloud (see Section V-B for more details). A detailed

Secure Computation

on Aggregated

Encrypted Data

︸ ︷︷ ︸

n Users

· · · · · ·

En
cr
yp
te
d
D
at
a
or

Ra
nd
om

Sh
ar
es
of

D
at
a

Re
tr
iev

e
O
ut
pu
t

Retrieve Output

Federated Cloud

C1 C2

Encrypted
Data

or

Random
Shares of

Data

U1 Un

Fig. 1. The Proposed PPODC Architecture

information flow between different entities in our system
model is shown in Figure 1. Having outsourced the data,
the main goal of a PPODC protocol is to enableC1 andC2

to performk-means clustering over the combined encrypted
databases in a privacy-preserving manner. More formally, we
can define a PPODC protocol as follows:

PPODC(〈T1, . . . , Tn〉, β)→ (S1, . . . , Sn) (1)

whereβ is a pre-defined threshold value agreed upon by all
parties. Sincek-means is an iterative method, we use the value
of β to check whether the termination condition holds in each
iteration. A more detailed explanation about the usage ofβ
is given in Sections III and V.Si denotes the output received
by userUi. Depending on the users’ requirements,Si can
be the the global cluster centers and/or the final cluster IDs
corresponding to the data records ofUi. In this paper, we
consider the former case under whichSi’s are the same for all
users (however, our protocol can be easily modified to handle
the latter case). In general, a PPODC protocol should meet the
following requirements:

• Data Confidentiality: The contents ofUi’s databaseTi

should never be revealed to other users,C1 andC2.
• Accuracy: The output received by each party (i.e.,Si’s)

should be the same as in the standardk-means algorithm.
• No Participation of Users: Since the very purpose of

outsourcing is to shift the users’ load towards the cloud
environment, a desirable requirement for any outsourced
task is that the computations should be totally performed
in the cloud. In particular to PPODC, the total clustering
process should be done by the cloud service providers.
This will enable the users who do not have enough
resources to participate in the clustering task to still get
the desired results without compromising privacy.

In certain cases, the user’s data (encrypted using his/her own
secret key) may have already been stored in a cloud (either
C1 or different cloud) and he/she want to use this data, along

with the data from other users, in the clustering task. In the
case of the data being stored on a different cloud (sayC3), the
user has to first download and decrypt the data and re-encrypt
it underpk and send the resulting database toC1. This might
incur heavy cost on the user side, especially if the data is
large. However, we can address this issue using the proxy re-
encryption techniques (e.g., [22], [23]) as follows. (i)C3 can
directly send the encrypted data of the user toC1, (ii) the
user sends a proxy-re-encryption key corresponding to his/her
secret key andpk to C1, and (iii) C1 transforms the encrypted
data under the user’s public key domain into the domain ofpk
without ever decrypting it using the proxy re-encryption key.
For ease of presentation, we do not consider the above case in
the rest of the paper. Instead, we simply assume that all users
hold their respective databases which they can encrypt under
pk and outsource them toC1.

B. Main Contributions

The problem of privacy-preserving clustering over en-
crypted data in an outsourced environment was addressed only
recently [24]. However, the existing method is proposed under
a single user setting. To the best of our knowledge, there is
no existing work that addresses the PPODC problem (i.e.,
under the multi-user setting). In this paper, we propose an
efficient and novel PPODC protocol that can enable a group of
users to outsource their encrypted data as well as thek-means
clustering task completely to a federated cloud environment
and ours is the first work along this direction. The main
contributions of this work are four-fold:

• We propose new transformations and develop an order-
preserving Euclidean distance function that enables the
proposed PPODC protocol to securely assign the data
records to the closest clusters, a crucial step in each
iteration of thek-means clustering algorithm. Also, we
propose a novel transformation for the termination condi-
tion that enables the PPODC protocol to securely evaluate
the termination condition over encrypted data.

• The proposed solution satisfies all the desirable properties
of PPODC mentioned in the previous sub-section. That
is, it protects the confidentiality of each user’s data at all
times and outputs the correct result. Also, once the user’s
data is outsourced to the cloud, the user does not need to
participate in any computations of the clustering task.

• We show that the proposed protocol is secure under the
standard semi-honest model [18]. Also, we theoretically
analyze the complexities of the proposed protocol.

• We demonstrate the practical applicability of our solution
through extensive experiments using a real-world dataset.

The remainder of this paper is organized as follows. Section
II discusses the existing related work. Section III presents
some definitions and properties related tok-means clustering
algorithm and the Paillier cryptosystem as a background.
Section IV presents our new transformation techniques. Sec-
tion V discusses our proposed PPODC solution in detail.
Also, within this section, we analyze the security guarantees
and complexities of our solution. Section VI presents our

experimental results on a real-world dataset under different
parameter settings. Finally, we conclude the paper along with
the scope for future research in Section VII.

II. RELATED WORK

A. Privacy-Preserving Data Mining (PPDM)

Our work is closely related to the field of privacy-preserving
data mining (PPDM) [25], [26]. Several techniques have been
proposed for the clustering task under the PPDM model (e.g.,
[9]–[12]). However, we stress that our problem setting is
somewhat different from the PPDM model. On one hand,
under PPDM, each user owns a piece of dataset (typically
a vertically or horizontally partitioned dataset) and the goal
is for them to collaboratively perform the clustering task on
the combined data in a privacy-preserving manner. On the
other hand, our work is motivated by the cloud computing
model where users can outsource their encrypted databases
to a federated cloud environment. Under our problem setting,
the federated cloud performs the clustering task over encrypted
data and the users do not participate in any of the underlying
computations. As a result, existing PPDM techniques for the
clustering task are not applicable to the PPODC problem.

Only recently, researchers have started to focus on the
clustering task in an outsourced environment (e.g., [24], [27]).
The work by Liu et al. [24] is perhaps the most recent work
along this direction. However, their solution has the following
limitations: (i) it assumes that there is only a single user
who wants to perform the clustering task on his/her own data
and (ii) the user is required to execute certain intermediate
computations and thus he/she needs to be part of the clustering
process. Unlike the work in [24], our solution is proposed
under the multi-user setting and the users can completely
outsource the computations of the clustering task to a federated
cloud environment in a privacy-preserving manner.

B. Fully Homomorphic Encryption (FHE)

A straightforward way to solve the PPODC problem is
for the users to encrypt their data using a fully homomor-
phic encryption (FHE) scheme, e.g., [13], and outsource the
encrypted data to a cloud. Here the secret key should be
known only to the users (or shared among them). Since FHE
allows one to perform arbitrary computations over encrypted
data without decrypting the data, the cloud can perform the
clustering task over encrypted data and return the encrypted
clustering results to the users who can decrypt them. Though
the FHE schemes enable arbitrary searches or operations over
encrypted data, such techniques are very expensive and their
usage in practical applications is decades away. For example, it
was shown in [14] that even for weak security parameters one
“bootstrapping” operation of a homomorphic operation would
take at least 30 seconds on a high performance machine.

III. PRELIMINARIES

In this section, we first introduce definitions related to
cluster centers and computation of Euclidean distance between
a data record and given cluster. Then, we briefly discuss the

steps involved in the traditionalk-means clustering algorithm.
Finally, we review upon the properties of the threshold Paillier
cryptosystem that is adopted in this paper.

A. Cluster Center

Definition 1: Let c = {t1, . . . , th} be a cluster where
t1, . . . , th are data records withl attributes. Then, the center
of clusterc is defined as a vectorµc given by [12]:

µc[s] =
t1[s] + · · · + th[s]

|c|
=

λc[s]

|c|
, for 1 ≤ s ≤ l (2)

where ti[s] denotes thesth attribute value ofti and λc[s]
denotes the sum ofsth attribute values of all the data records
in clusterc, for 1 ≤ i ≤ h. Also, |c| denotes the number of
data records inc.
In the above definition, thesth attribute value inµc is
equivalent to the mean of thesth attribute values of all the
data records in clusterc. Note that, if the cluster contains a
single data record, then the cluster center is the same as the
corresponding data record.

Example 1:Let c be a cluster with three data records
{t1, t2, t3}. Without loss of generality, suppose the data
records are given as below (assumingl = 5):

t1 = {0, 2, 1, 0, 3}
t2 = {1, 1, 3, 4, 2}
t3 = {0, 1, 0, 2, 0}

Then, the center of clusterc, based on Definition 1, is given
by µc[1] = 0.333,µc[2] = 1.333,µc[3] = 1.333,µc[4] = 2,
µc[5] = 1.666. �

B. Computation of Euclidean Distance betweenti and c

We now discuss how to compute the similarity score be-
tween a given data recordti and a clusterc. In general, the
similarity score between any two objects can be computed
using one of the standard similarity metrics, such as Euclidean
distance, Cosine similarity, and Jaccard coefficient. In this pa-
per, we use the Euclidean distance as the underlying similarity
metric since the standardk-means algorithm is based on this
metric [12], [24].

Definition 2: For any given data recordti and clusterc, let
µc denote the cluster center ofc (as per Definition 1). Then
the Euclidean distance betweenti andc is given as

‖ti − c‖ =

√

l∑

s=1
(ti[s]− µc[s])

2
=

√

l∑

s=1

(

ti[s]−
λc[s]
|c|

)2

Example 2:Supposeti andµc are as given below.
ti = {0, 1, 1, 3, 2}
µc = {0.333, 1.333, 1.333, 2, 1.666}

Then, the Euclidean distance betweenti and c, based on
Definition 2, is‖ti − c‖ = 1.201. �

In a similar manner, the Euclidean distance between any two
given clustersc andc′ can be computed using their respective
cluster centers. More specifically,‖c− c′‖ is given as

√
√
√
√

l
∑

s=1

(µc[s]− µc′ [s])
2
=

√
√
√
√

l
∑

s=1

(

λc[s]

|c|
−

λc′ [s]

|c′|

)2

where µc and µc′ denote the cluster centers ofc and c′,
respectively. Also,|c| and |c′| denote the number of data
records inc andc′, respectively.

C. Single Partyk-Means Clustering

Consider a userU who wants to apply thek-means clus-
tering algorithm [15], [16] on his/her own database ofm
records, denoted by{t1, . . . , tm}. Here we assume thatU
wants to computek cluster centers, denoted byµc′

1
, . . . , µc′

k
,

as the output. However, other desired values, such as the
final cluster IDs assigned to each data record can also be
part of the output. Sincek-means clustering is an iterative
algorithm,U has to input a threshold value to decide when
to stop the algorithm (termination condition). Without loss of
generality, letβ denote the threshold value. Throughout this
paper, we assume that the initial set ofk clusters are chosen
at random (referred to as the Initialization step). Note that
other techniques exist for choosing the initial clusters [12].
However, since the goal of this paper is not to investigate
which initialization technique is better, we simply assumethat
they are selected at random.

The main steps involved in the traditional (single party)k-
means clustering task [15], [16], using the Euclidean distance
as the similarity metric, are given in Algorithm 1. Apart from
the initialization step, the algorithm involves three mainstages:
(i) Assignment (ii) Update and (ii) Termination. First of all,
during the initialization step,k data records are selected at
random and assigned as the initial clustersc1, . . . , ck with
their centers (or mean vectors) denoted byµc1 , . . . , µck , re-
spectively. In the assignment stage, for each data recordti,
the algorithm computes the Euclidean distance betweenti and
each clustercj, for 1 ≤ j ≤ k. Then, the algorithm identifies
the cluster corresponding to the minimum distance as the
closest cluster toti (saych) and assignsti to a new clusterc′h,
whereh ∈ [1, k]. In the update stage, the algorithm computes
the centers of the new clusters, denoted byµc′

1
, . . . , µc′

k
.

Finally, in the termination stage, the algorithm verifies whether
a pre-defined termination condition holds. More specifically,
the algorithm checks whether the sum of the squared Euclidean
distances between the current and newly computed clusters is
less than or equal to the threshold valueβ. If the termination
condition holds, then the algorithm halts and returns the new
cluster centers as the final output. Otherwise, the algorithm
continues to the next iteration with the new clusters as input.

D. The Paillier Cryptosystem

In this paper, we assume that the second cloud service
providerC2 generates a public-secret key pair(pk, sk) based
on the widely used Paillier cryptosystem [19] which consists
of an additively homomorphic and probabilistic encryption
scheme. Without loss of generality, letEpk(·) and Dsk(·)
denote the encryption and decryption functions under Paillier
cryptosystem andN denote the RSA modulus (or a part of the
public key pk). We emphasize that the Paillier cryptosystem
exhibits the following properties [19]:

Algorithm 1 k-means({t1, . . . , tm}, β)→ {µc′
1
, . . . , µc′

k
}

Require: UserU with m data records{t1, . . . , tm} andβ
Initialization : Selectk data records at random and assign
them as initial clustersc1, . . . , ck with respective cluster
centers asµc1 , . . . , µck

1: for j = 1 to k do
2: c′j ← ∅
3: µc′

j
← {}

4: sum← 0
5: end for
{Assignment Stage}

6: for i = 1 to m do
7: for j = 1 to k do
8: Compute‖ti − cj‖
9: end for

10: Add ti to clusterc′h such that‖ti−ch‖ is the minimum,
for 1 ≤ h ≤ k

11: end for
{Update Stage}

12: for j = 1 to k do
13: Compute cluster center forc′j and assign it toµc′

j

14: end for
{Termination Stage - Compare the old clusters (cj ’s)
with new clusters (c′j ’s) and check whether they are close
enough}

15: sum←
k∑

j=1

‖cj − c′j‖
2

16: if sum ≤ β then
17: Return{µc′

1
, . . . , µc′

k
}

18: else
19: for j = 1 to k do
20: cj ← c′j
21: µcj ← µc′

j

22: end for
23: Go to Step 6
24: end if

• For anya, b ∈ ZN , the encryption scheme is additively
homomorphic:Epk(a) ∗ Epk(b) mod N2 = Epk(a +
b mod N). Due to this addition property, the encryp-
tion scheme also satisfies the multiplication property
Epk(a)

u mod N2 = Epk(a∗u mod N), whereu ∈ ZN .
• The encryption scheme is semantically secure [28]. That

is, given a set of ciphertexts, a computationally bounded
adversary cannot deduce any information regarding the
corresponding plaintexts in polynomial time.

For ease of presentation, we omit the termmod N2 from
homomorphic operations in the rest of the paper. Also, as
mentioned in Section I-A, our proposed protocol can be easily
extended to the threshold Paillier setting [20] under whichsk
is obliviously generated and shared betweenC1 andC2 [21].

IV. T HE PROPOSEDTRANSFORMATIONS

It is important to note that cluster centers (denoted byµc

for a clusterc) are represented as vectors and the entries in the
vectors can be fractional values. Since the encryption schemes

typically support integer values, we should somehow transform
the entries of the cluster centers into integer values without
affecting their utility in thek-means clustering process. Along
this direction, we first define scaling factors for clusters
and then discuss a novel order-preserving Euclidean distance
function operating over integers. Also, we discuss how to
transform the termination condition in thek-means clustering
algorithm with fractional values into an integer-valued one.

Definition 3: Consider the clusterci whose center is de-
noted by µci (based on Definition 1). We know thatµci

is a vector and each entry can be a fractional value with
denominator|ci|, for 1 ≤ i ≤ k. We define the scaling factor
for a clusterci, denoted byαi, as below:

αi =

k∏

j=1

|cj |

|ci|
=

k
∏

j=1∧j 6=i

|cj | (3)

Also, we defineα =
k∏

j=1

|cj | as the global scaling factor.

A. Order-Preserving Euclidean Distance (OPED)

In the assignment stage ofk-means clustering, the first
step is to compute the Euclidean distance between a data
record ti and each clustercj , denoted by‖ti − cj‖ =
√

l∑

s=1

(

ti[s]−
λcj

[s]

|cj|

)2

. It is clear that‖ti − cj‖ involves

fractional value
λcj

[s]

|cj|
. In order to compute the encrypted value

of ‖ti − cj‖, we need to avoid such fractional values without
affecting the relative ordering among thek Euclidean distances
‖ti − c1‖, . . . , ‖ti − ck‖, wherec1, . . . , ck denotek clusters.
Note that sinceti has to be assigned to the nearest cluster,
it is important to preserve the relative ordering among the
computedk Euclidean distances. For this purpose, we propose
a novel order-preserving Euclidean distance function which
works on only integer values.

We define the order-preserving Euclidean distance (OPED)
function between a data recordti and a clustercj as follows:

OPED(ti, cj) =

√
√
√
√

l
∑

s=1

(

α ∗ ti[s]− αj ∗ λcj [s]
)2

(4)

whereα and αj denote the global andcj ’s scaling factors,
respectively. Observe that all the terms in the above equation
are integer values. Moreover, following from Definition 3, we

can rewrite the above equation as:

OPED(ti, cj) =

√
√
√
√

l
∑

s=1

(

α ∗ ti[s]−
α

|cj |
∗ λcj [s]

)2

=

√
√
√
√α2 ∗

(
l
∑

s=1

(

ti[s]−
λcj [s]

|cj |

)2
)

= α ∗

√
√
√
√

l
∑

s=1

(

ti[s]−
λcj [s]

|cj |

)2

= α ∗ ‖ti − cj‖

Sinceα remains constant for any given set ofk clusters (in a
particular iteration), we claim that the above OPED function
preserves the relative ordering among cluster centers for any
given data record. More specifically, given a data recordti
and two clusterscj and cj′ , if ‖ti − cj‖ ≥ ‖ti − cj′‖, then
it is guaranteed that OPED(ti, cj) ≥ OPED(ti, cj′), for 1 ≤
j, j′ ≤ k andj 6= j′.

B. Transformation of the Termination Condition

In the k-means clustering process (see Algorithm 1), the
termination condition is given by:

k
∑

j=1

‖cj − c′j‖
2 ≤ β (5)

where c1, . . . , ck and c′1, . . . , c
′
k denote the current and new

set of clusters in an iteration, respectively. Remember that

‖cj − c′j‖ =

√

l∑

s=1

(

λcj
[s]

|cj|
−

λc′
j
[s]

|c′
j
|

)2

and clearly it consists

of fractional values. In order to evaluate this condition over
encryption, we first need to transform the above termination
condition so that all the components are integers. To achieve
this, we use the following approach. We define a constant
scaling factor (denoted byf) for the termination condition
in such a way that by multiplying Equation 5 withf2, we
can cancel all the denominator values. More specifically, we
define the scaling factor for the termination condition as

f =
k∏

j=1

|cj | ∗ |c′j |. Also, we define the scaling factor for the

cluster pair(cj , c′j) asfj =
f

|cj|∗|c′j|
=

k∏

i=1∧i6=j

|ci| ∗ |c
′
i|. Then

we define the new termination condition as follows:

k
∑

j=1

l
∑

s=1

(

|c′j | ∗ fj ∗ λcj [s]− |cj | ∗ fj ∗ λc′
j
[s]
)2

≤ f2∗β (6)

Observe that the above equation consists of only integer val-
ues. Now we need to show that evaluating the above equation
is the same as evaluating Equation 5. First, we divide the
above equation byf2 on both sides of the inequality. Note that
sincef2 remains constant in a given iteration, multiplication
of Equation 6 byf2 has no effect on the inequality. Precisely,

Equation 6 can be rewritten as:

k
∑

j=1

l
∑

s=1

(

|c′j | ∗ fj ∗ λcj [s]− |cj | ∗ fj ∗ λc′
j
[s]
)2

f2
≤ β

Given this, the left-hand side of the above equation can be
expanded as follows:

k
∑

j=1

l
∑

s=1

(

|c′j| ∗ fj ∗ λcj [s]

f
−
|cj | ∗ fj ∗ λc′

j
[s]

f

)2

=

k
∑

j=1

l
∑

s=1

(

|c′j | ∗ λcj [s]

|cj | ∗ |c′j |
−
|cj | ∗ λc′

j
[s]

|cj | ∗ |c′j |

)2

=
k
∑

j=1

l
∑

s=1

(

λcj [s]

|cj |
−

λc′
j
[s]

|c′j |

)2

=
k
∑

j=1

‖cj − c′j‖
2

Based on the above discussions, it is clear that evaluating the
inequality

∑k

j=1 ‖cj − c′j‖
2 ≤ β is the same as evaluating

Equation 6. Hence, in our proposed PPODC protocol, we
consider Equation 6 as the termination condition ofk-means
clustering and evaluate it in a privacy-preserving manner.

V. THE PROPOSEDSOLUTION

In this section, we first discuss a set of privacy-preserving
primitives. Then, we present our novel PPODC protocol that
utilizes the above transformation techniques and the privacy-
preserving primitives as building blocks.

As mentioned in Section I-A, in this paper we consider two
semi-honest and non-colluding cloud service providersC1 and
C2 under the Paillier cryptosystem [19]. More specifically,C2

generates a pair of public-secret key pair(pk, sk) based on
the Paillier’s scheme such thatsk is kept private whereas the
corresponding public keypk is broadcasted.

A. Privacy-Preserving Primitives

We discuss a set of privacy-preserving primitives under the
above two-party (i.e.,C1 andC2) computation model.

• Secure Multiplication (SMP): Given thatC1 holds
〈Epk(a), Epk(b)〉 and C2 holds sk, where〈a, b〉 is un-
known to bothC1 andC2, the goal of the SMP protocol
is to computeEpk(a∗b). During the execution of SMP, no
information regarding the contents ofa andb is revealed
to C1 andC2.

• Secure Squared Euclidean Distance (SSED): In
this protocol, C1 holds two encrypted vectors
Epk(X) = 〈Epk(x[1], . . . , Epk(x[l])〉 and
Epk(Y) = 〈Epk(y[1]), . . . , Epk(y[l])〉. The goal of
SSED is to compute the encryption of the squared
Euclidean distance betweenX and Y . Specifically, the
output isEpk((‖X − Y ‖)2). The SSED protocol should
reveal neither the contents ofX andY nor the Euclidean
distance between them toC1 andC2.

• Secure Squared Order-Preserving Euclidean Distance
(SSEDOP): Given thatC1 holds an encrypted data record,
denoted byEpk(ti), and an encrypted cluster, denoted
by Epk(ch), the goal of the SSEDOP protocol is for
C1 and C2 to jointly computeEpk((OPED(ti, ch))2).
HereEpk(ch) = 〈Epk(λch), Epk(|ch|)〉 andEpk(λch) =
〈Epk(λch [1]), . . . , Epk(λch [l])〉. Note that OPED(ti, ch)
denotes the Euclidean distance betweenti and clusterch
based on the order-preserving Euclidean distance function
defined in Equation 4. At the end of this protocol, the
outputEpk((OPED(ti, ch))2) is revealed only toC1 and
no other information is revealed toC1 andC2.

• Secure Least Significant Bit (SLSB): Given thatC1 holds
Epk(z), wherez is unknown to both parties, the goal of
SLSB is to compute encryption of the least significant bit
(LSB) of z. The outputEpk([z]1) is revealed only toC1,
where [z]1 denotes the LSB ofz. During the execution
of the SLSB protocol, no contents regardingz is revealed
to C1 andC2.

• Secure Comparison (SC): Given thatC1 holds
〈Epk(a), Epk(b)〉, the goal of SC is to securely
comparea and b. The output of SC isEpk(γ), where
γ = 1 if a ≤ b, and 0 otherwise. At the end,Epk(γ) is
known only toC1 and no other information is revealed
to C1 andC2.

• Secure Minimum (SMIN): Assume thatC1 holds
〈Epk(a), Epk(sa)〉 and 〈Epk(b), Epk(sb)〉, wheresa and
sb are the secrets associated with integersa and b,
respectively. The goal of SMIN is to compute the en-
cryption of minimum value betweena andb, denoted by
Epk(min(a, b)). In addition, it computes the encryption
of the secret corresponding to the minimum value. More
specifically, the final output of SMIN is(T, I), and it will
be revealed only toC1. HereT = Epk(min(a, b)), and
I = Epk(sa) if a is the minimum value, andI = Epk(Sb)
otherwise. During SMIN, no information regardinga and
b is revealed toC1 andC2.

• Secure Minimum out ofk Numbers (SMINk): In this
protocol, we assume thatC1 holdsk encrypted integers
and C2 holds sk. The goal of SMINk is to securely
identify the location corresponding to the minimum value
among thek numbers. More specifically, ifjth integer
is the minimum number among thek values, then the
output of SMINk is an encrypted vector such that itsjth

component isEpk(1) and the rest are encryptions of 0,
wherej ∈ [1, k]. The SMINk protocol should not reveal
any information regarding the contents ofk numbers
(e.g., the minimum value or the location corresponding
to it, etc.) toC1 and C2. The SMINk protocol can be
treated as a generalization of SMIN in which the secrets
associated with thek integers represent their locations.

Several solutions have been proposed for most of the above
privacy-preserving primitives. Recently, Yousef et al. [29] dis-
cussed efficient implementations for SMP and SSED. Also, an
efficient solution to SLSB was proposed in [30]. In the rest of

Algorithm 2 SSEDOP(Epk(ti), Epk(ch))

Require: C1 hasEpk(ti), Epk(ch) = 〈Epk(λch), Epk(|ch|)〉
1: C1 andC2:

(a). bh ← SMPk−1(τh), whereτh = ∪kj=1∧j 6=hEpk(|cj |)
(b). b′ ← SMP(bh, Epk(|ch|))
(c). for 1 ≤ s ≤ l do:

• ai[s]← SMP(b′, Epk(ti[s]))
• a′h[s]← SMP(bh, Epk(λch [s]))

(d). Epk((OPED(ti, ch))2)← SSED(ai, a′h)

this paper, SMP and SSED refer to the implementations given
in [29]. Similarly, by SLSB, we refer to the implementation
given in [30]. We now propose efficient implementations to
SSEDOP, SC, SMIN, and SMINk.

1) The SSEDOP Protocol: We discuss a novel solution
to the SSEDOP problem using the SMP and SSED pro-
tocols as sub-routines. The main steps involved in the
proposed SSEDOP protocol are highlighted in Algorithm
2. We assume thatC1 holds 〈Epk(c1), . . . , Epk(ck)〉 and
C2 holds sk, where c1, . . . , ck denote k clusters and
Epk(ch) = 〈Epk(λch), Epk(|ch|)〉. Note thatEpk(λch) =
〈Epk(λch [1]), . . . , Epk(λch [l])〉. The goal of SSEDOP is to
securely computeEpk((OPED(ti, ch))2) for a given input
Epk(ti) andEpk(ch), where1 ≤ h ≤ k.

To start with, C1 and C2 securely compute the scaling
factor for clusterch (in encrypted format based on Equation
3) using the extended secure multiplication protocol, denoted
by SMPk−1, that takesk − 1 encrypted inputs and multiplies
them (within encryption). Specifically, they jointly compute
bh = SMPk−1(τh), whereτh = ∪kj=1∧j 6=hEpk(|cj |). The im-

portant observation here is thatbh = Epk(
∏k

j=1∧j 6=h |cj |) =
Epk(αh), whereαh is the scaling factor for clusterch as
defined in Equation 3. ThenC1 andC2 securely multiplybh
with Epk(|ch|) using SMP to getb′ = SMP(bh, Epk(ch)) =
Epk(|c1| ∗ . . . ∗ |ck|) = Epk(α), whereα is the global scaling
factor. After this, for1 ≤ s ≤ l, C1 andC2 jointly compute
two encrypted vectors as follows:

ai[s] = SMP(b′, Epk(ti[s])) = Epk(α ∗ ti[s])

a′h[s] = SMP(bh, Epk(λch [s])) = Epk(αh ∗ λch [s])

Finally, with the two encrypted vectorsai anda′h asC1’s input,
C1 andC2 jointly compute the encrypted squared Euclidean
distance between them using the SSED protocol. More specif-
ically, the output of SSED(ai, a′h) is Epk(

∑l
s=1(α ∗ ti[s] −

αh ∗ λch [s])
2). Following from Equation 4, it is clear that the

output SSED(ai, a′h) is equivalent toEpk((OPED(ti, ch))2).
2) The Secure Comparison (SC) Protocol:Given thatC1

holds〈Epk(a), Epk(b)〉 andC2 holdssk, the goal of SC is to
returnEpk(γ) such thatγ = 1 iff a ≤ b, andγ = 0 otherwise.
During SC, neither the contents of(a, b) nor the comparison
resultγ should be disclosed toC1 andC2.

We emphasize that it is desirable to have an SC protocol
whose efficiency does not rely on the bit length of the input
integers (i.e.,a andb) to be compared. We now discuss about
such a solution constructed by combining SLSB [30] with

TABLE I

TRUTH TABLE FORa ≤ b

w = (a < N/2) x = (b < N/2) y = (b − a mod N < N/2) γ = (a ≤ b)

0 1 * 0

1 0 * 1

0 0 0 0

0 0 1 1

1 1 0 0

1 1 1 1

the ideas proposed by Nishide et al. [31]. The SC solution
proposed in [31] is based on the secret sharing scheme [32].
However, it is also applicable to our problem domain upon
simple modifications.

In what follows, we briefly describe howC1 andC2 can se-
curely compute the encryption ofγ, given〈Epk(a), Epk(b)〉 as
C1’s private input, using the ideas proposed in [31]. According
to [31], the value of comparison resultγ solely depends on
the following 3 predicates:w : a < N/2, x : b < N/2, and
y : b− a mod N < N/2. More specifically,γ is given as:

γ = wx ∨ w xy ∨ wxy

= w(1 − x) ∨ (1− w)(1 − x)y ∨wxy

= −x(w + y − 2wy) + (w + y − wy) (7)

More specifically, all possible combinations of(w, x, y) and
their correspondingγ values are given in Table I, where∗
denotes either bit 0 or 1. The main challenge here is that how
C1 can computeEpk(w), Epk(x) andEpk(y) given Epk(a)
andEpk(b).

As highlighted in [31], one can notice thata ∈
{0, 1, · · · , (N−1)

2 } iff [2a mod N]1 = 0. Similarly, a ∈

{ (N−1)
2 + 1, · · · , N − 1} iff [2a mod N]1 = 1, where[2a]1

signifies the least significant bit (LSB) of2a mod N . That
is, w = 1 (implying that a < N/2) if and only if the LSB
of (2a mod N) is 0, i.e., w ⇔ 1 − [2a mod N]1. Similar
conclusions can be drawn forx and y. Consider the case
of computingEpk(w) from Epk(a). First, C1 can locally
computeEpk(2a). Then, in order to compute the encrypted
LSB of 2a, C1 andC2 jointly involve in the SLSB protocol
[30]. At the end of this step, onlyC1 knowsEpk([2a]1). Now
C1 can locally computeEpk(w) = Epk(1)∗Epk([2a]1)

N−1 =
Epk(1− [2a]1). In a similar fashion,C1 can computeEpk(x)
andEpk(y). Finally, C1 (with the help ofC2) can compute
Epk(γ) based on Equation 7. Note that this step explicitly
requires SMP as a building block.

3) The SMIN Protocol:Let a andb be two integers inZN ,
and sa and sb be their associated secrets, respectively. For
example, ifa andb correspond to two data records, then their
secrets can correspond to the record identifiers. Suppose that
min(a, b) denote the minimum value betweena and b and
that smin(a,b) denote the secret corresponding tomin(a, b).
Given that〈Epk(a), Epk(sa)〉 and 〈Epk(b), Epk(sb)〉 asC1’s
private input, the goal of SMIN is to securely compute

〈Epk(min(a, b)), Epk(smin(a,b))〉 as the final output and it
should be known only toC1.

We now discuss a simple to SMIN based on the SC
protocol. As discussed above, at the end of SC protocol,C1

knows Epk(γ), where γ denotes the comparison result of
functionality a ≤ b. GivenEpk(γ), C1 can securely compute
the encryption of the minimum value betweena and b, i.e.,
Epk(min(a, b)), using the following formulation:

min(a, b) = γ ∗ a+ (1− γ) ∗ b

More specifically, using the secure multiplication (SMP) pro-
tocol,C1 with input 〈Epk(a), Epk(b), Epk(γ)〉 andC2 with sk
can computeEpk(γ ∗ a) andEpk(γ ∗ b). Note that the output
of SMP will be known only toC1. After this,C1 can compute
Epk(min(a, b)) asEpk(γ ∗a)∗Epk(b)∗Epk(γ ∗b)N−1 locally.

In a similar manner, apart from the encrypted minimum
value, C1 and C2 compute the encryption of the secret
associated with the minimum value. More specifically, they
computeEpk(smin(a,b)) using the following formulation:

smin(a,b) = γ ∗ sa + (1− γ) ∗ sb

Example 3:SupposeC1 holdsEpk(7) andEpk(4) (i.e.,a =
7 and b = 4). Without loss of generality, letEpk(s1) and
Epk(s2) denote their respective secrets. It is clear that the SC
protocol returnsEpk(0) (i.e., γ = 0) as output toC1 since
a ≤ b does not hold in this example. The output of SMIN is
Epk(min(7, 4)) = Epk(γ ∗a+(1−γ)∗b) = Epk(b) = Epk(4)
andEpk(smin(a,b)) = Epk(s2). �

4) The SMINk Protocol: Given k encrypted integers, the
SMINk protocol computes an encrypted vectorΓ of lengthk
such that the entry corresponding to the minimum value is an
encryption of 1 and the rest are encryptions of 0. We now
discuss a novel SMINk protocol constructed using the SMIN
protocol as a building block. The overall steps in the proposed
SMINk protocol are give in Algorithm 3.

SupposeEpk(d1), . . . , Epk(dk) denote the list ofk en-
crypted integers andi denotes the index (or location) of integer
di in the list, for 1 ≤ i ≤ k. Initially, using the SMIN proto-
col, C1 with input (Epk(d1), Epk(1)) and (Epk(d2), Epk(2))
and C2 can computeT = Epk(min(d1, d2)) and I =
Epk(smin(d1,d2)), where smin(d1,d2) denotes the location of
the minimum value betweend1 and d2. Note that the out-
put of the SMIN protocol is known only toC1. After this

Algorithm 3 SMINk(Epk(d1), . . . , Epk(dk))→ Γ

Require: C1 holds(Epk(d1), . . . , Epk(dk)) andπ; C2 holds
sk.

1: C1 andC2:

(a). (T, I)← SMIN((Epk(d1), Epk(1)), (Epk(d2), Epk(2)))
(b). for i = 2 to k − 1 do:

• (T, I)← SMIN((T, I), (Epk(ds+1), Epk(s+ 1)))

2: C1:

(a). ∆← IN−1

(b). for i = 1 to k do:
• ∆′[i]← Epk(i) ∗∆
• φ[i]← ∆′[i]ri , whereri ∈R ZN

(c). u← π(φ); sendφ to C2

3: C2:

(a). Receiveu from C1

(b). for i = 1 to k do:
• u′[i]← Dsk(u[i])

(c). for i = 1 to k do:
• if u′[i] = 0 then U [i]← Epk(1)
• elseU [i]← Epk(0)

(d). SendU to C1

4: C1:

(a). ReceiveU from C2

(b). Γ← π−1(U)

C1 with input (T, I) and (Epk(d3), Epk(3)) can compute
Epk(min(d1, d2, d3)) and Epk(smin(d1,d2,d3)) using SMIN.
The above process is repeated untilI = Epk(smin(d1,...,dk))
is computed (known only toC1), wheresmin(d1,...,dk) denotes
the index (or location) corresponding to the minimum value
among thek input values. This process is shown as Step 1 in
Algorithm 3.

After this, C1 andC2 perform the following set of opera-
tions:

• C1 computesEpk(i−smin(d1,...,dk)) and randomizes it to
getφ[i] = Epk(ri ∗ (i−smin(d1,...,dk))), whereri denotes
a random number inZN and 1 ≤ i ≤ k. Observe that
exactly one of the entries inφ is equal to encryption of 0
(i.e., wheni = smin(d1,...,dk)) and the rest are encryptions
of random values. Hereafter, we use the notationr ∈R
ZN to denote a random numberr in ZN .

• C1 computesu = π(φ) and sends it toC2. Hereπ is a
random permutation function known only toC1.

• Upon receivingu, C2 decrypts it component-wise using
sk to getu′[i] = Dsk(u[i]). After this, C2 generates an
encrypted vectorU as follows. Ifu′[i] = 0, thenU [i] =
Epk(1), andEpk(0) otherwise.C2 sendsU to C1.

• Finally, C1 gets the desired encrypted vectorΓ as output
by performing an inverse permutation onU .

Example 4:Let k = 5 and the input to SMINk be
〈Epk(3), Epk(6), Epk(13), Epk(2), Epk(9)〉. The output at the
end of Step 1 in the proposed SMINk protocol is 〈T, I〉 =
〈Epk(2), Epk(4)〉 and it will be known only toC1. Note

that since ‘2’ is the minimum among the five input values,
the output of Step 1 is encryption of ‘2’ and encryption
of the location corresponding to ‘2’ in the input list (i.e.,
smin(3,6,13,2,9) = 4). After this,C1 computesφ[1] = Epk(r1 ∗
(1− 4)), φ[2] = Epk(r2 ∗ (2− 4)), φ[3] = Epk(r3 ∗ (3− 4)),
φ[4] = Epk(r4 ∗ (4 − 4)), and φ[5] = Epk(r5 ∗ (5 − 4)).
Without loss of generality, let the random permutation function
π (known only toC1) be as follows. NowC1 computesu =

i = 1 2 3 4 5
↓ ↓ ↓ ↓ ↓

π(i) = 2 5 1 3 4

π(φ) = 〈φ[3], φ[1], φ[4], φ[5], φ[2]〉 and sends the resulting
vector u to C2. Upon receiving,C2 decrypts it usingsk
and identifies thatDsk(u[3]) = 0. Note that the rest of
the values are random numbers. ThenC2 computesU =
〈Epk(0), Epk(0), Epk(1), Epk(0), Epk(0)〉 and sends it toC1.
Finally, C1 computes the final output asΓ = π−1(U) =
〈Epk(0), Epk(0), Epk(0), Epk(1), Epk(0)〉. �

B. The Proposed PPODC Protocol

In this sub-section, we discuss our proposed PPODC pro-
tocol which is based on the standardk-means algorithm
discussed in Section III-C. As mentioned in Section I-A, our
system model consists ofn users denoted byU1, . . . , Un.
User Uj holds a databaseTj of mj data records withl
attributes, for1 ≤ j ≤ n. Without loss of generality, let the
aggregated database beT =

⋃n

j=1 Tj = {t1, . . . , tm}, where
m =

∑n

j=1 mj denotes the total number of records inT .
For simplicity, lett1 . . . tm1

belong toU1, tm1+1, . . . , tm1+m2

belong toU2, and so on. We assume that all users agree upon
using two cloud service providersC1 andC2 for outsourcing
their respective databases as well as thek-means clustering
task. Remember that, in our system model,C2 generates a
public-secret key pair(pk, sk) based on the Paillier cryptosys-
tem [19] and the public keypk is sent to all users andC1.

After the users outsource their data (encrypted underpk)
to C1, the goal of PPODC is to enableC1 and C2 to
jointly compute the global cluster centers using the aggregated
encrypted data in a privacy-preserving manner. At a high level,
our protocol computes the global cluster centers in an iterative
manner until the pre-defined termination condition (given in
Equation 6) holds.

The overall steps involved in the proposed PPODC protocol
are given in Algorithms 4 and 5. The main steps are shown
in Algorithm 4. Briefly, the PPODC protocol consists of the
following three stages:

• Stage 1 - Secure Data Outsourcing:
During this stage, each userUj has to securely outsource
an encrypted version of his/her databaseTj to C1. To
minimize the data encryption costs of users, we achieve
data outsourcing through randomization techniques. Note
that this stage is run only once. At the end of this stage,
only C1 knows the (attribute-wise) encryptions of then
databases.

• Stage 2 - Secure Computation of New Clusters:
In this stage,C1 initially selectsk data records at random
(from the aggregated encrypted records) and assigns them
as initial clusters (this step is the same as the initialization
step in the traditionalk-means algorithm). Then,C1 and
C2 jointly assign each data record to a new cluster. After
this, they compute the new cluster centers in encrypted
format. The main goal of this stage is similar to the
assignment and update stages given in Algorithm 1.

• Stage 3 - Secure Termination or Update:
Upon computing the new cluster centers (in encrypted
format),C1 andC2 securely verify whether the sum of the
squared Euclidean distances between the current and new
clusters is less than or equal toβ (termination condition
based on Equation 6). Hereβ denotes the pre-defined
threshold value agreed upon by all the participating users.
If the termination condition holds, then the protocol
terminates returning the new cluster centers as the final
output. Otherwise,C1 andC2 update the current clusters
to the new clusters and repeat Stages 2 and 3.

We emphasize that Stage 1 of PPODC is executed only once
whereas Stages 2 and 3 are run in an iterative manner. We
now discuss the steps in each of these three stages in detail.

1) Stage 1 - Secure Data Outsourcing (SDO):Data are
typically encrypted before being outsourced for privacy rea-
sons. However, to avoid computation overhead on the users
side due to having to encrypt their data, we consider the
following approach for data outsourcing. UserUj generates
two random shares for each attribute value of his/her data
recordti. Precisely, for thesth attribute of data recordti, Uj

generates two random shares(t1i [s], t
2
i [s]) given by t1i [s] =

ti[s]+ri[s] mod N andt2i [s] = N−ri[s], whereri[s] ∈R ZN

and1 ≤ s ≤ l. Observe thatti[s] = t1i [s] + t2i [s] mod N . Uj

outsources the random sharest1i [s] and t2i [s] to C1 andC2,
respectively, instead of encrypting the database attribute-wise
and outsourcing it toC1. Thus, we are able to avoid heavy
encryption costs on the users during the data outsourcing
step. Here we assume that there exist secure communication
channels, which can be established using standard mechanisms
such as SSL, between userUj and the two cloudsC1 andC2.
Each userUj sends the random shares of his/her data toC1

andC2 separately through the secure communication channels.
After receiving the random shares for all the data records,

C2 computesEpk(t
2
i [s]) and sends it toC1. ThenC1 computes

Epk(ti[s]) = Epk(t
1
i [s]) ∗ Epk(t

2
i [s]), for 1 ≤ i ≤ m and

1 ≤ s ≤ l.
2) Stage 2 - Secure Computation of New Clusters (SCNC):

Given the (attribute-wise) encrypted versions of users data,
during Stage 2,C1 andC2 jointly compute the new cluster cen-
ters in a privacy-preserving manner. To start with,C1 randomly
selectsk encrypted data records (from the aggregated data) and
assigns them as initial clusters. More specifically, thek en-
crypted data records are assigned toEpk(λc1), . . . , Epk(λck),
respectively. For example, if the 3rd data record is selected as
the first clusterc1, thenEpk(λc1 [s]) is set toEpk(t3[s]), for
1 ≤ s ≤ l. Also, Epk(|ch|) is set toEpk(1) since each initial

Algorithm 4 PPODC(〈T1, . . . , Tn〉, β)→ (S1, . . . , Sn)

Require: Uj holds a private databaseTj with mj data records,
sk is known only toC2

{Stage 1 - Secure Data Outsourcing}
1: for 1 ≤ i ≤ m:

(a). for 1 ≤ s ≤ l:
• if ti ∈ Tj then:

– Uj computes t1i [s] = ti[s] + ri[s] mod N ,
t2i [s] = N−ri[s], andri[s] is a random number
in ZN ; sendst1i [s] to C1 and t2i [s] to C2

• C2 sendsEpk(t
2
i [s]) to C1

• C1 computesEpk(ti[s])← Epk(t
1
i [s])∗Epk(t

2
i [s])

{Stage 2 - Secure Computation of New Clusters}
2: C1:

(a). Selectk records at random and assign them to initial
clusters denoted byEpk(λc1), . . . , Epk(λck), where
c1, . . . , ck denote the current clusters

(b). Epk(|ch|)← Epk(1), for 1 ≤ h ≤ k

3: for 1 ≤ i ≤ m do:
(a). C1 andC2:

• Epk(di[h])← SSEDOP(Epk(ti), Epk(ch)), for 1 ≤
h ≤ k, whereEpk(ch) = 〈Epk(λch), Epk(|ch|)〉

• Γi ← SMINk(Epk(di[1]), . . . , Epk(di[k]))
• Λi,h[s] ← SMP(Γi,h, Epk(ti[s])), for 1 ≤ h ≤ k

and1 ≤ s ≤ l

4: C1:

(a). for 1 ≤ h ≤ k do:

• Wh[s]←
m∏

i=1

Λi,h[s], for 1 ≤ s ≤ l

• Epk(|c′h|)←
m∏

i=1

Γi,h

{Stage 3 - Secure Termination or Update}
5: γ ← SETC(Ω,Ω′), where γ denotes whether

the termination condition holds or not,Ω =
{〈Epk(λc1), Epk(|c1|)〉 . . . , 〈Epk(λck), Epk(|ck|)〉}
andΩ′ = {〈W1, Epk(|c′1|)〉 . . . , 〈Wk, Epk(|c′k|)〉}

6: if γ = 1 then, for 1 ≤ h ≤ k and1 ≤ s ≤ l

(a). C1:

• Oh[s]←Wh[s]∗Epk(r
′
h[s]) andδh ← Epk(|c′h|)∗

Epk(r
′′
h), wherer′h[s] andr′′h ∈R ZN

• SendOh[s] and δh to C2; r′h[s] and r′′h to each
userUj

(b). C2: SendO′
h[s] ← Dsk(Oh[s]) and δ′h ← Dsk(δh)

to each userUj

else, for 1 ≤ h ≤ s

• Epk(λch)←Wh andEpk(|ch|)← Epk(|c′h|)

• Go to Step 3

7: Uj , foreach received pairs〈O′
h, r

′
h) and 〈δ′h, r

′′
h〉 do:

(a). λc′
h
[s] = O′

h[s]− r′h[s] mod N , 1 ≤ s ≤ l
(b). |c′h| ← δ′h − r′′h mod N

(c). µc′
h
[s]←

λc′
h
[s]

|c′
h
| andSj ← Sj ∪ µc′

h

clusterch consists of only one data record, for1 ≤ h ≤ k.
For each encrypted data recordEpk(ti), C1 andC2 compute

the squared Euclidean distance betweenti and all the clusters
based on the order-preserving Euclidean distance function
given in Equation 4. To achieve this,C1 andC2 jointly execute
the SSEDOP protocol withEpk(ti) andEpk(ch) asC1’s private
input, for 1 ≤ i ≤ m and 1 ≤ h ≤ k, whereEpk(ch) =
〈Epk(λch), Epk(|ch|)〉. The output of SSEDOP is denoted by
Epk(di[h]). Note thatdi[h] = (OPED(ti, ch))2. Now, C1 and
C2 jointly execute the following set of operations:

• For 1 ≤ i ≤ m, with the k encrypted distances asC1’s
private input to the secure minimum out ofk numbers
(SMINk) protocol,C1 andC2 compute an encrypted bit
vectorΓi. The important observation here is thatΓi,g is an
encryption of 1 iffdi[g] is the minimum distance among
〈di[1], . . . , di[k]〉. In this case,ti is closest to clustercg,
where 1 ≤ g ≤ k. The rest of the values inΓi are
encryptions of 0. Note that the output of SMINk, i.e.,
Γi, is known only toC1.

• After this, C1 and C2 securely multiply Γi,h

with Epk(ti[s]) using the secure multiplication
(SMP) sub-protocol. Precisely,C1 and C2 compute
Λi,h[s] = SMP(Γi,h, Epk(ti[s])). The observation here
is that sinceΓi,g = Epk(1) only if ti is closest to cluster
cg, Λi,g = Epk(ti) denoting thatti is assigned to new
clusterc′g. Also, Λi,h is a vector of encryptions of 0, for
1 ≤ h ≤ k andh 6= g.

Next,C1 computes the new cluster centers locally by perform-
ing homomorphic operations onΛi,h andΓi,h as follows:

• Compute (in encrypted format) thesth-component of the
numerator for the center of new clusterc′h asWh[s] =
m∏

i=1

Λi,h[s], for 1 ≤ h ≤ k and1 ≤ s ≤ l. The observation

here isWh[s] = Epk(λc′
h
[s]). Remember thatµc′

h
[s] =

λc′
h
[s]

|c′
h
| , whereµc′

h
denotes the center of clusterc′h.

• Compute the number of data records (in the encrypted
format) that belong to the new clusterc′h asEpk(|c′h|) =
m∏

i=1

Γi,h, for 1 ≤ h ≤ k.

3) Stage 3 - Secure Termination or Update (STOU):
Given the new clusters (in encrypted format) resulting from
Stage 2, the goal of Stage 3 is forC1 and C2 to verify
whether the termination condition (based on Equation 6) holds
in a privacy-preserving manner. If the termination condition
holds, the new cluster centers are returned as the final output
to each user. Otherwise, the entire iterative process (i.e.,
Stages 2 and 3) is repeated by using the new clusters as the
current clusters. The current and new clusters are given by
Ω = {〈Epk(λc1), Epk(|c1|)〉, . . . , 〈Epk(λck), Epk(|ck|)〉} and
Ω′ = {〈W1, Epk(|c′1|)〉 . . . , 〈Wk, Epk(|c′k|)〉}), respectively.

First, by using the current and new clusters,C1 andC2 need
to securely evaluate the termination condition (SETC) based
on Equation 6. The main steps involved in SETC are given in
Algorithm 5 which we explain in detail below:

• C1 and C2 compute τi = Epk(|ci| ∗ |c′i|) using

〈Epk(ci), Epk(c
′
i)〉 asC1’s private input to the SMP sub-

protocol, for1 ≤ i ≤ k. The outputτi is known only to
C1.

• By using τi’s, they computeVi = SMPk−1(τ
′
i), where

τ ′i = ∪
k
j=1∧j 6=iτj . Here SMPk−1 denotes the SMP proto-

col with k − 1 encrypted inputs that need to be securely
multiplied. More specifically,Vi = Epk(

∏k

j=1∧j 6=i |ci| ∗
|c′i|), for 1 ≤ i ≤ k. The important observation here is

Vi = Epk

k
∏

j=1∧j 6=i

|ci| ∗ |c
′
i|

 = Epk(fi)

where fi is the scaling factor for cluster pair(ci, c′i)
defined in Section IV-B. Then, they compute an encrypted
valueZi as

Zi = SMP(Vi, Vi) = Epk(f
2
i)

• After this, they securely multiplyV1 and τ1 using SMP
protocol. The output of this step is

V = SMP(V1, τ1) = Epk

k
∏

j=1

|cj | ∗ |c
′
j |

 = Epk(f)

wheref is the scaling factor for the termination condition
as defined in Section IV-B. Then, they compute

Y = SMP(V, V) = Epk(f
2)

.
• For 1 ≤ i ≤ k, C1 and C2 securely multiply each

component in the current and new clusters with|c′i| and
|ci|, respectively. More specifically, for1 ≤ i ≤ k and
1 ≤ s ≤ l, they compute

Gi[s] = SMP(Epk(λci [s]), Epk(|c
′
i|))

= Epk(λci [s] ∗ |c
′
i|)

G′
i[s] = SMP(Wi[s], Epk(|ci|))

= Epk(λc′
i
[s] ∗ |ci|)

Note thatWi[s] computed in Stage 2 is equivalent to
Epk(λc′

i
[s]).

• Now, by using the secure squared Euclidean distance
(SSED) protocol with input vectorsGi andG′

i, C1 and
C2 jointly computeHi = SSED(Gi, G

′
i). Precisely, they

compute the encryption of squared Euclidean distance
between vectors inGi andG′

i given by,

Hi = Epk

(
l
∑

s=1

(λci [s] ∗ |c
′
i| − λc′

i
[s] ∗ |ci|)

2

)

• Given Zi and Hi, C1 and C2 can securely
multiply them to get H ′

i = SMP(Hi, Zi) =

Epk

(

f2
i ∗
∑l

s=1(λci [s] ∗ |c
′
i| − λc′

i
[s] ∗ |ci|)2

)

Algorithm 5 SETC(Ω,Ω′)

Require: C1 hasΩ = {〈Epk(λc1), Epk(|c1|)〉, . . . , 〈Epk(λck),
Epk(|ck|)〉}, Ω′ = {〈W1, Epk(|c′1|)〉 . . . , 〈Wk, Epk(|c′k|)〉}

1: C1 andC2:

(a). τi ← SMP(Epk(|ci|), Epk(|c′i|)), for 1 ≤ i ≤ k
(b). for 1 ≤ i ≤ k do:

• Vi ← SMPk−1(τ
′
i), whereτ ′i = ∪

k
j=1∧j 6=iτj

• Zi ← SMP(Vi, Vi)

(c). V ← SMP(V1, τ1)
(d). Y ← SMP(V, V)
(e). for 1 ≤ i ≤ k and1 ≤ s ≤ l do:

• Gi[s]← SMP(Epk(λci [s]), Epk(|c
′
i|))

• G′
i[s]← SMP(Wi[s], Epk(|ci|))

(f). Hi ← SSED(Gi, G
′
i), for 1 ≤ i ≤ k

(g). H ′
i ← SMP(Hi, Zi), for 1 ≤ i ≤ k

2: C1: L←
k∏

i=1

H ′
i andR← Y β

3: C1 andC2:

(a). Epk(γ) ← SC(L,R), note that the output of SC is
known only toC1

4: C1: SendEpk(γ) to C2

5: C2: DecryptEpk(γ) and sendγ to C1

At the end of the above process,C1 hasY = Epk(f
2) and

H ′
i, for 1 ≤ i ≤ k. Now C1 locally computes:

R = Y β = Epk(f
2 ∗ β) and

L =

k
∏

i=1

H ′
i

=

k
∏

i=1

Epk

(

f2
i ∗

l
∑

s=1

(λci [s] ∗ |c
′
i| − λc′

i
[s] ∗ |ci|)

2

)

= Epk

(
k
∑

i=1

l
∑

s=1

(λci [s] ∗ fi ∗ |c
′
i| − λc′

i
[s] ∗ fi ∗ |ci|)

2

)

At this point,C1 has encryptions of the integers corresponding
to both the left-hand and right-hand sides of the termination
condition given in Equation 6. Therefore, the goal is to now
securely compare them using the secure comparison (SC)
protocol. More specifically, by usingL andR asC1’s private
input to the SC protocol,C1 and C2 securely evaluate the
termination condition:

k
∑

i=1

l
∑

s=1

(

λci [s] ∗ fi ∗ |c
′
i| − λc′

i
[s] ∗ fi ∗ |ci|

)2
≤ f2 ∗ β

The output isEpk(γ) = SC(L,R), where γ = 1 iff the
termination condition holds, andγ = 0 otherwise. Note that
Epk(γ) is known only toC1. After this,C1 sendsEpk(γ) to
C2, who decrypts it and forwards the value ofγ to C1.
Finally, once the termination condition has been securely
evaluated,C1 locally proceeds as follows:

• If γ = 1 (i.e., when the termination condition holds), the
newly computed clusters are the final clusters which need
to be sent to each userUj . For this purpose,C1 takes the
help ofC2 to obliviously decrypt the results related to the
new cluster centers. More specifically,C1 initially picks
two sets of random numbers〈r′h[s], r

′′
h〉 and computes

Oh[s] = Wh[s] ∗ Epk(r
′
h[s]) = Epk(λc′

h
[s] + rh[s] mod

N) andδh = Epk(|c′h|) ∗Epk(r
′′
h) = Epk(|c′h|+ r′′h mod

N), for 1 ≤ h ≤ k and1 ≤ s ≤ l. After this, C1 sends
Oh[s] andδh to C2. In addition,C1 sendsr′h[s] andr′′h to
each userUj (through separate and secure communication
channels).

• For 1 ≤ s ≤ l, C2 successfully decrypts the received
encrypted values using his/her secret sharesk to get
O′

h[s] = Dsk(Oh[s]) and δ′h = Dsk(δh) which it
forwards to each userUj (through separate and secure
communication channels). Observe that, due to the ran-
domization byC1, the values ofO′

h[s] andδ′h are random
numbers inZN from C2’s perspective.

• Upon receiving the entry pairs〈O′
h, r

′
h〉 and〈δ′h, r

′′
h〉, each

user Uj removes the random factors to getλc′
h
[s] =

O′
h[s] − r′h[s] mod N and |c′h| = δ′h − r′′h mod N , for

1 ≤ h ≤ k and 1 ≤ s ≤ l. Finally, Uj computes the

final cluster centerµc′
h

asµc′
h
[s] =

λc′
h
[s]

|c′
h
| and adds it to

his/her resulting setSj.
• On the other hand, whenγ = 0, thenC1 locally updates

the current clusters to new clusters by settingEpk(λch) =
Wh andEpk(|ch|) = Epk(|c′h|), for 1 ≤ h ≤ k. After
this, the above process is repeated in an iterative manner
until the termination condition holds. That is, the protocol
goes to Step 3 of Algorithm 4 and executes Steps 3 to 6
with the updated cluster centers as input.

C. Security Analysis of PPODC under the Semi-honest Model

In this section, we show that the proposed PPODC protocol
is secure under the standard semi-honest model [18], [33].
Informally speaking, we stress that all the intermediate values
seen byC1 andC2 in PPODC are either encrypted or pseudo-
random numbers.

First, in the data outsourcing process (i.e., Step 1 of
Algorithm 4), the values received byC1 and C2 are either
random or pseudo-random values inZN . At the end of the data
outsourcing step, onlyC1 knows the encrypted data records
of all users and no information regarding the contents ofTj

(the database of userUj) is revealed toC2. Therefore, as long
as the underlying encryption scheme is semantically secure
(which is also the case in the Paillier cryptosystem [21]), the
aggregated encrypted databases do not reveal any information
to C1. Hence, no information is revealed toC1 andC2 during
Stage 1 of PPODC.

The implementations of SMP, SSED, and SLSB sub-
protocols given in [30], [34] are proven to be secure under
the semi-honest model [18]. Also, the SC protocol given in
[31] is secure under the semi-honest model. In the proposed
SSEDOP protocol, the computations are based on using either
SMP or SSED as a sub-routine. As a result, SSEDOP can be

TABLE II

ONLINE AND OFFLINE COMPUTATIONAL COSTS FOR DIFFERENT STAGESIN PPODCOPT

Stage Online Offline

Stage 1 (one-time) 6m ∗ l mul. 2m ∗ l exp.

Stage 2 (per iteration)m ∗ (2l ∗ k + l + 17k − 4
⌊

k

2

⌋

− 14) + k ∗ (l + 1) + 1 exp. m ∗ (7l ∗ k + 3l + 32k − 7
⌊

k

2

⌋

− 29) + k ∗ (3l + 1) + 1 exp.

Stage 3 (per iteration) k ∗ (2k + 5l) + 9 exp. k ∗ (4k + 9l+ 2) + 20 exp.

proven to be secure under the semi-honest model. Further,
since SMIN and SMINk are directly constructed from SC,
the security proofs for them directly follow from the security
proof of SC given in [31]. In summary, the privacy-preserving
primitives utilized in the proposed PPODC protocol are secure
under the semi-honest model.

We emphasize that the computations involved in Stages 2
and 3 of PPODC are performed by eitherC1 locally or using
one of the privacy-preserving primitives as a sub-routine.In
the former case,C1 operates on encrypted data locally. In
the latter case, the privacy-preserving primitives utilized in
our protocol are secure under the semi-honest model. Also, it
is important to note that the output of a privacy-preserving
primitive which is fed as input to the next primitive is in
encrypted format. Since we use a semantically secure Paillier
encryption scheme [19], all the encrypted results (which are
revealed only toC1) from the privacy-preserving primitives do
not reveal any information toC1. Note that the secret keysk
is unknown toC1. Hence, by Composition Theorem [33], we
claim that the sequential composition of the privacy-preserving
primitives lead to Stages 2 and 3 in our proposed PPODC
protocol and are secure under the semi-honest model. Putting
everything together, it is clear that PPODC is secure under the
semi-honest model.

D. Performance Analysis of PPODC

First of all, we emphasize that a direct implementation
of the proposed PPODC protocol is likely to be inefficient.
To address this issue, we propose two strategies to boost its
performance:(i) offline computationand (ii) reusability of
intermediate results. In what follows, we extensively analyze
the performance of PPODC based on these two strategies.

In the Paillier cryptosystem [19], encryption of an integer
a ∈ ZN is given byEpk(a) = ga∗rN mod N2, whereg is the
generator,N is the RSA modulus, andr is a random number
in ZN . It is clear that Paillier’s encryption scheme requires
two expensive exponentiation operations. In this paper, we
assumeg = N+1 (a commonly used setting that provides the
same security guarantee as the original Paillier cryptosystem)
as this allows for a more efficient implementation of Paillier
encryption [35]. More specifically, wheng = N +1, we have

Epk(a) = (N + 1)a ∗ rN mod N2

= (a ∗N + 1) ∗ rN mod N2 (8)

As a result, an encryption under Paillier is reduced to one ex-
ponentiation operation. Our main observation from Equation 8
is that the encryption cost under Paillier can be further reduced
as follows. The exponentiation operation (i.e.,rN mod N2) in

the encryption function can be computed in an offline phase
and thus the online cost of computingEpk(a) is reduced
to two (inexpensive) multiplication operations2. Additionally,
encryption of random numbers, 0s and 1s can be precomputed
by the corresponding party (i.e.,C1 or C2) as they are
independent of the underlying protocol.

We emphasize that the actual online computation costs (with
an offline phase) of the privacy-preserving primitives usedin
our protocol can be much less than their costs without an
offline phase. For example, consider the secure multiplication
(SMP) primitive with Epk(a) and Epk(b) as C1’s private
input. During the execution of SMP,C1 has to initially
randomize the inputs and send them toC2. That is,C1 has
to computeEpk(a) ∗ Epk(r1) = Epk(a + r1 mod N) and
Epk(b)∗Epk(r2) = Epk(b+ r2 mod N), wherer1 andr2 are
random numbers inZN . This clearly requiresC1 to compute
two encryptions:Epk(r1) and Epk(r2). However, sincer1
and r2 are integers chosen byC1 at random, the computa-
tion of Epk(r1) and Epk(r2) is independent of any specific
instantiation of SMP. That is,C1 can precomputeEpk(r1)
and Epk(r2) during the offline phase and thus boosting its
online computation time. In a similar manner,C1 and C2

can precompute certain intermediate results in each privacy-
preserving primitive.

To better understand the performance improvements due
to the above offline computation strategy, we have analyzed
the offline and online computation costs of each privacy-
preserving primitive (for a single execution) used in PPODC,
separately. The results are given in Table III. Herel denotes
number of attributes andk denotes number of desired clusters.
From our analyses, following from Table III, we observed that
the actual online computation cost (with an offline phase) of
each primitive is improved by at least 50% in comparison to
its online computation cost without an offline phase.

An important observation in PPODC is that some of the
intermediate results (apart from those computed during the
offline phase) computed in earlier steps can be reused in
later computations without affecting the security. This leads
to our second performance improvement strategy - reusability
of intermediate results. This would be better illustrated by
the following example. Consider thatC1 with private input
〈Epk(a), Epk(b1)〉 andC2 jointly want to computeEpk(a ∗
b1) using SMP. During this process,C1 initially computes
Epk(a + r mod N) and Epk(b1 + r1 mod N) and sends
them to C2, where r and r1 are random numbers inZN .

2The time that takes to perform one exponentiation underZ
N2 is equivalent

to log
2
N multiplication operations. Therefore, exponentiation isconsidered

to be an expensive operation in comparison to multiplication.

TABLE III

ONLINE AND OFFLINE COMPUTATION COSTS OF PRIVACY-PRESERVING

PRIMITIVES (MEASURED IN TERMS OF NUMBER OF EXPONENTIATIONS)

Primitive Online Offline

SMP 2 4

SSED 3l 4l

SSEDOP 2k + 7l 4k + 12l

SLSB 1 3

SC 7 17

SMIN 14 30

SMINk 16k − 4
⌊

k

2

⌋

− 14 31k − 7
⌊

k

2

⌋

− 29

Upon receiving the ciphertexts,C2 decrypts them to get
a + r mod N and b1 + r1 mod N and proceeds with the
rest of the computations involved in SMP. At a later stage,
supposeC1 with private input〈Epk(a), Epk(b2)〉 andC2 want
to computeEpk(a ∗ b2). The key observation here is thatC1

can compute and send onlyEpk(b2+r2 mod N) to C2, where
r2 is a random number inZN . That is, there is no need for
C1 to again computeEpk(a + r mod N) and send that to
C2. After receivingEpk(b2 + r2 mod N) from C1, C2 can
decrypt it to getb2+r2 mod N and use the intermediate result
a+r mod N already computed in the previous step to proceed
with further computations of SMP. The above example clearly
demonstrates that reusability of intermediate results cansave
both computation and communication costs.

By taking both the above two strategies (i.e., offline compu-
tation and reusability of intermediate results) into considera-
tion, we could optimize the performance of PPODC. Without
loss of generality, let us denote such an implementation by
PPODCopt. We estimated the online and offline computa-
tional costs, measured in terms of required multiplication
(mul.) or exponentiation (exp.) operations, for each stageof
PPODCopt separately. The results are given in Table II. Here
m denotes the sum of the data records of all users. It is
important to note that Stage 1 of PPODCopt is run only once
whereas Stages 2 and 3 are run in an iterative fashion until
the termination condition holds.

The total communication costs for each stage of
PPODCopt are extensively analyzed and the results are shown
in Table IV. HereK denotes the size (in bits) of the Paillier
encryption key [19]. Following from our analyses, we can
observe that the costs (both computation and communication)
of Stage 2 are significantly higher (depends onm) than the
costs of Stage 3 in each iteration.

VI. EXPERIMENTAL RESULTS

First of all, we emphasize that PPODC is 100% accurate in
the sense that the outputs returned by PPODC and the standard
k-means clustering algorithm (applied on the corresponding
plaintext data) are the same. Therefore, in this section, we
extensively analyze the computation costs of PPODC by
performing various experiments using a real dataset under
different parameter settings. Note that ours is the first work

to address the PPODC problem and thus there exist no prior
work to compare with our protocol.

A. Platform and Dataset Description

We implemented the protocols (both the direct implemen-
tation and optimized version of PPODC) in C using the
GNU Multiple Precision Arithmetic (GMP) library [36]. For
the optimized version of PPODC (denoted by PPODCopt),
we considered both the performance improvement strategies
mentioned in Section V-D. The experiments were conducted
on two Linux machines (playing the roles ofC1 and C2),
each with an IntelR© CoreTM i7-2600 CPU (3.40GHz) and
8GB RAM, running Linux version 3.12.6. The two machines
were communicating over a TCP/IP network.

For our experiments on real dataset, we used the KEGG
Metabolic Reaction Network (Undirected) dataset from the
UCI KDD archive [37] that consists of 65,554 data records and
29 attributes. Since some of the attribute values are missing
in the dataset, we removed the corresponding data records
and the resulting dataset consists of 64,608 data records.
As part of the pre-processing, we normalized the attribute
values and scaled them into the integer domain[0, 1000].
Then we selected sample datasets (from the preprocessed data)
by choosing data records at random based on the parameter
values under consideration. We fixed the Paillier encryption
key size to 1,024 bits (a commonly accepted key size) in all our
experiments. For each sample dataset, we encrypted each of its
data record attribute-wise using the Paillier encryption function
[19] and stored this encrypted data on the first machine. Note
that the corresponding secret keysk is stored on the second
machine.

We executed PPODC and PPODCopt over the encrypted data
stored in the first machine under the above setting. The results
presented in the rest of this section are averaged over ten
sample datasets.

B. Empirical Analysis using Real Dataset

To see the actual efficiency gains of PPODCopt over
PPODC, we first evaluated their computation costs using
different sampled datasets of varying sizes. Specifically,we
fix the value ofl andk to 10 and 8, respectively, and executed
PPODC and PPODCopt on datasets of varying number of
recordsm. The results per iteration are shown in Table V. On
the one hand, the running time of PPODC varies from 31.88
to 159.4 minutes whenm varies from 2,000 to 10,000. On the
other hand, the online running time of PPODCopt varies from
11.72 to 58.58 minutes whenm varies from 2,000 to 10,000.
From these results, it is clear that the online computation time
of the optimized version of PPODC is around 2.7 times less
than the online computation time of the direct implementation
of PPODC. That is, the performance improvement strategies
proposed in Section V-D boost the performance of PPODC by
60-65%. We emphasize that the running time reported in this
section also includes the communication costs, such as packet
encoding and decoding, and network delays.

TABLE IV

COMMUNICATION COSTS OFPPODCOPT

Stage Communication Cost (in bits)

Stage 1 (one-time) 4m ∗ l ∗K

Stage 2 (per iteration)(4m ∗ l ∗ k + 2l ∗ k + 2 ∗m ∗ l+ 21m ∗ k − 2m ∗
⌊

k

2

⌋

− 19m + 1) ∗ 2K

Stage 3 (per iteration) (k ∗ (3k + 6l + 2) + 15) ∗ 2K

TABLE V

COMPARISON OF RUNNING TIME(IN MINS) FOR l = 10 AND k = 8

m PPODC PPODCopt

(Direct Implementation) (Online + Offline) (Online)

2,000 31.88 23.52 11.72

4,000 63.76 47.04 23.43

6,000 95.64 70.56 35.15

8,000 127.52 94.08 46.87

10,000 159.4 117.6 58.58

Having shown the performance improvement of
PPODCopt over PPODC, we next analyze the online
computation costs of PPODCopt based on different parameters.
The computation cost of PPODCopt per iteration mainly
depends on three parameters: (i) the number of data records
of all users (m), (ii) the number of attributes (l), and (iii)
the number of clusters (k). Therefore, we evaluate the
performance of PPODCopt by varying these three parameters.

For m = 6, 000, Figure 2(a) shows the online running time
of PPODCopt for varying values ofl andk. For example, when
l = 10 and k = 8, the online running time of PPODCopt is
36.14 minutes. The online running time of PPODCopt for l =
10 and varying values ofk andm are shown in Figure 2(b).
The observation is that the running time grows linearly withk
andm. As shown in Figure 2(c), whenk = 8, a similar trend
is observed for varying values ofm andl . Putting everything
together, it is clear that the running time of PPODCopt grows
linearly with m, k and l. This further justifies our theoretical
analysis in Section V-D.

We observed that around 99% of the computation time of
PPODCopt is due to Stage 2. Also, the running time of each
user is in few milliseconds (since he/she doesn’t involve inany
expensive operations), which makes our protocol very efficient
from the end-user’s computational perspective. In summary,
the above results show that the proposed PPODC protocol,
together with our optimizations, achieves reasonable efficiency
given the stronger privacy guarantees.

A Note on Scalability. We emphasize that the computation
costs of PPODCopt can be high for large datasets. However,
it is worth noting that the performance of PPODCopt can be
further improved by parallelizing the underlying operations.
This is because the assignment of each data record to a new
cluster in Stage 2 is independent of other records and thus
we can almost parallelize the computations of Stage 2 at
the record level. More specifically,C1 andC2 can utilize a
cluster of nodes to perform their respective computations in

parallel. Note that most of the current cloud service providers,
such as Google and Amazon, typically support parallel pro-
cessing on high performance computing nodes. Some of the
large-scale parallel processing frameworks include Sparkand
Hadoop. Hence, by properly exploiting the parallel processing
capability of clouds, we believe that the scalability issueof
PPODCopt can be addressed to a great extent.

VII. CONCLUSIONS

Existing privacy-preserving distributed clustering tech-
niques, which can allow the users to collaboratively and
securely perform the clustering task, incur heavy costs (both
communication- and computation-wise) on the participating
users. To address this issue, in this paper, we introduced
the problem of privacy-preserving and outsourced distributed
clustering (PPODC) where a set of users can securely out-
source their databases and the intended clustering task to a
cloud environment. We proposed a novel PPODC protocol
under a federated cloud environment that can perform thek-
means clustering on the users aggregated encrypted data in
a privacy-preserving manner. At the core of our protocol, we
proposed new transformations to construct an order-preserving
Euclidean distance function and evaluate the termination con-
dition of thek-means clustering algorithm over encrypted data.

The proposed PPODC protocol ensures data confidentiality
of all users and incurs negligible costs on the user side. We
theoretically estimated the complexities of our protocol and
experimentally analyzed its efficiency using a real dataset.
Our results show that our protocol incurs reasonable costs on
the cloud side and is practical for non-real-time applications.
One important contribution of our protocol is that most of its
underlying computations can be parallelized. As future work,
we plan to implement the proposed protocol using parallelism
on a cluster of nodes and evaluate its performance. Also,
we will extend the research ideas proposed in this paper to
other data mining tasks, such as classification, association rule
mining, and regression analysis.

REFERENCES

[1] A. K. Jain, M. N. Murty, and P. J. Flynn, “Data clustering:a review,”
ACM Computing Surveys, vol. 31, pp. 264–323, September 1999.

[2] P. Berkhin, “A survey on clustering data mining techniques,” in In:
Grouping Multidimensional Data. Springer, 2006, pp. 25–71.

[3] M. A. Dalal and N. D. Harale, “A survey on clustering in data mining,” in
Proceedings of the International Conference & Workshop on Emerging
Trends in Technology. ACM, 2011, pp. 559–562.

[4] P. Patrick and L. Dekang, “Document clustering with committees,” in
SIGIR. ACM, 2002, pp. 199–206.

 0

 30

 60

 90

 120

 150

 5 10 15 20

T
im

e
(m

in
)

l

k = 16
k = 12
k = 8
k = 4

(a) Running time form = 6, 000

 0

 30

 60

 90

 120

 150

2,000
4,000

6,000
8,000

10,000

T
im

e
(m

in
)

m

k = 16
k = 12
k = 8
k = 4

(b) Running time forl = 10

 0

 30

 60

 90

 120

 150

2,000
4,000

6,000
8,000

10,000

T
im

e
(m

in
)

m

l = 20
l = 15
l = 10
l = 5

(c) Running time fork = 8

Fig. 2. Online computation costs of PPODCopt for encryption key size 1024 bits and varying values ofl, k, andm

[5] R. Michalski and R. Stepp,In Machine Learning: An Artificial Intel-
ligence Approach. Tiago Publishing Co., 1983, ch. Learning from
Observation: Conceptual Clustering, pp. 331–363.

[6] B. Andrea and B. Palma, “A survey of fuzzy clustering algorithms
for pattern recognition,”IEEE Transactions on Systems, Man, and
Cybernetics, vol. 29, no. 6, pp. 778–785, December 1999.

[7] A. Jain and P. flynn,In Advances in Image Understanding: A Festschrift
for Azriel Rosenfeld. IEEE Press, 1996, ch. Image Segmentation using
Clustering, pp. 65–83.

[8] B. Michael and C. Malu,Survey of Text Mining II: Clustering, Classi-
fication, and Retrieval. Springer, 2007.

[9] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” inACM SIGKDD, 2003, pp. 206–215.

[10] C. Su, J. Zhou, F. Bao, T. Takagi, and K. Sakurai, “Two-party privacy-
preserving agglomerative document clustering,” inISPEC. Springer-
Verlag, 2007, pp. 193 – 208.

[11] G. Jagannathan and R. Wright, “Privacy-preserving distributed k-means
clustering over arbitrarily partitioned data,” inACM SIGKDD, 2005, pp.
593–599.

[12] P. Bunn and R. Ostrovsky, “Secure two-party k-means clustering,” in
ACM CCS, 2007, pp. 486–497.

[13] C. Gentry, “Fully homomorphic encryption using ideal lattices,” inACM
STOC, 2009, pp. 169–178.

[14] C. Gentry and S. Halevi, “Implementing gentry’s fully-homomorphic
encryption scheme,” inEUROCRYPT. Springer, 2011, pp. 129–148.

[15] S. Lloyd, “Least squares quantization in pcm,”IEEE Transactions on
Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[16] K. Fukunaga,Introduction to Statistical Pattern Recognition (2Nd Ed.).
San Diego, CA, USA: Academic Press Professional, Inc., 1990.

[17] NIST, “Nist us government cloud computing technology roadma,”
Volume I: High Priority Requirements to Further USG Agency Cloud
Computing Adoption, November 2011. Special Publication. 500-293,
http://www.nist.gov/itl/cloud/upload/SP500 293 volumeI-2.pdf.

[18] O. Goldreich,The Foundations of Cryptography. Cambridge University
Press, 2004, vol. 2, ch. General Cryptographic Protocols.

[19] P. Paillier, “Public key cryptosystems based on composite degree resid-
uosity classes,” inEurocrypt. Springer-Verlag, 1999, pp. 223–238.

[20] I. Damgård and M. Jurik, “A generalisation, a simplification and some
applications of paillier’s probabilistic public-key system,” in PKC.
Springer-Verlag, 2001, pp. 119–136.

[21] C. Hazay, G. L. Mikkelsen, T. Rabin, and T. Toft, “Efficient rsa key
generation and threshold paillier in the two-party setting,” in CT-RSA.
Springer-Verlag, 2012, pp. 313–331.

[22] A.-A. Ivan and Y. Dodis, “Proxy cryptography revisited,” in NDSS, 2003.
[23] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy

re-encryption schemes with applications to secure distributed storage,”
ACM TISSEC, vol. 9, no. 1, pp. 1–30, Feb. 2006.

[24] D. Liu, E. Bertino, and X. Yi, “Privacy of outsourced k-means cluster-
ing,” in ACM ASIACCS, 2014, pp. 123–134.

[25] R. Agrawal and R. Srikant, “Privacy preserving data mining,” in ACM
SIGMOD, vol. 29, 2000, pp. 439–450.

[26] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Journal
of Cryptology, vol. 15, 2002, pp. 177 – 206.

[27] M. Upmanyu, A. Namboodiri, K. Srinathan, and C. Jawahar, “Efficient
privacy preserving k-means clustering,” inIntelligence and Security
Informatics. Springer, 2010, vol. 6122, pp. 154–166.

[28] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge complexity
of interactive proof systems,”SIAM Journal on Computing, vol. 18,
no. 1, pp. 186–208, Feb. 1989.

[29] Y. Elmehdwi, B. K. Samanthula, and W. Jiang, “Secure k-nearest
neighbor query over encrypted data in outsourced environments,” in
ICDE. IEEE, 2014, pp. 664–675.

[30] B. K. Samanthula, C. Hu, and W. Jiang, “An efficient and probabilistic
secure bit-decomposition,” in8th ACM Symposium on Information,
Computer and Communications Security, ASIACCS, 2013, pp. 541–546.

[31] T. Nishide and K. Ohta, “Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol,” inProceedings of
the 10th International Conference on Practice and Theory inPublic-key
Cryptography, ser. PKC’07. Berlin, Heidelberg: Springer-Verlag, 2007,
pp. 343–360.

[32] A. Shamir, “How to share a secret,”Communications of the ACM,
vol. 22, no. 11, pp. 612 – 613, November 1979.

[33] O. Goldreich,The Foundations of Cryptography. Cambridge University
Press, 2004, vol. 2, ch. Encryption Schemes. [Online]. Available:
http://www.wisdom.weizmann.ac.il/∼oded/PSBookFrag/enc.ps

[34] B. K. Samanthula, Y. Elmehdwi, and W. Jiang, “k-nearestneighbor
classification over semantically secure encrypted relational data,” eprint
arXiv:1403.5001, 2014, http://arxiv.org/abs/1403.5001.

[35] I. Damgrd, M. Jurik, and J. B. Nielsen, “A generalization of paillier’s
public-key system with applications to electronic voting,” International
Journal of Information Security, vol. 9, no. 6, pp. 371–385, Dec. 2010.

[36] The GNU MP Bignum Library, https://gmplib.org/.
[37] M. Naeem and S. Asghar, “KEGG Metabolic Reaction

Network (Undirected) Data Set,” The UCI KDD Archive, 2011,
https://archive.ics.uci.edu/ml/datasets/KEGG+Metabolic+Reaction+Network+(Undirected)

http://www.nist.gov/itl/cloud/upload/SP_500_293_volumeI-2.pdf
http://www.wisdom.weizmann.ac.il/~oded/PSBookFrag/enc.ps
http://arxiv.org/abs/1403.5001
https://gmplib.org/
https://archive.ics.uci.edu/ml/datasets/KEGG+Metabolic+Reaction+Network+(Undirected)

	Purdue University
	Purdue e-Pubs
	12-14-2014

	Privacy-Preserving and Outsourced Multi-User k-Means Clustering
	Bharath Samanthula
	Fang-Yu Rao
	Elisa Bertino
	Xun Yi
	Dangxi Liu

	I Introduction
	I-A System Model and Problem Definition
	I-B Main Contributions

	II Related Work
	II-A Privacy-Preserving Data Mining (PPDM)
	II-B Fully Homomorphic Encryption (FHE)

	III Preliminaries
	III-A Cluster Center
	III-B Computation of Euclidean Distance between ti and c
	III-C Single Party k-Means Clustering
	III-D The Paillier Cryptosystem

	IV The Proposed Transformations
	IV-A Order-Preserving Euclidean Distance (OPED)
	IV-B Transformation of the Termination Condition

	V The Proposed Solution
	V-A Privacy-Preserving Primitives
	V-A.1 The SSEDOP Protocol
	V-A.2 The Secure Comparison (SC) Protocol
	V-A.3 The SMIN Protocol
	V-A.4 The SMINk Protocol

	V-B The Proposed PPODC Protocol
	V-B.1 Stage 1 - Secure Data Outsourcing (SDO)
	V-B.2 Stage 2 - Secure Computation of New Clusters (SCNC)
	V-B.3 Stage 3 - Secure Termination or Update (STOU)

	V-C Security Analysis of PPODC under the Semi-honest Model
	V-D Performance Analysis of PPODC

	VI Experimental Results
	VI-A Platform and Dataset Description
	VI-B Empirical Analysis using Real Dataset

	VII conclusions
	References

