591 research outputs found

    Survey on Congestion Detection and Control in Connected Vehicles

    Full text link
    The dynamic nature of vehicular ad hoc network (VANET) induced by frequent topology changes and node mobility, imposes critical challenges for vehicular communications. Aggravated by the high volume of information dissemination among vehicles over limited bandwidth, the topological dynamics of VANET causes congestion in the communication channel, which is the primary cause of problems such as message drop, delay, and degraded quality of service. To mitigate these problems, congestion detection, and control techniques are needed to be incorporated in a vehicular network. Congestion control approaches can be either open-loop or closed loop based on pre-congestion or post congestion strategies. We present a general architecture of vehicular communication in urban and highway environment as well as a state-of-the-art survey of recent congestion detection and control techniques. We also identify the drawbacks of existing approaches and classify them according to different hierarchical schemes. Through an extensive literature review, we recommend solution approaches and future directions for handling congestion in vehicular communications

    Congestion Control in Vehicular Ad Hoc Networks

    Get PDF
    RÉSUMÉ Les réseaux Véhiculaires ad hoc (VANets) sont conçus pour permettre des communications sans fil fiables entre les nœuds mobiles à haute vitesse. Afin d'améliorer la performance des applications dans ce type de réseaux et garantir un environnement sûr et confortable pour ses utilisateurs, la Qualité de Service (QoS) doit être supportée dans ces réseaux. Le délai ainsi que les pertes de paquets sont deux principaux indicateurs de QoS qui augmentent de manière significative en raison de la congestion dans les réseaux. En effet, la congestion du réseau entraîne une saturation des canaux ainsi qu’une augmentation des collisions de paquets dans les canaux. Par conséquent, elle doit être contrôlée pour réduire les pertes de paquets ainsi que le délai, et améliorer les performances des réseaux véhiculaires. Le contrôle de congestion dans les réseaux VANets est une tâche difficile en raison des caractéristiques spécifiques des VANets, telles que la grande mobilité des nœuds à haute vitesse, le taux élevé de changement de topologie, etc. Le contrôle de congestion dans les réseaux VANets peut être effectué en ayant recours à une stratégie qui utilise l'un des paramètres suivants : le taux de transmission, la puissance de transmission, la priorisation et l’ordonnancement, ainsi que les stratégies hybrides. Les stratégies de contrôle de congestion dans les réseaux VANets doivent faire face à quelques défis tels que l'utilisation inéquitable des ressources, la surcharge de communication, le délai de transmission élevé, et l'utilisation inefficace de la bande passante, etc. Par conséquent, il est nécessaire de développer de nouvelles approches pour faire face à ces défis et améliorer la performance des réseaux VANets. Dans cette thèse, dans un premier temps, une stratégie de contrôle de congestion en boucle fermée est développée. Cette stratégie est une méthode de contrôle de congestion dynamique et distribuée qui détecte la congestion en mesurant le niveau d'utilisation du canal. Ensuite, la congestion est contrôlée en ajustant la portée et le taux de transmission qui ont un impact considérable sur la saturation du canal. Ajuster la portée et le taux de transmission au sein des VANets est un problème NP-difficile en raison de la grande complexité de la détermination des valeurs appropriées pour ces paramètres. Considérant les avantages de la méthode de recherche Tabou et son adaptabilité au problème, une méthode de recherche multi-objective est utilisée pour trouver une portée et un taux de transmission dans un délai raisonnable. Le délai et la gigue, fonctions multi-objectifs de l'algorithme Tabou, sont minimisés dans l'algorithme proposé. Par la suite, deux stratégies de contrôle de congestion en boucle ouverte sont proposées afin de réduire la congestion dans les canaux en utilisant la priorisation et l'ordonnancement des messages. Ces stratégies définissent la priorité pour chaque message en considérant son type de contenu (par exemple les messages d'urgence, de beacon, et de service), la taille des messages, et l’état du réseau (par exemple, les métriques de la vélocité, la direction, l'utilité, la distance, et la validité). L'ordonnancement des messages est effectué sur la base des priorités définies. De plus, comme seconde technique d'ordonnancement, une méthode de recherche Tabou est employée pour planifier les files d'attente de contrôle et de service des canaux de transmission dans un délai raisonnable. A cet effet, le délai et la gigue lors de l'acheminement des messages sont minimisés. Enfin, une stratégie localisée et centralisée qui utilise les ensembles RSU fixés aux intersections pour détecter et contrôler de la congestion est proposée. Cette stratégie regroupe tous les messages transférés entre les véhicules qui se sont arrêtés à une lumière de signalisation en utilisant les algorithmes de Machine Learning. Dans cette stratégie, un algorithme de k-means est utilisé pour regrouper les messages en fonction de leurs caractéristiques (par exemple la taille des messages, la validité des messages, et le type de messages, etc.). Les paramètres de communication, y compris le portée et le taux de transmission, la taille de la fenêtre de contention, et le paramètre AIFS (Arbitration Inter-Frame Spacing) sont déterminés pour chaque grappe de messages en vue de minimiser le délai de livraison. Ensuite, les paramètres de communication déterminés sont envoyés aux véhicules par les RSUs, et les véhicules opèrent en fonction de ces paramètres pour le transfert des messages. Les performances des trois stratégies proposées ont été évaluées en simulant des scénarios dans les autoroutes et la circulation urbaine avec les simulateurs NS2 et SUMO. Des comparaisons ont aussi été faites entre les résultats obtenus à partir des stratégies proposées et les stratégies de contrôle de congestion communément utilisées. Les résultats révèlent qu’avec les stratégies de contrôle de congestion proposées, le débit du réseau augmente et le taux de perte de paquets ainsi que de délai diminuent de manière significative en comparaison aux autres stratégies. Par conséquent, l'application des méthodes proposées aide à améliorer la performance, la sureté et la fiabilité des VANets.----------ABSTRACT Vehicular Ad hoc Networks (VANets) are designed to provide reliable wireless communications between high-speed mobile nodes. In order to improve the performance of VANets’ applications, and make a safe and comfort environment for VANets’ users, Quality of Service (QoS) should be supported in these networks. The delay and packet losses are two main indicators of QoS that dramatically increase due to the congestion occurrence in the networks. Indeed, due to congestion occurrence, the channels are saturated and the packet collisions increase in the channels. Therefore, the congestion should be controlled to decrease the packet losses and delay, and to increase the performance of VANets. Congestion control in VANets is a challenging task due to the specific characteristics of VANets such as high mobility of the nodes with high speed, and high rate of topology changes, and so on. Congestion control in VANets can be carried out using the strategies that can be classified into rate-based, power-based, CSMA/CA-based, prioritizing and scheduling-based, and hybrid strategies. The congestion control strategies in VANets face to some challenges such as unfair resources usage, communication overhead, high transmission delay, and inefficient bandwidth utilization, and so on. Therefore, it is required to develop new strategies to cope with these challenges and improve the performance of VANets. In this dissertation, first, a closed-loop congestion control strategy is developed. This strategy is a dynamic and distributed congestion control strategy that detects the congestion by measuring the channel usage level. Then, the congestion is controlled by tuning the transmission range and rate that considerably impact on the channel saturation. Tuning the transmission range and rate in VANets is an NP-hard problem due to the high complexity of determining the proper values for these parameters in vehicular networks. Considering the benefits of Tabu search algorithm and its adaptability with the problem, a multi-objective Tabu search algorithm is used for tuning transmission range and rate in reasonable time. In the proposed algorithm, the delay and jitter are minimized as the objective functions of multi-objective Tabu Search algorithm. Second, two open-loop congestion control strategies are proposed that prevent the congestion occurrence in the channels using the prioritizing and scheduling the messages. These strategies define the priority for each message by considering the content of messages (i.e. types of the messages for example emergency, beacon, and service messages), size of messages, and state of the networks (e.g. velocity, direction, usefulness, distance and validity metrics). The scheduling of the messages is conducted based on the defined priorities. In addition, as the second scheduling technique, a Tabu Search algorithm is employed to schedule the control and service channel queues in a reasonable time. For this purpose, the delay and jitter of messages delivery are minimized. Finally, a localized and centralized strategy is proposed that uses RSUs set at intersections for detecting and controlling the congestion. These strategy clusters all the messages that transferred between the vehicles stopped before the red traffic light using Machine Learning algorithms. In this strategy, a K-means learning algorithm is used for clustering the messages based on their features (e.g. size of messages, validity of messages, and type of messages, and so on). The communication parameters including the transmission range and rate, contention window size, and Arbitration Inter-Frame Spacing (AIFS) are determined for each messages cluter based on the minimized delivery delay. Then, the determined communication parameters are sent to the vehicles by RSUs, and the vehicles operate based on these parameters for transferring the messages. The performances of three proposed strategies were evaluated by simulating the highway and urban scenarios in NS2 and SUMO simulators. Comparisons were also made between the results obtained from the proposed strategies and the common used congestion control strategies. The results reveal that using the proposed congestion control strategies, the throughput, packet loss ratio and delay are significantly improved as compared to the other strategies. Therefore, applications of the proposed strategies help improve the performance, safety, and reliability of VANets

    A comprehensive survey on congestion control techniques and the research challenges on VANET

    Get PDF
    The nature of vehicular mobility and high speed of vehicular ad hoc network (VANET) with dynamic change in the network topology let the vehicular remain as one of the most challenging problems in vehicular-to-vehicular (V2V) communications. Information dissemination is the major problem in VANET with a fixed bandwidth which is causing congestion on the resources, such as channels and affects the performance of the important application, especially when the emergency or secure transmission of messages is exchanged between the vehicles-to-vehicles communication. To mitigate these problems and introduce a safe vehicular environment in urban and highway, congestion detection and control has been considered and with various strategies and techniques which is take the attention of researchers in VANET. In our survey we mentioned recent techniques and approaches which is used in congestion detection and control and applied different matrices and parameters which is used to evaluate these approaches. In addition, the study also explained the limitation and problems that face the current congestion detection and control schemes, finally we present various solution approach and future expectations in vehicular communication

    Improved Road Segment-Based Geographical Routing Protocol for Vehicular Ad-hoc Networks

    Full text link
    This research was funded by Bahria University, Islamabad Campus.Qureshi, KN.; Ul Islam, F.; Kaiwartya, O.; Kumar, A.; Lloret, J. (2020). Improved Road Segment-Based Geographical Routing Protocol for Vehicular Ad-hoc Networks. Electronics. 9(8):1-20. https://doi.org/10.3390/electronics9081248S1209

    Performance modelling of adaptive VANET with enhanced priority scheme

    Get PDF
    In this paper, we present an analytical and simulated study on the performance of adaptive vehicular ad hoc networks (VANET) priority based on Transmission Distance Reliability Range (TDRR) and data type. VANET topology changes rapidly due to its inherent nature of high mobility nodes and unpredictable environments. Therefore, nodes in VANET must be able to adapt to the ever changing environment and optimize parameters to enhance performance. However, there is a lack of adaptability in the current VANET scheme. Existing VANET IEEE802.11p’s Enhanced Distributed Channel Access; EDCA assigns priority solely based on data type. In this paper, we propose a new priority scheme which utilizes Markov model to perform TDRR prediction and assign priorities based on the proposed Markov TDRR Prediction with Enhanced Priority VANET Scheme (MarPVS). Subsequently, we performed an analytical study on MarPVS performance modeling. In particular, considering five different priority levels defined in MarPVS, we derived the probability of successful transmission, the number of low priority messages in back off process and concurrent low priority transmission. Finally, the results are used to derive the average transmission delay for data types defined in MarPVS. Numerical results are provided along with simulation results which confirm the accuracy of the proposed analysis. Simulation results demonstrate that the proposed MarPVS results in lower transmission latency and higher packet success rate in comparison with the default IEEE802.11p scheme and greedy scheduler scheme

    Research study on inter-vehicle communication implementation in Malaysia

    Get PDF
    Vehicle-to-Vehicle (V2V) communications systems have recently drawn great attention, because they have the potential to improve convenience and safety of car traffic. Road accidents take the life of many people in the world each year, and much more people have been injuring and maiming. Statistical studies show that accidents could be avoid by 60% if drivers were informed only half a second before the accident. The objective of this report is to make an analysis of the possibility of implementing this technology in Malaysia. This research study is as guidance to develop a concept of V2V system. Applications with early deadlines are expected to require direct V2V communications, and the only standard currently supporting this is the IEEE 802.11p, included in the wireless access in vehicular environment (WAVE). The combination of WAVE and GPS is a good idea to forming collision avoidance system. The GPS system determines the location of vehicles and the WAVE system forming an ad- hoc peer-to-peer networking among the vehicles.V2V communication enable vehicle to communicate with their neighbouring vehicles even in the absence of a central base station to provide a safer and more efficient roads and to increase passenger safety. This technology can be implements in Malaysia but in order to do it some changing had to be made first to ensure the effectiveness of the technology. V2V communication should have a Doppler sensor as a device sensor that can integrates with cruise control to form adaptive cruise control. Other than that, it also need WAVE to assure a reliable communication system between vehicles. The GPS system is needs to determine exact location of car that can be use in roadways environment such as overtaking situatio
    • …
    corecore