10,254 research outputs found

    Distributed Unmixing of Hyperspectral Data With Sparsity Constraint

    Full text link
    Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which was added to NMF is sparsity constraint that was regularized by L 1/2 norm. In this paper, a new algorithm based on distributed optimization has been used for spectral unmixing. In the proposed algorithm, a network including single-node clusters has been employed. Each pixel in hyperspectral images considered as a node in this network. The distributed unmixing with sparsity constraint has been optimized with diffusion LMS strategy, and then the update equations for fractional abundance and signature matrices are obtained. Simulation results based on defined performance metrics, illustrate advantage of the proposed algorithm in spectral unmixing of hyperspectral data compared with other methods. The results show that the AAD and SAD of the proposed approach are improved respectively about 6 and 27 percent toward distributed unmixing in SNR=25dB.Comment: 6 pages, conference pape

    Dynamic selection and estimation of the digital predistorter parameters for power amplifier linearization

    Get PDF
    © © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a new technique that dynamically estimates and updates the coefficients of a digital predistorter (DPD) for power amplifier (PA) linearization. The proposed technique is dynamic in the sense of estimating, at every iteration of the coefficient's update, only the minimum necessary parameters according to a criterion based on the residual estimation error. At the first step, the original basis functions defining the DPD in the forward path are orthonormalized for DPD adaptation in the feedback path by means of a precalculated principal component analysis (PCA) transformation. The robustness and reliability of the precalculated PCA transformation (i.e., PCA transformation matrix obtained off line and only once) is tested and verified. Then, at the second step, a properly modified partial least squares (PLS) method, named dynamic partial least squares (DPLS), is applied to obtain the minimum and most relevant transformed components required for updating the coefficients of the DPD linearizer. The combination of the PCA transformation with the DPLS extraction of components is equivalent to a canonical correlation analysis (CCA) updating solution, which is optimum in the sense of generating components with maximum correlation (instead of maximum covariance as in the case of the DPLS extraction alone). The proposed dynamic extraction technique is evaluated and compared in terms of computational cost and performance with the commonly used QR decomposition approach for solving the least squares (LS) problem. Experimental results show that the proposed method (i.e., combining PCA with DPLS) drastically reduces the amount of DPD coefficients to be estimated while maintaining the same linearization performance.Peer ReviewedPostprint (author's final draft

    An Intelligent Classification System For Aggregate Based On Image Processing And Neural Network

    Get PDF
    Bentuk dan tekstur permukaan aggregat mempengaruhi kekuatan dan struktur konkrit. Secara tradisi, mesin pengayakan mekanikal dan pengukuran manual digunakan bagi menentukan kedua-dua saiz dan bentuk aggregat. Aggregate’s shape and surface texture immensely influence the strength and structure of the resulting concrete. Traditionally, mechanical sieving and manual gauging are used to determine both the size and shape of the aggregates

    Application of Computational Intelligence Techniques to Process Industry Problems

    Get PDF
    In the last two decades there has been a large progress in the computational intelligence research field. The fruits of the effort spent on the research in the discussed field are powerful techniques for pattern recognition, data mining, data modelling, etc. These techniques achieve high performance on traditional data sets like the UCI machine learning database. Unfortunately, this kind of data sources usually represent clean data without any problems like data outliers, missing values, feature co-linearity, etc. common to real-life industrial data. The presence of faulty data samples can have very harmful effects on the models, for example if presented during the training of the models, it can either cause sub-optimal performance of the trained model or in the worst case destroy the so far learnt knowledge of the model. For these reasons the application of present modelling techniques to industrial problems has developed into a research field on its own. Based on the discussion of the properties and issues of the data and the state-of-the-art modelling techniques in the process industry, in this paper a novel unified approach to the development of predictive models in the process industry is presented

    Using Underapproximations for Sparse Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization consists in (approximately) factorizing a nonnegative data matrix by the product of two low-rank nonnegative matrices. It has been successfully applied as a data analysis technique in numerous domains, e.g., text mining, image processing, microarray data analysis, collaborative filtering, etc. We introduce a novel approach to solve NMF problems, based on the use of an underapproximation technique, and show its effectiveness to obtain sparse solutions. This approach, based on Lagrangian relaxation, allows the resolution of NMF problems in a recursive fashion. We also prove that the underapproximation problem is NP-hard for any fixed factorization rank, using a reduction of the maximum edge biclique problem in bipartite graphs. We test two variants of our underapproximation approach on several standard image datasets and show that they provide sparse part-based representations with low reconstruction error. Our results are comparable and sometimes superior to those obtained by two standard Sparse Nonnegative Matrix Factorization techniques.Comment: Version 2 removed the section about convex reformulations, which was not central to the development of our main results; added material to the introduction; added a review of previous related work (section 2.3); completely rewritten the last part (section 4) to provide extensive numerical results supporting our claims. Accepted in J. of Pattern Recognitio

    Does money matter in inflation forecasting?.

    Get PDF
    This paper provides the most fully comprehensive evidence to date on whether or not monetary aggregates are valuable for forecasting US inflation in the early to mid 2000s. We explore a wide range of different definitions of money, including different methods of aggregation and different collections of included monetary assets. In our forecasting experiment we use two non-linear techniques, namely, recurrent neural networks and kernel recursive least squares regression - techniques that are new to macroeconomics. Recurrent neural networks operate with potentially unbounded input memory, while the kernel regression technique is a finite memory predictor. The two methodologies compete to find the best fitting US inflation forecasting models and are then compared to forecasts from a naive random walk model. The best models were non-linear autoregressive models based on kernel methods. Our findings do not provide much support for the usefulness of monetary aggregates in forecasting inflation

    Representing complex data using localized principal components with application to astronomical data

    Full text link
    Often the relation between the variables constituting a multivariate data space might be characterized by one or more of the terms: ``nonlinear'', ``branched'', ``disconnected'', ``bended'', ``curved'', ``heterogeneous'', or, more general, ``complex''. In these cases, simple principal component analysis (PCA) as a tool for dimension reduction can fail badly. Of the many alternative approaches proposed so far, local approximations of PCA are among the most promising. This paper will give a short review of localized versions of PCA, focusing on local principal curves and local partitioning algorithms. Furthermore we discuss projections other than the local principal components. When performing local dimension reduction for regression or classification problems it is important to focus not only on the manifold structure of the covariates, but also on the response variable(s). Local principal components only achieve the former, whereas localized regression approaches concentrate on the latter. Local projection directions derived from the partial least squares (PLS) algorithm offer an interesting trade-off between these two objectives. We apply these methods to several real data sets. In particular, we consider simulated astrophysical data from the future Galactic survey mission Gaia.Comment: 25 pages. In "Principal Manifolds for Data Visualization and Dimension Reduction", A. Gorban, B. Kegl, D. Wunsch, and A. Zinovyev (eds), Lecture Notes in Computational Science and Engineering, Springer, 2007, pp. 180--204, http://www.springer.com/dal/home/generic/search/results?SGWID=1-40109-22-173750210-
    corecore