78 research outputs found

    Primal-Dual Enumeration for Multiparametric Linear Programming

    Get PDF
    Optimal control problems for constrained linear systems with a linear cost can be posed as multiparametric linear programs (pLPs) and solved explicitly offline. Several algorithms have recently been proposed in the literature that solve these pLPs in a fairly efficient manner, all of which have as a base operation the computation and removal of redundant constraints. For many problems, it is this redundancy elimination that requires the vast majority of the computation time. This paper introduces a new solution technique for multiparametric linear programs based on the primal–dual paradigm. The proposed approach reposes the problem as the vertex enumeration of a linearly transformed polytope and then simultaneously computes both its vertex and halfspace representations. Exploitation of the halfspace representation allows, for smaller problems, a very significant reduction in the number of redundancy elimination operations required, resulting in many cases in a much faster algorithm

    Reduced Memory Footprint in Multiparametric Quadratic Programming by Exploiting Low Rank Structure

    Full text link
    In multiparametric programming an optimization problem which is dependent on a parameter vector is solved parametrically. In control, multiparametric quadratic programming (mp-QP) problems have become increasingly important since the optimization problem arising in Model Predictive Control (MPC) can be cast as an mp-QP problem, which is referred to as explicit MPC. One of the main limitations with mp-QP and explicit MPC is the amount of memory required to store the parametric solution and the critical regions. In this paper, a method for exploiting low rank structure in the parametric solution of an mp-QP problem in order to reduce the required memory is introduced. The method is based on ideas similar to what is done to exploit low rank modifications in generic QP solvers, but is here applied to mp-QP problems to save memory. The proposed method has been evaluated experimentally, and for some examples of relevant problems the relative memory reduction is an order of magnitude compared to storing the full parametric solution and critical regions

    Probabilistic structural analysis by extremum methods

    Get PDF
    The objective is to demonstrate discrete extremum methods of structural analysis as a tool for structural system reliability evaluation. Specifically, linear and multiobjective linear programming models for analysis of rigid plastic frames under proportional and multiparametric loadings, respectively, are considered. Kinematic and static approaches for analysis form a primal-dual pair in each of these models and have a polyhedral format. Duality relations link extreme points and hyperplanes of these polyhedra and lead naturally to dual methods for system reliability evaluation

    An improved multi-parametric programming algorithm for flux balance analysis of metabolic networks

    Full text link
    Flux balance analysis has proven an effective tool for analyzing metabolic networks. In flux balance analysis, reaction rates and optimal pathways are ascertained by solving a linear program, in which the growth rate is maximized subject to mass-balance constraints. A variety of cell functions in response to environmental stimuli can be quantified using flux balance analysis by parameterizing the linear program with respect to extracellular conditions. However, for most large, genome-scale metabolic networks of practical interest, the resulting parametric problem has multiple and highly degenerate optimal solutions, which are computationally challenging to handle. An improved multi-parametric programming algorithm based on active-set methods is introduced in this paper to overcome these computational difficulties. Degeneracy and multiplicity are handled, respectively, by introducing generalized inverses and auxiliary objective functions into the formulation of the optimality conditions. These improvements are especially effective for metabolic networks because their stoichiometry matrices are generally sparse; thus, fast and efficient algorithms from sparse linear algebra can be leveraged to compute generalized inverses and null-space bases. We illustrate the application of our algorithm to flux balance analysis of metabolic networks by studying a reduced metabolic model of Corynebacterium glutamicum and a genome-scale model of Escherichia coli. We then demonstrate how the critical regions resulting from these studies can be associated with optimal metabolic modes and discuss the physical relevance of optimal pathways arising from various auxiliary objective functions. Achieving more than five-fold improvement in computational speed over existing multi-parametric programming tools, the proposed algorithm proves promising in handling genome-scale metabolic models.Comment: Accepted in J. Optim. Theory Appl. First draft was submitted on August 4th, 201

    On Degeneracy Issues in Multi-parametric Programming and Critical Region Exploration based Distributed Optimization in Smart Grid Operations

    Full text link
    Improving renewable energy resource utilization efficiency is crucial to reducing carbon emissions, and multi-parametric programming has provided a systematic perspective in conducting analysis and optimization toward this goal in smart grid operations. This paper focuses on two aspects of interest related to multi-parametric linear/quadratic programming (mpLP/QP). First, we study degeneracy issues of mpLP/QP. A novel approach to deal with degeneracies is proposed to find all critical regions containing the given parameter. Our method leverages properties of the multi-parametric linear complementary problem, vertex searching technique, and complementary basis enumeration. Second, an improved critical region exploration (CRE) method to solve distributed LP/QP is proposed under a general mpLP/QP-based formulation. The improved CRE incorporates the proposed approach to handle degeneracies. A cutting plane update and an adaptive stepsize scheme are also integrated to accelerate convergence under different problem settings. The computational efficiency is verified on multi-area tie-line scheduling problems with various testing benchmarks and initial states

    Polyhedral Tools for Control

    Get PDF
    Polyhedral operations play a central role in constrained control. One of the most fundamental operations is that of projection, required both by addition and multiplication. This thesis investigates projection and its relation to multi-parametric linear optimisation for the types of problems that are of particular interest to the control community. The first part of the thesis introduces an algorithm for the projection of polytopes in halfspace form, called Equality Set Projection (ESP). ESP has the desirable property of output sensitivity for non-degenerate polytopes. That is, a linear number of linear programs are needed per output facet of the projection. It is demonstrated that ESP is particularly well suited to control problems and comparative simulations are given, which greatly favour ESP. Part two is an investigation into the multi-parametric linear program (mpLP). The mpLP has received a lot of attention in the control literature as certain model predictive control problems can be posed as mpLPs and thereby pre-solved, eliminating the need for online optimisation. The structure of the solution to the mpLP is studied and an approach is pre- sented that eliminates degeneracy. This approach causes the control input to be continuous, preventing chattering, which is a significant problem in control with a linear cost. Four new enumeration methods are presented that have benefits for various control problems and comparative simulations demonstrate that they outperform existing codes. The third part studies the relationship between projection and multi-parametric linear programs. It is shown that projections can be posed as mpLPs and mpLPs as projections, demonstrating the fundamental nature of both of these problems. The output of a multi-parametric linear program that has been solved for the MPC control inputs offline is a piecewise linear controller defined over a union of polyhedra. The online work is then to determine which region the current measured state is in and apply the appropriate linear control law. This final part introduces a new method of searching for the appropriate region by posing the problem as a nearest neighbour search. This search can be done in logarithmic time and we demonstrate speed increases from 20Hz to 20kHz for a large example system

    Optimal Vehicle Charging in Bilevel Power-Traffic Networks via Charging Demand Function

    Full text link
    Electric vehicle (EV) charging couples the operation of power and traffic networks. Specifically, the power network determines the charging price at various locations, while EVs on the traffic network optimize the charging power given the price, acting as price-takers. We model such decision-making processes by a bilevel program, with the power network at the upper-level and the traffic network at the lower-level. However, since the two networks are managed by separate entities and the charging expense term, calculated as the product of charging price and charging demand, is nonlinear. Solving the bilevel program is nontrivial. To overcome these challenges, we derive the charging demand function using multiparametric programming theory. This function establishes a piecewise linear relationship between the charging price and the optimal charging power, enabling the power network operator to manage EV charging power independently while accounting for the coupling between the two networks. With the derived function, we are also able to replace the nonlinear charging expense term with a piecewise quadratic one, thus guaranteeing solution optimality. Our numerical studies demonstrate that different traffic demands can have an impact on charging patterns and the power network can effectively incentivize charging at low-price nodes through price setting.Comment: submitted to IEEE Transactions on Smart Gri

    A comparative study of two key algorithms in multiple objective linear programming

    Get PDF
    Multiple objective linear programming problems are solved with a variety of algorithms. While these algorithms vary in philosophy and outlook, most of them fall into two broad categories: those that are decision space-based and those that are objective space-based. This paper reports the outcome of a computational investigation of two key representative algorithms, one of each category, namely the parametric simplex algorithm which is a prominent representative of the former and the primal variant of Bensons Outer-approximation algorithm which is a prominent representative of the latter. The paper includes a procedure to compute the most preferred nondominated point which is an important feature in the implementation of these algorithms and their comparison. Computational and comparative results on problem instances ranging from small to medium and large are provided
    • …
    corecore