
Primal-Dual Enumeration for Multiparametric

Linear Programming

Colin N. Jones1 and Jan M. Maciejowski2

1 Automatic Control Laboratory, Swiss Federal Institute of Technology
Physikstrasse 3, CH-8092 Zurich, Switzerland

cjones@ee.ethz.ch
2 Control Group, Department of Engineering, University of Cambridge

Trumpington St, Cambridge, UK
jmm@eng.cam.ac.uk

Abstract. Optimal control problems for constrained linear systems with
a linear cost can be posed as multiparametric linear programs (pLPs)
and solved explicitly offline. Several algorithms have recently been pro-
posed in the literature that solve these pLPs in a fairly efficient manner,
all of which have as a base operation the computation and removal of
redundant constraints. For many problems, it is this redundancy elim-
ination that requires the vast majority of the computation time. This
paper introduces a new solution technique for multiparametric linear
programs based on the primal–dual paradigm. The proposed approach
reposes the problem as the vertex enumeration of a linearly transformed
polytope and then simultaneously computes both its vertex and halfs-
pace representations. Exploitation of the halfspace representation allows,
for smaller problems, a very significant reduction in the number of re-
dundancy elimination operations required, resulting in many cases in a
much faster algorithm.

1 Introduction

It is standard practice to implement a model predictive controller (MPC) by
solving an optimisation problem on–line. For example, when the system is linear,
the constraints are polyhedral and the cost is linear (e.g. 1− or ∞−norm), this
amounts to computing a single linear program (LP) at each sampling instant. In
recent years, it has become well-known that for this class of systems the optimal
input is a piecewise affine function (PWA) defined over a polyhedral partition
of the feasible states. By pre–computing this PWA function off–line, the on–
line calculation of the control input then becomes one of evaluating the PWA
function at the current measured state, which allows for significant improvements
in sampling speed [1].

The computation of the optimal PWA function, mapping the measured state
to the control input, can be posed as the following (multi)parametric linear
program (pLP) [1]:

min
u

{

cT u | (x, u) ∈ P
}

, (1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147975289?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where x ∈ R
d is the parameter, or state, u ∈ R

m is the optimiser, or control
input and slack variables and P is a polyhedron, which incorporates the system
constraints and is assumed bounded.

Several methods of computing the solution to pLP (1) can be found in the
literature (e.g., [1–3]). All of these approaches enumerate the affine regions of the
optimal PWA function one at a time. For each of the affine pieces of the function,
the main computational burden is the determination of a minimal description of
the polytope in which it is optimal. Computing this minimal representation is
a so–called redundancy elimination operation, which requires the solution of a
number of linear programs equal to the size of the input (the number of inequal-
ities describing the polytope P). In most cases, these redundancy elimination
LPs take the vast majority total computation time.

In this paper we present a new method of computing the optimiser of pLP (1)
based on a primal-dual approach [4]. We first show that parametric linear pro-
gramming can be posed as a vertex enumeration problem of an affine transform
of the dual constraints in (1). The primal-dual algorithm then computes the
convex hull of this transformed polytope as it is enumerating the vertices. The
availability of these two descriptions of the same polytope then allow a signif-
icant reduction in the amount of work that the algorithm is required to do by
removing the need to compute a large number of the redundancy elimination
LPs.

The remainder of this paper is organised as follows. Section 2 provides re-
quired background on parametric linear programming. Section 3 introduces a
polytope such that there is a one-to-one mapping from its vertices to the affine
pieces of the solution. The primal-dual approach described in [4] is then adapted
such that it can be applied to this polytope, and hence to the associated pLP
in Section 3.2. Finally, examples and conclusions are given in Sections 4 and 5
respectively.

Notation

If A ∈ R
m×n and I ⊆ {1, . . . , n}, then A∗,I ∈ R

m×|I| is the matrix formed
by the columns of A indexed by I. If c ∈ R

n is a vector then cI is the vector
formed by the elements of c in I. If R ⊆ {1, . . . , m} then we will use the notation
AR,∗ ∈ R

|R|×n to denote the matrix formed by the rows of A indexed by R.
A polyhedron is the intersection of a finite number of halfspaces and a poly-

tope is a bounded polyhedron. If P = {x |Ax ≤ b} is a polyhedron and H =
{

x
∣

∣ aT x ≤ d
}

is a halfspace such that P ⊆ H , then P ∩
{

x
∣

∣ aT x = d
}

is a face

of P . One– and zero–dimensional faces are called edges and vertices respectively.
Faces of dimension dim(P)− 1 are called facets and dim(P)− 2, ridges.

A vector r ∈ R
d defines a ray as R = {rα | α > 0}. A set C is called a cone if

for every x ∈ C and scalar α > 0, we have αx ∈ C. The columns of a matrix F ∈
R

m×n are called the generators of the cone C = cone(F) , {Fα | α ≥ 0}. The
generator F∗,i is called redundant if F∗,i ∈ cone(F∗,{1,...,n}\{i}) and irredundant,
or extreme otherwise.

The Minkowski sum of two sets, denoted A ⊕ B is defined as A ⊕ B ,

{x + y | x ∈ A, y ∈ B }.

2 Preliminaries

2.1 Linear Programming

Consider the following linear program:

max
λ

{

cT λ | λ ∈ D
}

, (2)

where λ ∈ R
n is the optimiser, c ∈ R

n is a vector and the constraint polytope
D is defined by the matrix A ∈ R

m×n and the vector b ∈ R
m as

D , {λ | Aλ = b, λ ≥ 0} . (3)

Any set B ⊂ {1, . . . , n} such that |B| = m and rankA∗,B = m is called
a basis and we write N = {1, . . . , n} \B for its complement and call λB and
λN the basic and non-basic variables respectively. Every basis B defines a basic

solution1 λB to the linear equations in (3), which is given by restricting the
non-basic constraints to zero λB

B = A−1

∗,Bb, λB
N = 0 . A basis is called primal

feasible if the resulting solution also satisfies the inequality constraints in (3):
A−1

∗,Bb ≥ 0. Note that all solutions represented by bases occur at a vertex of the
constraint polyhedron D.

2.2 Optimality Conditions

Definition 1 (Tangent cone [5]). Let λ be an element of the polyhedron D ⊆
R

n. A vector γ ∈ R
n is said to be a feasible direction at λ if there exists a strictly

positive scalar α for which λ + αγ ∈ D. The set of all feasible directions at λ
is called the tangent cone and is written TD(λ). The support cone SD(λ) is the

translation of TD(λ) by the vector λ, SD(λ) , TD(λ) ⊕ {λ}. Note that strictly

speaking, the support cone is not a cone as it has a vertex at λ rather than zero.

Given a basis B, the extreme feasible directions at the solution λB are given
by increasing each non-basic variable in a feasible (positive) direction:

λB = λB −A−1

∗,BA∗,iλi, λi ≥ 0, λN\{i} = 0, ∀i ∈ N .

The set of all convex combinations of the extreme rays give the tangent cone:

TD(λB) = cone(F) , (4)

where FB,∗ , −A−1

∗,BA∗,N , FN,∗ , I.

1 Where clear from the context, we will refer to the basic solution as simply the
solution.

Theorem 1 (Optimality Condition). Let λ be an element of the polyhedron

D. A necessary and sufficient condition for λ to be a global minimum of the

linear program (2) is cT γ ≥ 0 for all feasible directions γ at λ.

Definition 2. The normal cone to D at λ is the orthogonal complement of the

tangent cone:

ND(λ) ,
{

v
∣

∣ vT γ ≤ 0, ∀γ ∈ TD(λ)
}

.

From the above definition and (4), the normal cone to the basic feasible
solution λB is:

ND(λB) =
{

v
∣

∣ FT v ≤ 0
}

, (5)

where F is as defined in (4). A direct result of Theorem 1 and (5) is that the
basic solution λB , and hence the basis B, is optimal if and only if2

−c ∈ ND(λB) . (6)

2.3 Parametric Linear Programming

The problem we will consider in this paper is the following parametric linear

program:

max
λ

{

xT Eλ | λ ∈ D
}

, x ∈ X (7)

where x ∈ X is the parameter, X ⊆ R
d and ET ∈ R

d×n is a matrix of rank d,
d < n. It is assumed throughout this paper that the set of feasible parameters X
is full–dimensional, which is common to most pLP algorithms [1–3]. This as-
sumption can be easily guaranteed through a pre-processing operation [1]. The
standard assumption is also made that pLP (7) has an optimal bounded solution
for every x ∈ X .3

Definition 3 (Critical Region). If B is a basis of pLP (7), then the critical
region RB is defined as the set of all parameters x◦ ∈ X such that B is optimal

for x = x◦.

From (6) and (7) that the critical region RB is the polyhedral set RB =
{

x
∣

∣ FT ET x ≥ 0
}

∩ X .
Our goal is to enumerate all full–dimensional critical regions. In [6] it was

shown that by lexicographically perturbing the problem (7), the following prop-
erties hold:

1. Every full–dimensional critical region is uniquely defined by a single basis
2. The interiors of the full–dimensional critical regions do not overlap

2 The vector −F T c is often referred to as the reduced cost c̄ and condition (6) then
becomes c̄ ≥ 0.

3 Note that this also implies that the dual solution is feasible and bounded.

3. The union of all full–dimensional critical regions is the set of feasible param-
eters X .

In the remainder of this paper we will assume that the problem has been lexico-
graphically perturbed and will therefore not discuss possible degeneracy of the
solution.4

Remark 1. The standard parametric linear program resulting from model pre-
dictive control problems has a cost of the form (xT E+c)λ [1], which differs from
that used here by the constant c. The procedure developed in this paper can be
applied to such problems with no added complexity by first homogenizing the
cost as detailed in [6].

3 pLP as Vertex Enumeration

The following theorem demonstrates that the goal of enumerating all bases that
define full–dimensional critical regions can be re–posed as a vertex enumeration
problem of an affine transform of the constraint polytope D.

Theorem 2. If B is a feasible basis of pLP (7) and λB is the basic solution,

then B defines a full–dimensional critical region if and only if EλB is a vertex

of the polytope ED , {Eλ | Aλ = b, λ ≥ 0}.

Proof. pLP (7) can be re-written as maxz

{

xT z | z ∈ ED
}

through the change

of variable z , Eλ. It follows from (6) and Definition 3 that x is in the critical
region RB if and only if −x is in the normal coneNED(EλB). Finally, the normal
cone of a point EλB in a polytope ED is full–dimensional if and only if EλB is
a vertex of ED [7, Sec. 3.2].

Two vertices of a polytope are called neighbours, or adjacent, if they are con-
tained in the same edge, or one–dimensional face of the polytope. The proposed
algorithm begins at a single vertex of ED and then recursively computes neigh-
bours until all vertices have been found. In the following section we see that the
adjacent vertices of a vertex v ∈ ED are given by the intersection of ED and
the extreme rays of the support cone SED(v). The proposed method is outlined
as Algorithm 1 below.

Remark 2. Note that the extreme rays of the tangent cone (and hence the sup-
port cone) are given directly by the normals of the irredundant inequalities
describing the normal cone. The negative normal cone of ED at a vertex EλB

is exactly the critical region of the basis B, RB = −NED(EλB) and therefore
determining the extreme rays of the support cone is an operation that is entirely
equivalent to the redundancy elimination operations that are done to compute
the facets of the critical regions in other methods, e.g. [1–3].

4 Note that our definition of a critical region differs from that generally found in the
literature. However, under the assumption that the problem is non–degenerate, or
equivalently, lexicographically perturbed, the two definitions are equivalent.

Algorithm 1 below is similar to others presented in the literature [1–3], al-
though the formulation is in the dual. The main contribution of this paper is in
Step 4, where one must determine the extreme rays of the support cone of ED
at the point EλB. In current algorithms, this requires a redundancy elimination
operation in order to determine which rays are extreme. For problems that are
of interest to control and are yet small enough to be computed, this redundancy
elimination requires the majority of the computation time, as is illustrated in
Section 4. Section 3.2 presents a new primal–dual approach that can significantly
reduce the computation time for these smaller problems.

Remark 3. Algorithm 1 can be seen as a form of gift-wrapping algorithm in a
polar dual context (also called pivoting algorithms) in which the vertices are not
known apriori but are provided by an oracle.

Algorithm 1 Parametric Linear Programming

Require: Basis B0 of pLP (7) such that dimRB = d

Ensure: All bases B such that dim RB = d
1: Lunexplored ←− {B} , Ldiscovered ←− {B}
2: while Lunexplored is not empty do
3: Select any basis B from Lunexplored

4: for all extreme rays r of ESD(λB) do Section 3.2
5: B′ ←− neighbour(r, B) Section 3.1
6: Lunexplored ←− Lunexplored ∪ ({B′} \Ldiscovered)
7: Ldiscovered ←− Ldiscovered ∪ {B′}
8: end for
9: end while

10: Return list Ldiscovered

3.1 Neighbour Function

This section outlines the function neighbour(·, ·), which is used in Step 5 of
Algorithm 1. The edges of a polytope P that intersect at a vertex v ∈ P are
given by the intersection of P with the extreme rays of the support cone at v [5].
The following lemma describes the tangent cone of a basic solution of ED, where
we recall that the support cone is equal to the tangent cone shifted by v.

Lemma 1. If λ is an element in the polytope D, then TED(Eλ) = ETD(λ).

Proof. From Definition 1, γ ∈ R
d is in ETD(λ) if and only if there exists a scalar

α > 0 and a vector g such that

γ = Eg, λ + αg ∈ D . (8)

By assumption, E is rank d and therefore such a g always exists for each γ ∈
ETD(λ). Under the mapping E, (8) becomes Eλ + αγ ∈ ED, which is true if
and only if γ ∈ TED(Eλ).

Lemma 1 and (4) give a description of the tangent cone to a vertex EλB

of ED defined by the basis B:

TED(EλB) = cone(EF) , (9)

where FB,∗ , −A−1

∗,BA∗,N , FN,∗ , I. Note however, that not every column EF∗,i

defines an extreme ray of TED(EλB), as some of them may well be redundant.
Determining if a ray is redundant or not requires the majority of effort during
the computation of a pLP and is the main topic of this paper. A new approach
to determining redundancy will be introduced in Section 3.2.

We can now define the function B′ = neighbour(r, B), where
r =

{

E(F∗,iα + λB) | α ≥ 0
}

is an extreme ray of the support cone SED(EλB).

The neighbour function returns the basis B′ such that EλB′

is the vertex of
r ∩ ED, which is different from EλB . Note that there are exactly two vertices
on each edge.

The following new theorem provides an efficient method of computing the
basis that represents the adjacent vertex given an irredundant ray of the tan-
gent/support cone.

Theorem 3. If B is a feasible basis of D, EλB is a vertex of ED and r =
{

E(F∗,iα + λB) | α ≥ 0
}

is an extreme ray of the support cone SED(EλB), then

the adjacent vertex of EλB in the direction r is the optimal basis of the LP:

max
λ

{

(EF∗,i)
T Eλ | λ ∈ D, λj = 0, ∀j /∈ Q

}

, (10)

where Q , {j | ∃ρ ≥ 0, EF∗,i = ρEF∗,j } and FB,∗ , −A−1

∗,BA∗,N , FN,∗ , I.

Proof. The adjacent vertex is reached by moving along the edge r ∩ ED away
from EλB . Every point λ ∈ D can be written as λ = λB + Fγ, for some γ ≥ 0,
where F is as defined in the statement of the theorem, because every tangent
cone is a superset of the polytope [7]. Consider the column F∗,j and the resulting
ray λ = λB + F∗,jγj , γj ≥ 0. Clearly, Eλ ∈ r if and only if there exists a ρ ≥ 0
such that EF∗,j = ρEF∗,i. Therefore, the face P of D such that EP = r ∩ ED
is given by P = {λ | λi = 0, ∀i /∈ Q} ∩D.

The LP given in the statement of the theorem then maximises in the direction
of the ray r, while restricting λ to be in the face P .

Remark 4. Note that if the set Q in Theorem 3 contains only one element more
than the basis B, then LP (10) will compute the adjacent basis in a single simplex
pivot. This is a significant improvement over current methods [1–3], which always
require the calculation of an LP of dimension equal to that of D.

3.2 Primal-Dual Enumeration

The standard method for redundancy elimination, or determining which rays are
extreme in Step 3 of Algorithm 1 requires a single linear program of dimension d

per ray [8]. Testing if the ith ray of the support cone SED(EλB) for some vertex
EλB of ED is redundant can be done using the following linear program [8]:

J(i) = minimise (−EF∗,i)
T
x

subject to
(

EF∗,{1:i−1,i+1,n}

)T
x ≥ 0

(EF∗,i)
T
x ≥ −1

(11)

where the ray ri is extreme if J(i) < 0. Current pLP methods reported in the
literature [1–3] require the solution of LP (11) for each column of F at every
vertex, resulting in the computation of a very large number of linear programs.
This paper seeks to reduce this requirement through a heuristic based on [4],
which can significantly reduce the work required to compute the extreme rays.

The approach presented in this section is called ‘primal-dual’ because both
the primal (vertex) and dual (halfspace) representations of ED are computed. At
the qth step of the algorithm, q vertices of ED will have been found. At this point,
the algorithm has a list of these q vertices

{

v1, . . . , vq
}

; it also stores a halfspace

representation of their convex hull Hq , {z |Gqz ≤ gq } = conv
{

v1, . . . , vq
}

.
When a new vertex vq+1 is found, the existing description of the convex hull is
first extended to include it: a new matrix Gq+1 and vector gq+1 are computed
such that Hq+1 =

{

z
∣

∣Gq+1z ≤ gq+1
}

= Hq ∪
{

vq+1
}

.
We are now able to use this information to improve the efficiency of redun-

dancy elimination. Given a basis B, we begin by writing down the known de-
scription SED(EλB) =

{

E(λB + Fγ) | γ ≥ 0
}

of the support cone at the vertex

EλB from (9). The goal is now to test each ray ri ,
{

E
(

λB + F∗,iγi

)

| γi ≥ 0
}

to determine if it is an extreme ray of SED(EλB).
We note that the polytope Hq+1 is an inner approximation of the set ED.

It follows that if the ray ri intersects the interior of Hq+1, then it also intersects
the interior of ED and is therefore not an extreme ray of SED(ED). This notion
is formalised in the following theorem.

Theorem 4. Let Hq = conv
{

v1, . . . , vq
}

= {z |Gqz ≤ gq }, where vi are q
vertices of ED and dim(Hq) = dim(ED). If EλB is a vertex of ED and of

Hq, then ri ,
{

E
(

λB + F∗,iγi

)

| γi ≥ 0
}

is a redundant ray of the support cone

SED(EλB) if for each j such that Gj,∗v = gj the condition Gj,∗EF∗,i < 0 holds,

where F is defined as in (4).

Proof. The test is simply to check if a point on the ray ri is internal to Hq for

a strictly positive γi:

GE
(

λB + F∗,iγi

)

≤ g

GEF∗,iγi ≤ g −GEλB . (12)

Recall that EλB is a vertex of Hq and therefore g − GEλB ≥ 0. For those

constraints that are strictly greater than zero, (12) will clearly be satisfied for

some γi > 0 and therefore we have only to test those constraints that are equal

to zero. Clearly, there exists a strictly positive α such that (12) is satisfied if and

only if Gj,∗EF∗,i < 0 for all j such that Gj,∗EλB = gj.

Theorem 4 can now be used during Step 3 of Algorithm 1 to determine
which, if any, of the rays of SED(EλB) are redundant. As this test can only
prove redundancy and not irredundancy, if the conditions of the theorem are
not met, then the linear program (11) must still be solved.

Convex Hull Computation The use of Theorem 4 requires the computation
of the convex hull Hq of the first q discovered vertices

{

v1, . . . , vq
}

of ED.
While any convex hull algorithm could be used, ideally the algorithm should be
incremental, or able to add one vertex at a time, and have the ability to quickly
identify which inequalities are active at the most recently added vertex.

An incremental approach takes as input a full–dimensional polytope Hq−1 =
{

z
∣

∣ Gq−1z ≤ gq−1
}

and computes the convex hull Hq = Hq−1∪{vq} for a point

vq. The facetHq−1∩
{

z
∣

∣

∣
Gq−1

i,∗ z = gq−1

i

}

is called visible from vq if its supporting

hyperplane separates Hq−1 and vq (i.e. Gq−1

i,∗ vq > gq−1

i), otherwise the facet is

obscured. The set of facets of Hq then consists of the obscured facets of Hq−1 as
well as a new set of facets to replace the visible ones, which include the point vq.
Updating Hq−1 to Hq therefore consists of two subproblems: finding all visible
facets of Hq−1 and computing new facets to replace them. The inequalities that
must be tested in Theorem 4 is then exactly the set of new facets that are
computed to replace the visible ones and are therefore computed as a side effect
of the convex hull algorithm.

There are two approaches available for determining the set of visible facets
that can be applied in the context of this paper, where the list of points vi

for i larger than q is not available while computing Hq. The first is to simply
check each facet of Hq−1 to determine if vq is on its positive (obscured) or
negative (visible) side. This is the approach used in Kallay’s beneath–beyond [9]
and Motzkin’s double description [10] methods and requires time linear in the
number of facets of Hq−1. An improvement on this is to store a so–called facet
graph, whose nodes are facets and arcs connect facets if they share a common
ridge. The set of visible facets then forms a subgraph of the facet graph and can
be efficiently enumerated in time proportional to the number of visible facets [11].

Once the visible facets are computed and removed, the supporting hyper-
planes of the new facets containing the point vq can be efficiently computed by
noting that they must contain the point vq as well as the ridges formed by the
intersection of the removed facets and the obscured facets.

The reader is referred to [12] for a more complete handling of incremental
convex hull algorithms.

Complexity Current methods of computing pLPs are in a sense output sen-
sitive, in that they require a fixed number of redundancy elimination LPs (11)
to be computed per critical region of the solution (one for each column of the
matrix F). The approach introduced in this paper aims to reduce the number
of redundancy elimination LPs through the use of Theorem 4. However, since
Theorem 4 is a sufficient condition for redundancy and not a necessary one, no

guarantee can be made that any of the rays will satisfy the conditions of the the-
orem, and as a result it may be the case that LP (11) must still be computed for
each ray, which would therefore result in no improvement over current methods
in the worst–case.

The additional cost of using the primal-dual test is the calculation and storage
of the halfspace description of ED. While this convex hull can be computed
efficiently in an incremental fashion as outlined above, the relationship between
the number of vertices in ED and the number of inequalities can be exponential.
As a result the applicability of this algorithm is limited to those polyhedra ED
that can be described with both relatively few inequalities and few vertices. In
Section 4 it will be seen that there are problems that are of a size and structure
that are interesting in a control context and which satisfy these requirements.

4 Examples

The primary motivation for pLPs in control is the calculation of so–called closed–
form or explicit Model Predictive Control (MPC) laws. In standard MPC an
optimisation problem, which is a function of the current state, is solved at each
sampling instant, whereas in closed-form MPC the problem is posed in multi-
parametric form, with the state as a parameter, and solved offline.

The goal is to regulate the linear time invariant (LTI) system x+ = Ax+Bu
to the origin, where x ∈ R

n is the state, x+ is the successor state and u ∈ R
m

is the input. A standard Model Predictive Controller (MPC) can be written as
the solution to the following optimisation problem, in which the optimiser u1 is
the input that is applied to the system, given the measured state x:

J(x) = minimise
u1,...,uN−1,x1,...,xN

∑N−1

i=1
‖Rui‖p +

∑N−1

i=1
‖Qxi‖p + ‖QF xN‖p

subject to x0 = x
xi+1 = Axi + Bui, i = 0, . . . , N − 1
xi+1 ∈ X , ui ∈ U i = 0, . . . , N − 1

(13)

where xi and ui are future predicted states and inputs respectively, which are
constrained to be in the polytopes X and U . If the norm p is taken to be either
the 1− or ∞−norm, then a linear program results, which is the case of interest
in this paper. Conversion of this problem to the form of pLP (1) is discussed
in [1] and requires the introduction of several slack variables.

4.1 Closed-Form MPC for a 4D System

Consider the problem (13) with the following randomly generated system, which
is given as an example in the MPT toolbox [13]:

x+ =

0.7 −0.1 0.0 0.0
0.2 −0.5 0.1 0.0
0.0 0.1 0.1 0.0
0.5 0.0 0.5 0.5

x +

0.0 0.1
0.1 1.0
0.1 0.0
0.0 0.0

u

with a prediction horizon N = 5 and the constraints ‖ui‖∞ ≤ 1, ‖xi‖∞ ≤ 5 on
the input and state respectively. The cost is the minimisation of the ∞−norm
of the states and inputs at each point in time and the matrices Q, QF and R
are taken as the identity.

When the problem is written in the form of pLP (2), (3) the matrix A is
in R

20×120 and E is in R
4×120 and the solution contains 12, 128 critical regions.

While this problem may seem fairly small, there are many interesting and useful
control problems of this size and there are only a very small number of applica-
tions reported in the literature in which the parameter size is larger.

The proposed approach was compared against the two main methods for com-
puting pLPs reported in the literature. The method used in the Multiparametric
Toolbox (MPT [13]) is based on a similar exploration strategy as the proposed
method and solves an LP of the form (11) for every possible redundant ray.
The computation of adjacent critical regions is done using a linear program of
dimension equal to that of D, and is therefore less efficient than that given in
Theorem 3. The second method is that implemented in the Hybrid Toolbox [14]
and is based on an entirely different exploration strategy. The reader is referred
to [1] for details of this method.

From Table 1 one can see that the primal–dual algorithm offers a significant
reduction in the number of pivots required to compute the solution. The com-
putation of the convex hull for this example required 71.1 seconds to compute
using qhull [15]. To give an idea of speed, a 3GHz Pentium IV machine using
the Stanford Systems Optimization Laboratory (SOL) toolbox [16] can execute
the required pivots for the primal–dual approach in 36.6 seconds, which when
added to the time to compute the convex hull totals 107.7 seconds compared to
a total of 280.1 seconds for the MPT [13] approach.

Table 1. Comparison of pLP Methods for Example 4.1

Method Simplex Pivots

R
4

R
20

Primal–Dual 761, 487 76, 488
MPT [13] 6, 409, 503 670, 940
Hybrid Toolbox [14] > 2GB RAM

5 Conclusions

This paper has introduced a new method of enumerating the solution to a para-
metric linear program based on a primal–dual paradigm. It was shown that the
proposed algorithm can significantly reduce the number of linear programs that
need to be solved in order to determine irredundant descriptions of the critical
regions. The code used in the paper is available as part of the Multiparametric
Toolbox [13].

Acknowledgments

The authors would like to thank Eric Kerrigan and Komei Fukuda for their
valuable discussions while preparing this paper.

References

1. Borrelli, F., Bemporad, A., Morari, M.: A Geometric Algorithm for Multi-
Parametric Linear Programming. Journal of Optimization Theory and Applica-
tions 118(3) (2003) 515–540

2. Tøndel, P., Johansen, T., Bemporad, A.: An algorithm for multi-parametric
quadratic programming and explicit MPC solutions. Automatica (2003) 489–497

3. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E.: The explicit linear quadratic
regulator for constrained systems. Automatica 38(1) (2002) 3–20

4. Bremner, D., Fukuda, K., Marzetta, A.: Primal-dual methods for vertex and facet
enumeration. Discrete and Computational Geometry 20 (1998) 333–357

5. Bertsekas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific
(1997)

6. Jones, C.: Polyhedral Tools for Control. PhD thesis, University of Cambridge
(2005)

7. Ziegler, G.: Lectures on Polytopes. Springer-Verlag, New York (1995)
8. Fukuda, K.: Frequently asked questions in polyhedral computation. http://www.

ifor.math.ethz.ch/fukuda/polyfaq/polyfaq.html (2000)
9. Preparatat, F., Shamos, M.: Computational Geometry: An Introduction. Springer-

Verlag, New York (1985)
10. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.: The double description method.

In Kuhn, H., Tucker, A., eds.: Contributions to the Theory of Games II. Volume 8
of Ann. of Math. Stud. Princeton University Press (1953) 51–73

11. Seidel, R.: A convex hull algorithm optimal for point sets in even dimension. Mas-
ter’s thesis, Dept. of Computer Science, University of British Columbia, Vancouver,
Canada (1981)

12. Goodman, J.E., O’Rourke, J., eds.: Handbook of Discrete and Computational
Geometry. CRC Press, New York (1997)

13. Kvasnica, M., Grieder, P., Baotić, M.: Multi-Parametric Toolbox (MPT) (2004)
http://control.ee.ethz.ch/∼mpt/.

14. Bemporad, A.: Hybrid toolbox (2005) Version 1.0.10, http://www.dii.unisi.it/
hybrid/toolbox/.

15. Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls.
ACM Trans. Math. Softw. 22(4) (1996) 469–483

16. Murray, W., Saunders, M.: Systems Optimization Laboratory (SOL) (2006)
http://www.sbsi-sol-optimize.com.

