471 research outputs found

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    A hybrid tree/finite-difference approach for Heston-Hull-White type models

    Full text link
    We study a hybrid tree-finite difference method which permits to obtain efficient and accurate European and American option prices in the Heston Hull-White and Heston Hull-White2d models. Moreover, as a by-product, we provide a new simulation scheme to be used for Monte Carlo evaluations. Numerical results show the reliability and the efficiency of the proposed method

    A Lévy Option Pricing model of FFT-Based High-order Multinomial Tree

    Get PDF
    This paper studies the method of constructing high order recombined multinomial tree based on fast Fourier transform (FFT), and applies multinomial tree option pricing under the Lévy process. First, the Lévy option pricing model and Fourier transform are introduced. Then, the network model based on FFT (Markov chain) is presented. After that, a method of constructing a recombined multinomial tree based on FFT is given. It is proved that the discrete random variables corresponding to the multinomial tree converge to the Lévy distributed continuous random variable. Next, we obtain the European option pricing formula of FFT multinomial tree pricing, and apply the reverse iteration method to the American option pricing. Finally, under the Jump-diffuse process, the difference between the computational accuracy and computational efficiency of the Semi-analytical solution of European Option and Merton European Call Option which are priced under FFT is compared. The results show that the method of constructing a high-order recombined multinomial tree based on FFT has very high calculation precision and calculation speed, which can solve the problem of traditional risk-neutral multinomial tree construction and it is a promising pricing method for derivative products

    Numerical methods for option pricing.

    Get PDF
    This thesis aims to introduce some fundamental concepts underlying option valuation theory including implementation of computational tools. In many cases analytical solution for option pricing does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations and finite difference methods. First, an algorithm based on Hull and Wilmott is written for every method. Then these algorithms are improved in different ways. For the binomial tree both speed and memory usage is significantly improved by using only one vector instead of a whole price storing matrix. Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) which is capable of improving speed by a factor which equals the number of processors used. Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, obtained option values are compared to those obtained with popular finite difference methods, and it is discussed which of the algorithms is more appropriate for which purpose

    Randomized Binomial Tree and Pricing of American-Style Options

    Get PDF
    Randomized binomial tree and methods for pricing American options were studied. Firstly, both the completeness and the no-arbitrage conditions in the randomized binomial tree market were proved. Secondly, the description of the node was given, and the cubic polynomial relationship between the number of nodes and the time steps was also obtained. Then, the characteristics of paths and storage structure of the randomized binomial tree were depicted. Then, the procedure and method for pricing American-style options were given in a random binomial tree market. Finally, a numerical example pricing the American option was illustrated, and the sensitivity analysis of parameter was carried out. The results show that the impact of the occurrence probability of the random binomial tree environment on American option prices is very significant. With the traditional complete market characteristics of random binary and a stronger ability to describe, at the same time, maintaining a computational feasibility, randomized binomial tree is a kind of promising method for pricing financial derivatives

    Singular points binomial method for pricing American fixed lookback options

    Get PDF
    An option is the opportunity to buy or sell an underlying asset with a fixed price at a given time in the future. One of the biggest difficulties in option theory is determining the correct value of an option. In this thesis, we discuss what European and American options are, we further move on to price American lookback options using the singular point method. We use singular points which are formed on the nodes of the tree and apply the binomial method to find price of the option which are represented as continuous piecewise linear functions. The reflection principle and combinatorics are used in pricing European lookback options. Under the reflection principle the emphasis is on finding the appropriate probability convenient to use in pricing the option under the method suggested by John Hull
    corecore