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Abstract 
 

This thesis aims to introduce some fundamental concepts underlying option valuation theory 

including implementation of computational tools. In many cases analytical solution for option pricing 

does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations 

and finite difference methods. First, an algorithm based on Hull [1] and Wilmott [2] is written for every 

method. Then these algorithms are improved in different ways. For the binomial tree both speed and 

memory usage is significantly improved by using only one vector instead of a whole price storing matrix. 

Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) 

which is capable of improving speed by a factor which equals the number of processors used. 

Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, 

obtained option values are compared to those obtained with popular finite difference methods, and it is 

discussed which of the algorithms is more appropriate for which purpose. 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 
  

In most cases calculation of large number of prices is required in short time, so fast and accurate 

calculation of option price is crucial. This thesis reflects both option pricing theory and practice. 

A brief introduction to options is given in chapter one. This chapter includes arguments such as 

arbitrage and risk free rate as well as a description of the stochastic processes followed by the 

underlying asset. All of these form the basis for the most famous model in financial derivatives, the Black 

Scholes Merton model described by its PDE. Solution of the BSM equation will be used as a reference for 

the developed algorithms. 

As the asset return models become more and more complex, closed form formulas are either 

not available or too complicated for implementation. Therefore, one must reach for numerical solutions. 

Chapter 2 introduces the three most popular methods for this purpose: binomial trees, Monte Carlo 

simulations and finite difference methods. For each method used in this chapter we use the following 

outline: first we describe the method and the different approaches for pricing European options. 

Second, we implement algorithms and the resulting option prices are compared to those produced by 

analytical solutions, we also compare the speed of the different approaches. Having the results validated 

by BSM solution, algorithms with minor changes are applied to basic American options. And lastly, for 

every method in this chapter there is a discussion to emphasize advantages and drawbacks of each 

particular algorithm. At the end of chapter 2 we present the results obtained for American put options 

using different numerical approximations discussed before.   

The final chapter contains the conclusions drawn from the obtained results in the preceding 

chapter. According to ability, speed and accuracy, we suggest the most appropriate algorithm for pricing 

different options. This is followed by suggested future work. 

 

1.1. Introduction to options 
 

A derivative instrument is a contract between two parties that specifies conditions (especially the 

dates, resulting values of the underlying variables, and notional amounts) under which payments are to 

be made between the parties [3]. Nowadays, the financial derivatives are widely used; in fact the 

markets for the options, futures, forwards and swaps are much bigger than the market of underlying 

assets and stocks themselves. Options are one of the most popular derivatives, and they are the subject 

of this thesis.  

An option is a financial instrument that gives one the right to buy or sell underlying asset at (or by) a 

specified date at a certain price. Some jargon used in options market is now introduced. People who buy 

the options are called the buyers or holders of the options and those who issue the options, the writers 

or sellers. An option to buy some security is called a “call” option, while an option to sell is “put” option. 



The price which is guaranteed by the option is called the “strike” price and the option is said to have 

been “struck” at that price. Finally, the prescribed date is called the maturity date or expiry. 

There are many different sorts of rules for how and when the option can be exercised. The simplest 

sort is the “European” option which can be exercised on one specified date in future for a price arranged 

in contract. An “American” option can be exercised in any day before a specified date in the future. The 

options mentioned above are generally called “vanilla” options to express the fact that they are 

standardized and less interesting than “exotic” options *4]. 

 

1.2. European options 
 

The value of an option at its expiry is usually called the payoff function. Let’s analyze now payoff of 

European options. As stated, a holder of European call/put option has the right to buy/sell (exercise) an 

underlying for strike price at expiration date. Whether the buyer will exercise option depends on price 

of asset at that date, i.e. if the price is higher/lower it will make profit to holder, therefore this 

opportunity should be exploited. But if the price is lower/higher the investor will clearly choose not to 

exercise [Hull]. Therefore formula for the payoff of long position (holder) in a European call option is: 

max(ST-K,0) 

and payoff of long position in put,  

max(K-ST,0). 

Vice versa, for the writer of the option, that is short position in European call 

-max(K-ST,0)= min(K-ST,0) 

and the payoff from a short position in European put option is 

-max(ST-K,0)= min(ST-K,0). 

Here ST denotes price of asset at maturity, while K stands for strike price. Next figures illustrate payoff 

diagrams [Hull]. 



 

Figure 1.1.1. Option payoff: a) long call b) short call c) long put d) short put 

After all, it can be concluded that option must cost something, since one can make riskless profit by 

getting into long positions, also the writer of the option must be compensated for the obligation he has 

assumed [2]. In the next part is determined what should be the price of a European calls and puts. 

 

1.3. Arbitrage and risk free rate 
 

Before modeling and finding the formula for option price, couple of fundamental concepts must be 

presented; these will be used as a tool for calculating option prices, and first one is arbitrage. 

Definition:  A portfolio is an arbitrage portfolio, if today it is of non-positive value, and in the future it has 

zero probability of being of negative value, and a non-zero probability of being of positive value [4]. 

In other words, there are never opportunities to make an investment to make instantaneous risk-free 

profit, at least such opportunity cannot exist for a significant length of time before prices move to 

eliminate them [2]. 



Other fundamental concept is assumption on existence of risk-free investment. This means that for 

the investment asset (or money) no risk of default by the counterpart exists. A good approximation of 

such are a government bonds, deposit in a bank with best credit rating or lately (after crisis) swaps. 

Portfolio invested in one of these gives back risk-free interest rate r. 

 

1.4. Modeling asset price  
 

For the price to be found it should be modeled first. Efficient market hypothesis (EMH) considers 

that asset price follow stochastic process. It basically says that current price fully reflects past history, 

also it states that market responds immediately to any new information about the asset. Because of 

these assumptions, asset price is said to have Markov properties i.e. the probability distribution of the 

price at any particular future time is not dependent on the particular path followed by the price in the 

past. 

Furthermore, it is usual to represent change in asset price using return𝑑𝑆 𝑆 , rather than absolute 

change. All of this brings us to most common model, geometric Brownian motion model for asset price 

movement. 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 + 𝜎𝑑𝑋  

The parameter 𝜇 is the expected rate of return on the asset and along with 𝑑𝑡 it represents 

deterministic part of return, also called drift. It depends on the riskiness of the asset, as well as on level 

on interest rates in economy. In this thesis 𝜇 is taken to be constant, but in more complicated models, 𝜇 

can be a function of S and t.  Further, the variable  𝜎 is the volatility (𝜎2 is variance), and it is a measure 

of uncertainty about returns provided by the asset. It represents standard deviation of return, and it can 

be calculated in many ways. Finally, 𝑑𝑋 contains the information about the randomness of the asset 

price and is known as Wiener process or standard Brownian motion. 𝑑𝑋 is a random variable which 

follows a normal distribution, with mean zero and variance 𝑑𝑡, therefore 𝑑𝑋 can be written as 

𝑑𝑋 =  𝜑 𝑑𝑡 [5]. Here 𝜑 is random variable with a standardized normal distribution. Its probability 

density function is given by 

𝑓 𝜑 =
1

 2𝜋
𝑒−

1

2
𝜑2

𝑑𝜑, 

for −∞ < 𝜑 < ∞. With the definition of expectation operator 𝜀 given by 

𝜀[𝐹 ∙ ] =
1

 2𝜋
 𝐹 𝜑 
∞

−∞
𝑒−

1

2
𝜑2

𝑑𝜑, 

For any function F, we have 

𝜀 𝜑 = 0, 𝜀 𝜑2 = 1  [Wilmott]. 



 

Further, it can easily be concluded, that if there is no uncertainty about the price (st.dev is 0) 

𝑑𝑆

𝑆
= 𝜇𝑑𝑡 

Integrating between time 0 and time T, we get 

𝑆𝑇 = 𝑆0𝑒
−𝜇𝑇  

Where 𝑆0 and 𝑆𝑇  are the stock price at time 0 and time T. This equation illustrates that when there is no 

uncertainty, the price grows at continuously compounded rate 𝜇 per unit of time [1], and it represents 

time value of money. 

 

1.5. The Black-Scholes-Merton Model 
 

Black-Scholes-Merton model gives the partial differential equation which must be satisfied by the 

price of any derivative dependent on non-dividend asset. Starting point in derivation of the BSM 

equation is Ito’s lemma (more on lemma and its derivation in [4], [6] and [1]). 

𝑑𝑓 =  
𝜕𝑓

𝜕𝑆
𝜇𝑆 +

𝜕𝑓

𝜕𝑡
+

1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2 𝑑𝑡 +

𝜕𝑓

𝜕𝑆
𝜎𝑆𝑑𝑋 

Latest equation presents the random walk followed by 𝑓, where 𝑓 is the  price of derivative which is 

affected by S and t. 

Idea of Black-Scholes-Merton model is to create riskless portfolio, which means eliminating 

stochastic part in it. Therefore, return from that portfolio should equal to risk-free interest rate (r), in 

the absence of arbitrage argument. Risk-less portfolio in this case involve (short) position in the 

derivative and appropriate amount of underlying stock (asset). This can be done because both depend 

on the same source of uncertainty, i.e. stock price movements.  

Finally, before BSM equations are derived, some assumptions must be made. 

1. The stock price follows the process developed stochastic process with 𝜇, and 𝜎 constant.  

2.  The short selling of securities with full use of proceeds is permitted.  

3.  There are no transactions cost or taxes. All securities are perfectly divisible.  

4. There are no dividends during the life of the derivative.  

5. There are no riskless arbitrage opportunities.  

6. Security trading is continuous.  

7. The risk-free rate of interest, r, is constant and the same for all maturities. 

Now all the tools we need for deriving BSM equation are set [1]. 



Consider the situation when (as mentioned above) the holder of portfolio is short one derivative 

and long an amount 
𝜕𝑓

𝜕𝑆
  of shares with a goal to eliminate stochastic part. 𝛱 denotes the value of 

portfolio 

Π = −𝑓 +
𝜕𝑓

𝜕𝑆
𝑆 

The change 𝑑Π in the value of portfolio value in the time interval 𝑑t is given by 

𝑑Π = −𝑑𝑓 +
𝜕𝑓

𝜕𝑆
𝑑𝑆 

(
𝜕𝑓

𝜕𝑆
 is held fixed during very short period of time). Substituting geometric Brownian motion equation and 

Ito’s lemma into later equation yields:  

𝑑Π = (−
𝜕𝑓

𝜕𝑡
−

1

2

𝜕2𝑓

𝜕𝑆2
𝜎2𝑆2)𝑑𝑡 

So stochastic part is eliminated, i.e. portfolio is risk-less therefore it should earn risk-free interest rate 

𝑑Π = rΠ𝑑𝑡 

Substituting equations for Π and  𝑑Π, we arrive at 

 
𝜕𝑓

𝜕𝑡
+

1

2

𝜕2𝑓

𝜕𝑆2 𝜎
2𝑆2 𝑑𝑡 = 𝑟(𝑓 −

𝜕𝑓

𝜕𝑆
𝑆)𝑑𝑡. 

We finally got Black-Scholes-Merton, which after sorting looks like this 

𝜕𝑓

𝜕𝑡
+ 𝑟𝑆

𝜕𝑓

𝜕𝑆
+

1

2
𝜎2𝑆2 𝜕2𝑓

𝜕𝑆2  = 𝑟𝑓. 

This is stochastic differential equation, and solving it requires boundaries which will be described in next 

section.  

 Under assumptions stated above and with appropriate boundaries this equation has analytical 

solution for European options (more on derivation in [1]): 

𝑐 = 𝑆0𝑁 𝑑1 −  𝐾𝑆−𝑟𝑇𝑁(𝑑2) 

where c stands for price for call, the formula for put (p) is: 

𝑝 = 𝐾𝑆−𝑟𝑇𝑁 −𝑑2 − 𝑆0𝑁 −𝑑1  

where 

𝑑1 =
ln  

𝑆0
𝐾
 +  𝑟 +

𝜎2

2
 𝑇

𝜎 𝑇
 



𝑑2 =
ln  

𝑆0
𝐾
 +  𝑟 −

𝜎2

2
 𝑇

𝜎 𝑇
= 𝑑1 − 𝜎 𝑇 

 

The N(X) is the cumulative probability distribution function for standardized normal distribution.  

 

1.6. Boundaries 
 

Bounds are important for finding solution for every differential equation whether it will be 

calculated numerically or analytically. First boundary is the most obvious one; the call option cannot be 

worth more than stock at current time, it stands for both American and European 

Call ≤ S(0) 

This is upper bound and if this was not true, the opportunity for arbitrage would exist, i.e. one could buy 

stock and sell the call option to obtain riskless profit. Lower bound for European call is  

c ≥ S(0)-Ke-rT 

Otherwise arbitrageur could buy an option and short the stock, with difference deposited at rate r. 

For European put option following is valid, 

Max(Ke-rT-S(0),0) ≤ p ≤ Ke-rT 

If left side of equation was different arbitrageur could buy put and take long position in stock (by 

borrowing money at rate r) to make profit. If the right side was not true profit would be made by selling 

put, and investing it at riskless  rate r, then if option is exercised writer of the option would surely have 

more than enough money to buy an asset for K.  

 Bounds on American put option; 

Max(K-S(0),0) ≤ P ≤ K. 

Similar arbitrage opportunities as described are cause for these bounds. 

What would be the lower boundary for American call option? It would be 

C ≥ S(0)-K 

So the option is always greater than its intrinsic value for sure. Meaning of this is that American call 

option should never be exercised before expiration date. Intuition suggests that American option should 

be more valuable than European since it has all the same opportunities as European and some more, 



and it true is for put. But because American call obviously doesn’t provide more opportunities than 

European, it must have the same value as European call.  

 

1.7. Who uses options and some exotic options 
 

There are many different reasons to participate in the markets, but a broad classification of 

participants can be made according to their attitudes towards risk [4]. 

- The hedgers use market instruments to reduce risks. Usually companies use derivatives to 

reduce risk of buying or selling commodities at unfavorable prices.  

- The speculator uses market instruments to increase his risk, meaning earning more profit. Using 

options speculator makes leverage in order to increase gains. 

- The arbitrageur tries to spot discrepancies in the pricing of instruments (derivatives, stocks…). 

When spotted one can make riskless profit by buying at lower price and selling at larger, or 

similar. 

Now some more derivative types, called exotic options will be introduced. 

- Bermudan options – nonstandard American options with early exercise restricted to certain 

dates 

- Barrier options – the payoff depends in whether the underlying asset’s price reaches a certain 

level during a certain period of time (down-and-in/out, up-and-in/out, knock-in/out…) 

- Lookback options – price depends on the maximum or minimum reached during option’s life 

- Asian options – payoff depends in the arithmetic average of the underlying asset’s price during 

the life the option 

There are many other options available on the market, but these are introduced because they are going 

to be mentioned in thesis. 

 

 

 

 

 



2. Numerical methods for option pricing 

 

2.1. Binomial tree 
 

The first numerical procedure for option pricing which will be analyzed is binomial tree, it is one 

of the simplest and most widely used methods. Particularly the Cox, Ross, Rubinstein (CRR) [7]tree is 

going to be used in this thesis. The CRR binomial tree is a discrete version of the Black-Scholes constant 

volatility process.  Every numerical solution is just an approximation of the price, the aim here is to find 

how it behaves, and how to obtain the most precise and the fastest solution.  

Binomial pricing model arises from discrete random walk models of the underlying asset. The 

idea is to break down the time to expiration into potentially very large number (N) of time intervals, or 

steps (0, dt, 2dt…ndt where n is natural number n≤N) . First step is to initial the tree of stock prices by 

moving forward from present to expiration. At each step it is assumed that the stock price will move up 

(by the factor u) or down (factor u). 

  

Figure 2.1.1. Graphical representation of binomial tree 

One should find a way to calibrate the lattice so that it reflects the underlying model which is a 

continuous-time, continuous-state stochastic differential equation [8]. Following this model, no-

arbitrage and risk neutral principles crucial parameters are obtained (derivation in [1] and [2]). 

Risk-neutrality demands: 𝑆𝑒𝑟  𝑑𝑡 = 𝑝𝑆𝑢 +  1 − 𝑝 𝑆𝑑, that is 𝑒𝑟  𝑑𝑡 = 𝑝𝑢 +  1 − 𝑝 𝑑, 𝑝 is probability of 

an up movement, and since it is binomial tree (1-p) is the probability of a down movement. Equation 

reflects that discounted expected return equals current price. 

Using condition introduced by Cox, Ross, Rubbenstein: 

𝑢 =
1

𝑑
 



Following are obtained: 

𝑝 =
𝑒𝑡𝑑𝑡 − 𝑑

𝑢 − 𝑑
 

𝑢 = 𝑒𝜎 𝑑𝑡  

𝑑 = 𝑒−𝜎 𝑑𝑡 . 

From figures and equations, it can be concluded that tree recombines so that in every time step we have 

in ith step i+1 prices (some are recombined, i=0...N), totaling (N+1)(N+2)/2 nodes (lattices) in tree of N 

steps. Also there are 2N+1 different possible price (this will be useful later). Furthermore, as price at 

time zero is known (S0) , all feasible prices are obtained using 

𝑆0𝑢
𝑗𝑑𝑖−𝑗  or 𝑆0𝑢

2𝑗−𝑖  

Since  𝑢 =
1

𝑑
. 

Having the tree of stock prices constructed, and with all parameters, it can be derived how to 

get the price of particular option, working backward in the tree. At the end step of the tree, i.e. at 

expiration of the option, the option values for each possible stock price are known, as they are equal to 

their intrinsic values. Assuming that the pay-off function of the option is determined only by the value of 

the underlying asset at expiration, the model then works backwards through each time interval, 

calculating the option value at each step. The final step is at current time and stock price, where the 

theoretical fair value of the option is calculated. Algebraically it means for call option: 

𝑓𝑁,𝑗 = max 𝑆0𝑢
𝑗𝑑𝑁−𝑗 − 𝐾, 0 , 𝑗 = 0,1,… ,𝑁 

And for put option 

𝑓𝑁,𝑗 = max 𝐾 − 𝑆0𝑢
𝑗𝑑𝑁−𝑗 , 0 , 𝑗 = 0,1,… ,𝑁. 

Followed by working backward trough the tree 

𝑓𝑖 ,𝑗 = e−rdt  𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗  , 𝑗 = 0,1,… ,𝑁. 

and j denotes lattice position in i-th step of the tree, so it can take values up to i. 

The main reason for introducing Binomial tree was inability to calculate the price of an American style 

option using BSM equation. So, following equations are taking into account early exercise possibility in 

American calls and puts: 

𝑓𝑁,𝑗 = max 𝑆0𝑢
𝑗𝑑𝑁−𝑗 − 𝐾, e−rdt  𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗    

𝑓𝑁,𝑗 = max 𝐾 − 𝑆0𝑢
𝑗𝑑𝑁−𝑗 , e−rdt  𝑝𝑓𝑖+1,𝑗+1 + (1 − 𝑝)𝑓𝑖+1,𝑗   . 



2.1.1. Implementation and results 

 

Binomial tree is pretty much strait forward for implementation. Custom made functions (some 

based on [8]) are done in MatLab: 

Functions 

-  Eur.m – direct tree implementation from Hull’s book, , returns both call and put 

-  EurSmart.m – more efficient implementation (description follows)  

-  AmPut.m – similar to Eur.m just for American puts 

-  AmPutSmart.m – similar to EurSmart 

Main programs 

- ProgramEu – requires inputs, returns comparison plot of time required for Eur.m and 

EurSmart.m for different number of steps used in tree, also calculates BSM both put and call 

prices using analytical solution, as well as doing it numerically (averaging prices for N and N-1)  

- ProgramAm – does the similar as ProgramEu.m, with addition of calculating American put 

option using control variate technique. 

In next figure and table some example results are presented for American put option. 

 

Figure 2.1.2.Binomial tree for American option as an output of DerivaGem – Version 2.01 in Excel, 

J.C.Hull [1] 



i=0 1 2 3 4 5 

4.48845853 2.16251918 0.63598365 0 00 0 

 
6.95974257 3.77114151 1.30166583 0 0 

  
10.3612944 6.37804304 2.66411557 0 

   
14.6388824 10.3106497 5.45263739 

    
18.4951094 14.6388824 

     
21.9308043 

Figure 2.1.3.Output of AmPut.m 

AmPut.m can return list of matrix elements where early exercise occurred. 

 

Now the behavior of Eur.m is analyzed and compared to MatLab internal function blsprice.m, on an 

example with same parameters as before on European call option (S(0)=50, vol=0.4, r=0.1, T=5/12, 

K=50). It is direct application of simplest algorithm for binomial tree described in Hull. From the figure it 

can be noticed that binomial tree is not good at all at beginning (small number of steps used), but it 

converges to the right price in every step (or every few steps).  

 

Figure 2.1.4.Convergence of Binomial tree with increase in Number of steps 

 
blsprice 500 1000 1500 2000 2500 3000 

time (s) 0.3132498 0.027121 0.079032 0.174457 0.312989 0.469533 0.683818 

price 6.1165081 6.1139620 6.1152349 6.1156593 6.1158715 6.115999 6.116084 

error 0 -0.0025461 -0.0012732 -0.0008488 -0.0006366 -0.00051 -0.00042 
Table 2.1.1. European option time and resulting price using binomial tree 
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All measurements from now on, except when it is stated otherwise are done on Lenovo G560 Laptop 

(Intel Celeron T3500 (2 cores 2.1GHz), 2GB DDR2 RAM) in Windows 7 environment. 

Although it successfully provides decent approximation, there are few downsides of binomial 

tree implemented as in Eur.m and AmPut.m. As traders require really precise value of option the 

drawback of binomial tree is that it converges very slow to BSM price, when using 3000 steps 

measurement uncertainty is ~0.00042 in this case (which can be a lot of money, considering the huge 

possible amounts of trades). Furthermore there is a memory issue, which means that N can’t be taken 

as large as we want since the algorithm is using matrix of (N+1)x(N+1). On tested computer and MatLab 

version maximum N is 6938, which is not enough in many cases. Finally, at N=500 lattice method is 

significantly faster than blsprice but increasing number of steps computational price rises, logically, at 

rate of ~n^2 (where n is factor of increase in steps).  

 

2.1.5.Possible scheme for storing prices 

If having the whole tree in the memory is not required, and it isn’t in most of the cases, 

algorithm can be improved. It can be noticed that only one vector of length 2xN+1 can be used for 

storing all the possible stock prices (ud=1, as already explained tree recombines), instead of matrix. This 

is illustrated in the figure 2.1.5. It can be noticed that odd numbered lattices correspond to the last time 

layer, whereas even numbered entries correspond to the second to last time layer, and so on. So the 

algorithm function in the following manner: first put all payoffs at odd numbered places in vector, then 

continue computing as in first algorithm with difference that everything is stored in one vector, 

alternating between using odd and even places in vector, until finally option price is calculated. Its 

position is N+1 in vector. 



 

Figure 2.1.6.Convergence with the same parameters only stock price is changed S(0)=55 

( N=500 for illustration) 

Using binomial tree price of the option can be determined with a precision that we need, it is 

just question of computational time. The “smart” functions which use improved algorithm are usually 

much faster than original algorithm, furthermore they are far more memory efficient providing us with a 

possibility of using many more steps to obtain more precise value (the time can be even more decreased 

if in function only one price is calculated put or call not the both).  

Moreover, in order to improve the precision and memory usage of the algorithm, intuition may 

suggest finding some kind of an average of the couple of last prices. Looking at plot in figure 2.1.4 it 

seems that it would give value which is really close to BSM price, and it would, but only in this case when 

exercise and stock price are same. With different parameters convergence is more likely to look like one 

on figure 2.1.6. So it cannot be done with just averaging few values, although it provides somehow 

better results. Some other techniques can be used (just use smaller value of two consecutive numbers 

of steps, or use low pass filters, moving-average…). 

Figures 2.1.7. and 2.1.8. compare the speed of two algorithms. For European option “smart” 

algorithm is approximately two times faster as can be seen from table 2.1.1. too. On figure for American 

option first can be noticed that direct implementation with tree is much slower than smart, while times 

for improved algorithms are similar to those in European smart. 
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Figure 2.1.7.Speed Comparison: EurSmart.m and EurPut 

 
Figure 2.1.8.Speed Comparison: AmPutSmart.m and AmPut 

S(0)=48; K=50; r=0.1; vol=0.2; T=0.5; N=3000; yields price for American option 2.927356 
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2.1.1.1. AMERICAN OPTION CONTROL VARIATE TECHNIQUE 

 

CRR method’s greatest advantage is that it can easily handle pricing of American options. There 

are techniques which improves CRR performance when dealing with early exercise. Accuracy and 

therefore speed of binomial tree technique can be improved by using control variate technique. It 

involves using same the number of steps and same parameters (and therefore using the same tree), for 

both American and European option. As exact solution using BSM exists, meaning that error can be 

calculated for CRR European style option. Moreover, it is assumed that it equals the error of American 

option, so price of American option can be approximated [1].  

To put it to test author used the same parameters as in 2.1.1. and with S(0)=55. Results are following: 

Price of American option using AmPutSmart: 2.595617 

Prices for European put using BSM, CRR and their difference:    BSM= 2.489511  

CRR = 2.490316 (N=300) 

dif=    -0.000805 

Control variate technique therefore gives: 2.594812 

Price for American option using 30001 time steps: 2.594661  European: (large 2.489548) 

It was tested with similar results with other values and number steps. Control variate technique 

obviously reduces error, so finally one can say that American option price can be approximate with 

decent precision using binomial tree and control variate technique. 

 

2.1.2. Conclusion 

 

In this chapter the basics of the binomial model were described. Also, pricing equations and 

algorithms were derived for both European and American-style exercise. The method can be extended 

in many ways, to incorporate dividends, to allow Bermudan exercise, to value path-dependent contracts 

and to price contracts depending on other stochastic variables such as interest rates. The main 

advantage of binomial trees is easiness of implementation and it is easy to understand it. The author has 

not gone into the method in any detail for the simple reason that the binomial methods just a simple 

version of an explicit finite-difference scheme. As such it will be discussed in FDM chapter, which are far 

more flexible [9]. 

 

 



2.2. Monte-Carlo 
 

Monte Carlo simulation is an important tool in computational finance, in fact for many applications 

it is the only way to price a derivative. Starting point for constructing simulation is, again, stochastic 

differential equation based on Brownian motion. If we recall from introduction, the fair option value in 

the Black-Scholes world is the present value of the expected payoff at expiry under a risk-neutral 

random walk for underlying [9] 

Using two facts mentioned above Monte Carlo simulation for option pricing is based on following simple 

steps: 

- Generate path of stock price using random walk model in risk-neutral world 

- Get payoff 

- Perform many more such realization over time horizon 

- Calculate average payoff for all realization to get expected payoff 

- Present value of this average payoff is an approximation of option price 

Paths are generated using: 

𝑑𝑆 = 𝑟𝑆𝑑𝑡 + 𝜎𝑆𝜑 𝑑𝑡  

This discrete way of simulating the time series for stock price is called Euler method. It implies that 

change in price can be calculated from previous step price.  

Moreover, for lognormal random walk there is simple, and exact, time stepping algorithm. Ito’s lemma 

leads to: 

𝑑 𝑙𝑛𝑆 =  𝑟 −
1

2
𝜎2 𝑑𝑡 + 𝜎𝜑 𝑑𝑡 

which after integrating provides: 

𝑆(𝑡 + 𝑑𝑡) = 𝑆 𝑡 exp( 𝑟 −
1

2
𝜎2 𝑑𝑡 + 𝜎𝜑 𝑑𝑡).  (2.2.1) 

What is important here is that there is no need for dt to be small as formula is exact, thus it is the best 

time stepping algorithm to use. Also, if one is not interested in path of the option, payoff can be directly 

calculated by taking T as a time step. 



 

One possible GBM path created using derived formulas for N time steps 

As for measurement uncertainty, Euler’s approach has an error of 𝑂(𝑑𝑡) (although better approximation 

exist, e.g. the Milstein method which has an error of 𝑂(𝑑𝑡2)). To illustrate without proving it, take dt as 

time step for some path dependent options, e.g. barrier option. There is a possibility of missing the 

barrier being triggered between steps [9]. So it can be interpreted that the error which comes from the 

finiteness of the time step is 𝑂(𝑑𝑡). 

Furthermore, consequence that only limited number of paths can be produced is error which 

equals 𝑂(𝑁−
1

2), where N is number of paths. So the total error is the worst error of two 𝑂(𝑑𝑡) and 

𝑂(𝑁−
1

2). To minimize this, it is required to keep 𝑁 = 𝑂(𝐾
2

3) and 𝑑𝑡 = 𝑂(𝑁−
1

3), where 𝐾 = 𝑂(
𝑁

𝑑𝑡
) [9].  

Therefore to increase precision by factor of X, number of simulations must be increased X2 times. 

One of the greatest advantages of MC is that it can handle European-style options that depend 

on many variables. Indeed, PDEs with d+1 (d number of dependent assets) variable can be written, but it 

would be very time consuming to compute, even comparing to MC. Equation for many variables is 

basically the same except 𝜑𝑖  which is correlated 

𝑆𝑖(𝑡 + 𝑑𝑡) = 𝑆𝑖 𝑡 exp( 𝑟 −
1

2
𝜎𝑖

2 𝑑𝑡 + 𝜎𝑖𝜑𝑖 𝑑𝑡). 

Correlated random variables are calculated using Cholesky decomposition (procedure is explained in 

[9]). 
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2.2.1. Implementation and results 

 

In this section, few different sequential implementations for Monte Carlo option pricing for vanilla 

options will be analyzed, it will be followed by parallel implementation with results and analysis. Finally 

next section is devoted to American up option. 

2.2.1.1. Sequential implementation  

 

Codes used for implementation and testing  are: 

- MCdt.cm – generate N option paths with n+1 time steps, applying directly formula (2.2.1) using   

for loops 

- MCvectorized.m – does the same as first two codes, only in the vectorized form which is far 

more suitable for Matlab, without for loops (furthermore it saves all paths in matrix); 

- MC1.m – generate N prices at T applying (2.2.1.) with for loops (using only one time step of size 

T, and loosing information about paths) 

- MC1vec.m – same as MC1.m in vectorized form  

- MC.c – same as MC1.m, only it is in C 

All are for European call option. 

Used parameter: S(0)=50, K=50, r=0.05, vol=0.3; T=0.5 with different N and n. 

 

Blsprice.m 
t=0.3s 

Call=4.817438 

Time [s] Prices 

MC1.m MC.c MC1vec.m MC1.m MC.c MC1vec.m 

N=10^8 251.69 30.5 7.12* 4.816782 4.817794 4.818059* 

N=10^7 25.35 3.84 0.788 4.814806 4.815388 4.818668 

N=10^6 2.54 0.3 0.078 4.824891 4.823329 4.811529 

Table 2.2.1.: results for MC1.m, MC.c, MC1vec.m 

* for loop used because N reached limit 

 

In table 2.2.1., functions which doesn’t calculate whole paths are compared (dt=T, n=1).It can be noticed 

that the same algorithm applied in C is more than 8 times faster than MatLab version. But MatLab deals 

with matrices/vectors better, so the vectorized MatLab code is ~4 times faster than algorithm in C. Also 

table shows (in prices part) how accuracy increases with more paths simulated. This is consistent with 

mentioned error 𝑂(𝑁−
1

2). What must be emphasized is that simulations implemented in this way are 



only useful for calculating European option, and it can be used as a foundation for the future 

development. 

code for vectorized implementation 

 Values_at_T=S*exp((r-0.5*vol^2)*T + vol*sqrt(T)*randn(N,1));   
 option_values=max(final_vals-K,0); 
  present_vals=exp(-r*T)*option_values;  
 price=mean(present_vals);  
 
 
Now somewhat more useful algorithms are compared, i.e. simulating whole path of stock price 
 

Blsprice.m 
t=0.3s 

Call=4.817438 

Time [s] Prices 

MCdt.m MCvectorized.m MCdt.m MCvectorized.m 

N=10^5, n=173 123.9 1.25 4.8212 4.8225 

N=10^6, n=20 143.2 1.47 4.8111 4.8215 

N=10^7, n=1 100 1.1 4.8165 4.8164 

100x N=10^5,n=173 * 13118 123 4.8156 4.8179 

Table 2.2.2. 
 

Again it can be seen that MatLab simulation using matrices, without loops is much faster than version 

with loops, in fact it is approximately 100 times faster. The difference is even greater when MCdt.m 

saves the paths. Advantage of MCvectorized.m against all the other MCs so far is that it stores paths in 

matrix, and one can now calculate American options, or any of the Exotic options. When the code 

produces paths but doesn’t save them, not all kind of options can be valued (e.g. American using 

Longstaff Schwarz method). Vectorized version though has one flaw, it requires a lot of memory so first 

three cases are near the maximum use of memory (on author’s Lenovo laptop).Third case is basically the 

same as 2nd case in table 2.2.1, but due different implementation it is slower, although not that drastic. 

Further, 4th example is useless in the sense of saving paths of the options, and it is presented in order to 

compare it MC1s results. In fact, both third and fourth examples converge to the right value at the same 

pace, and it doesn’t matter if many or just one step is used. This is implied by equation 2.2.1. 

Code for vectorized, paths are stored in SPaths 

Product=exp(nudt+sidt*randn(NPaths,NSteps)); 
SPaths=cumprod([S0*ones(NPaths,1),Product], 2); 
option_values=max(SPaths(:,NSteps+1)-K,0); 
price=mean(option_values)*dicount; 
int=1.96*std(option_values*discount)/sqrt(N);  % Compute confidence intervals (95%) 



2.2.1.2. Parallel implementation 

 

Obviously there is a need for improving speed simulation, since it is common to calculate many 

prices as well as Greeks and other parameters. In this thesis idea is to improve the speed of Monte-Carlo 

by using more processors. For this purpose triqui3.fi.upm.es was used (Dell Poweredge 2950 Dual 3 GHz 

Quad Core Intel Xeon , memory: 16GB per node: operating system: CenTOS 5.5,  Linux installed). 

Algorithm for parallel implementation is basically the same as MC1.m and MC.c with that difference that 

calculation are divided to more processors using MPI. Also since it is implementation in C, there is a 

need for generating numbers from normal distribution, for that purpose Box-Muller method is used, 

with all its flaws.  

Pseudo code for multi-processor implementation of Monte-Carlo  (mcMPI1.c) 

// rank of master is 0, and there is N processors so N-1 is the maximum rank 

If rank=master 
 //send the jobs to the slaves, i.e. 1...N-1 

   { 
For (rank=1..N-1) 

  // evenly divided number of total  number of simulation are sent to each processor 
   Send(n/N, rank) 
  EndFor 
  // after sending the work master continue to do the same simulation as slaves 
  For (i=1..n/N ) 

SimulatePath 
Payoff(i)=max(SimulatedPayoff,0) 

endFor 
//master calculated price is stored in Price(0) 

  Price(0)=discount*average(SimPay) 
// receive prices values from slaves, store it appropriately, and send end tag to processors 

For (rank=1..N-1) 
Receive(result, rank) 
Price(rank)=discount*result 
Send(end_tag, source.rank) 

  endFor 
} 

// Slaves 
Else  
 { 
 //receive number of simulations assigned/ check if tag is for ending 

Receive(n/N, tag) 
 If tag==end_tag{ 
  Break} 
 Else 
 // do the simulations, calculate prices, and send results to master 

   For (i=1..n/N ) 



SimulatePath 
Payoff(i)=max(SimulatedPayoff,0); 

endFor 
   Result=discount*average(SimPay)    
   Send(result, 0) 
  endIfElse 
 } 
 // calculate average of prices received by all processors 
 Price=sum(price(0…N-1))/N 
End  
 

Of course, this can be done differently using MPI_REDUCE or similar but above algorithm yields result 

which cannot be much better in this kind of implementation. Only drawback that may arise here is, if 

some processors are already used by another activity, the processor with greatest load will do required 

job slower and whole computational time will depend on slowest processor. This can be noticeable 

when working with more than 10^8 simulations. During testing usually processors finished in more or 

less same time (+-2.5%). So load of processors was the same. If different implementation was tried, 

worse times can occur because of communication time between the processors. So if other method is 

used attention must be devoted to minimize communication and maximize productivity. 

Other than mcMPI1.c two more were used: 

- mc.c – sequential implementation as in section 2.2.1.2 with MPI used just for timing  

- mcMPIat.c – uses antithetic variables to speed up convergence 

Antithetic variate technique deserves explanation. The method uses two estimates for an option value 

which are calculated using same set of random numbers. With that set, one approximation of future 

price is made and using the same random numbers only with minus sign the other estimate is simulated. 

Having two estimates prices are calculated in usual way find payoff and discount it. Final approximation 

using antithetic variables is the average of two estimates using same random set. Of course, since it is 

still Monte Carlo simulation this operation should be repeated many times to get an accurate estimate 

for the option value. This technique works because of the symmetry in the Normal distribution. This 

symmetry is guaranteed by the use of the antithetic variable [9]. 



 

Confidence intervals for plain MC vs. Antithetic [20] 

 

BSM price 
 

Call=4.817438 

Time [s] Prices 

mc.c mcMPI1.c mcMPIat.c* mc.c mcMPI1.c mcMPIat.c* 

 

N=10^6 

 

0.17 

 

0.046 

 

0.056 

4.816812 

4.809594 

4.815486 

4.804397 

4.813292 

4.80555 

4.817293 

4.816741 

4.817987 

 

10^7 

 

1.67 

 

0.40 

 

0.48 

4.820400 

4.814978 

4.820495 

4.818605 

4.82055 

4.817352 

4.817955 

4.818307 

4.817889 

 

10^8 

 

16.82 

 

3.96 

 

4.8 

4.818611 

4.817711 

4.816211 

4.817608 

4.818232 

4.817855 

4.817424 

4.818229 

4.817792 

 

10^9 

 

170.3 

 

41.32 

 

48.35 

4.817173 

4.817512 

4.817471 

4.817925 

4.817566  

4.817538 

4.817732 

4.817593 

4.817248 

Table 2.2.3. Comparison of price values and computational time for sequential, parallel and 

antithetic parallel algorithm 

* mcMPIat – uses basically 2xN paths for evaluation, but since computational time increases 

only by ~20% with that number of paths it is included in this table 

 



BSM price 
 

Call=4.817438 

 

Time [s] 

 

Price 

8.56x10^9 416.55 4.817409 

10^10 483.95 4.817438 

16x10^9* 787.1 4.817419 

Table 2.2.4. Output of antithetic parallel implementation for larger number of simulations with a goal to 

get the most accurate results using MC in this thesis 

* 3rd case is using near max unsigned long int, for maximum precision (loop can be added for whole 

function and evade max unsigned long int), in fact it uses 4(processors) x 4e9 (~max unsigned int) x 2 

(antithetic)=32e9 different paths. 

 

 

2.2.2. American options Longstaff Schwartz method - algorithm and results 

 

 As stated before, valuation of derivative with early exercise feature is the major challenge in the 

field. Monte Carlo simulation is generally considered as not particularly well suited for valuing American 

options. In this section Longstaff Schwarz [10] method is presented. It is one of the simplest methods to 

implement, since only least squares are required to find appropriate value. Yet, method is powerful and 

can be applied to derivatives with both path-dependent and American-exercise features. Also, LSM 

allows variables to follow stochastic processes such as jump diffusions so it can be very general. 

  Method will be described now. In LSM once again we go backwards, that is first step is to 

calculate cash flows at received at expiration date. Then in every step check for every path if it is in the 

money, if so we it should be decided whether it is good time to exercise. To estimate the expected cash 

flow from continuing the option’s life conditional on the stock price at time which is currently observed 

discounted continuation values from previous step (i+1) are regressed to current (i). It is done in 

following way using least square. First calculate coefficients a,b,c by minimizing: 

 (𝑉𝑘 − 𝑎 − 𝑏𝑆𝑘 − 𝑐𝑆𝑘
2)2𝑛

𝑘=1   (2.2.2.1) 

Here, k represents one of the in the money paths, and n is total number of paths with positive payoff at 

current time-step. S represents stock price at current time step, and V is discounted value of continuing 

discounted to current step. When coefficients are calculated then continuing values for current time 

step can be found using. 

𝑉 = 𝑎 + 𝑏𝑆 + 𝑐𝑆2 



These values are compared to the value of exercising option, and if the option should be exercised its 

exercise value is taken into account in cash flows. Proceeding recursively backwards next time step is 

evaluated, and so on until present time is reached. Only, the realized discounted cash flows are used for 

previous step (in first step payoffs). The value of the option is determined by discounting each cashflow 

back to time zero, and calculating mean of the results. 

Comment: In LSM if at node option is out of the money it doesn’t matter what the continuation value is 

since it is easier to accurately fit on a smaller domain, so only in-the-money are taken into account. On 

the other hand Glasserman [11] recommends using out-of-the money options as well. 

 

2.2.2.1. Implementation and results 

 

Algorithm is implemented in LSM_American.m, parameters used for testing are: S(0)=55, K=50, r=0.1, 

vol=0.3, T=1 and binomial tree with 3000 steps using control variate technique gives price 2.604429, 

while LSM method with 173 time steps and 10^5 paths outputs 2.601976, which is a decent 

approximation for 10^5 path. Although, it must be emphasized that LSM MC can produce better and 

worse approximation than this one since it is stochastic 

 

 



2.2.3. Conclusions 

 

Monte Carlo is often used because of the following advantages: 

- Mathematics is usually very basic 

- Path dependent options are easily incorporated 

- It is widely used for options affected by more variables 

- Correlations are easily modeled 

- To get better accuracy simply run more simulations 

And drawbacks are: 

- Computational cost                            -   not  so easy pricing of American options 

 

2.3. FDM 
 

Finite difference methods (FDMs) is the generic term for a large number of procedures that can be 

used for solving a (partial) differential equation, which have as a common denominator some 

discretization scheme that approximates the required derivatives [12]. FDM cope very well with rather 

smaller number of dimensions. Here, techniques that suits best BSM PDE will be introduced and 

implemented.  

Idea in finite difference method is to find solution for differential equation by approximating 

every partial derivative numerically. After solution is found, it can be applied to a grid, which will be also 

explained.  

For a given function f derivative in discrete form is defined by: 
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 (2.3.1) 

h in this case represents differentiation step and it is finite. As it can be guessed this formula is not 

accurate. Above formula is derived from Taylor series for 𝑓(𝑥 + ℎ) about (x,h): 
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Subtract f(x) from both sides and divide by h and there is exact representation of first equation: 
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As it can be seen error is O(h), in this case. This approximation is called forward difference, using the 

similar Taylor series for 𝑓(𝑥 − ℎ) backward difference is obtained, with same error 
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Subtracting (2.3.4) from (2.3.2), and dividing it with 2h, gives the best approximation so far, the central 

difference. Following expression for derivative has an error O(h2).   
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 (2.3.5) 

Finally, approximation for second derivative is obtained by adding (2.3.4) and (2.3.2), and dividing with 

h2. Following expression has an error O(h2).   
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Obviously error is O(h2).  Of, course, by using more surrounding elements even more precise value of 

derivative can be achieved, but techniques that are presented here don’t demand it. Depending on 

which combination of presented schemes for derivatives is used in discretization of BSM equation, one 

can end up with different approaches, explicit, implicit or Crank-Nicolson. 

 

Figure 2.3.1. Graphical representation of first order derivative using 

 backward, forward and central difference 



Now, when the approximation of derivatives is introduced, there is a need for grid. How is the grid for 

FDM made? First, for every differential equation solution space must be bounded, it is done basically 

using boundaries from first chapter. So, terminal condition is  

𝑓𝑖 ,𝑁 = max 𝑖𝑑𝑆 − 𝐾, 0 ,    𝑖 = 0. . .𝑀 

For call, and for put 

𝑓𝑖 ,𝑁 = max(𝐾 − 𝑖𝑑𝑆, 0). 

Furthermore, S is bounded at S=0, and it is always 𝑓0,𝑗 = 0 for call option, and for call option  

𝑓0,𝑗 = 𝐾𝑒−𝑟(𝑁−𝑗 )𝑑𝑡 ,   𝑗 = 0. . .𝑁 

The fact that S is not bounded on upper side, one can overcome by taking S large enough. Upper 

boundary in practice does not have to be too large. Typically it should be three or four times the value of 

the exercise price (or some other important price) [9]. So, for call 

𝑓𝑀,𝑗 = 𝑀𝑑𝑠 − 𝐾𝑒−𝑟 𝑁−𝑗  𝑑𝑡  

and, obviously for put 

 

𝑓𝑀,𝑗 = 0. 

Bounds for American put 

𝑓0,𝑗 = 𝐾 

𝑓𝑖 ,𝑁 = max(𝐾 − 𝑖𝑑𝑆, 0) 

𝑓𝑀,𝑗 = 0 

From (S,t ) continuous space, discrete one is made by dividing time from 0 to T (expiration date)  in N 

steps of size dt,  as well as dividing price axis in M number steps dS. So grid consists of points (S,t) such 

that 𝑆 = 0,𝑑𝑆, 2𝑑𝑆,… ,𝑀𝑑𝑡 ≡ 𝑆𝑚𝑎𝑥  and 𝑡 = 0,𝑑𝑡, 2𝜕𝑡,… ,𝑁𝑑𝑡 ≡ 𝑇 [8]. In this thesis both will be 

divided in equal steps, although it is not the case always.   

Having the grid, and numerical solutions for derivatives it will be continued to finite difference 

method, in usual order, first the solution for European style option is derived and implemented, then for 

American. 

 

 

 



2.3.1. Explicit FDM 

 

By using central difference with respect to stock price S, and backward difference to approximate 

time (t), the explicit method is derived. [8] 

𝑓𝑖 ,𝑗 − 𝑓𝑖 ,𝑗−1

𝜕𝑡
+ 𝑟𝑖𝜕𝑆

𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗

2𝜕𝑆
+

1

2
𝜎2𝑖2𝜕𝑆2

𝑓𝑖+1,𝑗 − 2𝑓𝑖 ,𝑗 + 𝑓𝑖−1,𝑗

𝜕𝑆2
= 𝑟𝑓𝑖 ,𝑗  

Rewriting the equations gives, 

𝑓𝑖 ,𝑗−1 = 𝑎𝑖
∗𝑓𝑖−1,𝑗 + 𝑏𝑖

∗𝑓𝑖 ,𝑗 + 𝑐𝑖
∗𝑓𝑖+1,𝑗 , 𝑗 = 𝑁,𝑁 − 1,… ,1,0; 𝑖 = 1,2,… ,𝑀 − 1, 

Where 
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∗ =

1

2
𝜕𝑡(𝜎2𝑖2 − 𝑟𝑖) 
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𝜕𝑡(𝜎2𝑖2 + 𝑟𝑖) 

 

 
Figure 2.3.1.1.The relationship between option values in the 

explicit method. 

 

Since the payoff, i.e. the prices at j=N are known, M-1 options values in N-1-th step can be 

calculated easily using derived expression, other two values (at i=0 and i=N) are known from boundaries. 

Therefore the same calculation continues until grid is completely filled. After every time step it can be 

easily checked if there is possibility for early exercise for American option by comparing obtained price 

with intrinsic value at that point (similarly to CRR). When the step for the present time is calculated, 

option price can be read from received values if we have it for required stock price. If that is not the 

case, value is interpolated using some kind of interpolation (cubic spline, linear, …). 

Explicit method looks just fine, but still it has one major disadvantage, the stability issue. Namely, it 

can be proved that if 0 <
𝑑𝑡

𝑑𝑆 2 ≤
1

2
 method is stable, and otherwise it isn’t. This means, e.g. if accuracy is 



improved by halving the stock price step, time step must be reduced by a factor of four or more. The 

computation time then goes up by a factor of eight. The improvement in accuracy we would get from 

such a reduction in step sizes is a factor of four since the explicit finite-difference method is accurate to 

O(δt,δS2) [9]. 

 

2.3.2. Implicit FDM 

 

To overcome the issue of stability, implicit method is introduced. The only difference in deriving 

implicit FDM is that for 
𝑑𝑓

𝑑𝑡
 backward difference approximation is used. 

𝑓𝑖 ,𝑗+1 − 𝑓𝑖 ,𝑗

𝜕𝑡
+ 𝑟𝑖𝜕𝑆

𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗

2𝜕𝑆
+

1

2
𝜎2𝑖2𝜕𝑆2

𝑓𝑖+1,𝑗 − 2𝑓𝑖 ,𝑗 + 𝑓𝑖−1,𝑗

𝜕𝑆2
= 𝑟𝑓𝑖 ,𝑗  

These yields 

𝑓𝑖 ,𝑗+1 = 𝑎𝑖𝑓𝑖−1,𝑗 + 𝑏𝑖𝑓𝑖 ,𝑗 + 𝑐𝑖𝑓𝑖+1,𝑗 , 𝑗 = 0, 1,2,… ,𝑁 − 1;  𝑖 = 1,2,… ,𝑀 − 1, 
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2
𝜕𝑡(𝜎2𝑖2 + 𝑟𝑖) 

 

 

Figure 2.3.1.1.The relationship between option values in the 

implicit method. 

Again, M-1 elements in the second to last time step should be calculated from the last row. In this case it 

is not as trivial as in implicit method, since from one value at time T, three values from time step T-dt 

should be found, fortunately there are upper and lower boundary conditions so system of equations is 

made and it can be solved. This kind of calculating prices spreads backward until step for present time is 

reached. 
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System of equation which is constructed during implicit method is represented in matrix form as above. 

𝑀𝑓𝑗 = 𝑓𝑗+1
∗  

𝑓𝑗 is vector on the left side while 𝑓𝑗+1
∗  is right side difference. This can be solved taking into account 

boundary conditions using  𝑓𝑗 = 𝑀−1𝑓𝑗+1
∗ . Furthermore, since system of equation is represented by very 

sparse matrix, LU decomposition (factorization) is much faster way of calculating. Also SOR (Successive 

Over-relaxation) method can be applied.  Both of methods will be described later. 

 

2.3.3. Crank Nicolson FDM 

 

Crank-Nicolson method has been introduced in order to improve accuracy up to O(dt2), by 

combining the explicit and implicit methods. Applying it in BSM PDE it leads to the following: 

𝑓𝑖 ,𝑗 − 𝑓𝑖 ,𝑗−1

𝜕𝑡
+
𝑟𝑖𝜕𝑆

2

𝑓𝑖+1,𝑗−1 − 𝑓𝑖−1,𝑗 ′1

2𝜕𝑆
+
𝑟𝑖𝜕𝑆

2

𝑓𝑖+1,𝑗 − 𝑓𝑖−1,𝑗

2𝜕𝑆
+

1

4
𝜎2𝑖2𝜕𝑆2

𝑓𝑖+1,𝑗−1 − 2𝑓𝑖 ,𝑗−1 + 𝑓𝑖−1,𝑗−1

𝜕𝑆2
 

+
1

4
𝜎2𝑖2𝜕𝑆2

𝑓𝑖+1,𝑗 − 2𝑓𝑖 ,𝑗 + 𝑓𝑖−1,𝑗

𝜕𝑆2
=
𝑟

2
𝑓𝑖 ,𝑗−1 +

𝑟

2
𝑓𝑖 ,𝑗  

This can be rewritten as  

−∝𝑖 𝑓𝑖−1,𝑗−1 +  1 − 𝛽𝑖 𝑓𝑖 ,𝑗−1 − 𝛾𝑖𝑓𝑖+1,𝑗−1 =∝𝑖 𝑓𝑖−1,𝑗 +  1 + 𝛽𝑖 𝑓𝑖 ,𝑗 + 𝛾𝑖𝑓𝑖+1,𝑗 , 
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 Figure 2.3.1.1.The relationship between option values in the 

Crank-Nicolson method. 

Similar to implicit method Crank-Nicolson can be presented in matrix form as: 

𝑀1𝑓𝑗−1 = 𝑀2𝑓𝑗  

Where  
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System like this can also be solved by methods from the next chapter  LU decomposition and PSOR. 



2.3.4. LU Decomposition and PSOR method 

 

There are efficient methods to solve systems of equations that arise in explicit and Crank-Nicolson 

method. Both FDMs produce sparse tridiagonal matrices so LU decomposition would be appropriate. 

This method decompose matrix M into product of lower triangular and upper triangular matrix.  
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 Quantities l,d and u are simply found by multiplying right-hand side and equating it to the left-hand side 

matrix. Having L and U original problem can be written as L(U𝑓𝑗 ) = 𝑓𝑗+1
∗  which may then be broken 

down into two simpler sub-problems [2]: 

𝐿𝑞𝑗 = 𝑓𝑗+1
∗  where 𝑈𝑓𝑗 = 𝑞𝑗 . 

So first qj is calculated using lower matrix (L), and then finally 𝑓𝑗  is calculated using U. 

LU finds unknowns in one pass, directly, and it is suitable only for European style options. To 

solve American option iterative method is introduces PSOR (Projective Successive Over-relaxation).  It 

can also deal with non-linear models involving transaction costs, unlike direct methods. However it is 

slower than LU. 

 It is refinement of another iterative method known as Gauss-Seidel method, which in turn is a 

development of the Jacobi method. PSOR is used for solving following form of equations 

𝐴𝑥 = 𝑏 

In implicit method this is exactly what is obtained, while in Crank-Nicolson this for can simply be 

obtained by multiplying expression on right-hand side. Iterative scheme in order to get final solution is 

starting from initial point x(0) is given by 

𝑥𝑖
(𝑘+1)

= 𝑥𝑖
(𝑘)

+
𝜔

𝑎𝑖𝑖
(𝑏𝑖 − 𝑎𝑖𝑗 𝑥𝑗

 𝑘+1 

𝑖−1

𝑗=1

− 𝑎𝑖𝑗 𝑥𝑗
 𝑘 

𝑁

𝑗=𝑖

,   𝑖 = 1,… ,𝑁 

k is iteration counter, 𝜔 is the over-relaxation (0 < 𝜔 < 2) parameter and  𝑎𝑖𝑗  are elements of the 

matrix. Iteration continues until convergence criterion is met such as 

 𝑥𝑖
(𝑘+1)

− 𝑥𝑖
(𝑘)
 < 𝜀 



Where 𝜀 is a tolerance parameter [8]. PSOR method has major advantage, it provides with possibility of 

calculating American put options for both explicit and Crank-Nicolson method. It is done simply by 

checking if intrinsic value at current node is greater than the price obtained by PSOR. 

More on both of these methods can be found in [8] [2] and [9]. 

 

2.3.5. Implementation and results 

 

Functions written for FDMs are following and names of functions speaks for themselves:  

- Explicit.m – calculates grid of prices (European call, put and American put) using explicit method 

- EuImplLU.m and EurImplicitLU – do the same thing only using different oriented grid, calculating 

European calls and puts using Implicit method and LU decomposition  

- EurCN.m – outputs grid of option prices (Eur call and put) using Crank Nicolson method and LU 

decomposition 

- program.m – finds prices using all available functions 

- CompareFDM.m – compares different prices of available functions 

- go_compare.m – utilizes CompareFDM.m to plot prices using different parameters for Explicit, 

Implicit and  Crank Nicolson method 

- theta-method folder – contains functions with main function program. For plotting and 

comparing three methods [], function FDM1AmPut.m calculates American put. 

In the following figures errors for European put prices will be compared for different parameters.  

 

Figure 2.3.5.1 

 

Figure 2.3.5.2 
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Figure 2.3.5.3 

 
Figure 2.3.5.4 

 
Figure 2.3.5.5 

 
Figure 2.3.5.6 

 
Figure 2.3.5.7 

Comprarison of errors realtive to analytical solution for European put optio, obtained by three FDM 

methods  
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Probably the most obvious conclusion that can be made from above plots is that error is larger when 

option is stock price is at-the-money. Also error depends on  𝜎 and 𝑟, moreover it affects stability for 

explicit method. Of course, relationship between dS and dt have crucial influence to stability of explicit 

method. And finally Crank Nicolson proves its precision since it is producing more precise results with 

increase of M (N constant). 

Next, speed of tree finite difference methods are compared. 

 
Figure 2.3.5.8. 

As far as explicit method is concerned plot 2.3.5.8. is concurrent with theory. Explicit method gives 

simple solution for every element (in explicit form). But for implicit and Crank Nicolson methods to get 

solution for one element system of linear equations should be solved. Furthermore, Crank Nicolson 

method requires one matrix multiplication more in every time step so it should be slower than implicit 

method. But because of a small difference in implementation, and because MatLab handles 

multiplication of matrices very fast, Crank Nicolson method turned out to be faster than implicit 

method. However, this is good result in the sense that CN method is the most precise, as well. 

 

 

 

Figure 2.3.5.9. Surface of American put option 

prices, boundaries can be noticed 
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2.3.6. Conclusions 

 

The advantages of the explicit method 

-  It is very easy to program and hard to make mistakes 

- When it does go unstable it is usually obvious 

-  It copes well with coefficients that are asset and/or time-dependent 

- American options are easily applied 

- Relatively fast 

Main disadvantage of is restriction on time step because of stability issues, so it can affect speed of 

algorithm.  

Implicit finite difference methods are used to overcome the stability issue. There is no more 

need for ridiculously small time-steps. But solution is not so straightforward, since it includes solving a 

set of linear equations. With a little extra computational effort than in implicit method precision can be 

improved significantly (at least in theory) by using Crank Nicolson method. It also requires set of linear 

equations to be solved. For this purpose LU decomposition and PSOR methods are adequate. LU 

decomposition method is very efficient. As fewer time steps are sufficient for implicit method 

accompanied by LU decomposition, it can be more efficient overall than explicit method. However, LU 

cannot be used for calculating American options.  For that purpose PSOR algorithm is introduced which 

is easily applied to early exercise possibility, but it is slower than LU in theory. But because of different 

implementation in practice CN was faster of the two. 

Finite difference methods are tightly connected to binomial trees, but far more flexible in the 

sense that they can deal with many more exotic options. The main disadvantage is that FDMs are slow 

when confronted with a problem which has more than 3-4 dimensions, in that case Monte Carlo is used. 

 

2.4. American put option results 
 

In next table prices are given for American put option with following parameters: 

K=50; vol=0.3; r=0.1; T=1; S(0)=25:5:75, 

Binomial tree, number of steps 5000, 

MC LSM, number of time steps 80, number of paths 200000 

Finite difference: PSOR – stock price steps M=200, time steps N=200; Explicit M=300, N=15000 

 

 

 

 



Stock Price Binomial tree LSM  AT LSM PSOR Explicit 

25 25.0001 24.93749 24.93687 25 25 

30 20.0001 19.93753 19.93946 20 20 

35 15.00011 14.93748 14.93551 15 15 

40 10.13439 10.10537 10.11188 10.13345 10.134 

45 6.56042 6.53333 6.52467 6.55925 6.56 

50 4.16877 4.14474 4.13085 4.16781 4.16849 

55 2.60434 2.59549 2.60043 2.60345 2.60407 

60 1.60399 1.5992 1.60317 1.60305 1.60356 

65 0.97647 0.96771 0.97182 0.97574 0.97617 

70 0.58955 0.59326 0.58642 0.58846 0.58885 

75 0.35371 0.35085 0.35266 0.35192 0.35234 

average (time)  1.7s 12.4-5.3s 12-5.3 14.9 4.14 
 

Let’s begin analysis of obtained results by commenting speed of algorithms. Although it depends 

on parameters use, obtained times was what one could expect. Binomial tree is the fastest, second is 

explicit method as the fastest FDM method, but it provides option values for every stock price and time 

in the given range. Monte Carlo simulations are, expectedly, significantly slower. Particularly Longstaff 

Schwarz method took large part of that computational time in algorithm because it is implemented in 

for loop. Finally, PSOR method proved to be the slowest of all methods compared, and it is 

understandable. Namely, there are few reasons for this. First, PSOR is iterative method, which also 

depends on parameters for tolerance, relaxation parameter (𝜔) and maximum number of iterations that 

can be used. Tolerance used here is 1e-6 ; if greater tolerance is applied algorithm is faster but also less 

precise. But crucial parameter for speed of PSOR is 𝜔 which was not made adaptable in PSOR.m. It can 

be calculated so that PSOR method could converge much faster. There are few ways of finding proper 

relaxation parameter (explanation are given in [2] and [9]). So with different parameters speed of PSOR 

can be significantly improved. 

Same story as for speed of PSOR algorithm can be applied for precision. That is, using different 

parameters method could provide better precision than in this case. Of course, this is just an assumption 

because we are dealing with numerical methods which are after all, just an approximation. Assumption, 

on the other hand, is made on results of binomial tree and explicit FDM. According to the previous 

experience binomial tree with appropriate number of steps used, coupled with control variate technique 

gives fair approximation. Further, parameters for explicit method are also used from previous 

experience, and option values are close to Binomial tree. Finally, for LSM is known that number of paths 

of 200000 is not enough for really precise approximation, but limit of memory was almost reached 

because large matrices needed to be saved (this problem is already discussed). 

   

 



3. Conclusions and future work 
 

3.1. Conclusions 
 

Option pricing is a major accomplishment of modern finance. It spurred the development and 

widespread use of familiar financial options, such as puts and calls in common assets, as well as exotic 

options. The benefit of option pricing is not necessarily to provide the “right price”. Market price is the 

best pricing method, i.e. efficient market provides best price for options. The true benefits of option 

valuation models are that they provide an accurate “snap shot” of the current market conditions (e.g. 

implied volatility). 

This thesis has only scratched the surface of the vast field of numerical option pricing. An 

introduction to the field has been made through comparison of the fundamental methods for the 

valuation of the most popular derivatives. The binomial model is very important because it shows how 

to get around the reliance on closed-form solutions in a simple and accurate manner. The greatest 

advantage of the binomial model is that it can easily deal with early exercise. The code for calculating 

the price of an American put option was made as fast as it can be in MatLab. Binomial model proved to 

be the fastest and most accurate out of all numerical methods presented in this thesis. However, this is 

true only for basic American option; there are far better choices if one wants to price some exotic 

options, for example barrier or look-back options. Also, author’s opinion is that the model of stock price 

behavior is poor, since the assumption that the asset price can either go up or down by a known amount 

is clearly unrealistic. Indeed, the intuition that one gets from the binomial method is useful. 

Next, Monte Carlo simulations were applied. Simulations are at the very heart of finance, and they 

are widely used in real world in banks and other financial institutions. Computation time in MC is large, 

so in this thesis concentration was put on improving speed. As results showed, it was successfully done 

by implementing a parallel algorithm in C and by vectorizing the simulations. Furthermore convergence 

was increased by using antithetic variate technique. Still, time for achieving decent precision remained 

large comparing to others. Also, memory usage in MatLab implementation was a problem since it limits 

the number of simulations that can be used and stored in some matrix. The latter was the reason for 

obtaining the least accurate American put value in chapter 2.4.  But, it is well known that Monte Carlo 

simulations do not cope particularly well with American options. Their main advantage is that they are 

like tailor made for path dependent options (e.g. Asian), or problems with higher dimensionality. The 

computational cost is linear as dimensions increase, while for finite difference computational time grows 

exponentially. And finally, Monte Carlo simulations are used for valuation of some difficult options 

which none of the other methods can solve. 

Most popular method analyzed in the thesis is the finite difference method. Three methods were 

presented: explicit, implicit and Crank Nicolson. Explicit method is very easy to implement both for 

European and American options. In fact in comparison table for valuing American option (chapter 2.4) it 

came second right behind binomial tree. Furthermore, comparing to binomial tree, finite difference 



methods provide option values for given stock price and time range. If certain price at certain time is not 

directly calculated it can be extracted by interpolation. Mainly because of this, and because FDMs are 

easily adapted to many problems, author prefers this method over binomial trees despite stability issues 

in explicit method. Overcoming stability issues is done by implicit method, and even more precise Crank-

Nicolson method. Its precision was confirmed in figure 2.3.5.7. Crank Nicolson method improved 

accuracy faster than others while M was increased (price-step decreased), which confirms the theory. As 

for speed of FDMs, explicit method is fastest while implicit method was the slowest of the three. Latter 

wasn’t expected, but it is the consequence of somehow different implementation and ability of MatLab 

to deal well with matrix multiplication. For valuing American put option PSOR algorithm was introduced. 

In comparison chart in section 2.4 FDM with PSOR was the slowest but with better accuracy than Monte 

Carlo. The fact is that relaxation parameter should be carefully chosen in order to have better 

convergence to the right price. Implementation of the method used only pre-fixed 𝜔. With adaptive 

relaxation parameter PSOR algorithm should be much faster, even comparable to LU. At the end, it must 

be said that FDMs are used for approximately 70% of all valuation processes in practice. 

To conclude, different kind of options requires different approaches, i.e. there is no universal 

method. If one method is good for one type of options it doesn’t necessarily mean that it is good for 

totally different options. Only in a few difficult cases there is no other choice but to use Monte Carlo. On 

the other hand there are analytical solutions for some of exotic options, so when it is available we 

should use it. For more difficult problems, from results in this we can conclude some rules.  

For strong path dependent options (it adds one dimension) we should use Monte Carlo simulations. 

Also, when problem has more than 3 independent underlying variables, Monte Carlo is primary method. 

If more precision is required we choose parallel implementation using antithetic variate technique 

applied in C. But if precision is not that important vectorized MatLab implementation should be our 

choice. Since MatLab deals fast with matrices and arrays; barrier, look-back and Asian options can be 

implemented easily in algorithm which is fast. 

 For all the other options binomial tree model or FDMs are used because of a better computational 

time. Binomial trees are appropriate for basic and some non standard American and Bermudan options. 

With only small increase in computational time we can get whole grid of option values using explicit 

FDM. In practice this can be really useful. Furthermore, FDMs can provide really precise values using 

Crank Nicolson method and large number of price steps, so we can choose more precise or faster (and 

potentially unstable) method according to our needs. If we require more precision for value of American 

option, Crank Nicolson method is accompanied with PSOR algorithm which is very efficient having the 

right parameters. 

 

 

 



3.2. Future work 
 

This thesis represents only an introduction to numerical option pricing. Therefore, first future step 

should be calculation of otherwise usual: exotic options, greeks, valuing options under non constant 

volatility and/or interest rates, using implied volatility etc. Other than mentioned, author of the thesis 

suggests some improvements and directions for presented methods. 

The least number of suggestions author proposes for binomial model. Namely, there is an obvious 

improvement that could be useful. That is, calculate the value closer to appropriate than it is obtained 

by the last price of binomial tree, this means fewer steps used for better price. The main challenge is 

that binomial trees behave differently when the stock price is close-to-the-money compared to deep in-

the-money or deep out-of-the-money option. 

Quasi Monte Carlo simulation is well known variance reduction technique which works fine so that 

could be a good starting point for future work for Monte Carlo. Quasi method increases accuracy and 

therefore the speed. With paths created (e.g. using Quasi MC), American options can be priced. 

Nowadays, there is a more efficient method [13] than LSM. But main improvement in Monte Carlo 

simulations should be looked in parallelization. In this thesis it was proved very useful. It turns out that 

Longstaff Schwarz method is well suited to parallel computing [10] and [21]. Latest research is 

concentrated on using GPUs rather than CPUs for any kind of Monte Carlo. GPUs has numerous cores 

(more than 200), and much larger bandwidth than in CPUs, so these present good foundation for the 

purpose of parallel implementation. For example, having many more cores on GPU, one can assign 

separate Monte Carlo simulations to every of the cores. This may be very useful in finance, because 

there is usually a need for more than one simulation (e.g. for greeks). Some works [14] and [15] show 

results of increase in speed by a factor of 200 and more comparing to single core processors. 

Finally, FDMs can also be improved in many ways. First way is based on error which can be seen on 

figures 2.3.5.1.-2.3.5.7. From these plots it can be noticed that error is greater when option is at the 

money.  Simple solution for that issue is reducing the error by making the grid denser when the asset 

price is close-to-the-money (variable mesh). Next, explicit method is not always stable but its stability 

can be improved by using the alternating direction explicit method [18]. Furthermore, second order 

derivative is too sensitive in practice, so smoothing the price before applying derivatives could be a good 

idea [16].  And finally finite difference methods can also be implemented in HPC environment both GPU 

and multi CPU [17].  

Obvious trend today is using numerical methods adapted to GPUs which are almost perfect for the 

purpose. It is still huge research area, and results are promising. Supporting fact for this is that all of 

major financial institutions have large clusters of GPU for calculating prices, moreover 10% of the load in 

TOP500 supercomputers are reserved for finance [19][21]. 
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