7,897 research outputs found

    Analysis Framework for Opportunistic Spectrum OFDMA and its Application to the IEEE 802.22 Standard

    Full text link
    We present an analytical model that enables throughput evaluation of Opportunistic Spectrum Orthogonal Frequency Division Multiple Access (OS-OFDMA) networks. The core feature of the model, based on a discrete time Markov chain, is the consideration of different channel and subchannel allocation strategies under different Primary and Secondary user types, traffic and priority levels. The analytical model also assesses the impact of different spectrum sensing strategies on the throughput of OS-OFDMA network. The analysis applies to the IEEE 802.22 standard, to evaluate the impact of two-stage spectrum sensing strategy and varying temporal activity of wireless microphones on the IEEE 802.22 throughput. Our study suggests that OS-OFDMA with subchannel notching and channel bonding could provide almost ten times higher throughput compared with the design without those options, when the activity and density of wireless microphones is very high. Furthermore, we confirm that OS-OFDMA implementation without subchannel notching, used in the IEEE 802.22, is able to support real-time and non-real-time quality of service classes, provided that wireless microphones temporal activity is moderate (with approximately one wireless microphone per 3,000 inhabitants with light urban population density and short duty cycles). Finally, two-stage spectrum sensing option improves OS-OFDMA throughput, provided that the length of spectrum sensing at every stage is optimized using our model

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    TechNews digests: Jan - Mar 2010

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Cognitive Radio for Smart Grid with Security Considerations

    Get PDF
    In this paper, we investigate how Cognitive Radio as a means of communication can be utilized to serve a smart grid deployment end to end, from a home area network to power generation. We show how Cognitive Radio can be mapped to integrate the possible different communication networks within a smart grid large scale deployment. In addition, various applications in smart grid are defined and discussed showing how Cognitive Radio can be used to fulfill their communication requirements. Moreover, information security issues pertained to the use of Cognitive Radio in a smart grid environment at different levels and layers are discussed and mitigation techniques are suggested. Finally, the well-known Role-Based Access Control (RBAC) is integrated with the Cognitive Radio part of a smart grid communication network to protect against unauthorized access to customer’s data and to the network at large

    Non-Cooperative Spectrum Access -- The Dedicated vs. Free Spectrum Choice

    Get PDF
    We consider a dynamic spectrum access system in which Secondary Users (SUs) choose to either acquire dedicated spectrum or to use spectrum-holes (white spaces) which belong to Primary Users (PUs). The trade-off incorporated in this decision is between immediate yet costly transmission and free but delayed transmission (a consequence of both the possible appearance of PUs and sharing the spectrum holes with multiple SUs). We first consider a system with a single PU band, in which the SU decisions are fixed. Employing queueing-theoretic methods, we obtain explicit expressions for the expected delays associated with using the PU band. Based on that, we then consider self-interested SUs and study the interaction between them as a non-cooperative game. We prove the existence and uniqueness of a symmetric Nash equilibrium, and characterize the equilibrium behavior explicitly. Using our equilibrium results, we show how to maximize revenue from renting dedicated bands to SUs and briefly discuss the extension of our model to multiple PUs. Finally, since spectrum sensing can be resource-consuming, we characterize the gains provided by this capability.National Science Foundation (U.S.) (Grant CNS-0915988)National Science Foundation (U.S.) (Grant CNS-0916263)National Science Foundation (U.S.) (Grant CNS-1054856)National Science Foundation (U.S.). Engineering Research Centers Program (Center for Integrated Access Networks Grant EEC-0812072)United States. Office of Naval Research (Grant N00014-12-1-0064)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Interference-aware adaptive spectrum management for wireless networks using unlicensed frequency bands

    Get PDF
    The growing demand for ubiquitous broadband network connectivity and continuously falling prices in hardware operating on the unlicensed bands have put Wi-Fi technology in a position to lead the way in rapid innovation towards high performance wireless for the future. The success story of Wi-Fi contributed to the development of widespread variety of options for unlicensed access (e.g., Bluetooth, Zigbee) and has even sparked regulatory bodies in several countries to permit access to unlicensed devices in portions of the spectrum initially licensed to TV services. In this thesis we present novel spectrum management algorithms for networks employing 802.11 and TV white spaces broadly aimed at efficient use of spectrum under consideration, lower contention (interference) and high performance. One of the target scenarios of this thesis is neighbourhood or citywide wireless access. For this, we propose the use of IEEE 802.11-based multi-radio wireless mesh network using omnidirectional antennae. We develop a novel scalable protocol termed LCAP for efficient and adaptive distributed multi-radio channel allocation. In LCAP, nodes autonomously learn their channel allocation based on neighbourhood and channel usage information. This information is obtained via a novel neighbour discovery protocol, which is effective even when nodes do not share a common channel. Extensive simulation-based evaluation of LCAP relative to the state-of-the-art Asynchronous Distributed Colouring (ADC) protocol demonstrates that LCAP is able to achieve its stated objectives. These objectives include efficient channel utilisation across diverse traffic patterns, protocol scalability and adaptivity to factors such as external interference. Motivated by the non-stationary nature of the network scenario and the resulting difficulty of establishing convergence of LCAP, we consider a deterministic alternative. This approach employs a novel distributed priority-based mechanism where nodes decide on their channel allocations based on only local information. Key enabler of this approach is our neighbour discovery mechanism. We show via simulations that this mechanism exhibits similar performance to LCAP. Another application scenario considered in this thesis is broadband access to rural areas. For such scenarios, we consider the use of long-distance 802.11 mesh networks and present a novel mechanism to address the channel allocation problem in a traffic-aware manner. The proposed approach employs a multi-radio architecture using directional antennae. Under this architecture, we exploit the capability of the 802.11 hardware to use different channel widths and assign widths to links based on their relative traffic volume such that side-lobe interference is mitigated. We show that this problem is NP-complete and propose a polynomial time, greedy channel allocation algorithm that guarantees valid channel allocations for each node. Evaluation of the proposed algorithm via simulations of real network topologies shows that it consistently outperforms fixed width allocation due to its ability to adapt to spatio-temporal variations in traffic demands. Finally, we consider the use of TV-white-spaces to increase throughput for in-home wireless networking and relieve the already congested unlicensed bands. To the best of our knowledge, our work is the first to develop a scalable micro auctioning mechanism for sharing of TV white space spectrum through a geolocation database. The goal of our approach is to minimise contention among secondary users, while not interfering with primary users of TV white space spectrum (TV receivers and microphone users). It enables interference-free and dynamic sharing of TVWS among home networks with heterogeneous spectrum demands, while resulting in revenue generation for database and broadband providers. Using white space availability maps from the UK, we validate our approach in real rural, urban and dense-urban residential scenarios. Our results show that our mechanism is able to achieve its stated objectives of attractiveness to both the database provider and spectrum requesters, scalability and efficiency for dynamic spectrum distribution in an interference-free manner

    Valuing Spectrum Allocations

    Get PDF
    Observing trends in which Wi-Fi and Bluetooth have become widely popular, some argue that unlicensed allocations hosting such wireless technologies are increasingly valuable and that administrative spectrum allocations should shift accordingly. We challenge that policy conclusion. A core issue is that the social value of a given spectrum allocation is widely assumed to equal the gains of the applications it is likely to host. This thinking is faulty, as vividly seen in what we deem the Broadcast TV Spectrum Valuation Fallacy – the idea that because wireless video, or broadcast network programs are popular, TV channels are efficiently defined. This approach has been appropriately rejected, in key instances, by spectrum regulators, but is similarly applied in other instances regarding unlicensed allocations. While traditional allocations have garnered widespread criticism for imposing rigid barriers tending to block innovation, and flexible-use spectrum access rights have gained favor, the regulatory methods used to allocate (or reallocate) bandwidth remain embedded in a “command and control” process. Reconfiguring spectrum usage to enable emerging wireless markets often requires lengthy, costly rule makings. The expense of this administrative overhead is generally omitted from spectrum allocation policy analysis. Yet, it constitutes an essential component of the consumer welfare analysis. We propose a more fulsome policy approach, one that includes not only the appropriate measures of marginal value and opportunity cost for rival allocations, but incorporates transaction costs. Instead of regulators attempting to guess how much bandwidth should be allocated to various types of licensed and unlicensed services – and imposing different rules within and across these allocations – a more generic approach is called for. By better enabling spontaneous adjustments to changing consumer demands and technological innovation, spectrum allocations can be more efficiently brought into their most valuable employments
    • 

    corecore