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ABSTRACT
We consider a dynamic spectrum access system in which
Secondary Users (SUs) choose to either acquire dedicated
spectrum or to use spectrum-holes (white spaces) which be-
long to Primary Users (PUs). The tradeoff incorporated in
this decision is between immediate yet costly transmission
and free but delayed transmission (a consequence of both
the possible appearance of PUs and sharing the spectrum
holes with multiple SUs). We first consider a system with a
single PU band, in which the SU decisions are fixed. Employ-
ing queueing-theoretic methods, we obtain explicit expres-
sions for the expected delays associated with using the PU
band. Based on that, we then consider self-interested SUs
and study the interaction between them as a noncooperative
game. We prove the existence and uniqueness of a sym-
metric Nash equilibrium, and characterize the equilibrium
behavior explicitly. Using our equilibrium results, we show
how to maximize revenue from renting dedicated bands to
SUs. Finally, we extend the scope to a scenario with multi-
ple PUs, show that the band-pricing analysis can be applied
to some special cases, and provide numerical examples.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Queueing theory; C.2.1
[Computer-Communication Networks]: Network Ar-
chitecture and Design—Wireless communication
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Figure 1: An example illustrating Secondary Users
(SUs) utilizing white spaces (also known as spectrum

holes) that are not used by Primary Users (PUs).
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1. INTRODUCTION
This paper focuses on theoretical problems stemming from

the decision process of users that can either participate in a
Cognitive Radio Network (also known as Dynamic Spectrum
Access Network) as Secondary Users or pay for temporary
usage of a dedicated band. A Cognitive Radio (CR) was first
defined by Mitola [28] as a radio that can adapt its transmit-
ter parameters to the environment in which it operates. It is
based on the concept of Software Defined Radio (SDR) [7]
that can alter parameters such as frequency band, trans-
mission power, and modulation scheme through changes in
software. According to the Federal Communications Com-
mission (FCC), a large portion of the assigned spectrum is
used only sporadically [14, 27]. Due to their adaptability
and capability to utilize the wireless spectrum opportunisti-
cally, CRs are key enablers to efficient use of the spectrum.
Hence, their potential has been recently identified by vari-
ous policy [14,15], research [10], standardization [13,22,23],
and commercial organizations.

Under the basic model of CR networks [3], Secondary
Users (SUs) can use white spaces that are not used by the
Primary Users (PUs) but must avoid interfering with active
PUs (e.g., Fig. 1).1 For example, the PUs and SUs can be

1PUs and SUs are also referred to as Licensed and Oppor-
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Figure 2: An illustration of the decision process of
the SUs and the arrival process of the PUs.

viewed as public safety and commercial users, respectively,
where the SUs must vacate the channel at very short no-
tice. Another example is of PUs being TV broadcasters and
SUs being commercial cellular operators using available TV
bands [22]. Networks operating according to this model have
distinct characteristics that pose numerous challenging the-
oretical and practical problems, of which many remain to be
solved, despite extensive recent research (for a comprehen-
sive review of previous work see [2,26]).

Our work is motivated by a recent FCC ruling [15] that al-
lows CR devices (SUs) to operate in TV bands white spaces.
In addition to spectrum-sensing capability, these devices
may include a geolocation capability and provisions to ac-
cess a database that contains the PUs (e.g., TV stations) ex-
pected channel use. Given the geolocation capability, spec-
trum sensing is required in order to avoid interference to PU
devices that are not registered in the database. The FCC
will also certify CR devices that do not include the geolo-
cation and database access capabilities, and rely solely on
sensing.

The operation model described in [15] introduces a new
set of theoretical problems at the intersection of queueing
theory, game theory, and control theory. In particular, we
are interested in noncooperative SUs that have a spectrum
sensing capability and can sense the PU band (e.g., Wireless
Internet Service Providers - WISPs). These SUs can rent
a licensed dedicated band, for a certain cost (we refer to
such band as a dedicated band). Alternatively, they can
use a band that is originally allocated to a PU (we refer
to it as a PU band), for free. We assume that the SUs are
service providers (i.e., they serve many users) that aggregate
several connections/calls/packets to jobs that can be served
over each of these band types. We do not focus on specific
packets sent by specific users but rather on jobs that may
be composed of several packets.

We study the decision process of the SUs which is illus-
trated in Fig. 2. An SU that has a job to serve can choose to
use either one of the PU bands, or a dedicated band. When
an SU selects a PU band, the band can be reclaimed by a PU
and it is also shared with other SUs that selected the same
band. Hence, the decision process of the SUs is affected by
the tradeoff between the cost of acquiring a dedicated band
and using a free PU band, which is prone to delays.

Our first step towards understanding the SU decision pro-

tunistic Users, respectively.

cess is to consider a system with a single PU band. For such
a system, we first study the delay performance when the
SU decisions are fixed. To that end, we develop a queueing
model based on a server with breakdowns [29,30,37], where
the PU band is the server and the return of the PU is mod-
eled as a breakdown. We assume that upon selection of the
PU band, the SU joins a queue of SUs waiting to use that
band. This corresponds to a server with breakdowns model
in which the arrival rates depend on the server’s status. To
the best of our knowledge, this particular queuing model has
not been rigorously considered in past literature.

We note that since managing a queue requires centralized
control (which may not be feasible in a real system), a queue
will most likely be replaced by a distributed MAC protocol
(e.g., IEEE 802.22 [22]). In our analysis, we use the queue to
represent the congestion effect incurred when a few SUs wish
to use the same PU band.2 We note that a number of recent
works in the area of cognitive radio used “virtual” queues as
a plausible model to capture SU congestion effects [6,35,42].

Based on the queueing analysis for fixed SU policies, we
then study the SU decision process in a system with a sin-
gle PU band. We prove the existence and uniqueness of a
symmetric Nash equilibrium and fully characterize the equi-
librium behavior for the SU decision strategies. Next, we
apply our Nash equilibrium analysis to show how to maxi-
mize the revenue from renting dedicated bands to SUs that
prefer not to use the PU band. Such information may be
used by a spectrum broker that provides dedicated bands
for short periods of time.

A system with SUs and PUs was modeled in [6] using the
priority queueing model. While for a single PU band the two
models are somewhat similar, we find the server-breakdown
queueing model more natural and more appropriate for the
multi-band case. In particular, the system can be modeled
so that each PU band is a server prone to breakdowns (i.e.,
return of the PU) and there are queues (or a single queue) of
SUs that can be served by any of the available PU bands. On
the other hand, under the classical priority queueing model,
there is a single queue of high priority users (PUs) and each
of them can be served by any of the servers (PU bands).
This does not comply with the operation model in which
each PU has a dedicated band. Based on this observation,
we extend the model to the scenario in which multiple PU
bands exist. We show that the band pricing analysis can be
extended to special multi-band cases and provide numerical
examples.

Unlike most of the previous work in the area of dynamic
spectrum access, we utilize methods developed for decision
making and the corresponding equilibrium analysis in queue-
ing systems (see Haviv and Hassin [18] for a survey). Within
that discipline, the novelty of the paper is in the analysis
of the unobservable queue case and in examining the conse-
quences of the dedicated band prices on the (non-cooperative)
behavior of SUs and (for more details, see Section 2). For
tractability, we assume that the inter-arrival times and the
service times are exponentially distributed. Relaxing some
of these assumptions is a subject for future work.

To conclude, the main contribution of this paper is twofold.
First, we develop a novel approach for the analysis of a dy-

2Since we are primarily interested in gaining insight into the
SU band selection dynamics and for the sake of exposition,
we do not focus on the contention for a channel (contention
between similar users has been extensively studied [1,5,9]).



namic spectrum access system. It combines the tools of
game theory and queueing theory to provide insights into
the SUs decision process as well as the spectrum pricing
mechanisms used by the spectrum broker. Second, moti-
vated by dynamic spectrum access systems, we provide novel
results for the queueing theoretical problem of a server with
breakdowns in which the arrival rates depend on the server’s
status.

This paper is organized as follows. In Section 2 we dis-
cuss related work and in Section 3 we present the model.
We study the equilibrium of the SUs interactions in Section
4. In Section 5 we consider the problem of pricing the dedi-
cated spectrum. In Section 6 we discuss the extension to the
multi-band case. We conclude and discuss future research
directions in Section 7.

2. RELATED WORK
The extensive previous work in the area of CR as well as

Cognitive Radio Network architectures, key enabling tech-
nologies, and recent developments have been summarized in
a number of special issues and review papers (e.g., [2,26]). In
this section, we briefly review previous work which is most
closely related to our model.

A practical MAC protocol (IEEE 802.22) that takes the
CR characteristics into account has been studied in [19].
[17, 38–40] used techniques from the area of Partially Ob-
servable Markov Decision Processes (POMDP) to model the
behavior of PUs and SUs. Based on these techniques, decen-
tralized protocols have been proposed. In [21], probabilistic
methods have been used to evaluate the performance of PUs
and SUs under different operation models. In [6,35,42], sys-
tems with SUs and PUs were modeled using priority queue-
ing techniques. As mentioned above, we find the server-
breakdown model more appropriate for modeling such a sys-
tem.

Several papers used game theoretical notions to compare
the cooperative and non-cooperative behavior of spectrum
sensing and sharing [20,24,25,32,34,41]. In particular, [20]
proposes a scheme in which users exchange “price” signals,
that indicate the negative effect of interference at the re-
ceivers, [24, 32] deal with cases in which operators com-
pete for customers, [25] studies a dynamic spectrum leas-
ing paradigm, and [34] proposes a distributed approach,
where devices negotiate local channel assignments aiming
for a global optimum.

Unlike most of the previous work, we utilize methods de-
veloped for decision making in queueing systems [18]. Fol-
lowing [12, 31], extensive effort has been dedicated in the
past decades to studying the effect of pricing on equilibrium
performance. Our contribution is in analyzing the effect of
the dedicated band pricing on the (non-cooperative) behav-
ior of SUs. Recently, [8, 33] studied the decision process
of customers who may join a server that can go on vaca-
tion. Under that model, the server stops serving customers
for some (stochastically distributed) period, whenever it be-
comes idle. Our model, which corresponds to a server with
breakdowns, is significantly different as the “server” (band)
may stop serving customers (SUs) even when there are cus-
tomers (SUs) waiting. In [11] decisions for the server with
breakdowns model under the observable queue case (i.e., cus-
tomers observe the queue size when making a decision) were
studied. We, on the other hand, study the unobservable case
which better approximates a distributed MAC employed by

the SUs.

3. THE MODEL

3.1 Preliminaries
We start by defining the model for a system with a single

Primary User band and multiple Secondary Users that may
wish to share that band.

Our baseline model consists of a single PU who owns a
spectrum band of some fixed bandwidth. The use of the
PU band by the PU occurs intermittently, in the form of
sojourns. We assume that the PU sojourn times (i.e., the
amount of time that the PU uses its band at a stretch)
are random and exponentially distributed with mean 1/η.
Moreover, the amount of time that elapses between the end
of a sojourn, and the commencement of the next sojourn is
also exponential with parameter ξ, and is independent of the
sojourn times.

The SUs arrive to the network according to a Poisson
process with rate λ. Each SU requires service for a random
amount of time (exponential with parameter µ) in order to
complete service. These SU ‘job sizes’ are assumed to be
independent of the SU arrivals, and of the PU sojourns.

Upon arrival, each SU has to make a spectrum decision.
That is, it has to decide between acquiring a dedicated band
for a price, and using the PU band for free. If an SU chooses
to acquire a dedicated band, it pays a fixed price C̃.3 For
simplicity, we assume that the dedicated band and the PU
band have the same bandwidth. Hence, the SU’s service
times are exponential with parameter µ in either case. If an
SU chooses to use the PU band, it joins a virtual queue of
SUs who have chosen to use the PU band. This queue is
used in order to model the delay incurred when a few SUs
wish to use the same PU band.4

The SUs can sense the PU band and learn whether the PU
is present5. However, the SU does not know how many other
SUs are presently attempting to use the PU band, and must
make its decision only on the basis of statistical information.
This models the case in which SUs try to ditributedly access
a channel (e.g., by a distributed MAC protocol) and are not
managed by a central entity.

The average cost incurred by a secondary user consists of
two components: (i) the price of the dedicated band C̃, and
(ii) an average delay cost. Let α be the delay cost per unit
time (i.e., α represents the delay vs. monetary cost tradeoff
of the SUs). The expected cost when acquiring dedicated
spectrum is thus given by

JB = C̃ +
α

µ
= C, (1)

We will refer to C̃ as the dedicated band price, and to C as
the total dedicated band cost.

The expected cost of using the PU band consists purely
of a delay cost. Specifically, it is given by α times the ex-
pected delay faced by the SU. This expected delay depends

3We assume that there is no lack of dedicated bands, so
that a user who is willing pay for a dedicated band can
immediately get it.
4In a real system, the contention for a channel may be real-
ized by a distributed MAC protocol rather than by a queue.
5We assume that the SUs can distinguish between an active
PU and an active SU using, for example, the packet header
or activity pattern.



on the presence or absence of the PU, as discussed in the
next section.

3.2 SU Strategies
Since the SUs can sense the presence or absence of the

PU, they can compute the expected delay cost conditioned
on their sensing outcome. In particular, SUs which sense the
PU to be present see a different conditional delay, and can
therefore adopt a different strategy from those which sense
the PU to be absent. In this work, we consider strategies
that are described by a pair of fractions (p, q), where p is
the probability that an SU decides to use the PU band,
given that the PU is absent (thus, with probability 1 − p it
acquires dedicated spectrum), and q is the probability that
an SU decides to use the PU band, given that the PU is
present (thus, with probability 1 − q it acquires dedicated
spectrum).

3.3 Nash Equilibrium
The classic notion of a Nash equilibrium stands for an

operating point (a collection of strategies) where no user can
improve its cost by unilaterally deviating from its current
strategy. We wish to characterize the equilibrium points for
the simple class of strategies outlined above.

For a strategy (p, q), let TA(p, q) denote the conditional
delay experienced by an SU that arrives when the PU band
is available and TO(p, q) be the conditional delay experienced
by an SU that arrives when the PU band is occupied6. The
corresponding delay costs are given by JA(p, q) = αTA(p, q),
and JO(p, q) = αTO(p, q).

In this paper, we will restrict attention to symmetric Nash
equilibria, as a common solution approach in the research of
equilibrium behavior in queuing systems [18]. While asym-
metric equilibria may exist, their study remains beyond the
scope of the present paper. It can be easily seen that a pair
(p, q) is a (symmetric) Nash equilibrium if and only if one
relation from each of (2) and (3) holds.











JA(p, q) ≤ C, & p = 1

JA(p, q) = C, & 0 < p < 1

JA(p, q) ≥ C, & p = 0

(2)











JO(p, q) ≤ C, & q = 1

JO(p, q) = C, & 0 < q < 1

JO(p, q) ≥ C, & q = 0.

(3)

To avoid a trivial solution, we make the following assump-
tion throughout the paper.

Assumption 1. The total dedicated band cost satisfies the
following inequalities: JA(0, 0) < C, JO(1, 1) > C.

In the above, JA(0, 0) should be interpreted as the delay cost
incurred if a particular SU were to join the cognitive queue
when the PU is absent, given that no other SU chooses to
join the cognitive queue.

4. EQUILIBRIUM ANALYSIS
In this section, we analytically characterize equilibrium

behavior of the SUs. As a building block for our analysis,
6Note that TA and TO depend on both p and q, since these
delays are a function of the previous SU arrivals that have
occured.

Figure 3: Queue occupancy Markov process

we obtain in Section 4.1 the conditional delay expressions
TA and TO for a given strategy (p, q). Using the delay anal-
ysis, we proceed to provide several basic properties of the
equilibrium in Section 4.2. These are then used in Section
4.3 to fully characterize the equilibrium behavior.

4.1 Conditional Delays
We develop explicit formulas for the conditional delays TA

and TO for given values of the probabilities p and q. In our
analysis, we view the arrival of a PU as a server breakdown.
That is, when a PU arrival occurs, the SU being served at
that time is preempted, and service resumes after an expo-
nentially distributed interval of mean duration 1/η. Since
the service time distribution of the SUs is memoryless, it
follows that the remaining service time of a preempted SU
is still exponential with parameter µ. While delay analysis
of exponential servers under breakdown has been studied
extensively [29, 30, 37], our analysis is significantly more in-
volved because the instantaneous arrival rate of SUs to the
queue is a function of the presence or absence of the PU.

Fig. 3 depicts the Markov process corresponding to the
system evolution. In the chain, the state i0 denotes the ab-
sence of a PU, and the presence of i SUs, where i = 0, 1, . . . ,
and i1 denotes the presence of a PU and i SUs. Note that
the arrival process of SUs is Poisson of rate pλ when the
PU is present, and Poisson of rate qλ when the PU is not
present. This follows from the splitting property of Poisson
processes. Further, SUs get served at rate µ when the PU is
not present, and do not get served when the PU is present.

The steady state probability of a PU being absent can be
easily shown to be η/(η + ξ). The Markov process is positive
recurrent if the average arrival rate is less than the average
service rate, i.e., (pηλ + qξλ)/(η + ξ) < µη/(η + ξ). For
simplicity, we assume that the system is stable for all values
of p and q, which implies λ < µη/(η + ξ).

Under the above conditions, we next obtain explicit for-
mulas for TA and TO, which will be used for the equilibrium
characterization.

Theorem 1. Let p and q be the probabilities of an SU
committing to take the PU band, in case that the PU band
is available and in case that it is occupied, respectively. The
respective conditional delays are given by

TA(p, q) =
η + ξ

µη − ηpλ − qλξ

(

1 +
q2λ2ξ

µη2

)

(4)



pm,1 =
ξ

qλ + η

(

qλ

qλ + η

)m

p00 + p10

{

ξC−

β−(qλ + η) − qλ

[

βm
− −

(

qλ

qλ + η

)m]

+
ξC+

β+(qλ + η) − qλ

[

βm
+ −

(

qλ

qλ + η

)m]}

. (7)

NO =

(

1 +
η

ξ

) (

p00ξ
qλ

η2
+ p10

{

ξ
C−

(β−(qλ + η) − qλ)

[

β−

(1 − β−)2
− qλ

qλ + η

η2

]

+ ξ
C+

(β+(qλ + η) − qλ)

[

β+

(1 − β+)2
− qλ

qλ + η

η2

]})

;

(11)

and

TO(p, q) =
η + ξ + µ − (p − q)λ − pqλ2(η+ξ)

µη

µη − ηpλ − qλξ
. (5)

Proof. The proof follows through the following three
steps. We first obtain the steady-state probabilities for the
Markov chain and then derive the conditional occupancy of
SUs. Next, we compute the average time spent at the ‘head
of line’ of the queue by an SU. We combine the above two
steps by invoking an ‘Arrivals See Time Averages’ property
in order to obtain the required expressions.

Step 1: Steady-State Probabilities and conditional occu-
pancy. We give the expressions for the steady-state proba-
bilities without derivation, due to space
constraints. We have

p0,0 =
η

η + ξ
(1 −

λ

µ
(p + q

ξ

η
)), p0,1 =

ξ

η + qλ
p0,0,

p1,0 = p01
qλ

µ
+ p0,0

pλ

µ
,

and for m ≥ 1,

pm,0 = (C+βm−1
+ + C−βm−1

− )p1,0, (6)

where β± = a±∆
2b

, ∆ =
√

a2 − 4bpλ, a = pλ + η p

q
+ ξ + µ,

b = µ(qλ+η)
qλ

, and C+ and C− are given by

C+ =
b

∆

(

β+ −
pqλ

pη + pqλ + qξ

)

,

and

C− =
b

∆

(

pqλ

pη + pqλ + qξ
− β−

)

.

pm,1 is given in (7).
Let us denote by NA (NO) the average SU occupancy

when the PU is absent (present). Thus,

NA =

(

1 +
ξ

η

) ∞
∑

m=1

mpm0 (8)

NO =

(

1 +
η

ξ

) ∞
∑

m=1

mpm1 (9)

Since the steady state probabilities in (8) and (9) are
known, we can obtain NA and NO in closed form, as shown
in (10,11)

NA =

(

1 +
ξ

η

)

p10

[

C+

(1 − β+)2
+

C−

(1 − β−)2

]

(10)

Step 2: Head-of-line delay. Let τHoL denote the average
time spent at the head of line of the queue by an SU. This
time has two components: the time for service, which is ex-
ponential with mean 1/µ, plus the time for which the server
is broken down (because of a PU arrival). Once an SU en-
ters service, it completes service before being preempted by
a PU with probability µ

µ+ξ
. If it is preempted by a PU, it

stays at the head-of-line for a mean duration of 1/η, after
which the service is resumed. Since the distribution of the
SU service time is memoryless, the following recursion is
straightforward:

τHoL =

{

1
µ+ξ

w.p. µ

µ+ξ
1

µ+ξ
+ 1

η
+ τHoL w.p. ξ

µ+ξ

Thus, we get

τHoL =
1

µ

(

1 +
ξ

η

)

(12)

Step 3: Conditional delays seen upon arrival. Let N̂O and
N̂A respectively denote the average queue occupancy seen
by an SU, upon arriving to an occupied or available queue,
respectively. Since each packet spends an average duration
of τHoL at the head-of-line, we have the following relations
for the conditional delays TA and TO:

TA = (1 + N̂A)τHoL (13)

TO =
1

η
+ (1 + N̂O)τHoL (14)

We comment that the average occupancy seen by an ar-
riving SU need not, in general, equal the time average occu-
pancy seen by an external observer. However, we argue in
the appendix that the ‘Arrivals See Time Averages’ (ASTA)
property holds, once we condition on the presence or absence
of the PU.7 Thus, NA = N̂A and NO = N̂O . As a result,
the expressions for the conditional delays read

TA = (1 + NA)τHoL (15)

TO =
1

η
+ (1 + NO)τHoL (16)

where NA, NO and τHoL are given in (10), (11), and (12) re-
spectively. Substituting and simplifying gives (4) and (5).

As expected, the average delay experienced by an SU that
arrives when the server is occupied is strictly greater than
that experienced by an SU that arrives when the server is
available.
7Notice that since the arrival process of the SUs to the queue
is in general not Poisson, this property is different from the
‘Poisson Arrivals See Time Averages’ (PASTA) property and
requires a proof.



Proposition 2. For any p, q we have

TO(p, q) > TA(p, q).

Proof. From (15) and (16), it is clear that the result
would follow if NO ≥ NA. Since the event of a PU arrival is
a memoryless event, it is clear that the average occupancy
just before a PU arrival is equal to NA. Thus, the average
SU occupancy just after the PU arrival is also NA. Since
the SUs get no service after the PU arrival, the average SU
occupancy when the PU is present (NO) cannot be smaller
than the occupancy just after the PU arrival. Thus, NO ≥
NA.

4.2 Basic Equilibrium Properties
We prove in this subsection that the Nash equilibrium

point exists and is unique. Along the way, we describe ad-
ditional properties of the equilibrium. We start by stating
that an equilibrium point always exists.

Proposition 3. There always exists a Nash equilibrium.

Proof. Let us consider three possible cost ranges, and
show the existence of equilibrium in each case.

1. JA(1, 0) ≤ C, J0(1, 0) ≥ C. Noting (2)–(3), (p, q) =
(1, 0) is a Nash equilibrium for this case.

2. JA(1, 0) > C. Recall that JA(0, 0) < C by assump-
tion. Then by continuity of the delay function, it fol-
lows that there exists p < 1 such that JA(p, 0) = C
(intermediate-value theorem); furthermore, JO(p, 0) >
C by Proposition 2. In view of (2)–(3), the last two
assertions immediately imply that (p, 0) is a Nash equi-
librium.

3. JO(1, 0) < C. Recall that JO(1, 1) > C by assumption.
Then by continuity of the delay function, it follows that
there exists q < 1 such that JO(1, q) = C; furthermore,
JA(1, q) < C by Proposition 2. In view of (2)–(3), the
last two assertions immediately imply that (1, q) is a
Nash equilibrium.

Thus, there always exists an equilibrium point.

We next provide a basic characterization of the range of
equilibrium probabilities.

Proposition 4. Suppose that the pair (p, q) is a Nash
equilibrium.

(i) If 0 < p < 1, then q = 0.

(ii) If 0 < q < 1, then p = 1.

Proof. Using (2), we see that the condition 0 < p < 1
implies C = JA(p, q). Next, proposition 2 implies JO(p, q) >
JA(p, q) = C. Finally, using (3), we conclude that q = 0.
Part (ii) also follows along similar lines.

Note that the above proposition, together with Assump-
tion 1, imply that p > q in any equilibrium, as might have
been expected. By using this proposition, we can now es-
tablish the uniqueness of the equilibrium point.

Proposition 5. The Nash equilibrium point is unique.

Proof. The proofs follows from the following auxiliary
lemma.

Lemma 1. Let (p1, q1) and (p2, q2) be two distinct Nash
equilibria. Then
(i) p1 > p2 =⇒ q1 ≥ q2.
(ii) q1 > q2 =⇒ p1 ≥ p2.

Proof. (i) Assume to get a contradiction that q2 > q1,
hence, q2 > 0. If q2 = 1 then p2 = 1, which cannot be an
equilibrium by Assumption 1; otherwise, 0 < q2 < 1, which
by Proposition 4(ii) suggests that p2 = 1, a contradiction.
(ii) Assume by contradiction that p1 < p2, hence p1 < 1.
If p1 = 0 then q1 = 0, which cannot be an equilibrium by
Assumption 1; otherwise, 0 < p1 < 1, which by Proposition
4(i) suggests that q1 = 0, a contradiction.

It follows by the above lemma that if there exist two dif-
ferent equilibria (p1, q1), (p2, q2), then (without loss of gen-
erality) (a) p1 > p2, q1 ≥ q2 or/and p1 ≥ p2, q1 > q2. We
can easily show that both (a) and (b) lead to a contradiction.
Indeed, (a) implies that C ≥ JA(p1, q1) > JA(p2, q2) ≥ C,
(where the first and third inequality follow from (2), and
the second since the congestion in equilibrium 1 is strictly
higher than in equilibrium two), which is obviously a con-
tradiction. Similarly, assuming (b), we obtain the following
contradicting inequality C ≥ JO(p1, q1) > JO(p2, q2) ≥ C.
We conclude that we cannot have multiple equilibria, hence
the Nash equilibrium is unique.

4.3 Characterization of the Nash Equilibrium
Next, we characterize the equilibrium behavior of the SUs

for a given cost C.
Proposition 4, together with assumption 1 implies that a

Nash equilibrium pair (p, q) can only have one of the fol-
lowing three forms: (a) (1, q), 0 < q < 1 (b) (1, 0), and (c)
(p, 0), 0 < p < 1. In the following theorem, we identify three
ranges of the total dedicated band cost for which the above
three forms of equilibria are observed, and explicitly obtain
the equilibrium probabilities as a function of C.

Theorem 6. The equilibrium probabilities p and q can be
characterized as a function of the cost C as follows:

(i) If JO(1, 0) < C < JO(1, 1), the Nash equilibrium pair
is (1, q(C)), where

q(C) =
µη

(

(η C
α
− 1)(µ − λ) − (η + ξ)

)

λ(C
α

ηµξ + ηµ − λ(η + ξ))
, (17)

In words, a fraction q(C) of the users who arrive to
find the free spectrum occupied, still join the queue,
while all the users who find the free spectrum available,
join the free spectrum.

(ii) If JA(1, 0) ≤ C ≤ JO(1, 0), the equilibrium pair is
(1,0). That is, all SUs take the PU band if available,
and no SU takes the PU band if it is occupied.

(iii) If JA(0, 0) < C < JA(1, 0), the equilibrium pair is
(p(C), 0), with

p(C) =
µ

λ
− α

1 + ξ

η

Cλ
(18)

In this case, a fraction p(C) of the users who find the
server available join the free spectrum, while all the
users who arrive to find the server occupied acquire
dedicated spectrum.
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Figure 4: Probability of committing to the PU band,
as a function of the band price. The system param-
eters are µ = 10, λ = 7, η = 10, ξ = 2, and α = 4.

Proof. If C satisfies case (ii), we see that the equilib-
rium conditions (2,3) are satisfied with p = 1 and q = 0.
Next suppose that C satisfies case (i). Consider the function
JO(1, q), q ∈ (0, 1) which, as we might expect, is continu-
ous and increasing in q. As a result, there exists a unique
0 < q(C) < 1 such that JO(1, q) = C. Indeed, this equation
can be explicitly inverted to yield q(C) in (17). Thus, the
equilibrium condition (3) is satisfied with equality. Further,
since q < 1, proposition (4) implies p = 1, and it follows
that (1, q(C) is an equilibrium pair. Case (iii) follows along
similar lines.

Note that using the relation between C and C̃, (1), we
can also obtain the equilibrium probabilities in terms of the
band price C̃. With some abuse of notation, (1) and (17)
together yield

q(C̃) =
KC̃ − L

AC̃ + B
,

with K = µη2(µ−λ)/α, L = µη(µ−λ+ξ+ λη

µ
), A = λξηµ/α

and B = ληξ+µλη−λ2(η+ξ). Similarly, from (1) and (18),

p(C̃) =
µ

λ
− α

1 + ξ

η

(C̃ + α/µ)λ
.

Fig. 4 shows a plot of the probabilities p and q as a func-
tion of the band price C̃ for a particular system.

5. OPTIMAL BAND PRICING
Since the SU strategy depends on the cost of a dedicated

band, a service provider may wish to price the dedicated
bands so as to maximize its revenue. We make here the
assumption that the dedicated spectrum is owned by a sin-
gle provider (a monopoly), who may unilaterally adjust the

price C̃. The natural tradeoff the monopoly faces is between
obtaining more revenue per customer and attracting more
customers to the dedicated spectrum by reducing the price
per customer.

Fig. 5 depicts the (equilibrium) total revenue as a func-

tion of the price C̃ for a given game instance. Note that
the obtained function is neither concave nor convex, which

might indicate that the optimal price can be solved for only
numerically. However, we show below that the optimal price
can be obtained very efficiently, requiring the revenue com-
parison under a maximum of only four alternatives, each of
which given in a closed-form formula. This appealing result
is formalized in the next theorem.

Theorem 7. For any given set of system parameters, con-
sider the following four band prices:

C̃∗

1 =
1

A

√

B(KB + AL)

K − A
−

B

A
,

(where K = µη2(µ − λ)/α, L = µη(µ − λ + ξ + λη

µ
), A =

λξηµ/α and B = ληξ+µλη−λ2(η+ξ)); C̃∗
2 = JO(1, 0)− α

µ
;

C̃∗

3 = α

√

η + ξ

µ(µη − λ(η + ξ))
−

α

µ
;

C̃∗
4 = α

µ

ξ

η
. Let us define C̃∗

2 and C̃∗
4 to be candidate prices.

Further, C̃∗
1 is a candidate price if JO(1, 0) < C̃∗

1 + α
µ

<

JO(1, 1), and C̃∗
3 is a candidate price if JA(0, 0) < C̃∗

3 + α
µ

<

JA(1, 0). Then the globally optimal pricing policy is an index
policy, which compares the revenues generated under each of
the candidate prices, of which there are at most four.

Proof. The proof follows by separately considering each
of the three cost subregions given in Theorem 6, as summa-
rized in the next three lemmas.

Lemma 2. In the price range JO(1, 0) < C̃ + α/µ <
JO(1, 1), the band price that maximizes the average revenue
earned from the dedicated spectrum is given by

C̃∗

1 =
1

A

√

B(KB + AL)

K − A
−

B

A
,

as long as C̃∗
1 lies in the above range. If C̃∗

1 does not lie in
the range of interest, then the revenue generated is mono-
tonically decreasing in the band price, and the optimal band
price will be given by the next proposition.

Proof. In this case, a fraction 1 − q(C̃) of the users ac-
quire dedicated spectrum when the PU is present, while no
SU acquires dedicated spectrum if the PU is absent. The av-
erage number of customers who acquire spectrum in a unit
time is thus equal to (1 − q(C̃))λ ξ

ξ+η
. Since each customer

pays a monetary cost8 C̃, the rate of revenue generation is

C̃(1 − q(C̃))λ
ξ

ξ + η
.

Using basic Calculus, we can show that the rate of rev-
enue generation is concave in C̃. The stationary point of
the concave function, which is given by C̃∗

1 , would be the
optimal value for this range of band price, if it lies in the
said range. If not, it can be shown that the revenue rate is
monotone decreasing in the band price, and Lemma 3 would
take over.

Lemma 3. In the price range JA(1, 0) ≤ C̃ + α/µ ≤
JO(1, 0), the band price that maximizes the average revenue

earned is given by C̃∗
2 = JO(1, 0) − α

µ
. In other words, it is

optimal to price the spectrum at the highest value that leads
to the equilibrium pair (1,0).
8Since we are interested in the revenue generated, the delay
cost α/µ is not considered.
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Figure 5: An example of the revenue generated as
a function of the band-price C̃ when the system pa-
rameters are µ = 10, λ = 4, η = 10, ξ = 1, and α = 4.

Proof. In this case, all the users who sense an available
server take the PU band while the users who sense an occu-
pied server acquire dedicated spectrum. Thus, it is clearly
advantageous in terms of revenue to choose the highest band
price allowed, which is equal to JO(1, 0). 2

Finally, we consider the optimal pricing corresponding to
case (iii) of Theorem 6.

Lemma 4. In the cost range JA(0, 0) ≤ C̃+α/µ < JA(1, 0),
the pricing that maximizes the average revenue earned from
the dedicated spectrum is given by

C̃∗

3 = α

√

η + ξ

µ(µη − λ(η + ξ))
−

α

µ
,

as long as C̃∗
3 lies in the said range. If not, the optimum

band price is

C̃∗

4 = JA(0, 0) −
α

µ
=

α

µ

ξ

η
.

Proof. In this range, the rate of revenue generation is

given by C̃λ
(

1 − η

η+ξ
p(C̃)

)

, which is easily shown to be

concave in C̃. The rest of the proof is akin to Lemma 2.

Once the local optimum prices are determined according
to the above lemmas, we can find the globally optimum
price, by comparing the revenues under each locally opti-
mum band price. This concludes the proof of Theorem 7.

Returning to the example in Fig. 5, we see that the global
optimum band price for the given game-instance is C̃∗

3 =
0.16.

6. MULTIPLE PRIMARY-USER BANDS
In this section, we consider the problem of choosing be-

tween free and dedicated spectrum, where several PU bands
are available. Let N be the number of PUs in the system,
each owning a different band. We denote by ξi and ηi the
sojourn parameters of the PU in the ith PU band. We as-
sume that each SU can sense only a small number of PU

bands before making its spectrum decision. The spectrum
decision is (as before) between committing to one of the
sensed PU bands, based on the conditional delay estimates,
or acquiring dedicated spectrum for a fixed unified price C̃.

The study of the above model in its full generality (i.e.,
each SU may sense some subset of the available PU bands)
naturally becomes an extremely difficult problem, even if
one settles for numeric solutions. However, once additional
assumptions are made, it may be possible to solve for the
equilibrium point (and related aspects), either explicitly or
numerically. We consider in this section a specific tractable
scenario, and conclude by briefly mentioning an additional
model which is subject of on-going investigation.

We consider next a simplified case of limited-sensing abil-
ities, where each SU can sense only a single PU band before
making its spectrum decision. This case is formally modeled
as having a heterogenous SU population of N types, where
all SUs of the ith type sense the ith PU band (i = 1, . . . , N).
The arrival rate of each type i is denoted λi, and it is as-
sumed that all i-type SUs have the same service-time dis-
tribution (exponential with mean 1/µi, regardless whether
they commit to their sensed band or acquire dedicated spec-
trum) and the same delay cost coefficient αi.

A Nash equilibrium for the above defined system is char-
acterized by {(pi, qi)}

N
i=1, where pi is the probability that

type i SUs commit to the ith band and qi is the probabil-
ity that they acquire dedicated spectrum. It can be easily
seen that for a given price C̃, the equilibrium analysis de-
couples and can be solved separately for each PU band, by
using the analysis of the preceding sections. Specifically,
the conditional delays for each PU band can be derived us-
ing Theorem 1, with η, ξ, and λ replaced by ηi, ξi, and λi.
Then, the equilibrium probabilities (pi, qi) can be obtained
from Theorem 6.

The challenging issue which we next consider is how to set
the optimal (revenue-maximizing) price C̃. Once the equi-
librium probabilities are known for each i, the total revenue
obtained from dedicated spectrum sales can be computed
using the expression

R(C̃) =

N
∑

i=1

λC̃
(1 − pi)ηi + (1 − qi)ξi

ηi + ξi

.

Fig. 6 depicts the total revenue R(C̃) as a function of the

price C̃ for a specific problem instance with three PU bands.
The optimal price is seen to be C̃∗ = 0.88 monetary units.
The equilibrium probabilities corresponding equilibrium prob-
abilities are given by (0.893, 0), (1, 0), and (1, 0) respectively.
The figure demonstrates that even for a relatively small N,
there are numerous price ranges to be considered, and the
analytical optimization of band price is very cumbersome
due to the intricate structure of the curve. Nonetheless, as
the associated optimization problem is over a scalar vari-
able C̃, one can always numerically solve for the optimal
price in an efficient way, using standard search techniques
(see, e.g., [36]).

We conclude this section by briefly mentioning an addi-
tional relevant model of a system with multiple PU bands.
Assume that the number of PU bands N is relatively small
and that each SU can sense all bands prior to its decision.
Without further assumptions, we need an exponential num-
ber of probabilities to describe an equilibrium point, since
there are 2N possible subsets of PU bands that could be
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Figure 6: An example of the revenue as a function
of the band-price C̃ for 3 PU bands (N = 3). The
system parameters are: µi = µ = 10, αi = α = 4, λ1 =
7, η1 = 10, ξ1 = 1, λ2 = 5, η2 = 10, ξ2 = 1, λ3 = 5, η3 = 6,
and ξ3 = 1.

available at any time. It turns out that the state-space of
this problem can be simplified significantly when the param-
eters of the PU sojourns, ξ and η, are equal in all the bands.
This assumption lends a certain symmetry to the problem,
which reduces the state-space of the SU occupancy to O(N).
Consequently, the corresponding steady state probabilities
can be solved numerically quite efficiently.

7. CONCLUDING REMARKS
In this paper, we considered the decision-making process

of Secondary Users who have the option of either acquir-
ing dedicated spectrum or sharing free yet unreliable bands.
We fully characterized the resulting Nash equilibrium for the
single-band case. We also demonstrated how the equilibrium
analysis can be exploited from the viewpoint of a monopoly
who owns dedicated spectrum and wishes to maximize rev-
enue. Finally, the case of multiple PU bands was briefly
discussed.

Overall, this paper uses a novel paradigm to provide a
first step towards a theoretical understanding of decision
processes in dynamic spectrum access systems. Our study
integrates tools and ideas from queuing theory, game theory,
and network economics.

There are still many problems and extensions that can be
dealt with. For example, we plan to extend the model to ac-
count for other distributions beside the exponential distribu-
tion. Moreover, in future work, we plan to incorporate into
the model additional costs associated with using free spec-
trum, e.g., the energy-cost of spectrum sensing. Overhead
costs associated with renting dedicated spectrum can be con-
sidered as well, such as the cost of communication during the
rent agreement, and congestion effects when dedicated spec-
trum is not widely available. For multiple PU bands, one
may consider SUs with partial sensing abilities (e.g., may
sense only a subset of the bands) and their effect on the per-
formance. It is also of interest to analyze scenarios in which
the dedicated spectrum is owned by multiple providers that
compete over the spectrum market share (e.g., the model

of [32]).
In this paper, we have considered basic decision-making of

SUs, who choose between dedicated or free spectrum upon
arrival. It is also of great interest to examine more sophis-
ticated decision sets and user types, for example, impatient
SUs who purchase a dedicated band whenever their waiting
time for free spectrum exceeds some threshold. Such study
would naturally require extending the user model, perhaps
by building on call-center research (see, e.g., [16]).

Finally, as indicated in the IEEE 802.22 standard, white
spaces can be allocated either by employing MAC protocols
or through a spectrum broker, which divides the available
bandwidth between the SUs. Studying the former model
requires encapsulating the analysis of distributed MAC pro-
tocols within our framework. For the latter model, we plan
to consider the case in which the broker allocates the spec-
trum band to the SUs and also announces the congestion
levels for potential SUs.
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APPENDIX
On the correctness of the ASTA property. We argue
that conditioned upon a PU being absent (or present), an
arriving SU sees time average occupancies, i.e., that it sees
the same conditional distribution as an external observer.
In other words, we will show that NA = N̂A and NO =
N̂O . We argue along the same lines as in [4]. Let us first
condition on the PU being present. For some small δ > 0,
let A(t, t+ δ) denote the event that a SU arrives in the time
interval (t, t+δ). As shown in [4], the ASTA property would
hold conditioned on the PU being present if the following
condition is satisfied.

P{A(t, t + δ)|NO(t) = n} = P{A(t, t + δ)}. (19)



Now, conditioned on the PU being present, the arrival pro-
cess is Poisson with rate qλ, and therefore arrival event
A(t, t + δ) is independent of how many packets there are
in the system. Thus, (19) holds under in this case. A simi-
lar argument would prove that ASTA also holds conditioned
on the PU being absent.

In order to illuminate the situation further, we show that
ASTA does not hold for an unconditional arrival. Consider
an arbitrary arrival into the queue. It is not known whether
the PU is present or not. Suppose for the sake of easy ar-
gument that pλ is very small, qλ, and µ are very large, and
that η = ξ and both are very small compared to µ. In such
a case, we can deduce from (6) and (7) that large queue
occupancies are likely when the PU is present and small oc-
cupancies are typical when the PU is absent. Therefore, the
conditional probability P{A(t, t + δ)|N(t) = n} is actually
dependent on n. For example, conditioned on a very large
occupancy, it is more likely that the PU is present, so that
the probability of an arrival is closer to qλδ, whereas, the
unconditional probability of arrival is given by

P{A(t, t + δ)} = δ
pλη + qλξ

η + ξ
.

Thus, P{A(t, t + δ)|N(t) = n} 6= P{A(t, t + δ)}, and ASTA
does not hold for an unconditional arrival.


