767 research outputs found

    Cooperative optimal preview tracking for linear descriptor multi-agent systems

    Get PDF
    © 2018 The Franklin Institute. In this paper, a cooperative optimal preview tracking problem is considered for continuous-time descriptor multi-agent systems with a directed topology containing a spanning tree. By the acyclic assumption and state augmentation technique, it is shown that the cooperative tracking problem is equivalent to local optimal regulation problems of a set of low-dimensional descriptor augmented subsystems. To design distributed optimal preview controllers, restricted system equivalent (r.s.e.) and preview control theory are first exploited to obtain optimal preview controllers for reduced-order normal subsystems. Then, by using the invertibility of restricted equivalent relations, a constructive method for designing distributed controller is presented which also yields an explicit admissible solution for the generalized algebraic Riccati equation. Sufficient conditions for achieving global cooperative preview tracking are proposed proving that the distributed controllers are able to stabilize the descriptor augmented subsystems asymptotically. Finally, the validity of the theoretical results is illustrated via numerical simulation

    Impulse Elimination and Fault-Tolerant Preview Controller Design for a Class of Descriptor Systems

    Get PDF
    In this paper, a fault-tolerant preview controller is designed for a class of impulse controllable continuous time descriptor systems with sensor faults. Firstly, the impulse is eliminated by introducing state prefeedback; then an algebraic equation and a normal control system are obtained by restricted equivalent transformation for the descriptor system after impulse elimination. Next, the model following problem in fault-tolerant control is transformed into the optimal regulation problem of the augmented system which is constructed by a general method. And the final augmented system and its corresponding performance index function are obtained by state feedback for the augmented system constructed above. The controller with preview effect for the final augmented system is attained based on the existing conclusions of optimal preview control; then, the fault-tolerant preview controller for the original system is obtained through integral and backstepping. The relationships between the stabilisability and detectability of the final augmented system and the corresponding characteristics of the original descriptor system are also strictly discussed. The effectiveness of the proposed method is verified by numerical simulation

    Preview Tracking Control for Continuous-Time Singular Interconnected Systems

    Get PDF
    This paper proposes and investigates a problem of preview tracking control for a class of continuous-time singular interconnected systems. Firstly, the related items are deleted to obtain several isolated subsystems with low dimensions. An error system is constructed for each isolated subsystem so that the tracking error is included in the state vector of the error system; then, the tracking problem is transformed into a regulation problem. Secondly, the preview tracking controller is designed for each error system and obtained controllers are combined as the controller of the error system of the singular interconnected system. Thirdly, the Lyapunov function method is utilized to determine the constraints of the related terms so that the closed-loop system of the error system of the singular interconnected system is stable under the action of the controller obtained. Finally, the preview tracking controller of the singular interconnected system is obtained from the relationship between the error system and the original system. A numerical simulation algorithm for continuous-time singular systems is also proposed in this paper. The numerical simulation illustrates the effectiveness of the theoretical results

    Optimal Preview Control for a Class of Linear Continuous Stochastic Control Systems in the Infinite Horizon

    Get PDF
    Copyright © 2016 Jiang Wu et al.This paper discusses the optimal preview control problem for a class of linear continuous stochastic control systems in the infinite horizon, based on the augmented error system method. Firstly, an assistant system is designed and the state equation is translated to the assistant system. Then, an integrator is introduced to construct a stochastic augmented error system. As a result, the tracking problem is converted to a regulation problem. Secondly, the optimal regulator is solved based on dynamic programming principle for the stochastic system, and the optimal preview controller of the original system is obtained. Compared with the finite horizon, we simplify the performance index. We also study the stability of the stochastic augmented error system and design the observer for the original stochastic system. Finally, the simulation example shows the effectiveness of the conclusion in this paper

    Discrete Time Systems

    Get PDF
    Discrete-Time Systems comprehend an important and broad research field. The consolidation of digital-based computational means in the present, pushes a technological tool into the field with a tremendous impact in areas like Control, Signal Processing, Communications, System Modelling and related Applications. This book attempts to give a scope in the wide area of Discrete-Time Systems. Their contents are grouped conveniently in sections according to significant areas, namely Filtering, Fixed and Adaptive Control Systems, Stability Problems and Miscellaneous Applications. We think that the contribution of the book enlarges the field of the Discrete-Time Systems with signification in the present state-of-the-art. Despite the vertiginous advance in the field, we also believe that the topics described here allow us also to look through some main tendencies in the next years in the research area

    Cooperative global optimal preview tracking control of linear multi-agent systems: an internal model approach

    Get PDF
    © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation

    Robust Preview Control for a Class of Uncertain Discrete-Time Lipschitz Nonlinear Systems

    Get PDF
    © 2018 Xiao Yu et al. This paper considers the design of the robust preview controller for a class of uncertain discrete-time Lipschitz nonlinear systems. According to the preview control theory, an augmented error system including the tracking error and the known future information on the reference signal is constructed. To avoid static error, a discrete integrator is introduced. Using the linear matrix inequality (LMI) approach, a state feedback controller is developed to guarantee that the closed-loop system of the augmented error system is asymptotically stable with H∞ performance. Based on this, the robust preview tracking controller of the original system is obtained. Finally, two numerical examples are included to show the effectiveness of the proposed controller

    Design of an Optimal Preview Controller for a Class of Linear Discrete-Time Descriptor Systems

    Get PDF
    The preview control problem of a class of linear discrete-time descriptor systems is studied. Firstly, the descriptor system is decomposed into a normal system and an algebraic equation by the method of the constrained equivalent transformation. Secondly, by applying the first-order forward difference operator to the state equation, combined with the error equation, the error system is obtained. The tracking problem is transformed into the optimal preview control problem of the error system. Finally, the optimal controller of the error system is obtained by using the related results and the optimal preview controller of the original system is gained. In this paper, we propose a numerical simulation method for descriptor systems. The method does not depend on the restricted equivalent transformation
    corecore