116 research outputs found

    An Efficient Authentication Scheme for Internet of Things

    Get PDF
    The Internet of Things (IoT) is increasingly affecting human lives in multiple profound ways. “Things” have the ability to communicate, generate, transmit and store data over the network connection. During each communication between “Things”, the data transmitted is potentially vulnerable to malicious attacks, loss, distortions and interruption which impair functionality, system efficiency and user satisfaction. Additionally, inappropriate user controls can cause problems in IoT services, such as granting anonymous users access to personal resources and enable legitimate users to access resources in an illegal manner or preventing legitimate users to access resources in an authorized manner. Therefore, communications between things need to be authenticated, authorized, secured and ensured to have high privacy by applying a strong authentication protocol. The aim of this research is to enhance the authentication protocol, starting by reducing the heavy use of storage in “Things”, and eliminating unnecessary messages during authentication steps, taking into consideration the network security analysis. This research represents a security performance analysis and enhancement authentication for the IoT. The results indicate that the enhanced protocol has a positive effect on minimizing packet length and time performance in authenticating users having once obtained access to the visited location area compared with the other two protocols used for comparative purposes, with 33% increased the proposed protocol performance

    Seamless Authentication for Ubiquitous Devices

    Get PDF
    User authentication is an integral part of our lives; we authenticate ourselves to personal computers and a variety of other things several times a day. Authentication is burdensome. When we wish to access to a computer or a resource, it is an additional task that we need to perform~-- an interruption in our workflow. In this dissertation, we study people\u27s authentication behavior and attempt to make authentication to desktops and smartphones less burdensome for users. First, we present the findings of a user study we conducted to understand people\u27s authentication behavior: things they authenticate to, how and when they authenticate, authentication errors they encounter and why, and their opinions about authentication. In our study, participants performed about 39 authentications per day on average; the majority of these authentications were to personal computers (desktop, laptop, smartphone, tablet) and with passwords, but the number of authentications to other things (e.g., car, door) was not insignificant. We saw a high failure rate for desktop and laptop authentication among our participants, affirming the need for a more usable authentication method. Overall, we found that authentication was a noticeable part of all our participants\u27 lives and burdensome for many participants, but they accepted it as cost of security, devising their own ways to cope with it. Second, we propose a new approach to authentication, called bilateral authentication, that leverages wrist-wearable technology to enable seamless authentication for things that people use with their hands, while wearing a smart wristband. In bilateral authentication two entities (e.g., user\u27s wristband and the user\u27s phone) share their knowledge (e.g., about user\u27s interaction with the phone) to verify the user\u27s identity. Using this approach, we developed a seamless authentication method for desktops and smartphones. Our authentication method offers quick and effortless authentication, continuous user verification while the desktop (or smartphone) is in use, and automatic deauthentication after use. We evaluated our authentication method through four in-lab user studies, evaluating the method\u27s usability and security from the system and the user\u27s perspective. Based on the evaluation, our authentication method shows promise for reducing users\u27 authentication burden for desktops and smartphones

    Authentication under Constraints

    Get PDF
    Authentication has become a critical step to gain access to services such as on-line banking, e-commerce, transport systems and cars (contact-less keys). In several cases, however, the authentication process has to be performed under challenging conditions. This thesis is essentially a compendium of five papers which are the result of a two-year study on authentication in constrained settings. The two major constraints considered in this work are: (1) the noise and (2) the computational power. For what concerns authentication under noisy conditions, Paper A and Paper B ad- dress the case in which the noise is in the authentication credentials. More precisely, the aforementioned papers present attacks against biometric authentication systems, that exploit the inherent variant nature of biometric traits to gain information that should not be leaked by the system. Paper C and Paper D study proximity- based authentication, i.e., distance-bounding protocols. In this case, both of the constraints are present: the possible presence of noise in the channel (which affects communication and thus the authentication process), as well as resource constraints on the computational power and the storage space of the authenticating party (called the prover, e.g., an RFID tag). Finally, Paper E investigates how to achieve reliable verification of the authenticity of a digital signature, when the verifying party has limited computational power, and thus offloads part of the computations to an untrusted server. Throughout the presented research work, a special emphasis is given to privacy concerns risen by the constrained conditions

    A structured approach to electronic authentication assurance level derivation

    Get PDF
    We envisage a fine-grained access control solution that allows a user's access privilege to be linked to the confidence level (hereafter referred to as the assurance level) in identifying the user. Such a solution would be particularly attractive to a large-scale distributed resource sharing environment, where resources are likely to be more diversified and may have varying levels of sensitivity and resource providers may wish to adjust security protection levels to adapt to resource sensitivity levels or risk levels in the underlying environment. However, existing electronic authentication systems largely identify users through the verification of their electronic identity (ID) credentials. They take into account neither assurance levels of the credentials, nor any other factors that may affect the assurance level of an authentication process, and this binary approach to access control may not provide cost-effective protection to resources with varying sensitivity levels. To realise the vision of assurance level linked access control, there is a need for an authentication framework that is able to capture the confidence level in identifying a user, expressed as an authentication Level of Assurance (LoA), and link this LoA value to authorisation decision-making. This research investigates the feasibility of estimating a user's LoA at run-time by designing, prototyping and evaluating an authentication model that derives an LoA value based upon not only users' ID credentials, but also other factors such as access location, system environment and authentication protocol used. To this aim, the thesis has identified and analysed authentication attributes, processes and procedures that may influence the assurance level of an authentication environment. It has examined various use-case scenarios of authentication in Grid environments (a well-known distributed system) and investigated the relationships among the attributes in these scenarios. It has then proposed an authentication model, namely a generic e-authentication LoA derivation model (GEA-LoADM). The GEA-LoADM takes into account multiple authentication attributes along with their relationships, abstracts the composite effect by the multiple attributes into a generic value called the authentication LoA, and provides algorithms for the run-time derivation of LoA values. The algorithms are tailored to reflect the relationships among the attributes involved in an authentication instance. The model has a number of valuable properties, including flexibility and extensibility; it can be applied to different application contexts and supports easy addition of new attributes and removal of obsolete ones. The prototypes of the algorithms and the model have been developed. The performance and security properties of the LoA derivation algorithms and the model are analysed here and evaluated based on the prototypes. The performance costs of the GEA-LoADM are also investigated and compared against conventional authentication mechanisms, and the security of the model is tested against various attack scenarios. A case study has also been conducted using a live system, the Multi-Agency Information Sharing (MAIS) system.EThOS - Electronic Theses Online ServiceSchool of Computer Science, The University of ManchesterGBUnited Kingdo

    A structured approach to electronic authentication assurance level derivation

    Get PDF
    We envisage a fine-grained access control solution that allows a user's access privilege to be linked to the confidence level (hereafter referred to as the assurance level) in identifying the user. Such a solution would be particularly attractive to a large-scale distributed resource sharing environment, where resources are likely to be more diversified and may have varying levels of sensitivity and resource providers may wish to adjust security protection levels to adapt to resource sensitivity levels or risk levels in the underlying environment. However, existing electronic authentication systems largely identify users through the verification of their electronic identity (ID) credentials. They take into account neither assurance levels of the credentials, nor any other factors that may affect the assurance level of an authentication process, and this binary approach to access control may not provide cost-effective protection to resources with varying sensitivity levels. To realise the vision of assurance level linked access control, there is a need for an authentication framework that is able to capture the confidence level in identifying a user, expressed as an authentication Level of Assurance (LoA), and link this LoA value to authorisation decision-making. This research investigates the feasibility of estimating a user's LoA at run-time by designing, prototyping and evaluating an authentication model that derives an LoA value based upon not only users' ID credentials, but also other factors such as access location, system environment and authentication protocol used. To this aim, the thesis has identified and analysed authentication attributes, processes and procedures that may influence the assurance level of an authentication environment. It has examined various use-case scenarios of authentication in Grid environments (a well-known distributed system) and investigated the relationships among the attributes in these scenarios. It has then proposed an authentication model, namely a generic e-authentication LoA derivation model (GEA-LoADM). The GEA-LoADM takes into account multiple authentication attributes along with their relationships, abstracts the composite effect by the multiple attributes into a generic value called the authentication LoA, and provides algorithms for the run-time derivation of LoA values. The algorithms are tailored to reflect the relationships among the attributes involved in an authentication instance. The model has a number of valuable properties, including flexibility and extensibility; it can be applied to different application contexts and supports easy addition of new attributes and removal of obsolete ones. The prototypes of the algorithms and the model have been developed. The performance and security properties of the LoA derivation algorithms and the model are analysed here and evaluated based on the prototypes. The performance costs of the GEA-LoADM are also investigated and compared against conventional authentication mechanisms, and the security of the model is tested against various attack scenarios. A case study has also been conducted using a live system, the Multi-Agency Information Sharing (MAIS) system.EThOS - Electronic Theses Online ServiceSchool of Computer Science, The University of ManchesterGBUnited Kingdo

    Heterogeneous Internet access via PANA/UMTS

    Get PDF

    Security Framework for the Web of IoT Platforms

    Get PDF
    Connected devices of IoT platforms are known to produce, process and exchange vast amounts of data, most of it sensitive or personal, that need to be protected. However, achieving minimal data protection requirements such as confidentiality, integrity, availability and non-repudiation in IoT platforms is a non-trivial issue. For one reason, the trillions of interacting devices provide larger attack surfaces. Secondly, high levels of personal and private data sharing in this ubiquitous and heterogeneous environment require more stringent protection. Additionally, whilst interoperability fuels innovation through cross-platform data flow, data ownership is a concern. This calls for categorizing data and providing different levels of access control to users known as global and local scopes. These issues present new and unique security considerations in IoT products and services that need to be addressed to enable wide adoption of the IoT paradigm. This thesis presents a security and privacy framework for the Web of IoT platforms that addresses end-to-end security and privacy needs of the platforms. It categorizes platforms’ resources into different levels of security requirements and provides appropriate access control mechanisms

    Security vulnerabilities in DNS and DNSSEC

    Get PDF
    • …
    corecore