
Date of acceptance Grade

Instructor

Security Framework for the Web of IoT Platforms

Atarah Ivan Akoribila

Helsinki September 30, 2017

UNIVERSITY OF HELSINKI
Department of Computer Science

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/132491569?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Computer Science

Atarah Ivan Akoribila

Security Framework for the Web of IoT Platforms

Computer Science

September 30, 2017 61

Internet of things, security and privacy, heterogeneous networks

Connected devices of IoT platforms are known to produce, process and exchange vast amounts of
data, most of it sensitive or personal, that need to be protected. However, achieving minimal data
protection requirements such as confidentiality, integrity, availability and non-repudiation in IoT
platforms is a non-trivial issue. For one reason, the trillions of interacting devices provide larger
attack surfaces. Secondly, high levels of personal and private data sharing in this ubiquitous and
heterogeneous environment require more stringent protection. Additionally, whilst interoperability
fuels innovation through cross-platform data flow, data ownership is a concern. This calls for
categorizing data and providing different levels of access control to users known as global and local
scopes. These issues present new and unique security considerations in IoT products and services
that need to be addressed to enable wide adoption of the IoT paradigm.

This thesis presents a security and privacy framework for the Web of IoT platforms that addresses
end-to-end security and privacy needs of the platforms. It categorizes platforms’ resources into
different levels of security requirements and provides appropriate access control mechanisms.

ACM Computing Classification System (CCS):
D.4.6[Distributed systems]: Security and Protection-Access Controls

Tiedekunta — Fakultet — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

ii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Motivation . 2

2 IoT platforms 4

2.1 Types of IoT platforms . 4

2.2 Interactions within the Web of IoT Platforms 5

2.2.1 Device-to-Device Pattern . 5

2.2.2 Device-to-Gateway Pattern . 6

2.2.3 Device-to-Cloud Pattern . 7

2.2.4 Platform-to-Platform Pattern 9

2.2.5 Edge Computing Interactions 10

3 State-of-the-art Security Mechanisms of IoT Platforms 11

3.1 Authentication . 11

3.1.1 Certificate-based Authentication 13

3.1.2 Mutual Authentication . 13

3.1.3 Multi-factor Authentication 15

3.1.4 Federated Identity Authentication 16

3.1.5 Framework-based Authentication 18

3.2 Authorization . 23

3.2.1 Access Control with Security Tokens 30

3.3 Privacy and Confidentiality . 31

3.4 Securing Remote Code Execution with Isolation Techniques 31

4 The Security Framework for the Web of IoT Platform 37

4.1 Categorization of Interactions for Protection 37

4.2 The Security Framework’s Architecture 40

iii

4.2.1 Handling Authentication with Security Modules 40

4.2.2 Bootstrapping Security with Hardware Cryptoprocessor 45

4.2.3 Handling Access Control with OAuth 2.0, Device Identity
Registry and Access Tokens 45

4.2.4 Secured Edge computing with Security Containers 47

5 Discussions 49

5.1 Authentication Subsystem . 50

5.2 Authorization Subsystem . 51

5.3 Secure Execution Subsystem . 51

6 Conclusion 52

References 53

1

1 Introduction

1.1 Background

The Internet of Things (IoT) paradigm aims at interconnecting smart and au-
tonomous devices using the Internet and other heterogeneous networks in order
to share data and enable remote management [GTM11]. The basic idea underlying
the paradigm is to tap into the pervasive presence of sensors, actuators and com-
munication technologies to uniquely identify objects and interconnect them in such
a way that will enable cooperation towards achieving common goals [AIM10]. It
envisions a future of smart spaces such as smart homes and smart cities wherein
seamless interactions between sensors and actuators will provide self-reliant services
for end-users. The paradigm has received great interest in the past years and re-
search predict that IoT devices connected to the Internet will triple from the current
estimate of 10 billion to 34 billion by 2020 [Meo16]. Collectively, these connected
devices will be producing and consuming petabytes of data in near real-time.

The early approach to realizing the paradigm’s objectives was by use of middleware
solutions called IoT platforms to provide services such as networking, messaging and
security needed to connect the smart objects in the physical while providing APIs for
application development. Examples of these IoT platforms include solutions such as
Xively1, Arrayent Connect2 and ThingWorx3.

Though the middleware solutions helped in bringing IoT goals closer, some chal-
lenges emerged with their introduction. Prominent among these challenges is lack
of existing standards on how IoT platforms expose services that could be consumed
by devices external to them or even other platforms. Consequently, the middle-
ware efforts produced closed and vertical systems with little interactions where one
IoT platform produces its own hardware and lock them in with their proprietary
middleware and user applications. A result of this is a plethora of islands of non-
interoperable IoT platforms, each competing for dominance [BL14]. Moreover, ap-
plication development is hindered since developers have to deal with interoperability
problems themselves in order to create innovative apps. This impedes innovation
in the IoT ecosystem and its wide adoption. To address these issues, efforts are
being made to interconnect the different IoT platforms into a Web of heterogeneous

1https://www.xively.com
2http://www.arrayent.com/platform/
3https://www.thingworx.com

2

IoT hubs called Web of IoT platforms [MMST16]. For example, Blackstock and Lea
[BL14] have proposed to use a catalogue for querying and representing IoT resources
(URIs) on the Web resulting in the Hypercat interoperability specification4.

This specification moves IoT ecosystem towards the desired interoperability by re-
quiring hubs to expose their resources using Web architecture and RESTful Web
services (Web of things). In the next stage, exposed resources from hubs are re-
quired to meet agreed specifications which results in the ability to develop adapters
and integration tools for hubs to inter-operate. The Hypercat’s approach further
enables a catalogued representation of hub’s resources that can be queried by appli-
cations from different hubs thereby enabling seamless interoperability.

Another proposal in [MT15] uses the concept of IoT hubs to extend existing mid-
dleware solutions with the IoT Hub REST API framework that enable sharing of re-
sources. The REST API can be implemented on any existing IoT platform/middleware
to support interoperability. Furthermore, the work uses meta-hubs that expose re-
sources provided by IoT Hubs in a similar fashion as in HyperCat.

In all these efforts, the goal is to tap into the ubiquitous nature of the Web, make
IoT platforms produce services that conform to common Web standards thereby
leading to seamless interoperability.

1.2 Motivation

Making it possible for different IoT platforms and hubs to interoperate through Web
technologies is a great step towards the IoT ecosystem’s goals. However, interoper-
ability is only a part of a bigger problem hindering full take-off of IoT paradigm.
One core research challenge is how to effectively manage the petabytes of data flows
that will result from interactions between IoT devices, in terms of collection, storage,
analytics and security [MWC13]. The most prominent among these is the issue of
securing platforms and their data and at the same time exposing necessary services
for interactions in the ecosystem. Even in the conventional World Wide Web where
end-devices such as personal computers and servers are unarguably well resourced
in terms of computational power and storage than most IoT devices, there has still
been frequent hacking and malware attacks. Few examples of these attacks include
the HeartBleed5 bug that affected several giant IT companies, the 2014 hack on

4http://www.hypercat.io
5http://heartbleed.com

3

Yahoo that affected up to five million user accounts and the WannaCry ransomware
that hit most parts of the world in May 2017 leading to disruptions in UK hospitals
and other institutions in different counties.

We envision that when IoT fully takes off, highly sensitive user data such as flows
from patient life support devices, autonomous vehicles, security services and many
more will be part of the ecosystem. All these flows are also going to be at the
mercy of cyberattacks. This calls for taking strong measures in handling security
requirements in order to build a safe and trusted Web of IoT platforms. It is worthy
pointing out that issues of security provision in IoT are more challenging than the
ordinary Internet or Web. One reason for this is that every single device and sensor
in the IoT represents a potential attack point of the ecosystem and since there are
trillions of such devices and sensors participating, the result is an exponentially
larger attack surface.

It can be deduced from the above examples of cyber attacks, coupled with the highly
sensitive data resulting from IoT interactions, that security requirements have to be
addressed adequately in the Web of IoT platforms. This is a basic requirement to
gain user trust and grow the IoT ecosystem. Several studies have been conducted on
IoT platforms. For instance Mineraud et al. [MMST16] provides a comprehensive
survey and gap analysis in these platforms, however, to the best of our knowledge
there is no comprehensive solution that addresses the cross-cutting security con-
cerns in these platforms. Guaranteeing security in all aspects of interactions in IoT
platforms is a prerequisite to interoperability. This therefore motivates the need
for creating a security framework for the Web of IoT platforms already started
in [MT15]. At the very minimum, the IoT architecture needs measures to handle
security and privacy requirements such Provision of Authentication, Access
control, Privacy and confidentiality [Web10]. We also envision that the Web
of IoT platforms will embrace doing analytics and taking decisions at the edge of
the networks hence the need to provide additional security requirement in the form
of Securing offloaded computations (edge computing). However, it should be
noted that the Privacy and Confidentiality requirement is left out of this thesis and
proposed to be covered in future works.

The main contribution of this thesis is to provision a comprehensive security frame-
work for the Web of IoT platforms. The framework lays out how existing security
techniques could be harnessed to provide the above mentioned security and privacy
needs. This will secure interactions between different IoT platforms such as ex-

4

changing data or offloading computational tasks, while making sure that producers
remain in full control their data.

The reminder of this thesis is as follows: Section 2 gives an overview of IoT platforms
and their roles. It also discusses the Web of IoT platforms and how to extend
IoT platforms for distributed analytics. Section 3 presents state-of-the-art security
techniques that can be leveraged for the security framework. Section 4 describes the
security framework and finally discussions and conclusions are presented in sections
5 and 6 respectively.

2 IoT platforms

Essentially, IoT platforms are middleware and infrastructure that provide intercon-
nections between smart objects and enable interactions between these smart objects
and end-users [MMST16]. The platforms serve as the glue between the various
hardware and software components of the IoT ecosystem, providing several support
functions such as Connection, Communication and Data Management.

The rest of the section discusses some common types of IoT platforms in use and
the different patterns of interactions within these platforms which make up the Web
of IoT platforms.

2.1 Types of IoT platforms

Platforms can be put into two broad categories based on their mode of deployment.
Firstly, we have local platforms whose solutions are usually available within a local
network and maintenance is done by the system admin of the network. They provide
connectivity and server solutions to smart objects within the network and might not
necessarily need Internet services. For example, with the aid of micro-controllers like
Arduino boards, one can set up a local IoT platform that controls devices within a
local setting without getting onto the Internet.

A second broad category of platforms is the cloud-based (Software/Platform-as-a-
Service) model [MMST16]. Solutions in this category provide cloud-based comput-
ing services such as data storage, analytics and visualizations or tools that react to
data. Platform-as-a-Service (PaaS) solutions provide integrated cloud-based plat-
forms with pre-installed operating systems and application frameworks that take

5

care of all necessary infrastructure from hardware up to tools required to build end-
user applications [ZCB10]. Examples include kaa6, Arrayent Connect7 and Axeda8.

A second flavor of the cloud-based solution is Software-as-a-Service (SaaS) where
end-user applications are provided as an extension to services provided by PaaS.
For instance, the Nest platform9 has mobile end-user applications to control home
thermostats and cameras.

2.2 Interactions within the Web of IoT Platforms

In the Web of IoT platforms, there are different patterns of interactions within a
single platform and between the different platforms which need to be understood
in order to provide the needed security. We therefore describe these interactions in
detail here and also bring up the security and privacy needs in each of them. We
do this using the common patterns of interactions between IoT devices as speci-
fied in the guiding architectural document for networking smart objects (RFC 7452)
[TM15]. It should be noted that some of these interactions such as Device-to-Device,
Platform-to-Platform and Edge Computing Interactions are not in common use to-
day. However, we envision them playing an important role in the implementation
of the Web of IoT platforms hence the need to secure them.

2.2.1 Device-to-Device Pattern

Devices within this model establish connection to each other and directly commu-
nicate without the help of an intermediary application server (see Figure 1). The
devices usually adhere to common protocols such as Bluetooth, ZigBee10 or Z-Wave11

that make it possible for them to directly understand exchanged data.

The model is common with scenarios where the interacting devices are within very
close proximity and requires low data rate exchanges. We also envision that this
pattern will increasingly become popular as the IoT paradigm takes off fully. Typi-
cal applications include fitness equipments such as heart rate monitors and cadence
sensors or home automation systems. This model however, is a major source of

6http://www.kaaproject.org
7http://www.arrayent.com/platform/
8http://www.ptc.com/axeda
9https://nest.com

10http://www.zigbee.org
11http://z-wavealliance.org

6

Figure 1: Device-To-Device Communication pattern [TM15]

interoperability issues [KR15] as it usually leads to cases where device manufac-
turers implement specific data formats instead of open standard data formats. For
example, the family of devices using ZigBee protocols are not natively compatible
with those using Z-Wave. This non interoperability in the underlying device-to-
device communication protocols limits a user’s choice to devices within a particular
protocol family.

In this pattern, the security needs will include how to effectively provide mutual
authentication between devices directly communicating with each other without a
bridge. There is also the need to have access control on a device’s resources to
prevent unintended exposure.

2.2.2 Device-to-Gateway Pattern

In this interaction pattern, the IoT devices use an application layer gateway as
conduit to connect to a cloud service. The gateways run application software locally
that provide security, protocol, or data translation. Data flows from the edge devices
to the gateways using standard protocols such as CoAP, TLS, DTLS or Bluetooth.
We also consider users12 connecting to gateways/platforms to fall under this pattern.
The gateway in turn transmits it to the cloud mostly in the form of Web services (see
Figure 2). These gateways could also serve as platforms or dedicated "hubs" that
are implemented with micro controllers such as Arduino boards13 and Raspberry
Pi14. In some consumer settings, smart phones with running apps serve as gateways

12Users can be human or machines
13https://www.arduino.cc
14https://www.raspberrypi.org

7

Figure 2: Device-to-Gateway pattern [TM15]

relaying data from edge devices to the cloud [KR15]. For example, in the Fitbit15

ecosystem, Fitbit tracker syncs with a Fitbit app installed on a smart phone via
Bluetooth. The tracker sends data to this app which in turn transmits it to the
cloud service.

Regardless of which form of gateway is used, two sets of flows of data need protection
namely from edge device to a local hub and from the hub to a cloud service. We
need to provide security for these flows in terms of who is authenticated to have
access to them and what kind of access rights to interact with them.

2.2.3 Device-to-Cloud Pattern

In this communication model, IoT devices connect directly to an Internet cloud
service provider.

As shown in Figure 3, data and control message traffic exchanged between the
devices and IP network will usually use existing technologies like Ethernet and

15https://www.fitbit.com/fi

8

Figure 3: Device-to-Cloud pattern [TM15]

Wi-Fi. Consumer IoT providers like Nest Labs16 use this model. One important
use-case of this pattern is that, it enables constrained devices to seamlessly mi-
grate computational tasks to more powerful servers in the cloud (Computational
Offloading) [Est10].

Some security issues in this pattern include how to mutually authenticate devices
and the cloud hosted platforms. We also need to be able to provide access controls
to guard resources both on the cloud and device ends. Another consideration is how
to protect the executions that constrained devices offload to cloud such as provision
of safe execution environments so that nothing is leaked to unintended parties. The
offloaded executions should also be prevented from accessing unintended resources
while in the cloud platforms.

16https://nest.com

9

2.2.4 Platform-to-Platform Pattern

This enables back-end data sharing between different service providers. The pattern
has not been fully developed and adopted by the different platform providers leading
to the current vertical silos of IoT platforms. However, it is a very crucial part in
implementing the Web of Things platforms. It forms the basis for interoperability
and mash-ups in the IoT ecosystem and also serves as the means by which platforms
get services from other platforms. For instance, through computational offloading,
nodes in a given platform can seamlessly migrate a computational task to other
nodes or more powerful servers in different platforms for execution. This is an
important enabler in the IoT ecosystem since, by doing so, constraint devices are
alleviated of restrictions in terms of their computational power, battery life and
memory [PHG16]. Unlike the vertical silos created by Device-to-Cloud pattern,

Figure 4: Platform-to-Platform pattern

back-end data sharing enables horizontal flow of data between different local hubs
or cloud-based service providers (Figure 4).

To enable seamless interoperability between the different platforms, RESTful Web

10

APIs are used to expose relevant services. The primary flows in this pattern that
needs protection are the "between-platform" exchanges of data, and this is usually
done with federated authentication and authorization tools like OAuth 2.0. These
protocols will be described in greater details in Section 3.

2.2.5 Edge Computing Interactions

Real-time analysis of data, especially data that comes in huge volumes from IoT
devices, is one of the challenges introduced by the Internet of Things. The current
trend of exporting all data into the cloud for analysis raises security and privacy
concerns. For example, how do data owners remain in control of their data and
ensure it is not exposed to third parties by the cloud owners without their consent?
One way of mitigating security and privacy risks in exporting to the cloud is by
making use of edge/fog computing. Through edge computing, IoT Hub platforms
are able to cooperate and organize as micro-clouds to perform analytics very close
to the data sources (edge of network). This does not only reduce the privacy and
security risks in exporting to clouds but also reduces the network bandwidth needed
in transporting the tremendous volumes of data to the cloud [AS16].

It should be noted that edge computing in IoT is not yet a full-fledged concept
though platforms like Azure IoT Edge17 have made some efforts towards sending
analytics to edge devices. Nonetheless, we envision that edge computing will play
an important role to improve performance in the Web of IoT platforms. In order to
realize the benefits of edge computing in the Internet of Things, appropriate security
measures must be put in place. For instance, foreign code to a given platform must
be executed in secure environments, preventing it from interfering with platform’s
resources not exposed to it. There is also the need to ensure that a platform’s code
or data whilst seeking services in a foreign platform or micro-cloud is not tampered
with. We will look at isolation measures that help secure edge interactions by
providing secured environments to execute foreign code in Section 3.4.

17https://azure.microsoft.com/en-us/campaigns/iot-edge/

11

3 State-of-the-art Security Mechanisms of IoT Plat-

forms

As discussed in Section 1.2, ensuring fundamental security requirements such as
authentication, authorization, privacy and confidentially are fundamental to imple-
menting the Web of IoT platforms. We also extend the requirements to securing
edge interactions and remote execution of code in order to cover services such as
edge computing and computational offloading for the Web. In this section, we dis-
cuss the security requirements listed above and bring up some existing protocols
that can be leveraged to meet our security requirements. As part of the discussion
on authorization, we consider how to secure remote execution of code resulting from
computation offloading as described in Section 2.2.3.

3.1 Authentication

Authentication establishes identities for subjects in a system and verifies that the
participating subjects in an interaction are authentic instances of the identities they
claim to be or possess. It is the means by which clients and service providers prove to
each other that they are acting on behalf of specific users or systems in a distributed
environment [SBM+04]. Authentication methods have traditionally been based on
one or more of the following properties:

1. What does the subject know? : In the case of passwords and pass-phrases
authentication.

2. What is the subject or client? : Found in biometrics authentication.

3. What does the subject have? : Private keys and secret tokens authentication.

Authentication techniques can be categorised into different groups based on different
metrics of interest. For instance, Saadeh et al. [SSQA16] have used metrics such
as whether techniques are centralized versus distributed or hierarchical versus flat.
In other instances, there may be the need for both parties taking part in a com-
munication (client/server or peer-to-peer) to mutually authenticate each other. In
this section, the authentication techniques are grouped and discussed based on the
above factors and the needs of the Web of IoT platforms. Consequently we will have
categories such as mutual authentication, multi-factor, federated-based, certificate-
based and framework-based techniques. In each each of these categories, we discuss

12

state-of-the-art protocols and further look at other characteristics of interest such as
whether it is a one-way or two-way (mutual authentication), central or distributed
protocol. We also discuss the protocol’s suitability to the IoT environment based
on factors such as resource (computation power, memory, or energy) usage. Table 1
gives a summary comparison of the discussed protocols in terms of the main roles
they play and their pros and cons.

Protocols Type Main purpose Pros Cons
Kerberos
[NT94]

Federated Identity verification of
principals

1) Supports mutual authen-
tication, 2) Eliminates trans-
mission of un-encrypted pass-
words, 3) used as base for au-
thorization protocols

1) Single point of failure
without fallback servers 2)
Restricted time require-
ment 3) Requires user ac-
counts with authentication
server

LDAP
[Don02]

Mutual Controls access to di-
rectory resources

1) Structured for hierarchical
access to user information and
easy to search based on all of
this information. 2) Its exten-
sions for other transport layer
security protocols (SSL/TLS)
makes sessions more secured

1) Not optimized for write
operations 2) no stan-
dard specifications for ac-
cess control on directory
entries

SASL
[IMG+07]

Framework Provides authenti-
cation and data se-
curity protection for
connection-oriented
application protocols

1) Highly interoperable with
many application level proto-
cols 2) Flexibility in choice of
mechanisms makes clients of
varying capabilities participate
3) Security requirements of sys-
tem can be tuned easily by
changing mechanism 4) pro-
vides additional security layer
service to protect data before
transmission

1) Susceptible to mecha-
nism downgrade attacks if
no provisions are made to
protect mechanism negoti-
ating exchanges

Shibboleth
[CS05]

Federated Enables Single sign-
on into federated sys-
tems

1) Allows access to remote re-
sources using local credentials
2) Relieves users the burden
of remembering different user-
names and passwords 3) Avoids
problems of proxy servers for
remote access

1) Difficult for systems
that want to avoid XML
since it relies on SAML, 2)
No global log-out

EAP
[ABV+04]

Framework Provides network ac-
cess authentication

1) Different authentication
mechanisms can be plugged in
that constraint devices support
2) Flexibility allows for more
secure authentication meth-
ods 3) Highly interoperable
with different authentication
protocols

1) EAP methods that per-
mit plain text conversa-
tions are susceptible to at-
tacks

Table 1: Comparison of Authentication Protocols

13

3.1.1 Certificate-based Authentication

These schemes are based on what a subject has (certificate) and so commonly use
public key certificates to establish the authenticity of an entity seeking to be au-
thenticated. To prevent masquerading a subject, the certificate is usually signed by
a third party called Certificate Authority that vouches for its authenticity (CA).

To validate a certificate, the validating node must have have a certificate of the CA
that issued the certificate. A certificate is an electronic document that gives a unique
identity to an entity and associates that identity with a public key. Most certificates
are organized according to X.509 v3 certificate specification [CSF+08] which parti-
tions a certificate into data and signature sections. Data section includes information
like X.509 version number supported, serial number of certificate, information on
public key and associated algorithm, distinguished name (DN) of CA that issued it
and certificate validity period. The signature section contains the digital signature
of the CA which is obtained from hashing of the certificate’s content and encrypting
with the CA private key. The section also contains the corresponding cryptographic
algorithm used by CA to create its digital signature.

One advantage of certificate-based schemes is that it enables usage of asymmetric
keys which can be burned into secure storage on a device and never leaves the device
hence more secured than usernames and passwords. It is therefore preferred in strict
security requirements IoT applications when the participating devices can provision
certificates.

Digital certificates are an important part of many security protocols. For instance,
various versions of X.509 certificate specification are a basic part of protocols such
as the Kerberos (see Figure 6) and SSL/TLS in their authenticating processes.

3.1.2 Mutual Authentication

In Mutual authentication schemes, the authenticating parties are required to prove
their respective identities to each other before performing any application functions.
Each party’s identity can be proved through a trusted third party such as Certificate
Authority (CA) or by use of cryptographic methods such as public key mechanisms.
Examples of protocols used include IpSec, LDAP and so on.

Secure Sockets Layer/Transport Layer Security (SSL/TLS): This proto-
col sits between the application protocol layer and the TCP/IP layer. It secures

14

application data before it is passed onto the transport layer and supports several
application layer protocols. It provides server authentication, data encryption and
message integrity over TCP/IP connections [DR08]. Essentially, SSL/TLS authenti-
cates participants to start communication and provides a secure pipe through which
the communication takes place. The types of data encrypted include urls, http
headers, cookies and form data.

SSL/TLS Protocol Layers: The SSL/TLS protocol essentially consists of two layers,
the Handshake layer and the Record layer (see Figure 5). The Handshake layer is
made up of three sub-protocols namely: Handshake Protocol, the Change Cipher
Spec Protocol, and the Alert protocol [CDM03]. The Handshake sub-protocol gives
a number of functions. It does a set of message exchanges that starts authentication
and negotiates the encryption, hash, and compression algorithms. The protocol uses
X.509 certificate 1. SSL/TLS uses public key encryption to authenticate the server
to the client, and optionally the client to the server. Public key cryptography is also
used to establish a session key. The session key is used in symmetric algorithms to
encrypt the bulk of the data. This combines the benefit of asymmetric encryption
for authentication with the faster, less processor-intensive symmetric key encryption
for the bulk data.

The protocol at the record layer receives and encrypts data from the application
layer and delivers it to the Transport Layer. The Record Protocol takes the data,
fragments it to a size appropriate to the cryptographic algorithm, optionally com-
presses it (or, for data received, decompresses it), applies a MAC or HMAC (HMAC
is supported only by TLS) and then encrypts (or decrypts) the data using the in-
formation negotiated during the Handshake Protocol.

Lightweight Directory Access Protocol (LDAP): LDAP is an application layer
protocol that defines standard APIs to access and update a directory [TEG+06]. Its
current specifications are defined in RFC 4511 [Ser06]. It supports both TCP and
UDP at the transport layer. A directory is a special type of database containing
entries of resources that are arranged in a tree-like structure called Directory In-
formation Tree (DIT). Each entry has a unique name called its distinguished name
(DN) formed from relative distinguished names from parent nodes of that entry.

An LDAP client uses the "bind", "unbind" and "abandon" operations to establish
sessions, terminate sessions and discard outstanding operations respectively with a
server.

LDAP Security model is based on the bind operation together with the DN of

15

Figure 5: SSL/TLS Protocol Layers [DR08]

a directory. There are different bind operations that result in different levels of
authentication on an LDAP server. The simplest form of authentication for a client
is to supply its DN and a password to be checked for a matching entry in the
directory. A non-authenticated and anonymous session is assumed by the server
when no supplied DN or password. Another bind command supports the use of
SASL mechanisms to support other stronger authentication methods like Kerberos.
As an additional security mechanism, LDAP has extensions to use SSL/TLS at the
transport layer to encrypt sessions [Ser06].

One notable lacking feature of the current specification of LDAP (version 3) is the
lack of standards for setting access control on entries in an LDAP-enabled direc-
tory [Don02].

3.1.3 Multi-factor Authentication

Multi-factor authentication schemes seek to add an extra layer of protection be-
tween communicating parties by requiring the use of two or more of the factors of
authentication described in the previous section. Most systems using this scheme

16

usually require users to first apply "what they know factor" in the form of username
and password. Then a second step could be what the user possess (such as mobile
phone with registered number) being used as second layer of protection. In this
case, a code is sent to the user through the phone to be used for login. Examples
of systems that use this scheme include AWS Multi-Factor Authentication (MFA)18

and Azure Multi-Factor Authentication19. A good side of this is that a second layer
of protection is added at little overhead in terms of higher computational power for
cyrptographic functions. However, the scheme relies so much on the human inter-
vention in the case of the use of the mobile phone and hence not very suitable where
devices need to to authenticate each other with little human intervention.

3.1.4 Federated Identity Authentication

Federated Identity (FID) schemes allow delegation of authentication to an external
identity provider. In FID, a user’s credentials are hosted by an Identity provider
or federation server different from the server hosting resources of interest. When
the user wants access to a service, the service provider trusts the federation server
to validate the user’s credentials. In this case, a user’s credentials are not directly
provided to service provider or any other entity but the FID.

Examples of platforms that allow users to log onto third-party applications include
Microsoft account, Google Account, Yahoo and Twitter. An advantage of this scheme
is that it delegates all authentication tasks to bigger organizations with resources to
handle. This makes it possible for resource constraint platforms in the IoT ecosystem
to relieve themselves the burden of handling authentications. It also allows the
separation of authentication from application code whilst allowing platforms to use
wider range of identity providers (IdP). Federated schemes use protocols such as
Kerberos, Open Authorization (OAuth) and Shibboleth.

Kerberos: The Kerberos protocol is a distributed authentication service used to
verify identities of principals [NT94], [NYHR05]. It is robust for different environ-
ments — including where there is no guarantee of protection of packets traversing
the network and largely uses symmetric encryption, though some works [AJR11]
have added extensions using Public-key cryptography.

In its basic operation, Kerberos service involves an Authentication Server (AP)
18https://aws.amazon.com/iam/details/mfa/
19https://docs.microsoft.com/en-us/azure/multi-factor-authentication/

multi-factor-authentication

17

which includes a certificate granting component, an Application Server (AS) that
holds desired resources and the client. A client sends a request to an AS for cre-
dentials to a given AP. The AS responds with encrypted credentials containing a
ticket for the requested AP and a session key. Finally, the client sends a resource
request together with the ticket to the AP and in the processes, the session key is
shared. The session key is then used to authenticate the client (see Figure 6). The
protocol also provides for authentication of a principal registered with a different
authentication server than the verifier, know as cross-realm authentication.

Figure 6: Kerberos authentication process [AJR11]

Kerberos can be used to pass authorization information from other services OAuth
protocol and hence serves as a base for building authorization service. It also sup-
ports mutual authentication [AJR11] through the use of the session key — an en-
hanced security feature for high security-requirement scenarios. Another advantage
of Kerberos is the elimination of transmission of unencrypted passwords across net-
works thereby reducing threats posed by packet sniffers.

Kerberos however also has its drawbacks as pointed out by works such as [LDJ14].
It requires user accounts with the authentication server to operate and expiration
of the certificates also implies that the protocol has restricted time requirement.
Since the protocol relies on continuous availability of a Kerberos authentication

18

server, a single point of failure is introduced unless multiple servers are introduced
for fallback.

OpenID Connect : OpenID Connect [SBJ+14] is an identity layer that enables
single sign-on and provides a login session semantic on top of the OAuth protocol. It
extends OAuth to enable End-Users to be Authenticated through an ID Token data
structure represented as JSON Web Token (JWT) [JBS15]. The JWT represents
an identity card that contains claims asserting the identity of the end-user, issuing
authority, expiration and so on. It may optionally be encrypted for confidentiality.

Blazquez et al. [BTV15] looks at the performance evaluation of leveraging OpenId
Connect in the IoT environment with the realization that though it represents an
easy to use substitute, there is a performance dip in high-load environments. There
is also the risk of man-in-the-middle attack since the same access token is re-used
across different requests. This could be remedied through generation and verification
of signatures at both ends per request. However, the remedy is at the risk of potential
performance loss.

Shibboleth: The Shibboleth protocol [CS05] is an open-source protocol specification
that enables single sign-on into federated systems. It uses other standards such as
SAML, PKI and HTTP. Its basic architecture is made up of the user who wants to
use a protected resource, the service provider (SP) and an identity provider (IdP).

The process starts with a user requesting for a resource from the SP. With no active
session, the SP redirects the user to an IdP with an issue Authentication Request.
After successful identification of the user, the IdP makes an authentication response
and sends it with the user back to the Service Provider. On a second arrival at the
SP, validation of the response is made and a new session is created for the user to
access the protected resource.

Shibboleth’s reliance on the XML-based SAML [CS05] could be one of the cons for
implementing systems that want to entirely avoid XML parsing. Some works also
highlights an issue of "no-global" log-out where the protocol is able to assure log
out from all the service at a time [KMRT15].

3.1.5 Framework-based Authentication

These schemes are frameworks that make it possible for different authentication pro-
tocols to be plugged-in and used. Most of these schemes permit run-time negotiation
between the authenticating parties (client and server) on which specific protocol to

19

use. For example the SASL protocol framework described later in this section allows
the SASL server to send the list of supported protocols to the client to select before
authentication and subsequent exchanges start. This is an advantage for the IoT
environment since devices vary in their ability to support different protocols. The
scheme gives these devices the option to choose amongst a host of protocols that
they can support. Extensible Authentication Protocol (EAP) is another example of
this scheme mostly used in wireless networks and point-to-point connections.

Simple Authentication and Security Layer (SASL): SASL is a protocol frame-
work that provides authentication and data security protection for connection-
oriented protocols [MZ06]. The framework introduces an abstraction layer that
decouples authentication mechanisms from the protocols thus making it possible
for any supported authentication mechanisms to be plugged in and used by any
protocol that implements SASL. This enables new protocols to seamlessly reuse ex-
isting mechanisms without redesign and vice versa. The protocol operates at the
application layer, providing security for application protocols such as AMQP and
XMPP. It is suitable for device-to-cloud, gateway-to-cloud or platform-to-platform
flows, in which cases a platform’s server will implement the protocol and host the
authentication server for it.

SASL also optionally allows negotiation of security layer services to provide data
integrity and confidentiality protection for subsequent exchanged data. A successful
negotiation will have the server and client install the required security layer services
that will be used to process protocol data into buffers of protected data before
transmission.

SASL authentication process: In order to use SASL, each protocol exposes a
method to identify a particular mechanism to be used, a method for which the
chosen mechanism exchange server-challenges and client responses and a method
for communicating the outcome of exchanges to the right parties.

Identity Concepts: SASL framework provides two identity concepts — Authentica-
tion Identity, which describes the authentication credentials of a client, and Autho-
rization Identity that is used to act as a given subject. Authentication identity can
take several forms such as X.509 certificates, Kerberos tickets or username/password.
SASL also specifies which identity form to use for authorization identity, the syntax
and semantics of the character string representing it.

A series of message exchanges take place to authenticate a client as shown in Figure 7.

20

1. A client sends request to an Authentication server (AS) to be authenticated
together with its chosen mechanism from list advertised by the server.

2. The server responses with challenges depending on the chosen mechanism.

3. Client provides challenge response, its credentials containing authentication
identity and optionally an authorization identity.

4. Server verifies the challenge responses, and identities and in particular, that
the authentication identity is permitted to act with the given authorization
identity. The server uses its own chosen internal mechanism for this purpose
which is not dictated by the framework.

5. The server then responds with the outcome of the exchanges.

Some features that make SASL a superior choice to other frameworks include inter-
operability and flexibility as a result of the decoupling of mechanisms from proto-
cols. It therefore becomes easier to programmatically opt for stronger authentica-
tions, mutual authentications and other requirements that a client can participate
in [IMG+07].

A downside of the framework is that it does not specify any protection for the mech-
anism negotiation step and this could lead to downgrade attacks where the imple-
menting system does not make other provisions to protect the negotiations [MZ06].
In such a case, an attacker can intercept and change the name of the agreed mech-
anism to a less secure one.

Extensible Authentication Protocol (EAP): EAP is a layered protocol frame-
work functioning at the data link layer to provide network access authentication [ABV+04].
It allows different current and future authentication mechanisms (EAP methods) to
be hosted in clients and servers as plug-ins. This capability makes it possible for
peers to negotiate on an appropriate method such as EAP-TLS, PEAP-TLS, Ker-
beros, CHAP and many other possibilities during the authentication phase. It is
therefore flexible to be used in devices with diverse capabilities and for different
security requirements.

In its basic specification, EAP is made up of three entities — the supplicant (peer)
requiring access into a network, the authenticator that grants access and an authen-
tication server (AS) [San05]. The AS’ role is to negotiate with a peer on the choices
of authentication mechanism to use and also validates the peer’s credentials before
authorizing an authenticator to grant access. It is common for a single device such

21

Figure 7: Message Exchanges In SASL Framework

as 802.11 AP to play the role of both authenticator and an AS but a typical scenario
is a Remote Authentication Dial-In Service (RADIUS) implementing the AS.

The lowest level of this layered framework is the data link layer where a link es-
tablishment phase between the supplicant and the authenticator takes place. Links
can be established using a serial Point-to-Point Protocol (PPP) connections or IEEE
802.1X-based access media. The second logical layer is the EAP layer where the core
framework makes provisions for different authentication mechanisms to plugged in
as EAP methods and at the very top is the authentication layer with the specific
methods (TLS, CHAP, Kerberos) [CW05].

Authentication phase starts after the link is established and a request from either the
peer or authenticator kicks in. The authenticator sends an identity request to peer
and the peer responds with credentials. Based on the negotiated EAP method, a
series of message exchanges between the three parties results in either a final success
or failure message sent to a peer by the authenticator as shown in Figure 8. An
advantage of this protocol is its support for different authentication mechanisms,

22

Figure 8: Message Exchanges In EAP Framework [San05]

making it possible for light weight protocols to be plugged in for use in the IoT
environment. It could be implemented in a local hub using an access point and so
well suited for protection of Device-to-Gateway interaction flows. One downside of
EAP is its flexibility in accommodating several protocols makes it possible for some
methods to allow clear text EAP conversations. This can expose a system to attacks
by malicious users that have access to the link layer media [mal08].

Internet Protocol Security (IPSec): Working at the network layer, Internet
Protocol Security (IPSec) [FK11] is a suite of protocols that provides network-level
security for data exchange over Internet Protocol networks. It uses specific protocols
such as Authentication Header (AH) for origin authentication, integrity, and replay
protection for data packets whilst the Encapsulated Security Payload (ESP) is used
to provide confidentiality and integrity.

IPSec can be configured to block or allow data traffic based on parameter like source
and destination addresses, ports or protocol type. It is therefore useful in scenarios
that require packet filtering. Through ESP, IPSec can also be used to restrict access
to application server, hence good at securing back-end servers. The downside of

23

IPSec is its inability to secure multicast and broadcast traffic. Issues of incompati-
bilities might also arise when used in real-time communications that require Internet
Control Message Protocol (ICMP) or peer-to-peer applications.

3.2 Authorization

This is the service that determines who is trusted for doing a given operation on an
object or a resource in a system. There are usually different groups of resources and
different kinds of operations applicable to these resources. The role of authorization
is to establish whether an authenticated subject for an operation or request on an
object is trusted for that operation on the given object [B.L91]. Authentication and
Authorization services are two aspects that enforce Access control in a system —
regulating fine grain control of resources [SPB+16].

Authorization can be done by attaching an access control list (ACL) to each object
in a system. The ACL states which subjects are authorized for which operations.
To enforce authorization, the service takes a subject, an ACL and an operation or
set of rights and returns a "yes" or "no".

There are also other models for authorizing subjects in a system such as the Role-
Based Access Control (RBAC), Attribute-Based Access Control (ABAC) model and
Capability-Based Access Control (CaBAC). RBAC model groups available permis-
sions into roles and users/subjects into different user groups with the same autho-
rization privileges. Groups of permissions (roles) are then assigned to user groups
during role-assigning tasks. Granting of access to resources in the system are en-
forced by the RBAC system based on the role assigned to a user. In effect, roles
with permissions control what can be accessed. A down side of a basic RBAC
model is that it gives pre-assigned set of permissions (through roles) to users and
does not take into account dynamic attributes such as location of users and time of
the day [KCW10]. Basic RBAC is therefore static in the provisions of permissions
to uers. Additionally, there is the need for role-engineering prior to using RBAC.
On the positive side, security auditing is simpler with RBAC because roles and their
associated permissions are well understood. It also enables representation of large
number of users with limited set of roles [CW13].

In ABAC, access is granted according to attributes presented by a subject hence
attributes are the controlling factors in this model. It consists of two main aspects,
Policy rules that specify the conditions under which access is granted. Second aspect

24

is Architecture model/Enforcement component that applies the policy. The model
enables a dynamic acquisition of permissions at runtime depending on attributes
presented by user to enforcement component. The downside of this is the need to
understand and manage a potentially large number of attributes.

In CaBAC model, the concept of capability which is right granted to a subject in
possession of it, is used. These capabilities usually come in the form of tokens,
tickets or keys that give the possessor permission to access a resource [OMEO17].

In most implementations, it is common to see a combination of two or more of these
models to achieve the desired results of the system. For instance, the Azure IoT
hub uses both policy rules and tokens hence leveraging ABAC and CaBAC models
respectively. The fusion of these two have several advantages. For instance the use
of tokens or certificates in CaBAC ensures that fine-grained access control is granted
at devices or platforms level. Another example of a combination of these models is
in the XACML protocol that uses RBAC and ABAC. These protocols are discussed
in details in this section.

Protection domains(Local and Global scopes): As part of the organizational
structure of the access control model, there is a provision made for scoping of interac-
tions between entities. The scoping introduces a logical boundary called protection
domain around a set of entities that are assumed to know and trust each other within
a certain local scope [Pap12]. Authentication is only required for entities that cross
the boundary into a global scope. Some techniques employed by various runtime
environments to enforces this include tools such as X.509 certificate and Kerberos
service ticket.

In the following texts, we have a detailed discussion of some of the authorization
protocols that can be used in the security framework. Table 2 gives a summary
comparison of these protocols in terms of the main purpose they serve, their pros
and cons and the data format they support.

eXtensible Access Control Markup Language (XACML): XACML is an OA-
SIS20 standard enforce attribute-based access control in systems. The core specifica-
tion describes three main aspects namely XACML reference architecture, XACML
policy specification language and XACML request/response protocol [XACML]. The
policy language is used to declaratively express the access control rules which are
combined by algorithms into policies mash-up. The XACML request/response pro-
tocol is used to exchange messages between the enforcement and decision making

20https://www.oasis-open.org/

25

components of the XACML specification.

One advantage of XACML is that it decouples the enforcement function from the
decision and management functions so that authorization is implemented in depth at
different layers. It also has extensions called "profiles" that exposes Authorization as
light RESTful Web services with JSON encoded data. This enhances interoperability
and also useful for constraint devices to participate.

As indicated in the beginning of the section, XACML is a combination of ABAC
and RBAC models, and therefore gives the flexibility and advantages of ABAC
such as use of dynamic attributes in granting access whilst maintaining RABC’s
advantages of easy auditing [CW13]. In the Web of IoT platforms, XACML is useful
in implementing authorization at various cloud server where using other protocols
like OpenId and LDAP to establish identities.

Some disadvantages include that it is a lot heavier that alternatives like OAuth and
so mostly favourable for Web based applications.

XACML Reference Architecture The reference architecture specifies the stan-
dard required software components to deploy to effect enforcement of access control
policies (see Figure 9).

• Policy Enforcement Point (PEP): This guards resources by intercepting client
requests and sending them to a decision point.

• Policy Decision Point (PDP): The core of the architecture, responsible for
loading policies and evaluating them against incoming authorization requests
to eventually produce decisions for the use by the enforcement point.

• Policy Retrieval Point (PRP): Stores the XACML policies that decision point
will load to make decisions

• Policy Information Point: Stores additional information about authorization
context that may be needed by decision point. It could be database contain-
ing products information, user directories, LDAPs or active directory where
attributes about the user accounts can be retrieved.

• Policy Administration Point (PAP): The point through which administrators
can define and write authorization policies to be stored into the PRP.

XACML Core Data-flow As shown in Figure 9, data flows in XACML protocol
consists of a series of message exchanges between the specification’s components in

26

Figure 9: Message Exchanges In XACML

order to take decisions on authorization requests from users. The details of these
exchanges are as follows:

1. User U sends access request for a document D.

2. PEP intercepts the request and sends authorization request to PDP.

3. PDP will load the XACML policies it is aware of from PRP and evaluates
the incoming request against the policies. In the process, PDP might need to
retrieve some attributes of the resource or user. For example if the policy is
about the clearance level of the user compared to the document classification.
In this case PDP will contact PIP for the user clearance level and document
classification to make decision.

4. Decision is returned to PEP to let the request go through or deny.

XACML Profiles XACML profiles enable the extension of the core XACML spec-
ification to support specific needs such as exposing PDP authorization service as
RESTful Web service. Though the core standards specify that request and response

27

messages between the PEP and PDP be formulated as attribute-value pairs using
XML notation, it does not dictate the exact communication protocol to convey these
messages. Most XACML implementations resorted to exposing the PDP authoriza-
tion service as SOAP-based Web service with proprietary interfaces [Nai15]. This
made it necessary to use vendor specific SDKs to implement the PEP service to
be able to use the proprietary-interfaced services resulting in tight coupling and
interoperability problems.

The REST Profile of XACML [RESTX] is one great solution to the tight coupling
and interoperability issues by exposing PDP authorization services as RESTful Web
services. It is easier to integrate REST with different languages including those that
do not have great support for SOAP. There is also improved efficiency with the
elimination of SOAP overheads such as verbose and bulky messages.

Another useful profile which helps to improve efficiency is the JSON Profile of
XACML [JSONX]. This profile replaces the XML-encoded requests/response mes-
sage formats between the PEP and PDP with light weight JSON encoded equiva-
lents. This makes data parsing easier for constraint devices. The profile is used in
conjunction with the REST Profile.

Open Authorization (OAuth 2.0): OAuth 2.0 [Har12] is an authorization frame-
work that allows client application to get restricted access to hosted resources
through an access token provided by an authorization server.

It uses HTTP protocol though other works [LST16], [FAKS14] have tried adapting
it to protocols like COAP and MQTT 3.1. OAuth 2.0 protocol is simple and well
suited for RESTFul design and JSON data. It allows for revocation of delegated
permissions through token-refresh and expiration and promotes identity interoper-
ability [OMEO17]. Identity interoperability will eliminate the need for a user to
create an account for every service provider by enabling one provider to accept,
trust and use an identity created and managed by another provider — a trust hub.
Example is the case where Google or Facebook credentials are used to log into other
platforms.

The OAuth 2.0 framework consists of basically four actors: The Resource Owner
(RO), Resource Server (RS), Authorization Server (AS) and Client. The RO can
be a human user or a device (in the case of IoT) that wants to access some resources
from a resource-host server, the Resource Server. The user or RO might like to do
this through an intermediary, say an app running on a phone. The intermediary
in this case is the Client. The Authorization server is in charge of authorizing

28

the Client to access the resource on behalf of the Resource Owner/user. However,
OAuth is not technically required to do authentication by itself and hence there may
be need for a separate authentication server in the setup. Typically, flows in OAuth
authentication process will consist of the following (see Figure 10):

1. The Client contacts Authorization server (Auth Server) for access to an API.

2. AS asks for user (RO) authentication. It typically delegates authentication to
an Authentication Server (Auth Server).

3. Auth Server authenticates RO and informs AS.

4. AS then issues an Authorization token to the client.

5. Client subsequently uses token to access resources it is allowed to as contained
in token from the Resource Server RS.

6. RS contacts AS for validation of token.

7. Upon successfull validation of token, RS responds client with the requested
resource.

The access token (bearer token), which is a string, can be an JSON Web Token
(JWT) which is plain text and so needs to be protected by a transport layer security.
This is typically provided by TLS, hence OAuth has that requirement.

Some weaknesses of OAuth 2.0 include Interoperability problems — the many added
extension points in the spec resulted in incompatible implementations. Hence one
cannot be sure that a generic Endpoint Discovery code will work for the different
implementations. For example, you may have to write separate pieces of code for
Facebook, Google, Salesforce and so on. This issue is highlighted in a disclaimer
in [Har12].

User-Managed Access (UMA): The User-Managed Access (UMA) [HMMC16]
is a Web protocol built on top of OAuth that allows resource owners control access
to all their protected resources hosted on different servers from a single point. It uses
loosely coupled components (Authorization server, Resource server and Requesting
party) to enable fine-grained access control and not just "consent of control" in
the case of OAuth. The Authorization server authorizes access to any resource
on the Resource server and servers as single point that owner can configure access

29

Figure 10: Message Exchanges in OAuth 2.0

control. Requesting party serves as a liability layer since resources will be shared
with arbitrary third parties using delegation.

UMA is still in its draft stage though there are production platforms such as Forge-
Rock21 that have already implemented its specifications and are providing services.

Protocol Data Format
and protocols
Supported

Main purpose Pros Cons

OAuth JSON, HTTP API authorization be-

tween applications, used

to obtain access tokens

for Web APIs and pro-

tected resources

1) Supports Identity interoper-

ability 2) Simple, Lightweight

and well adapted for RESTFul

design and JSON data, 3) Sup-

ports permissions revocation and

runtime creation of an authoriza-

tion context

1) Lack of implemen-

tation interoperability

[OMEO17] 2) Only

protects resources know

at design time 3) No fine

grain control of access

UMA JSON, HTTP fine-grained central ac-

cess control management

for resource owners

1) Fine-grained delegation and

consent 2) Customizable 3) Spec-

ifies Protection APIs through

which authorization server and

resource server interacts

1) Still in draft stage

and have not stood test

of time yet 2) no wide

spread infrastructure for

its implementation yet

XACML SAML, HTTP,

SOAP, JSON

Standard language to

express access policies

and architecture to en-

force policies

1) Decouples components 2)

Easy security Auditing 3) Sup-

ports use of dynamic attributes

4) Supports JSON

1) Heavier than OAuth

21https://www.forgerock.com

30

JWT HTTP, SOAP,

JSON

Access Control and Au-

thentication

1) Light weight 2) It is JSON

and so easy to parse 3) can use

asymmetric encryption 4) sup-

ports access scoping

Table 2: Comparison of Authorization Protocols

3.2.1 Access Control with Security Tokens

These are usually opaque/encrypted string that contain claims to be exchanged be-
tween communicating entities and hence can be used to identify users or applications
during API calls. There different proprietary tokens by vendors such as the Shared
Access Signature (SAS) used by Microsoft in the Azure IoT hub. Another popular
open source is JSON Web Token (JWT) [JBS15], a light weight object commonly
used in Web applications for authentication and access control. The general struc-
ture of security tokens is the metadata (header) part that contains which type of
token and what algorithm the token uses in its signature. The payload part contains
the claims of the token that vouches for the carrier of that token. The signature
part gives uniqueness to a token.

For the sake of this security framework, JWT is preferred to others such as Simple
Web Tokens (SWT), SAS because it is less verbose than XML counterparts such as
SAML tokens and hence easily parsed by constraint devices. JWT are self-contained
because the payload can contain all the required data about a user, hence eliminat-
ing the need for extra queries to databases. JWT can be signed with asymmetric
encryption methods using X.509 certificate unlike SWT that is limited to symmetric
schemes with HMAC algorithm for signing. Another advantage of JWT is that the
since the tokens are essentially JSON, with JSON parses common in most languages,
it reduces the burden of developers on parsing the tokens.

Access tokens are an important part in controlling access of resources. One use case
is to be able to control access to resource URIs by creating and sending tokens with
restricted access to clients. This ability can further be used to scope resources and
use appropriate access policies that contain the right permissions to sign the token
as done in the Azure IoT hub using SAS tokens. For instance if an endpoint to access
a shared resource by a device A is /devices/{device-A-Id}/sharedResouces ,
we can use a shared access policy say, GlobalPermissionsPolicy, that contains global
permissions for shared resources to sign the token. The same applies to restricted
resources in local/private scope to a platform. This helps to get a scoped access

31

control to a platforms resources which is key to the security framework in this
thesis.

Tokens (JWT) are also commonly used to authenticate clients. In this scenario,
after first time login, a user is given an access token and subsequent requests will
use this token to get authenticated without re-entering username/password.

3.3 Privacy and Confidentiality

Privacy in IoT enables a user to take control of his or her own data and hence de-
cides who can be privy to which part of it [KVS16]. Techniques within privacy and
confidentially services are aimed at making sure that messages are not available to
unauthorized parties whilst in transit between platforms or from end nodes to plat-
forms. IoT cuts across very critical systems like patient monitoring, traffic control
and other mission critical systems. Therefore, there is bound to be flow of very per-
sonal and sensitive data which makes the privacy issue more compelling [SRGCP15].

3.4 Securing Remote Code Execution with Isolation Tech-

niques

One of the goals for the Web of IoT platforms is to enable constraint devices to
offload some computations to cloud or other platforms for execution. Code offloading
is also important in the IoT as an enabler of edge computing where some data
processing and analytics can be done at the edge of the network. There are associated
benefits like reduced bandwidth costs (Section 2.2.5 has more on Edge interactions).
Whilst offloading code is so important for the platforms, it also brings some security
issues such as preventing the offloaded code from accessing resources not exposed to it
in the host platform (Section 2.2.3). It would also be ideal to maintain the integrity,
privacy and other relevant security metrics of the offloaded code in the foreign (host)
environment. In this section, we look at an overview of Isolation techniques and how
they can be leveraged in securing remote execution of code. To some extent, this
will also provide secured environments for edge computing in IoT as edge/Fog nodes
can safely execute code for others at the edge.

In order to mitigate security risks in multitasking systems, a fundamental step is to
isolate running tasks from interfering with each others’ execution paths as noted by
Viswanathan et al. in [VN09]. Isolating tasks, especially for reasons of security, aims

32

at mitigating any possible harm that can happen in case there is any exploitable
vulnerability.

There are several isolation mechanisms based on different criteria, such as enforce-
ment location or isolation granularity, and some survey articles like [SWGI+16] and
[VN09] have done extensive analysis on their requirements and performance. For
instance, isolations are typically at done locations such as (1) physical host, (2)
hardware component, (3) Virtual Machine-based Isolation and (4) Sandbox-based
Isolation.

The main advantages of using isolation schemes in the security framework discussed
in this thesis is to be able to support multi-tenancy in platforms. We envision that
the devices at the edge of the respective IoT platforms/hubs will be able to interact
locally in some scenarios, such as a more powerful gateway executing code for an-
other gateway at edge of network (edge computing). We also envision that a given
platform in the Web of Things platform/hub will be able to host other smaller IoT
platforms/hubs. In order to enable this kind of cooperation, the services from differ-
ent hubs should remain opaque to each other unless explicitly granted permissions to
interact. Containers such as Docker are light-weight solutions to multi-tenancy, but
if higher levels of separation are required, fall-back options include hypervisor-based
virtual machines. Isolation will make it possible to securely execute foreign code in
a secured, isolated environment and hence enabling computational offloading. This
is needed in the Web of IoT security framework discussed in this thesis since it pro-
vides the environment for resource-constrained devices and platforms to outsource
tasks they can not compute to other platforms.

Technique Implementation
Examples

Code
Requirement

Pros Cons

Hypervisor VMware, Xen on

ARM, VMware

MVP, KVM

no 1) Full isolation 2) Acceptable

performance overhead 3) Can

host multiple kernels

1) Heavy weight 2) No

flexibility on isolation

levels 3) Hypervisors are

single points of failure

Sandbox-

based

MAPbox, chroot

jail, SELinux, Ap-

pArmor

application source

code or binaries

modification re-

quired in some

cases

1) Light weight 2) Flexible on

isolation level

1) Sharing of kernel

makes it less secure than

VMs 2) No support for

guest OS

Security

Containers

Docker, Linux

Containers (LXC)

no 1) Light weight 2) More effi-

cient than some hypervisors 3)

Easy to extend for billing

1) Not for hosting differ-

ent kernels

Table 3: Comparison of Security Isolation Techniques

We next discuss the various isolation techniques in terms of the locations they can

33

be employed and the required implementation infrastructure as applied to IoT. A
summary of this discussion is given in Table 3.

Virtual Machine-based Isolation: Virtual machines are software abstractions
that run on top of platforms (hardware or software) and expose the resources of
the underlying platform in such a way that they can be consumed by any hosted
software running withing the virtual machine. They play important roles such as
resource optimizations, translations, replications and provision of isolation between
multiple systems concurrently running on the same platform [SN05].

Depending on the level of abstraction, virtual machines come in different forms such
as process virtual machines, system virtual machines and hardware virtual machines.
Viswanathan et al. have done an extensive discussion of them in [SWGI+16]. For
the purpose of the Web of IoT platforms, we will consider only system machines
which do not require special hardware like the hardware virtual machines.

System virtual machine Isolation: Unlike process virtual machines where vir-
tualization is at the Application Binary Interface (ABI) or libraries (API) level,
system virtual machines provide all necessary hardware resources and ISA for the
underlying platform. This is done through a piece of software called Hypervisor or
virtual machine monitor (VMM).

A VMM is a piece of software that emulates an underlying hardware platform and
exposes hardware resources as virtual ones to support and manage execution of vir-
tual machines thereby enabling complete operating systems to run within it. VMM
shares a platform’s resources amongst the multiple guest systems and mediates ac-
cess to these resources. By controlling critical paths to intercept and apply policies
to monitored executions, mediation results in the necessary isolation between the
virtual systems [VN09]. This isolation is strong enough that there is no sharing of
resources between VMs than what is typically provided by networks between phyical
machines [SPF+07].

Some advantages of hypervisor-based techniques include the ability to host multiple
kernels, provision of administrative capabilities (root) within a VM as well as ability
to save states of VMs, pause and resume later (checkpoint and resume).

There are two broad forms of hypervisors, namely Type-1 and Type-2. Type-1
sits directly on the hardware and exposes resources for a guest operating system,
whilst Type-2 runs within a host operating system and in turn hosts guest operating
systems [SWGI+16] (see Figure 11).

34

Figure 11: Hypervisor forms

Virtual machines have traditionally been implemented on resource-rich servers such
as at the enterprise level and so could be used at the cloud hubs of IoT ecosys-
tem. Whilst hypervisors have traditionally been popular with servers, optimization
works such as Xen on ARM [HSH+08] and [BBD+10] have produced hypervisors
capable of running on embedded systems such as the ARM processor. Toumassian
et al. [TWS16] have done performance analysis on some of them with astounding
performance by Jailhouse Partitioning hypervisor [Sin15]. These embedded level
hypervisors makes it possible to also implement isolation at hub gateways in the
context of IoT.

Sandbox-based Isolation: Maass et al. [MSCS16] give a broad definition of a
sandbox in computing to be "an encapsulation mechanism that is used to impose a
security policy on software components". This broad view of a sandbox encompasses
the role played by system virtual machines which we have already discussed. In this
work, we restrict sandboxing to techniques smaller in scope than system virtual
machines. They provide restricted environment for running some piece of untrusted
code on a system by limiting its access to other external running applications or
the underlying platform. In most implementations, sandboxes are implemented as
layers between the isolated process and the operating system, making it a lighter

35

solution than system VMs [VBM15].

Based on techniques of restrictions, different categories of sandboxing are in common
use. One such category is the Instruction Set Architecture (ISA) based where the
mechanism restricts a program’s activity at the level of the ISA. Typically, the ISA-
based category uses binary rewriting to insert instructions at certain points of the
application code that limits usafe operations (store or jump) within a target address
space [WLAG93]. One disadvantage of this category is the need to modify source
code or their binaries. Another issue with this is its dependence on the type of
instruction set (RISC or CISC) as pointed out in [VN09] hence making it platform
dependent. Examples of techniques in this category include the Software Fault
Isolation in [WLAG93], Program Shepherding [KBA02] and PittSFIeld [MM06].

A second category of sanboxing is to provide restrictions to library or system calls
at the level of the Application Binary Interface (ABI) through a configuration file.
In some implementations of this category, restrictions are not only by individual
applications basis but groups of applications with similar requirements. An exam-
ple is the MAPbox technique described in [AR00]. Other examples include Consh
[AKS98] and SLIC [GPRA98].

A third and more commonly used sandbox technique is the use of Access Control
List (ACL) where the restriction is provided by explicitly attaching permission rules
to resource accesses such as files, processes, networks and devices by programs. This
is distinguished from the ABI-based approach in that the ACL-based is more generic
and involves more than just the prevention of system calls as opposed to the case
of ABI [SWGI+16]. Examples of ACL-based sandboxes include SELinux22, UNIX
chroot jail and AppArmor23.

Container-based Isolation: Containers, just like most sandboxes, do virtualiza-
tion at the OS level but they give much broader OS image than sandboxes. They
provide shared virtualized OS image made up of a root filesystem and a set of pro-
tected shared system libraries [SPF+07].

Architecturally, infrastructure supporting containers are made up of (a) the hosting
platform and the (b) virtual platform or containers. A hosting platform in turn
comprises a shared OS image and administrative virtual machine to manage the
containers. All the containers have their own private but identical view of the
abstracted system made available by the hosting platform as shown in Figure 12.

22https://selinuxproject.org
23http://wiki.apparmor.net/index.php/Main_Page

36

Figure 12: Isolation via containers

Guest applications run on the containers as they would have done on corresponding
non-container based systems.

Security isolation in containers wraps around the use of internal OS objects such as
PIDs, UIDs, shared memory and so on [SPF+07]. The basic restriction technique
involves (a) separation of namespaces or contexts and (b) application of access con-
trols (filters). The restriction puts global system identifiers like System V IPC keys,
PIDs and UIDs in different spaces. For example, each container corresponds one
namespace. Objects in one namespace do not have references to those in different
namespaces, hence abstracting the global identifiers as per-container global identi-
fier. Filters are used at runtime to control container access to kernel objects.

Containers differ from hypervisors in the sense that though the latter also uses
context and filter for isolation, it relies on hardware abstractions such as virtual
memory address spaces, devices and privileged instructions instead of OS objects
for the contextualization. Examples of real-world containers include Docker24 and
Linux Containers (LXC)25.

One advantage of containers over other isolation methods is an increased system
performance whilst guaranteeing a similar level of isolation in other VM systems. For
instance, a comparative evaluation of efficiency between containers and hypervisors

24https://www.docker.com/
25https://linuxcontainers.org/

37

(VServer and Xen) by Soltesz et al. [SPF+07] shows that container-based techniques
give up to twice the performance of hypervisors due to I/O overheads in the latter.

4 The Security Framework for the Web of IoT Plat-

form

To address the security and privacy needs of the highly diverse IoT environment, a
comprehensive framework is required. Such a framework should be able to provide
a fine-grained protection of the platforms’ data at all levels of interactions and
at the same time be open to extension. This section presents the Web of Things
Security Framework, a modular, extensible and fine-grain security framework for the
integrated Web of things platform. It provides the authentication, access control and
privacy needs that will ensure the protection of the platforms’ data whilst making
it possible for controlled sharing of resources between participating platforms.

The framework uses selected state-of-the-art protocols discussed in Section 3. We
base the selection criteria of protocols on the unique characteristics of this envi-
ronment such as low computational power of end-devices/sensors, diverse nature of
devices, the nature and quantities of data produced and so on. In that regard, there
may be several eligible protocols that address the platforms’ authentication, access
control and other security needs, but the choice will fall on what type of interaction
we are securing and at what level of the platform (edge, gateway or cloud) the in-
teraction is taking place. For instance, when the interaction requires authentication
and is at the edge of the platform’s network, eligible authentication protocols will
be those that use relatively low computational power since edge devices closer to
the edge such as micro-controllers have relatively lower computational power than
servers at gateways or in the cloud.

4.1 Categorization of Interactions for Protection

To ensure granular and fine-level application of security protocols to the platform’s
interactions, the security framework categorizes devices and interactions within the
platform into vertical and horizontal dimensions (see Figure 13). The horizontal
dimension has subgroups of three labeled as Level 1, Level 2 and Level 3.

1. Level 1 interactions: This level is made up of edge devices like sensors, and

38

communication model is Device-to-Device. The interactions at this level are
labeled H1 as seen in Figure 13. These are the kind of interactions we envision
in the Web of IoT platforms where devices at the edge of the network will be
able to communicate with each other directly without a bridge. For instance,
when domestic appliances like fridges and washers are able to communicate
directly in meaningful ways without an intermediary.

2. Level 2 interactions: This second level is made up of interactions (H2)
between different gateways. The H2 interactions are the interactions that take
place in Platform-to-Platform pattern discussed in Section 2.2.4. The gateways
are assumed to belong to different platforms.

3. Level 3 interactions: The topmost level is H3 interactions which comprise of
flows between cloud-hosted services or cloud-based platforms. These flows are
modeled by the platform-to-platform pattern, but in this case, the platforms
are cloud-based.

The vertical dimension is made up of interactions (cross-level) that take place be-
tween devices belonging to the different levels in the horizontal dimension. Conse-
quently, we have three categories in this domain based on which pair of levels the
interactions traverse. They are as follows:

1. V1 interactions: Devices here include sensors with embedded micro-controllers
such as Nest cameras and thermostats, or detachable sensors that can used to-
gether with multipurpose micro-controllers like Arduino boards and Raspberry
Pi. Protocols often used include Bluetooth, MQTT and wifi. Authentication
and authorization protocols are usually intrinsically built into these protocols
such as the cryptographic key-based authentication for Bluetooth.

2. V2 interactions: In these kind of interactions, gateways perform a leading
role in ensuring that messages are able to be exchanged between end devices
and the IoT hubs. A gateway provides bridge between the edge devices/sensors
and the various IoT hub end-points. They perform various functions such as
protocol translation, running edge analytics, making time-sensitive decisions
to reduce latencies, security and privacy enforcement. These added roles dif-
ferentiate them from simple routing devices such as NAT devices. Gateways
come as either protocol gateways that are deployed in the cloud or field gate-
ways deployed locally such as micro-controllers. In some IoT such as the Azure

39

Figure 13: Categorised interactions for security framework

IoT platform, both types of gateways are used depending on the needs of the
end user.

The interactions can be between field gateways in different hubs or from a field
gateway to cloud-based hub. In the Web of IoT platforms, we envision these
interactions to be enabled by RESTful APIs and consequently the security
goals in this category of interactions will be how to secure the APIs.

3. V3 interactions: In this category of interactions, devices that are capable of
directly connecting to the Internet using HTTP protocol can directly interact
with cloud IoT hubs. For instance, a user can connect to a cloud hub through
a smart phone without a bridging gateway. In this case, we don’t require
gateways for protocol translations, and so the goal in securing these kinds
of interactions will be how to to secure RESTful APIs through which these

40

interactions take place.

4.2 The Security Framework’s Architecture

In this section, we look at how the various security considerations (authentication,
access control and privacy) are handled by the security framework. Use of security
containers to secure edge computing in the Web of IoT platforms is discussed in
Section 3.4. We start by exploring a modular approach to handling authentication
in the framework. This is followed by a handling of access control through OAuth
2.0 and identity registry and concludes with handling of secured executions through
isolation containers.

The architecture of the security framework is organized into three main subsystems.
The Authentication subsystem takes care of the authentication of devices, gateways
and platforms/hubs. It is mainly made up of the modular authentication structure
discussed in Section 4.2.1. It should be noted that the modular approach for authen-
tication does not apply to H1 interactions. H1 interactions are envision to be direct
device-to-device interactions at the edge of the network. We expect authentications
in these interactions to be handled by the communication protocols they use such
as Bluetooth or Near-field communication (NFC).

The second part of the framework is the Authorization subsystem. This is made up of
the protocols and mechanisms that authorize the use of resources in the Web of IoT
platforms. It applies to V1, V2, V3, H2 and H3 interactions. Again H1 is left for the
underlying communication protocol to handle just like the case of authentication.

The third subsystem is that of the Secure Execution Subsystem. The role of this
component is to provide secured environments within gateways or platforms (local
or cloud) to execute foreign code. Foreign code in the context of this framework is
any offloaded code from a device or platform that seeks computational services from
a different device, gateway, hub or platform.

4.2.1 Handling Authentication with Security Modules

A key design goal of the framework is to make it easily extensible and at the same
time to secure interactions in the Web of IoT platforms at fine-grained levels. To
that extent, we propose organizing the solutions (security protocols) for the identified
security requirements in the Web of IoT platforms into modular security plug-ins.

41

This modular pattern is inspired by the FRESCO framework [SS13], a security
application development framework that enables development of security services in
OpenFlow-enabled networks as composable modules. We then leverage behavioral
software design patterns such as the Chain of Responsibility (COR) [GHJV95] to
link these modules together into a dynamic authentication subsystem for the security
framework.

One advantage of this approach on the authentication part is that the security frame-
work is able to offer several different authentication mechanisms that are supported
by the diverse IoT platforms taking part in the Web of IoT platform. For instance,
if an IoT platform say A supports only certificate-based authentication, it can be
handled by the appropriate certificate-based module residing in the security frame-
work. When a different platform say B that supports only username/password with
tokens seeks authentication, the request will also be picked up by a different module
that can handle it.

Through the Chain of Responsibility (COR) pattern, we are able to chain together
the different authentication modules into an autonomous orchestration that can
dynamically switch between modules. With this kind of orchestration, there is no
extra messaging between the IoT platforms and the security framework to negotiate
on the type of protocol to use for authentication.

Another good aspect of the the modular design is that the COR pattern makes it
easy to extend the chain by adding concrete handling objects as will be discussed
shortly. This behaviour enables the ability of the security framework to be easily
extended to accommodate future mechanisms.

We next discuss the structure of the modules, which are the building blocks of
authentication in the security framework and how the COR pattern can be leveraged
to enable a dynamic, modular and extensible approach to handling authentication
in the framework.

Architecture of the Modules: We propose implementation structure of each of
the modules to follow what is described for the concrete handler objects in the COR
discussed in [GHJV95]. In this context, we use modules and class interchangeably.
Modules correspond to the building blocks of our modular authentication subsystem
of the framework. A module’s implementation can be a simple class in any object
oriented programming language or an interface that serves as a facade to a sub-
system. However, in this work, implementations of the modules are simple classes,
hence module A will be implemented as a concrete class with name A. Structurally, a

42

module is an AuthenticationHandler class with an operation to authenticate clients
and an attribute that points to its successor. The successor is also of type Authen-
ticationHandler. AuthenticationHandler class is a parent for all candidate handler
classes (modules).

ConcreteAuthenticationHandler is a concrete class that inherits the Authentica-
tionHandler class. Each of the modules in the chained authentication structure is
implemented as a ConcreteAuthenticationHandler. This class handlers authentica-
tion request is responsible for using its authenticate operation. The class can also
access its successor. Figure 14 shows the structure of the implementation in a UML
class diagram notation.

Figure 14: Modules in Authentication subsystem

Chaining Modules with COR pattern:

The COR is a design pattern in object oriented software development whose basic
intent is to provide decoupling between interacting components and make it flexible
for a client component to have potentially many server components that will give
service to the client at runtime [GHJV95]. The basic idea is to model a client as an
object that needs service from another object, say server. We don’t want the client
to be tied to a particular object that will handle its request at runtime, instead we
model all potential handlers of the client’s request as objects and chain these handler
objects together. With this arrangement, when a request comes from the sender, it
is passed along the chained handlers until an appropriate handler handles it. One
problem that needs to be overcome before we can enable the security framework

43

to dynamically replace different modules to handle different authentication schemes
from the diverse IoT platforms is as follows: If a handler module A is not able to
handle a given authentication request, it should pass it on until the appropriate
handler receives the request. In this case the module that ultimately authenticates
a client is not explicitly known to the client. This kind of problem is is common
in object oriented software development, and a commonly used design that solves
it is the COR design pattern [GHJV95]. We leverage this kind of orchestration
in the security framework where our handler objects are the composable modules.
These modules encapsulate different authentication protocols but provide the same
interface. The modules are able to pass on requests to other modules (successors)
until an appropriate module with the right authentication scheme authenticates the
client. The set up gives multiple authentication modules the chance to authenticate
a client. It also gives us a chance to add a default module which handles a given
authentication request when there is no module with an appropriate scheme to do
so.

Passing authentication requests along chained modules: In order to be able
to pass authentication requests along the chain, each of the modules shares com-
mon interface for handling requests and for accessing its successor. We define an
AuthenticationHandler module which is essentially a class in an object oriented lan-
guage. AuthenticationHandler has operation authenticate that takes request object
as an argument. The request object contains necessary information on what kind
of authentication scheme the client has sent and credentials to use that scheme.
With this kind of information, each of the chained module handlers can determine
whether it can handle the incoming authentication request or pass it on to its suc-
cessor. For instance, when the request comes in and module A picks it initially, it
checks the request object to verify whether it should pass it on to module B or not.
If it decides to pass it on to B, the process gets repeated until appropriate handler
handles it or it ends up at the default handler which is the last module in the chain
(see Figure 15).

Adding new modules:

The arrangement also makes it easy to add new modules; since we know that at
each time in the framework the last handler is the default handler, when we want
to add a new module the task involves inserting it into the chain and making it
the successor of the module before the last module. We finally make the default
module the successor of the inserted module. This follows the pattern of inserting

44

an element into a linked list.

Figure 15: Chained security modules

Selecting Authentication protocols to compose modules Based on discussions
of the security protocols in Section 3.1, we provide the following guide to building
an authentication module for the framework.

1. X.509 Specification based Certificates: To compose certificate-based module,
X.509 certificates are a good choice since it is nonproprietary and supported by
popular protocols like TLS/SSL, EAP-TLS and LDAP. Therefore, a module
using this certificate can handle authentications using the above protocols with
little tinkering. The client (IoT platform) can use an existing X.509 certificate
associated with it or a self-generated and self-signed certificate using tools like
OpenSSL. A certificate can also be a CA-signed X.509 certificate obtained
from a Certification Authority (CA).

2. TLS with Client Certificate and Token Authentication: This choice leverages
the benefits of client certificate and token authentication as discussed in Sec-
tion 3.1.1. The JSON Web Token (JWT) has wide spread adoption and so
would be good fit.

3. OAuth spec for TLS client authentication with X.509 certificate:Amodule com-
posed with these protocols will let client register for TLS authentication with
OAuth 2.0 server by providing details of the X.509 certificate it will use. The
client can send request with flags for TLS authentication using the X.509 cer-
tificate. At the OAuth service, a token is issued. This module will ensure
that at the protected resource server, client submits its acquired token whilst
authenticating with its certificate using TLS.

45

4. SASL: An example of the framework-based authentication mechanisms that
supports application level protocols such as TLS.

4.2.2 Bootstrapping Security with Hardware Cryptoprocessor

Software-based security solutions are still proned to vulnerabilities if the software
platforms hosting such solutions are compromised. To tackle this issue, there is the
need to establish a Trusted Computing Base (TCB) in our authentication process
using hardware-rooted trust. The hard-to-alter characteristics of hardware makes
them more difficult to be modified by adversaries. We therefore employ the use of
hardware chips for bootstrapping security in our edge devices like the gateways and
servers. Establishing a TCB in these devices will secure the process from bottom up
by ensuring the integrity of the certificates used in establishing sessions among the
edge devices and between edge devices and servers. There are several alternatives
such as the TrustZone, M-Shield, SmartCards, Trusted Platform Module (TPM),
etc. [EKA14]. However, we will use TPM whose specification are open and it is also
platform generic unlike others such as Trustzone.

Trusted Platform Module(TPM): This is an example of external secure element
architecture where dedicated chips are generally employed in the implementation. It
enhances hardware platform security by ensuring that the device is securely booted
into a trusted state. TPM also provides a mechanism to record system measurements
in a manner that they can’t be tampered with. These measurements will be stored
in shielded locations. TPM can then securely report these measurements (platform
state) to a third party, hence, enabling remote attestations. For the framework,
modern servers have TPM chips built into their mother boards that can be leveraged.
We also employ ad-on TPM boards such as the Infineon OPTIGATM TPM on the
devices (Raspberry Pi, Arduino, etc.) that don’t come with built-in modules. By
using TPM, we are able to boot our devices into trusted states, protect secrete
keys for the devices in secured locations and perform encryptions within the TPM
modules.

4.2.3 Handling Access Control with OAuth 2.0, Device Identity Registry
and Access Tokens

In the authorization architecture of the framework, we are going to have access
control policies. A policy is made up of a set of permissions to perform certain

46

operations on resources stored in the resource server of the Web of IoT platform.

In our implementation, we provision an identity registry similar to that provided
by the Azure IoT hub, but in this case, the registry can contain either a whole IoT
platform/hub credentials or a single IoT device’s credentials. By making it possible
to have entries for both individual devices and platforms/hubs, we are able to grant
permissions at per-device level as well as hub-level. For instance, it will be possible
to grant a set of permissions (using a given policy) to say all devices connected to
a given hub H. A second advantage is that we make the registry generic to be used
at a hub level (including gateways) for making authorization decisions at the edge
of networks thereby reducing bandwidth requirements and time for responsiveness.

Access control for Level 1 and 2 interactions: For granting access to resources
at levels 1 and 2 of the categorized interactions, we employ the use of tokens (JWT).
As depicted in the Figure 13, interactions at this level include H1, V1 and H2. The
devices at these levels such as gateways or micro-controllers are usually constrained
in resources and hence inappropriate for relatively resource-demanding protocols
like XACML. OAuth 2.0 can suffice in some cases but will require extra message
exchanges with Authorization servers. However, since most exchanges at these levels
will have to do with devices within the local hubs, the risks of external adversaries
are reduced. We will therefore employ JWT in authorizing devices to resources
stored in gateways in Level 2 or those stored right at the edge of the networks in
Level 1. There is also a possibility of proprietary protocols for some devices at
level 1.

Access control for Level 2 and 3 interactions

The interactions at the levels are usually between gateways and cloud platforms or
cloud-platform to another cloud-platform. At these levels, the devices are mostly
well resourced servers that can store lots of data and perform complex computations.
This is especially the case for H3 interactions. The choice of protocol to support
authorization of resources for these interactions is the OAuth 2.0 protocol. The
reasons for chosing OAuth 2.0 are as follows: For one, through the use of tokens,
OAuth enables the sharing of resources without exposing user’s identity or creden-
tials. Secondly, through the use of Proof of Possessions and Disconnected Flows
[Kri17], OAuth can be engineered to still support authorizations in times of network
disruptions. The protocol is also in popular use by giants such as Google.

Since OAuth 2.0 does not directly implement authentication, we will employ Au-
thentication servers in the setup. The authentication server will be in charge of au-

47

thenticating users through the modular approach discussed in Section 4.2.1. Though
protocols such as OpenId and UMA do provide user identification on top of OAuth
2.0, they will not suffice in the case of the security framework which needs to be
able to support different authentication schemes dynamically at runtime.

In the security framework’s implementation, the identity registry is hosted by the
Authentication Server. As discussed earlier, the registry’s entries are credentials for
either platforms or end devices. Eligible credentials correspond to the authentication
methods supported by the framework in the modular authentication subsystem.
It is against these credentials that a user is authenticated and subsequently the
Authorization server grants tokens for a client to access resources on behalf of the
user. Details of these interactions are shown in Figure 10.

Figure 16: The Security Framework

4.2.4 Secured Edge computing with Security Containers

The security framework employs the use of security containers as discussed in Sec-
tion 3.4 to support secured executions of foreign code in platforms/hubs. Foreign

48

code in the context of this framework is any offloaded code from a device or platform
that seeks computational services from a different device, gateway, hub or platform.
The security framework supports the creation of instances of containers at run-time,
either within the gateways in Level 2 of the categorized interactions (Figure 13) or
at Level 3. For the purpose of this thesis, we mostly mention the use of containers
at the edge of the network (level 2) interactions. Using containers at higher levels
such as within servers in the cloud is implicit since they are more resourced than
edge devices. In order to edge computing in the Web of IoT platforms, the secu-
rity framework leverages the container-based isolation technique . The container
infrastructure will enable devices at the edge to securely offload computations they
can’t support to neighboring devices or gateways. There are a number of reasons
for the choice to use containers at the edge level one of which is performance time as
compared to virtual machines(VM). More significantly, containers are light weight
as compared to other isolation techniques like VMs (Section 3.4). The container
technology of choice is Docker because it is built on LXC and hence is a lightweight,
portable, self-sufficient LXC container that can run virtually anywhere.

To use docker, we first need deliver it to the gateways by installing the docker image.
There are also products like resin.IO 26 whose work can be leverage to deliver docker
to edge devices with different architectures.

The basic architecture of the edge computation isolation in this framework follows
the techniques used in the cloud-based compiler called CodePad27. CodePad is itself
a product of the CombileBox 28 that provides a sandbox to run untrusted code.

The secure execution subsystem of our framework exposes an API that clients will
call to offload their computation. This API points to a supervisor (typically shell
script). The duty of this supervisor script is to create a new instance of the docker
container with all the needed resources to service client calls. When the new docker
instance is started within a gateway, the supervisor transfers the code to the instance
where compilation and the execution happens in the confines of the container.

The output of execution will be read to a file from whence the supervisor can read the
content and returns it to the client. See the diagrammatic description of the process
in Figure 17. By employing the docker container, all activities of the foreign code
are restricted to only resources explicitly made available to it and hence reducing

26https://resin.io
27https://codepad.remoteinterview.io/IMJPDHDFCQ
28https://github.com/remoteinterview/compilebox

49

unintended exploits on the host gateway. With this set up, constraint devices are
able to leverage edge computing to accomplish tasks they would not have been able
to do otherwise.

Figure 17: Secure Execution Subsystem

5 Discussions

The goal of this thesis work was to design a comprehensive security framework for
the envisaged Web of IoT platforms which will interconnect the numerous non-
interoperable IoT platforms existing today. Security requirements that will support
such a Web of interconnected platforms were discovered to include authentication,
authorization, privacy and confidentiality and secured environments for code exe-
cution. In order to handle these requirements at fine-grained levels, we categorized
the main interactions that need protection in the Web of IoT platforms into vertical
and horizontal dimensions. For horizontal dimension interactions, there are three
levels. Devices at the edge of the various platforms generate data and also perform
actuation jobs. They make up Level 1 of the horizontal interactions. We label the
interactions within this level H1 interactions.

50

Level 2 of the horizontal dimension is made up of gateways which could be as simple
as single-board computers such as Arduino boards. The end devices are mostly
connected to them and interactions within the level is marked H2.

The topmost layer, Level 3 is mostly the cloud layer to which most IoT platforms
transport their data for purpose of analytics, storage, etc. Interactions are labeled
as H3 interactions.

The Vertical dimension is made up of all the interactions that cut across these levels.

The main architecture of the security framework that provides the needed security
requirements include the three main subsystems (Authentication, Authorization,
and Secure Execution). In this section, we give summary discussions for each of
these subsystems with regard to the choice of technologies used and implementation
considerations.

5.1 Authentication Subsystem

For authentication, our main approach in the security framework is to use a modular
approach. The main reason behind this approach is because of the diversity in
terms of protocol technologies used by the various devices and platforms. The
goal is to make it as open as possible for the authentication process to support
different factors of authentication such as what a subject has, knows or is made
up of. The modular approach therefore makes it possible for simultaneous support
for certificate based, tokens, username/passwords etc. Another desired consequence
of the modular approach is the ability of the Authentication subsystem to easily
add on new authentication schemes that come up by simply creating modules that
encapsulate these new schemes and implementing standard interfaces. This is made
possible by leveraging the Chain of Responsibility (COR) design pattern in object
oriented software development. Thus, not only does the modular approach make it
easy to accommodate diverse authentication schemes, it also makes the framework
very extensible to future changes. Implementation considerations for the modular
approach will include the use of object oriented programming language as a result
of adapting the COR pattern. It should also be noted the authentication subsystem
leaves out authentication for H1 interactions to the basic protocols that enable
communication for those interactions. Hence, if devices use Bluetooth, it is expected
that bluetooth will provide it.

For the choice of specific protocols, we used X.509 certificates standard because

51

of their popular usage in existing systems. There are also several implementing
libraries in most programming languages. We settled on JSON Web tokens which
are very light and very popular too. The ubiquity of javascript also makes it very
easy to find libraries that will easily parse JWT. It should be noted that the other
protocols discussed for authentications such as Kerberos and Shiboleth can all be
supported with little modifications in some cases when this modular approach is
implemented.

5.2 Authorization Subsystem

For this subsystem, leading protocol candidates included XACML, OAuth 2.0 and
its profiles such as UMA and OpenID. However, XACML is heavier in terms of
computational resources and storage required. OAuth is lighter coupled with its
popularity in the Web and support from big giants like Google makes it a better
choice. OAuth also supports revocation of permissions at runtime which is a good
thing for the IoT ecosystem.

Implementation considerations include the provision of authentication setup since
the OAuth 2.0 specification does not directly take care of that. However, we fall
back on our modular authentication subsystem. Another issue is, since we are
using this modular authentication approach, we don’t want to be bounded by which
authentication protocols to use, hence the decision to go for the core OAuth 2.0
protocol instead of its profiles like UMA. Another consideration is that we still
make it possible to use other authorization protocols at some levels such as the use
of certificates in level 1 interactions.

5.3 Secure Execution Subsystem

A desirable feature of the Web of IoT platforms is the provision of enabling envi-
ronment for edge computing and computational offloading. Edge computing, which
is not yet popular in IoT is necessary to reduce bandwidth requirements. This is
especially important considering the large amounts of data generated in IoT ecosys-
tem. The framework makes use of Docker containers to provide secured execution
environment at gateways to support edge computing. Enabling secured execution
environment at the edge is by no means all that is required to secure edge comput-
ing in IoT. However, it is a good start and there are some recommendations in the
conclusion section of this thesis.

52

Secured execution is not only an enabler of edge computing but also a necessity for
general computational offloading in the Web of IoT platforms. Since platforms vary
greatly in their resource capabilities, its desirable for a less resourced platform say
P1, to be able to tap into the capabilities of a well resourced one P2. However, just
like the case of code offloading at the edge, we also need to secure offloaded code at
the platforms. The good thing about securing execution at levels above the edge is
that servers can support other forms of isolation techniques such as VMs. But all
the same containers are found to be very useful in securing execution of offloaded
code.

Implementation considerations include the choice of docker as our security container.
Docker is light-weight with almost no start up penalty. It can carry any payload
and its associated dependencies and can run in different platforms. Due to the
resource constraint nature of most gateways, we use only containers to provide
needed isolation at the edge. However, the framework is opened to other forms of
isolations such as VMs or hardware techniques that are deemed necessary.

6 Conclusion

This thesis work presented a security framework that will provide the security needs
of an envisaged Web IoT Platforms. This was done by first looking at the various
interaction patterns that are present in the current IoT platforms and envisage
interactions that will be needed in the Web of IoT platforms. The need for this was to
make sure that we have a comprehensive understanding of what flows need protection
in the platforms. We went further to give detailed discussions of some state-of-the-
art security protocols in use today with special attention on how to leverage them
for the security framework. The architecture of the security framework was finally
presented using selected protocols discussed and the Chain of Responsibility design
pattern.

In designing the framework, we came up with three main subsystems to handle au-
thentication, authorization and secure execution of code respectively. The goal in
designing the authentication subsystem was to make it possible for different authen-
tication schemes to be used in the framework. This is because the IoT ecosystem
is so varied in their choice of technologies including that of security mechanisms.
Hence, there is the need to accommodate different protocols as much as possible.
It is also important to have an extensible feature that will accommodate future

53

authentication protocols. This goal was achieved by encapsulating authentication
protocols as modules and chaining using the Chain of Responsibility design pattern.
We argue that this modular pattern does not limit us to some set of authentication
protocols and so did not go specific on selecting a subset of the authentication pro-
tocols. Different protocols get encapsulated into modules that will adhere to specific
interface and be added to the framework.

We however chose OAuth 2.0 for its lightweight, ubiquitous and other properties
over computing protocols. The same went for using docker container for isolating
execution of foreign code.

The framework as provided in this thesis by no means provides a bulletproof solution.
There are bound to be future enhancements, and some of the recommendations at
this stage include the following: Firstly, there is a need to provide privacy and
confidentially over any offloaded code, be it at the edge or servers. We therefore
recommend that future works look at measures such as fully Fully homomorphic
encryption schemes that will make it possible for code to be executed in its encrypted
form. This will provide the needed privacy for an offloaded code. Secondly, we
recommend the exploration of data annonymization techniques such as K-anonymity
in the effort of providing confidentiality within the framework.

In conclusion, the contribution of this thesis is the provision of the comprehensive
security framework to provide the security needs of the Web of IoT platforms, and
this was achieved using state-of-art security protocols.

References

ABV+04 Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J. and Levkowetz, H.,
Extensible authentication protocol (eap). RFC 3748, RFC Editor, June
2004. URL http://www.rfc-editor.org/rfc/rfc3748.txt. http:

//www.rfc-editor.org/rfc/rfc3748.txt.

AJR11 Al-Janabi, S. T. F. and Rasheed, M. A.-s., Public-key cryptography en-
abled kerberos authentication. Developments in E-systems Engineering
(DeSE), 2011. IEEE, 2011, pages 209–214.

AKS98 Alexandrov, A., Kmiec, P. and Schauser, K., Consh: Confined execu-
tion environment for internet computations, Dec 1998.

54

AR00 Acharya, A. and Raje, M., Mapbox: Using parameterized behavior
classes to confine untrusted applications. Proceedings of the 9th Con-
ference on USENIX Security Symposium - Volume 9, SSYM’00, Berke-
ley, CA, USA, 2000, USENIX Association, pages 1–1, URL http:

//dl.acm.org/citation.cfm?id=1251306.1251307.

AS16 Aggarwal, C. and Srivastava, K., Securing iot devices using sdn and
edge computing. 2016 2nd International Conference on Next Genera-
tion Computing Technologies (NGCT), Oct 2016, pages 877–882.

BBD+10 Barr, K., Bungale, P., Deasy, S., Gyuris, V., Hung, P., Newell, C., Tuch,
H. and Zoppis, B., The vmware mobile virtualization platform: Is that a
hypervisor in your pocket? SIGOPS Oper. Syst. Rev., 44,4(2010), pages
124–135. URL http://doi.acm.org/10.1145/1899928.1899945.

B.L91 B.Lampson, Computers at risk : safe computing in the information age.
National Academy Press, Washington, D.C, 1991.

BL14 Blackstock, M. and Lea, R., Iot interoperability: A hub-based approach.
Internet of Things (IOT), 2014 International Conference on the. IEEE,
2014, pages 79–84.

JSONX Brossard, D., Json profile of xacml 3.0 version 1.0. edited by david
brossard. 11 december 2014. oasis committee specification 01, Decem-
ber 2014. http://docs.oasis-open.org/xacml/xacml-json-http/

v1.0/cs01/xacml-json-http-v1.0-cs01.html Latest version:
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/

xacml-json-http-v1.0.html

BTV15 Blazquez, A., Tsiatsis, V. and Vandikas, K., Performance evaluation of
openid connect for an iot information marketplace. 2015 IEEE 81st
Vehicular Technology Conference (VTC Spring), May 2015, pages 1–6.

CDM03 Crall, C., Danseglio, M. and Mowers, D., Ssl/tls in windows server 2003.
Microsoft Corporation publication, 31.

CS05 Cantor, S. and SCAVO, T., Shibboleth architecture. Protocols and
Profiles, 10, page 16.

55

CSF+08 Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R. and
Polk, W., Internet x.509 public key infrastructure certificate and cer-
tificate revocation list (crl) profile. RFC 5280, RFC Editor, May
2008. URL http://www.rfc-editor.org/rfc/rfc5280.txt. http:

//www.rfc-editor.org/rfc/rfc5280.txt.

CW05 Chen, J.-C. and Wang, Y.-P., Extensible authentication protocol (eap)
and ieee 802.1x: tutorial and empirical experience. IEEE Communica-
tions Magazine, 43,12(2005), pages supl.26–supl.32.

CW13 Coyne, E. and Weil, T. R., Abac and rbac: scalable, flexible, and au-
ditable access management. IT Professional, 15,3(2013), pages 0014–16.

Don02 Donley, C., Ldap Progamming, Management and Integration. Manning
Publications Co., 2002.

DR08 Dierks, T. and Rescorla, E., The transport layer security (tls) protocol
version 1.2. RFC 5246, RFC Editor, August 2008. URL http://www.

rfc-editor.org/rfc/rfc5246.txt. http://www.rfc-editor.org/

rfc/rfc5246.txt.

EKA14 Ekberg, J.-E., Kostiainen, K. and Asokan, N., The untapped potential
of trusted execution environments on mobile devices. IEEE Security &
Privacy, 12,4(2014), pages 29–37.

Est10 Estrin, D. L., Participatory sensing: Applications and architecture.
Proceedings of the 8th International Conference on Mobile Systems, Ap-
plications, and Services, MobiSys ’10, New York, NY, USA, 2010, ACM,
pages 3–4, URL http://doi.acm.org/10.1145/1814433.1814435.

FAKS14 Fremantle, P., Aziz, B., KopeckÃœ, J. and Scott, P., Federated identity
and access management for the internet of things. 2014 International
Workshop on Secure Internet of Things, Sept 2014, pages 10–17.

FK11 Frankel, S. and Krishnan, S., Ip security (ipsec) and internet key ex-
change (ike) document roadmap. RFC 6071, RFC Editor, February
2011. URL http://www.rfc-editor.org/rfc/rfc6071.txt. http:

//www.rfc-editor.org/rfc/rfc6071.txt.

56

GHJV95 Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

GPRA98 Ghormley, D. P., Petrou, D., Rodrigues, S. H. and Anderson, T. E., Slic:
An extensibility system for commodity operating systems. Proceedings
of the Annual Conference on USENIX Annual Technical Conference,
ATEC ’98, Berkeley, CA, USA, 1998, USENIX Association, pages 4–4,
URL http://dl.acm.org/citation.cfm?id=1268256.1268260.

GTM11 Guinard, D., Trifa, V., Mattern, F. and Wilde, E., From the inter-
net of things to the web of things: Resource-oriented architecture
and best practices. In Architecting the Internet of Things, Uckel-
mann, D., Harrison, M. and Michahelles, F., editors, Springer Berlin
Heidelberg, 2011, pages 97–129, URL http://dx.doi.org/10.1007/

978-3-642-19157-2_5.

Har12 Hardt, D., The OAuth 2.0 Authorization Framework. RFC 6749,
RFC Editor, October 2012. URL https://tools.ietf.org/html/

rfc6749.html.

RESTX Hal Lockhart, Bill Parducci, R. S., Rest profile of xacml v3.0 ver-
sion 1.0. edited by Rémon sinnema. 23 november 2014. oasis commit-
tee specification 02., November 2014. http://docs.oasis-open.org/
xacml/xacml-rest/v1.0/cs02/xacml-rest-v1.0-cs02.html. Lat-
est version: http://docs.oasis-open.org/xacml/xacml-rest/v1.

0/xacml-rest-v1.0.html

HMMC16 Hardjono, T., Maler, E., Machulak, M. and Catalano, D.,
User-managed access (uma) profile of oauth 2.0. Internet-
Draft draft-hardjono-oauth-umacore-14, IETF Secretariat, Jan-
uary 2016. URL http://www.ietf.org/internet-drafts/

draft-hardjono-oauth-umacore-14.txt. http://www.ietf.

org/internet-drafts/draft-hardjono-oauth-umacore-14.txt.

HSH+08 Hwang, J. Y., Suh, S. B., Heo, S. K., Park, C. J., Ryu, J. M., Park,
S. Y. and Kim, C. R., Xen on arm: System virtualization using xen
hypervisor for arm-based secure mobile phones. 2008 5th IEEE Con-
sumer Communications and Networking Conference, Jan 2008, pages
257–261.

57

IMG+07 Iqbal, Z., Mehmood, A., Ghafoor, A., Ahmed, H. F. and Shibli, A.,
Authenticated service interaction protocol for multi-agent system. 2007
International Symposium on High Capacity Optical Networks and En-
abling Technologies, Nov 2007, pages 1–5.

JBS15 Jones, M., Bradley, J. and Sakimura, N., Json web token (jwt). RFC
7519, RFC Editor, May 2015. URL http://www.rfc-editor.org/

rfc/rfc7519.txt. http://www.rfc-editor.org/rfc/rfc7519.txt.

KBA02 Kiriansky, V., Bruening, D. and Amarasinghe, S. P., Secure execu-
tion via program shepherding. Proceedings of the 11th USENIX Se-
curity Symposium, Berkeley, CA, USA, 2002, USENIX Association,
pages 191–206, URL http://dl.acm.org/citation.cfm?id=647253.

720293.

KCW10 Kuhn, D. R., Coyne, E. J. and Weil, T. R., Adding attributes to role-
based access control. Computer, 43,6(2010), pages 79–81.

KMRT15 Kamal, P., Mustafiz, S., Rahman, F. M. A. and Taher, R., Evaluating
the efficiency and effectiveness of a federated sso environment using
shibboleth. Journal of Information Security, 6,3(2015), page 166.

KR15 Karen Rose, Scott Eldridge, L. C., THE INTERNET OF THINGS:AN
OVERVIEW understanding the issues and challenges of a more con-
nected world, 2015. URL http://www.internetsociety.org/sites/

default/files/ISOC-IoT-Overview-20151022.pdf.

Kri17 Kristopher, S., Why oauth 2.0 is vital to iot se-
curity, March 2017. URL http://nordicapis.com/

why-oauth-2-0-is-vital-to-iot-security/.

KVS16 Kumar, S. A., Vealey, T. and Srivastava, H., Security in internet of
things: Challenges, solutions and future directions. 2016 49th Hawaii
International Conference on System Sciences (HICSS), Jan 2016, pages
5772–5781.

AIM10 Luigi, A., Antonio, I. and Giacomo, M., The internet of things: a survey.
Elsevier International Journal of Computer and Telecommunications
Networking, 54,15(2010), pages 2787–2805.

58

LDJ14 Luhach, A. K., Dwivedi, S. K. and Jha, C., Designing a logical security
framework for e-commerce system based on soa. International Journal
on Soft Computing, 5,2(2014), page 1.

LST16 L. Seitz, G. Selander, E. W. S. E. and Tschofenig, H., Authentication
and Authorization for Constrained Environments (ACE). RFC, ACE
Working Group , October 2016. URL https://tools.ietf.org/html/

draft-ietf-ace-oauth-authz-04.

mal08 Extensible authentication protocol overview, October 2008.
https://technet.microsoft.com/en-us/library/bb457039.aspx.

Meo16 Meola, A., The $6 trillion opportunity in the IoT. BI Intelli-
gence, Business Insider. URL http://www.businessinsider.com/

iot-ecosystem-what-is-the-internet-of-things-2016-2?IR=T\

>.

MM06 McCamant, S. and Morrisett, G., Evaluating sfi for a cisc archi-
tecture. Proceedings of the 15th Conference on USENIX Security
Symposium - Volume 15, USENIX-SS’06, Berkeley, CA, USA, 2006,
USENIX Association, URL http://dl.acm.org/citation.cfm?id=

1267336.1267351.

MMST16 Mineraud, J., Mazhelis, O., Su, X. and Tarkoma, S., A gap analysis
of internet-of-things platforms. Comput. Commun., 89,C(2016), pages
5–16. URL http://dx.doi.org/10.1016/j.comcom.2016.03.015.

MSCS16 Maass, M., Sales, A., Chung, B. and Sunshine, J., A systematic analysis
of the science of sandboxing. PeerJ Computer Science, 2, page e43.

MT15 Mineraud, J. and Tarkoma, S., Toward interoperability for the internet
of things with meta-hubs. CoRR, abs/1511.08063. URL http://arxiv.

org/abs/1511.08063.

MWC13 Ma, M., Wang, P. and Chu, C. H., Data management for internet of
things: Challenges, approaches and opportunities. 2013 IEEE Interna-
tional Conference on Green Computing and Communications and IEEE
Internet of Things and IEEE Cyber, Physical and Social Computing,
Aug 2013, pages 1144–1151.

59

MZ06 Melnikov, A. and Zeilenga, K., Simple authentication and security layer
(sasl). RFC 4422, RFC Editor, June 2006.

Nai15 Nair, S., Using json and rest profiles for external autho-
rization, 2015. https://www.axiomatics.com/blog/entry/

using-json-and-rest-profiles-for-external-authorization.

html. [14.1.2017]

NT94 Neuman, B. C. and Ts’o, T., Kerberos: An authentication service
for computer networks. IEEE Communications magazine, 32,9(1994),
pages 33–38.

NYHR05 Neuman, C., Yu, T., Hartman, S. and Raeburn, K., The kerberos
network authentication service (v5). RFC 4120, RFC Editor, July
2005. URL http://www.rfc-editor.org/rfc/rfc4120.txt. http:

//www.rfc-editor.org/rfc/rfc4120.txt.

OMEO17 Ouaddah, A., Mousannif, H., Elkalam, A. A. and Ouahman, A. A.,
Access control in the internet of things: Big challenges and new oppor-
tunities. Computer Networks, 112, pages 237 – 262. URL http://www.

sciencedirect.com/science/article/pii/S1389128616303735.

Pap12 Papazoglou, M., Web services and SOA : principles and technology.
Pearson Education, Essex, England New York, 2012.

PHG16 Patil, P., Hakiri, A. and Gokhale, A., Cyber foraging and offloading
framework for internet of things. 2016 IEEE 40th Annual Computer
Software and Applications Conference (COMPSAC), volume 1, June
2016, pages 359–368.

XACML Rissanen, E., extensible access control markup language (xacml) version
3.0. 22 january 2013. oasis standard., January 2013. http://docs.

oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

San05 Sankar, K. Cisco wireless LAN security, chapter EAP Authentication
Protocols for WLANs, pages 157–192. Cisco Press, 2005.

SBJ+14 Sakimura, N., Bradley, J., Jones, M., de Medeiros, B. and Mortimore,
C., Openid connect core 1.0. The OpenID Foundation, page S3.

60

SBM+04 Singh, I., Brydon, S., Murray, G., Ramachandran, V., Violleau, T.
and Stearns, B., Designing Web Services with the J2EE 1.4 Platform:
JAX-RPC, XML Services, and Clients. Pearson Education, 2004.

Ser06 Sermersheim, J., Lightweight directory access protocol (ldap): The
protocol. RFC 4511, RFC Editor, June 2006. URL http://www.

rfc-editor.org/rfc/rfc4511.txt. http://www.rfc-editor.org/

rfc/rfc4511.txt.

Sin15 Sinitsyn, V., Jailhouse. Linux J., 2015,252(2015). URL http://dl.

acm.org/citation.cfm?id=2775334.2775336.

SN05 Smith, J. E. and Nair, R., The architecture of virtual machines. Com-
puter, 38,5(2005), pages 32–38.

SPB+16 Singh, J., Pasquier, T., Bacon, J., Ko, H. and Eyers, D., Twenty security
considerations for cloud-supported internet of things. IEEE Internet of
Things Journal, 3,3(2016), pages 269–284.

SPF+07 Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A. and Peter-
son, L., Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors. SIGOPS Oper. Syst.
Rev., 41,3(2007), pages 275–287. URL http://doi.acm.org/10.1145/

1272998.1273025.

SRGCP15 Sicari, S., Rizzardi, A., Grieco, L. and Coen-Porisini, A., Security, pri-
vacy and trust in internet of things: The road ahead. Computer Net-
works, 76, pages 146 – 164. URL http://www.sciencedirect.com/

science/article/pii/S1389128614003971.

SS13 Seugwon Shin1, Phillip Porras, V. Y. M. F. G. G. M. T., Fresco: Mod-
ular composable security services for software-defined networks. Pro-
ceedings of the 20th Annual Network & Distributed System Security
Symposium, San Diego, CA, USA, 2013, Internet Society.

SSQA16 Saadeh, M., Sleit, A., Qatawneh, M. and Almobaideen, W., Authentica-
tion techniques for the internet of things: A survey. 2016 Cybersecurity
and Cyberforensics Conference (CCC), Aug 2016, pages 28–34.

SWGI+16 Shu, R., Wang, P., Gorski III, S. A., Andow, B., Nadkarni, A., Desho-
tels, L., Gionta, J., Enck, W. and Gu, X., A study of security isolation

61

techniques. ACM Comput. Surv., 49,3(2016), pages 50:1–50:37. URL
http://doi.acm.org/10.1145/2988545.

TEG+06 Tuttle, S., Ehlenberger, A., Gorthi, R., Leiserson, J., Macbeth, R.,
Owen, N., Ranahandola, S., Storrs, M., Yang, C. et al., Understanding
LDAP-design and implementation. IBM Redbooks, 2006.

TM15 Tschofenig, H., A. J. T. D. and McPherson, D., Architectural Consid-
erations in Smart Object Networking. RFC 7452, RFC Editor, March
2015. URL http://www.rfc-editor.org/info/rfc7452.

TWS16 Toumassian, S., Werner, R. and Sikora, A., Performance measurements
for hypervisors on embedded arm processors. 2016 International Con-
ference on Advances in Computing, Communications and Informatics
(ICACCI), Sept 2016, pages 851–855.

VBM15 Vokorokos, L., Baláž, A. and Madoš, B., Application security through
sandbox virtualization. Acta Polytechnica Hungarica, 12,1(2015), pages
83–101.

VN09 Viswanathan, A. and Neuman, B., A survey of isolation techniques.
Information Sciences Institute, University of Southern California.

Web10 Weber, R. H., Internet of things — new security and privacy chal-
lenges. Computer Law & Security Review, 26,1(2010), pages 23 –
30. URL http://www.sciencedirect.com/science/article/pii/

S0267364909001939.

WLAG93 Wahbe, R., Lucco, S., Anderson, T. E. and Graham, S. L., Efficient
software-based fault isolation. SIGOPS Oper. Syst. Rev., 27,5(1993),
pages 203–216. URL http://doi.acm.org/10.1145/173668.168635.

ZCB10 Zhang, Q., Cheng, L. and Boutaba, R., Cloud computing: state-of-
the-art and research challenges. Springer Journal of Internet Services
and Applications, 1,1(2010), pages 7–18. URL http://dx.doi.org/

10.1007/s13174-010-0007-6.

