

A Structured Approach to Electronic

Authentication Assurance Level Derivation

A thesis submitted to the University of Manchester for the degree of Doctor of

Philosophy in the Faculty of Engineering and Physical Science

2010

Li Yao

School of Computer Science

2

CONTENTS

List of Tables .. 6

List of Figures .. 7

List of Acronyms .. 8

Abstract .. 9

Declaration .. 10

Copyright ... 11

Acknowledgement .. 12

Dedication ... 13

Chapter 1: Introduction .. 14

1.1 Electronic Authentication (E-Authentication)... 14

1.2 Authentication Levels of Assurance (LoA) .. 15

1.3 Research Motivation ... 16

1.4 Research Challenges ... 17

1.5 Research Aim and Objectives ... 19

1.6 Achievements and Novel Contributions ... 20

1.7 Thesis Outline ... 22

Chapter 2: Authentication LoA and E-authentication Technologies 24

2.1 Chapter Introduction ... 24

2.2 Authentication LoA .. 24

2.2.1 The E-Government Initiative .. 24

2.2.2 The Higher Education (HE) and Grid Communities ... 29

2.2.3 Other Research Communities ... 31

2.3 E-Authentication Technologies .. 32

2.3.1 Username and Password Authentication .. 32

2.3.2 One Time Password Authentication ... 33

2.3.3 PKI Software Token Authentication .. 33

2.3.4 PKI Hardware Token Authentication ... 34

2.3.5 Assertion-based Authentication .. 36

2.3.5.1 HTTP Cookies .. 37

3

2.3.5.2 SAML (Security Assertion Markup Language) 37

2.3.5.3 Kerberos ... 38

2.3.6 Location-based Authentication ... 39

2.3.6.1 IP-based Authentication ... 40

2.4 Grid Computing Authentication Solutions .. 40

2.4.1 Username/Password Authentication Service .. 40

2.4.2 PKI based Authentication Service .. 42

2.4.3 Credential Delegation and Single Sign-On (SSO) Solution 43

2.5 The Best Way Forward ... 49

Chapter 3: Authentication LoA-Effecting Attributes: Identification and

Analysis .. 50

3.1 Chapter Introduction ... 50

3.2 Identification of LoA-effecting Attributes .. 51

3.3 Determining Component LoA Values .. 56

3.4 Identification of Relationships among Multiple LoA-effecting Attributes 58

3.4.1 Determining the Weightings of Additive LoA-effecting attributes................... 63

3.4.1.1 Three Multi-Criteria Decision Making (MCDM) Approaches 64

3.4.1.2 Choosing the Most Suitable Approach ... 65

3.4.1.3 Analytic Hierarchy Process (AHP) ... 68

3.5 Chapter Conclusion .. 74

Chapter 4: Authentication LoA Derivation Algorithms: Design,

Implementation and Evaluation .. 75

4.1 Chapter Introduction ... 75

4.2 Design Requirements .. 76

4.3 Aggregate LoA Derivation for Attributes in the Weakest Link Relationship – the

ALoAWL Algorithm .. 77

4.4 Aggregate LoA Derivation for Attributes in the Additive Relationship – the ALoAAD

Algorithms .. 78

4.4.1 Attribute Weightings and Their Integration with Component LoA Values 78

4.4.2 Algorithm One: Subjective Logic-based Aggregate LoA Derivation Algorithm

(ALoAAD-SL) .. 82

4.4.2.1 Subjective Logic for Aggregate LoA Derivation 82

4.4.2.2 ALoAAD-SL Algorithm Design .. 85

4.4.3 Algorithm Two: Probability Theory-Based Aggregate LoA Derivation

Algorithm (ALoAAD-PT) ... 88

4

4.5 Algorithms Evaluation .. 91

4.5.1 Evaluation Environment ... 92

4.5.2 Algorithms Performance Evaluation .. 92

4.5.3 Algorithm Satisfactory Rate Evaluations ... 96

4.6 Chapter Summary ... 97

Chapter 5: A Generic E-Authentication LoA Derivation Model 98

5.1 Design Requirement Specifications .. 98

5.2 Architecture Overview .. 100

5.3 Architectural Components Design .. 105

5.3.1 LoA-effecting Attributes Policy Manager (LoA-APM).................................. 105

5.3.1.1 LoA-effecting Attributes Hierarchical Structure (LoA-AHS) 105

5.3.1.2 LoA-effecting Attributes Weighting Allocation Module (LoA-AWAM)

 106

5.3.2 LoA-effecting Attributes Policy Database (LoA-APDB) 108

5.3.3 LoA-effecting Attributes Collection Module (LoA-ACM)............................. 108

5.3.4 Authentication LoA Derivation Module (ALoA-DM).................................... 109

5.4 Model Analysis against Design Requirements .. 110

5.5 Chapter Summary ... 111

Chapter 6: GEA-LoADM Real System Evaluation ... 113
6.1 Chapter Introduction ... 113

6.2 GEA-LoADM Model Prototype ... 113

6.2.1 Multi-Agency Electronic Information Sharing (MAIS) System 113

6.2.2 Integrating GEA-LoADM into the MAIS System .. 116

6.2.2.1 Constructing an LoA-AHS for the MAIS system 117

6.2.2.2 Estimating weightings of additive attributes 119

6.2.2.3 Implementation of the LoA-APDB .. 120

6.2.2.4 Implementation of the LoA-ACM module 120

6.2.2.5 Implementation of the ALoA-DM module 122

6.3 GEA-LoADM Performance Evaluation .. 123

6.3.1 Evaluation Environment ... 124

6.3.2 Experiment Results .. 124

6.4 Tests against Security Attacks .. 127

6.5 Chapter Summary ... 128

5

Chapter 7: Conclusion and Future Work ... 129
7.1 Thesis Summary ... 129

7.1.1 Review of the Thesis .. 129

7.1.2 Contributions .. 130

7.2 Future Work ... 131

Bibliography ... 133

Appendix A ... 139

Appendix B ... 142

Appendix C ... 144

Final words count: 33,540

6

LIST OF TABLES

Table 2.1. ... 38

Table 2.2... 39

Table 2.3. ... 41

Table 3.1... 53

Table 3.2... 55

Table 3.3... 57

Table 3.4... 67

Table 3.5... 70

Table 3.6... 73

Table 4.1... 77

Table 4.2... 79

Table 4.3... 87

Table 4.4... 90

Table 4.5... 97

Table 6.1... 118

Table 6.2... 120

Table 6.3... 120

Table 6.4... 121

Table 6.5... 122

Table 6.6... 122

Table 6.7... 123

7

LIST OF FIGURES

Figure 1.1 ... 18

Figure 2.1 ... 44

Figure 3.1 ... 58

Figure 3.2 ... 59

Figure 3.3 ... 59

Figure 3.4. .. 60

Figure 3.5 ... 62

Figure 3.6 ... 69

Figure 4.1 ... 79

Figure 4.2 ... 83

Figure 4.3 ... 93

Figure 4.4 ... 94

Figure 4.5 ... 94

Figure 4.6 ... 96

Figure 5.1 ... 101

Figure 5.2 ... 104

Figure 5.3 ... 107

Figure 5.4 ... 108

Figure 5.5 ... 119

Figure 6.1 ... 114

Figure 6.2 ... 115

Figure 6.3 ... 117

Figure 6.4 ... 118

Figure 6.5 ... 119

Figure 6.6 ... 123

Figure 6.7 ... 126

Figure 6.8 ... 126

8

LIST OF ACRONYMS

Agg-LoA. .. Aggregate LoA

AHP ... Analytic Hierarchy Process

ALoA-DM .. Authentication LoA Derivation Module

GEA-LoADM Generic E-authentication LoA Derivation Model

GSI ... Grid Security Infrastructure

LoA .. Authentication Levels of Assurance

LoA-ACM ...LoA-effecting Attributes Collection Module

LoA-AHS... LoA-effecting attribute hierarchical structure

LoA-APDB ... LoA-effecting attributes policy database

LoA-APM .. LoA-effecting Attributes Policy Manager

LoA-AWAM LoA-effecting Attributes Weightings Allocation Module

MAIS ... Multi-Agency Information Sharing System

MCDM... Multi-Criteria Decision Making

NIST .. US National Institute of Standards and Technology

OCR ... online credential repository

PC ... Proxy Certificate

PKI ... Public Key Infrastructure

RA ... Registration Authority

SAML... Security Assertions Markup Language

SP ... Service Provider

SSO ... Single Sign-On

9

ABSTRACT

We envisage a fine-grained access control solution that allows a user‟s access privilege to

be linked to the confidence level (hereafter referred to as the assurance level) in

identifying the user. Such a solution would be particularly attractive to a large-scale

distributed resource sharing environment, where resources are likely to be more

diversified and may have varying levels of sensitivity and resource providers may wish to

adjust security protection levels to adapt to resource sensitivity levels or risk levels in the

underlying environment. However, existing electronic authentication systems largely

identify users through the verification of their electronic identity (ID) credentials. They

take into account neither assurance levels of the credentials, nor any other factors that

may affect the assurance level of an authentication process, and this binary approach to

access control may not provide cost-effective protection to resources with varying

sensitivity levels.

To realise the vision of assurance level linked access control, there is a need for an

authentication framework that is able to capture the confidence level in identifying a user,

expressed as an authentication Level of Assurance (LoA), and link this LoA value to

authorisation decision-making. This research investigates the feasibility of estimating a

user‟s LoA at run-time by designing, prototyping and evaluating an authentication model

that derives an LoA value based upon not only users‟ ID credentials, but also other factors

such as access location, system environment and authentication protocol used.

To this aim, the thesis has identified and analysed authentication attributes, processes and

procedures that may influence the assurance level of an authentication environment. It

has examined various use-case scenarios of authentication in Grid environments (a well-

known distributed system) and investigated the relationships among the attributes in these

scenarios. It has then proposed an authentication model, namely a generic e-

authentication LoA derivation model (GEA-LoADM). The GEA-LoADM takes into

account multiple authentication attributes along with their relationships, abstracts the

composite effect by the multiple attributes into a generic value called the authentication

LoA, and provides algorithms for the run-time derivation of LoA values. The algorithms

are tailored to reflect the relationships among the attributes involved in an authentication

instance. The model has a number of valuable properties, including flexibility and

extensibility; it can be applied to different application contexts and supports easy addition

of new attributes and removal of obsolete ones.

The prototypes of the algorithms and the model have been developed. The performance

and security properties of the LoA derivation algorithms and the model are analysed here

and evaluated based on the prototypes. The performance costs of the GEA-LoADM are

also investigated and compared against conventional authentication mechanisms, and the

security of the model is tested against various attack scenarios. A case study has also

been conducted using a live system, the Multi-Agency Information Sharing (MAIS)

system.

10

 DECLARATION

No portion of the work referred to in the thesis has been submitted in

support of an application for another degree or qualification of this or any

other university or other institute of learning.

11

COPYRIGHT

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,

may be made only in accordance with the Copyright, Designs and Patents Act 1988

(as amended) and regulations issued under it or, where appropriate, in accordance

with licensing agreements which the University has from time to time. This page

must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other

intellectual property (the “Intellectual Property”) and any reproductions of

copyright works in the thesis, for example graphs and tables (“Reproductions”),

which may be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property and Reproductions cannot and

must not be made available for use without the prior written permission of the

owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP

Policy (see http://www.campus.manchester.ac.uk/medialibrary/policies/intellectual-

property.pdf), in any relevant Thesis restriction declarations deposited in the

University Library, The University Library‟s regulations (see

http://www.manchester.ac.uk/library/aboutus/regulations) and in The University‟s

policy on presentation of Theses

12

ACKNOWLEDGEMENTS

First of all, I would like to express my sincerest gratitude to my supervisor, Dr. Ning

Zhang, for her guidance, valuable advice and encouragement throughout this research.

This research would not have been possible without her whole-heartedly support.

I would also like to thank my wife Qing Li, for her love, sacrifice and patience during the

period. Without her support this research would have been much difficult to complete.

My thanks go to my colleagues from the security group. Their warmth and friendship

have provided a pleasant environment during my years of study at The University of

Manchester.

13

DEDICATION

To mum and dad; I love you.

14

Chapter 1

Introduction

1.1 Electronic Authentication (E-Authentication)

Electronic authentication (e-authentication) is an electronic process by which a claimant

(i.e. an individual or a software component) can be identified by a verifier (i.e. a party

that establishes the identity of the claimant). It provides assurance as to whether someone

or something is who or what they claim to be in a digital environment. Thus, e-

authentication plays a key role in the establishment of trust relationships for electronic

commerce, electronic government and many other social interactions. It is also an

essential component of any strategy for protecting resources (services and data),

information systems and networks and other assets from unauthorised access or identity

theft. E-authentication is therefore vital for establishing accountability online and for

securing resource sharing in distributed environments.

A typical e-authentication procedure consists of three key phases. The first phase is user

registration/user identity proofing and credential issuance. The second phase is a claimant

authentication process and the third phase is credential renewal/revocation/destruction.

For example, if a user wishes to access certain services from a service provider (SP)

he/she first needs to register with a Registration Authority (RA), which could be the SP

itself or a third party that provides the credential management service for the SP.

Depending on the type of service that the SP provides, the RA may also need to

demonstrate that the identity is a real identity and that the user is the person who is

entitled to use that identity (i.e. user identity proofing). For example, if a user applies for

a free e-mail service, identity proofing is usually unnecessary; whereas a strict identity

proofing process is required if a user applies for an online banking service. After

successful user registration, the user can subsequently be issued a credential. The

credential could either be something he/she knows (e.g. a pin or a password), or

something he/she has (e.g. a smart card or a USB token with a PKI credential stored in it).

The user (claimant) proves his/her identity to the verifier by demonstrating that he/she

15

processes a valid credential. When the credential reaches its expiration time, it should be

renewed if the user requires further access to the SP, or destroyed if not. The credential

can be revoked if it is, or is suspected to be, compromised.

1.2 Authentication Levels of Assurance (LoA)

Different types of credentials may provide different authentication levels of assurance.

LoA is defined as the strength of authentication required for a service provider to be

assured that resource access is only granted to users whose identities have been verified.

It reflects the degree of confidence in an authentication process used to establish the

identity of a claimant to whom the credential was issued and the degree of confidence

that the claimant using the credential is indeed the entity to whom the credential was

issued.

In fact, all the factors in the three phases of the e-authentication procedure influence the

LoA established. In addition to the type of authentication credential (or authenticator or

token) used by the claimant, such factors also include the authentication protocol used by

the underlying authentication service and how the credentials are managed. The latter

encompasses issues such as the token technology that is used to store the credential, the

manner in which a claimed identity is bound to an authentication credential, the life-cycle

management of the credential and whether the credential service provider (CSP) has

sufficient operating procedures, processes and policy frameworks to establish the

required level of trust. Furthermore, the extent to which an authentication event is

coupled to an authorisation event should also be taken into account when the LoA is

established. These authentication factors, processes and procedures mentioned above can

collectively be called LoA-effecting attributes. In other words, we now have the following

definition.

Definition 1 - LoA-effecting attributes: An LoA-effecting attribute refers to a factor that

plays a part in the value of an authentication level of assurance associated with an

authentication instance (an authentication instance is an authentication event that takes

place in an authentication environment). For example, authentication credential/token

types, authentication protocol/mechanisms and the processes/procedures in managing

16

users‟ credentials are all examples of LoA-effecting attributes.

Once the LoA-effecting attributes are identified, their individual contributions towards

the overall authentication level associated with an authentication instance should be

quantified or determined. To this end, we have two further definitions.

Definition 2 – A component LoA (denoted as LoAx): A component LoA, LoAx, refers to

the LoA value contributed by LoA-effecting attribute x. For example, LoAAuthNMethod is

used to denote the LoA contribution made by the authentication method used in an

authentication instance.

Definition 3 – An aggregate LoA (denoted as Agg-LoA): The Agg-LoA refers to the

overall LoA value determined by the combined effects of multiple LoA-effecting

attributes involved in an authentication instance. For example, if there are n LoA-

effecting attributes 0},,...,,{ 21 naaa n in an authentication instance, each with a

component LoA, LoAi where 0],,1[ nni , then the aggregate LoA for this

authentication instance is determined by the component LoA values of the n

attributes },...,{ 21 nLoALoALoA . In other words, given component LoA values, the

aggregate LoA associated with an authentication instance can be determined by the

following equation:

Agg-LoA = f(LoA1, LoA2, … , LoAn) (1.1)

where f is a function capturing the relationship among the n attributes.

1.3 Research Motivation

In a typical access control process, once a user has made an access request, the user is

authenticated then an authorisation process is invoked to make a grant or deny decision

on the access request. The authorisation decision is usually based on the user‟s identity,

his/her membership or role and access permission, which is typically expressed as „what

action on which object‟. In other words, an access control policy is usually expressed

using the tuple <subject/identity, role/membership, action, object>. If a user is

authenticated and the access request made by the user conforms to the specified access

control policy, the authorisation process will make a grant decision and the access will be

17

permitted. Otherwise, it will be denied. This approach to access control is a binary

approach. A grant or deny authorisation decision is made based merely upon the outcome

of a credential-based authentication process. It does not quantify the assurance level of

the process. It is well known that identity authentication cannot always produce a perfect

and reliable outcome [Gang01]. Different authentication instances in different

authentication environments, as influenced by the use of different credentials,

authentication protocols and/or token management procedures, may result in different

levels of assurance. These different LoAs should be taken into account when an access

request is being granted. This is because in a large-scale distributed resource sharing

environment, resources are likely to be more diversified and may have varying levels of

sensitivity, or resource providers may wish to adjust security protection levels to adapt to

resource sensitivity levels or the risk levels in the underlying environment. The existing

approach to access control, disregarding the quality of authentication in authorisation

decision-making, cannot satisfy the need for an effective and cost-efficient security

provision in the diversified resource sharing environments. For example, if we opt for a

simpler or cheaper authentication method that satisfies the authentication requirements of

less-sensitive resources, then the more-sensitive resources will be put at a higher risk. On

the other hand, if we choose a more stringent authentication method to satisfy the

authentication requirements related to more-sensitive resources, access to the less-

sensitive resources will entail unnecessary higher costs in performance and usability as

more secure credentials and a more stringent authentication procedure usually introduces

a higher level of performance and usability costs. To address this weakness and to

optimise performance and usability while at the same time providing an adequate level of

protection, there is a need for an authentication framework that can capture the

confidence level in identifying a user, expressed as an authentication LoA, and link this

LoA value to authorisation decision-making.

1.4 Research Challenges

There are a number of challenges that must be overcome when designing such a

framework. Firstly, there are typically multiple attributes influencing the value of an

aggregate LoA in an authentication instance. In addition, the number and types of LoA-

18

effecting attributes may differ in different authentication contexts/environments. The

framework designed should be able to accommodate this diversified feature. Also, as

technology advances, there may be new emerging LoA-effecting attributes that should to

be taken into account or obsolete ones taken out of the equation when evaluating an

aggregate LoA value, so the framework should allow for an easy addition/deletion of

new/obsolete LoA-effecting attributes. Secondly, the impacts (i.e. weightings) of different

LoA-effecting attributes on the aggregate LoA may vary and those of the same LoA-

effecting attribute may change over time or in different authentication

contexts/environments. In real life, it should be the access control policy makers who

decide the relative weightings of multiple LoA-effecting attributes in their authentication

process. Such decisions are dependent on a number of factors, including their access

control policy, how authentication services are provided, the trustworthiness of the

authentication service, etc. Basically, the more reliable and trust-worthy an LoA-effecting

attribute, the higher the impact or greater the contribution it should have towards the

aggregate LoA. Thirdly, the relationship between different attributes may vary. Some

attributes may jointly reinforce the overall authentication assurance level (i.e. in an

additive relationship), while others may follow the weakest link principle. Figure 1.1

outlines the challenging issues for designing the framework as discussed above and

illustrates the methods used to address these challenging issues.

Figure 1.1 Research methodology and design challenges

Different

Authentication

Environments

LoA-effecting

Attributes

LoA-effecting

Attributes

Relationships

LoA-effecting

Attributes

Weightings

Component

LoA Values

Aggregate LoA

Derivation

Algorithm

Aggregate LoA

value

Authentication

use case

scenarios

Abstract

Identify
Assign

Input

Derive

Analyse

and

identify

19

1.5 Research Aim and Objectives

We envisage creating a fine-grained access control solution that allows a user‟s access

privilege to be linked to the assurance level in identifying the user. For example, if a user

requests access for a resource object with a higher sensitivity level, and/or the risk level

in the underlying access environment is higher, we could impose a higher LoA value

which the user has to satisfy before he can be granted access. The use of LoA in access

control decision making acknowledges the fact that the more LoA-effecting attributes that

are considered or used in identifying a user, the higher the reliability and the confidence

level we will have in the authentication outcome, thus the more privileges the system

could grant to the user. Furthermore, the more the resource is worth and/or the higher the

risks in the underlying access environment, the more stringent the authentication process

should be. Such a solution can provide more fine-grained access control than the existing

binary approach mentioned earlier. It would be particularly attractive to large-scale

distributed resource sharing environments where resources under protection are more

likely to be diversified.

The aim of this research is to set the first step to achieving this vision of LoA-linked

access control: that is to design, prototype, and evaluate an authentication framework that

takes into account not only users‟ ID credentials, but also other LoA-effecting attributes,

such as authentication mechanism, access environment, authentication protocol used, and

derives the LoA value of a user in a given authentication instance based upon the set of

LoA-effecting attributes involved in the instance.

To fulfil this aim, the following objectives have been defined:

1. To investigate and critically analyse related work in network/distributed system

authentication and authentication level of assurance.

2. To identify and study different authentication scenarios and models used in

distributed systems with the aim of identifying factors or parameters (i.e. LoA-

effecting attributes) that may affect the authentication LoA.

3. To study the relationships among multiple LoA-effecting attributes in various

authentication use-case scenarios and models and to devise algorithms to capture the

20

aggregated effects in these scenarios and models.

4. To design an authentication framework that, for a given set of LoA-effecting

attributes in an authentication instance, could derive an aggregate LoA value in real-

time based upon individual LoA values of the attributes, their respective impacts and

their mutual relationships.

5. To prototype the model designed.

6. To conduct testing, analyses and case studies to evaluate the security and

performance of the model using the prototype.

1.6 Achievements and Novel Contributions

This research has made the following major advances. The first is the design, prototyping

and evaluation of aggregate LoA derivation algorithms. The second is the design,

implementation and evaluation of a generic e-authentication LoA derivation model

(GEA-LoADM). More details of these novel contributions are given below.

Aggregate LoA Derivation Algorithms

The first novel contribution is the identification of two relationships among LoA-

effecting attributes and the design of algorithms that capture these two relationships and

derive an aggregated authentication LoA value given a set of LoA-effecting attributes in

each of the relationships.

One of the two relationships is the weakest link relationship (WLR), and the other is the

additive relationship (AR). The WLR algorithm captures the relationship among a set of

LoA-effecting attributes that are included in an authentication instance in the form of n

operational chain. The aggregate LoA of the attribute set in the WLR is equal to the

lowest component LoA of individual attributes. The AR algorithm captures the

relationship among a set of LoA-effecting attributes that are involved in an authentication,

where their component LoA values reinforce each other. The aggregate LoA of this

attribute set should not be less than the highest value of the component LoA value of the

attribute set.

21

LoA-effecting attribute hierarchical structure

The second major novel contribution is the design of the LoA-effecting attribute

hierarchical structure (AHS). As discussed in Section 1.4, the number and types of LoA-

effecting attributes involved in an authentication process are application dependent.

Different authentication models or use-case scenarios may involve the use of a different

set of LoA-effecting attributes. In addition, the same user being authenticated in two

different authentication instances may also lead to two different sets of such attributes.

This is because they are also dependent on access policies that are, in turn, influenced by

factors such as asset values and the underlying risks in the access environment. In this

regard, the author has investigated and extended the attributes identified by NIST [Burr06]

and OASIS [Samlac] and, produced a set of generic LoA-effecting attributes.

Furthermore, the author has examined the mutual relationships among these attributes

and created a hierarchical structure that can accommodate these attributes in a systematic

manner. The significance of this AHS is that it provides a structure for systematic and

run-time determination of an aggregate LoA value given a set of LoA-effecting attributes.

Generic e-authentication LoA derivation model

The third major novel contribution is the design of the GEA-LoADM model that

incorporates aggregate LoA algorithms and the AHS structure. The model is capable of

collecting LoA-effecting attributes, retrieving the component LoA value of each attribute

and deriving an aggregate LoA value for an authentication instance in real time.

Publications:

 Li Yao and Ning Zhang, “Quantifying Authentication Levels of Assurance in Grid

Environments”, the 6th Information Assurance and Security Conference 2010

(IAS2010), Aug 23-25, 2010, Atlanta, USA, pp 298-303

 Li Yao and Ning Zhang, “A Generic Authentication LoA Derivation Model”, the

24th IFIP International Information Security Conference (SEC2009), May 18-20,

2009, Coral Beach Hotel, Pafos, Cyprus, IFIP series published by Springer, pp. 98-

108

22

 Nenadic, A.; Ning Zhang; Li Yao; Morrow, T. Levels of Authentication Assurance:

an Investigation Information Assurance and Security, 2007. IAS 2007. Third

International Symposium on Volume, Issue , 29-31 Aug. 2007 Page(s):155 – 160

 Chin, J.S.; Zhang, N.; Nenadic, A.; Yao, L.; Brooke, J.M.; Towards Context

Constrained Authorisation for Pervasive Grid Computing Communication Systems

Software and Middleware, 2007. COMSWARE 2007. 2nd International Conference

on 7-12 Jan. 2007 Page(s):1 – 7

 N. Zhang, L. Yao et al; Achieving Fine-grained Access Control in Virtual

Organisations, doi: 10.1002/cpe.v19:9 Concurrency and Computation: Practice and

Experience Volume 19 Issue 9, Pages 1333 – 1352, 2006

 N. Zhang, L. Yao, J. Chin, A. Nenadic, A. McNab, A. Rector, C. Goble, Q. Shi,

"Plugging a Scalable Authentication Framework into Shibboleth," wetice, pp.271-

276, 14th IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprise (WETICE'05), 2005

1.7 Thesis Outline

This thesis identifies and analyses the attributes, processes and procedures that may

influence the assurance level of an authentication instance. It identifies and examines four

use-case scenarios of authentication in Grid environments and investigates the

relationships between the attributes in these scenarios. It then proposes an authentication

model, namely a generic e-authentication LoA derivation model (GEA- LoADM). The

GEA-LoADM takes account of multiple authentication attributes and their individual

LoA values along with their relationships to derive an aggregate LA for the authentication

instance. The model has a number of valuable properties, including flexibility and

extensibility; it can be applied to different application contexts and supports easy addition

of new attributes and removal of obsolete ones. The prototypes of the algorithms and the

model have been developed. The performance and security properties of the LoA

derivation algorithms and the model are analysed and evaluated against the prototypes.

The prototypes are tested against both conventional authentication mechanisms to

investigate the performance cost and various attack scenarios to measure the security

level. A real-life use case study is presented at the end of the thesis.

23

In detail, Chapter 2 investigates the related works in the topic area of authentication LoA,

provides an in-depth survey of e-authentication technologies and examines the

authentication solutions in large-scale distributed system environments. Chapter 3

identifies and investigates authentication LoA-effecting attributes in these environments.

It also identifies and analyses the relationships among the attributes and discusses

methods to determine the weightings of LoA-effecting attributes. Chapter 4 presents the

design, implementation and evaluation of three aggregate authentication LoA derivation

algorithms. Chapter 5 describes the design of a generic e-authentication LoA derivation

model (GEA-LoADM) including its architecture and architectural components. Chapter 6

prototypes and evaluates the GEA-LoADM model using a real-life case study; the

performance and security of the GEA-LoADM model are also analysed. Chapter 7

concludes the thesis and suggests future works.

24

Chapter 2

Authentication LoA and E-authentication

Technologies

2.1 Chapter Introduction

This chapter provides an insight into main-stream authentication technologies and their

authentication levels of assurance (LoA). Section 2.2 gives the definition of

authentication LoA and discusses related works in defining LoA. Section 2.3 examines

main-stream e-authentication technologies and discusses their authentication LoA.

Section 2.4 uses the Grid system as an exemplar distributed application to investigate the

factors that may have impacts on the authentication LoA. Section 2.5 concludes the

chapter and highlights research approaches for the next step.

2.2 Authentication LoA

There have been number of efforts to define and use LoA for transaction or resource

protection. These efforts, which will be discussed here, include those by the E-

Government/E-Service community [UKloa00, UKloa02, OMB03, Burr06], the

Grid/Higher Education (HE) Community [InComm, IGTF-1, IGTF-2], and research

communities [Cree04, Conv04, Nena06, Zhan06].

2.2.1 The E-Government Initiative

The first effort to define authentication LoA was made in 2000 by the UK Office of the

e–Envoy (now Cabinet Office e-Government Unit) in its „E-government authentication

framework‟ guideline [UKloa00]. In the guideline, four distinctive authentication

assurance levels, ranging from 0 to 3, were identified in terms of the sensitivity and

importance of transactions. The document also gives guidance to service providers on

how to classify transactions into different groups based on potential impact due to

authentication errors, and how to allocate an applicable assurance level to each group.

The identified transaction classes and the related authentication assurance levels as

25

defined in the guidance are summarised below.

 Level 0: Informal transactions. Misappropriation of identity or repudiation of

transaction would not result in inconvenience to the identity holder, risk to their

personal safety, financial loss or distress to any party. An authentication service is

categorised as Level 0 if no trust is put in the identities claimed by clients.

 Level 1: Personal transactions. Mistaken identity would have a minor impact to one

or more of the involved parties, as information involved is personal but non-sensitive.

Misappropriation of identity or repudiation of transaction would not result in major

inconvenience to the identity holder, risk to their personal safety, financial loss or

distress to any party. For a Level 1 authentication service, users identify themselves

by presentation of a credential, which could be a username, and demonstrate the

knowledge of a related secret, which could be a password.

 Level 2: Transactions with financial or statutory consequence. Misappropriation of

identity or repudiation of transaction might result in substantial inconvenience to the

identity holder (but not risk to their personal safety), significant financial loss or

distress to any party. It might also assist in commissioning a serious crime, hinder its

detection or materially damage the reputation of the identity holder. For a Level 2

authentication service, users identify themselves by presentation of a credential,

which would preferably be a digital certificate, and demonstrate the right to that

credential by proving the possession of both the corresponding private key and a

password or biometrics. The validity of a credential must be time-bound and the

revocation status of the credential must be checked at the time of transaction.

 Level 3: Transactions with substantial financial, statutory or safety consequence.

Misappropriation of identity or repudiation of transaction might result in substantial

inconvenience to the identity holder, risk to their personal safety, significant financial

loss or distress to any party. For a Level 3 authentication service, users identify

themselves by presentation of a digital certificate, which would preferably be stored

in a secure hard token, and demonstrate the right to that certificate by proving the

possession of both the corresponding private key and a password or biometrics. Face-

to-face user registration is required at the time of obtaining a credential, and similar to

26

Level 2, the validity of the credential must be time-bound and the revocation status of

the credential must be checked at the time of transaction.

In September 2002, the third version of this guideline: „Registration and Authentication

e-Government Strategy Framework Policy and Guidelines‟ [UKloa02], was published.

This document builds on the previous Authentication Framework and further specifies

that the assurance level in identifying a client should be defined in terms of trust acquired

during both the client‟s registration and authentication processes. Registration is defined

as a complex process consisting of the following steps: identity registration, identity

validation, identity verification, credential issuance, logging for audit purposes, and

credential withdrawal. Authentication is a process of requesting an identity and verifying

it. This document specifies four levels of registration assurance and four levels of

authentication assurance, which are appropriate for and can be mapped to the four

identified transaction classes. In addition, the document also defines four categories of

identification with their implied registration and authentication levels as follows:

 Anonymous or pseudo-anonymous: neither real-world nor electronic identity is

required to complete the transaction (registration level: 0; authentication level: 0).

 Anonymous or pseudo-anonymous with electronic identity: the real-world identity

of the client is not required to complete the transaction, but the electronic identity

enables the service provider to recognise the client in repeated transactions

(registration level: 0; authentication level: 1, 2, or 3).

 Anonymous or pseudo-anonymous with electronic identity and traceable: the

real-world identity of the client is not required to complete the transaction, but the

electronic identity enables the service provider to recognise the client in repeated

transactions and could be used to trace the real-world identity via the Registration

Authority that has registered the client (registration level: 1, 2, or 3; authentication

level: 1, 2, or 3).

 Real-world identity established: the real-world identity of the client needs to be

established to some degree before the transaction can be performed (registration level:

1, 2, or 3; authentication level: 1, 2, or 3).

27

The UK government‟s efforts have laid the cornerstone for all subsequent efforts to

define and use LoAs. However, these guidelines have only addressed two aspects of

LoAs, i.e. registration and authentication. Technical and operational requirements on how

to achieve a given level of assurance were missing in the guidelines.

While the UK government guidelines define LoAs in terms of sensitivity levels and

importance of transactions, the US Government's Office of Management and Budget

(OMB), in its memorandum, „The E-Authentication Guidance for Federal Agencies‟

[OMB03], defines levels of authentication assurance in terms of the consequences of the

authentication errors and misuse of credentials. This memorandum specifies four

assurance levels (Levels 1 to 4), to help and direct US federal agencies in reviewing e-

government transactions, determining their authentication needs, and ensuring that the

authentication process satisfies the minimum LoA given the risk level measured in terms

of potential impacts of authentication errors and the likelihood of their occurrence.

The OMB-defined four assurance levels are as follows:

 Level 1 - Little or no confidence in the asserted identity‟s validity

 Level 2 - Some confidence in the asserted identity‟s validity

 Level 3 - High confidence in the asserted identity‟s validity

 Level 4 - Very high confidence in the asserted identity‟s validity

To satisfy each of the assurance levels as specified by the OMB Memorandum,

appropriate authentication technologies should be identified, implemented and regularly

assessed. The complementary document from the US National Institute of Standards and

Technology (NIST), „NIST SP 800-63: Electronic Authentication Guideline‟ [Burr06],

identifies the necessary technologies and provides guidance to implement the OMB‟s

levels of authentication assurance. The guideline defines specific technical requirements

for each of the four levels of assurance. The definition takes into account the effects of

authentication token types, authentication protocols and assertion mechanisms for remote

communication on the authentication strengths. A short summary of the technical

requirements for each of the four levels is provided below.

 Level 1: At this level, the authentication mechanism provides some assurance that the

same claimant is accessing the protected transaction or data. Successful

28

authentication requires the claimant to prove that he/she has control of a credential

through a secure authentication protocol. Plaintext passwords or secrets are never

transmitted across the network. This level does not require the use of cryptographic

protocols that block off-line attacks. For example, password challenge-response

protocols are allowed at this level, and an eavesdropper, having intercepted such a

protocol exchange, can launch an off-line dictionary attack in order to discover the

password. Therefore, there is no requirement at this level to use FIPS (Federal

Information Processing Standards) approved cryptographic techniques [Fips01]. All

the authentication tokens and methods as defined for Level 2, 3, or 4, as well as

passwords and PIN, are allowed at this level.

 Level 2: This level provides single-factor remote network authentication (SFA). The

SFA requires one authentication factor, such as things a user knows (passwords, PINs,

shared secrets, solicited personal information, etc). Successful authentication requires

the claimant to prove that he/she controls the authentication credential through a

secure authentication protocol. The use of cryptographic protocols that can prevent

off-line, replay and on-line guessing attacks is required. Any of the authentication

tokens of Level 3, or 4 can be used, as well as passwords and PINs.

 Level 3: This level provides multi-factor remote network authentication (MFA). The

MFA requires more than one authentication factors, such as combining things a user

knows and things a user has to form a stronger authentication mechanism. Successful

authentication requires the claimant to prove that he/she controls the authentication

token (i.e. proves possession of a soft/hardware token) through a secure

authentication protocol. Three kinds of tokens may be used: soft cryptographic tokens,

hard cryptographic tokens and one-time password device tokens. The use of

cryptographic protocols that can prevent off-line replay, on-line guessing, verifier

impersonation and man-in-the-middle attacks is required. All sensitive data

transferred is cryptographically authenticated and, optionally, encrypted under keys

derived from the authentication process. Any of the authentication tokens of Level 4

can be used.

 Level 4: This level is intended to provide the highest practical remote network

29

authentication assurance. Successful authentication requires the claimant to prove that

he/she controls the authentication token (i.e. proves possession of a hardware token)

through a secure authentication protocol. This level is similar to Level 3, except that

only hard cryptographic tokens are allowed. These tokens are hardware (physical)

devices that cannot be easily copied and which must be unlocked with a password or

a piece of biometric, and thus provide two-factor authentication. Either public or

symmetric key technology may be used.

Similar efforts have also been made by the European Government [Euegov], Japanese

Government [Jpegov], the Australian Government [Auegov], and the Canadian

Government [Caegov] as part of their e-government initiatives. These efforts either use or

adopt a similar specification to the OMB/NIST guidance mentioned above. However,

these efforts are made in the context of supporting e-Government initiatives. The NIST

LoA technical guidance only considers the „user-to-system‟ authentication scenario, i.e.

covering remote electronic authentication of human users to IT systems via a

communication network. The „system-to-system‟ and „credential delegation‟ scenarios

are not covered and discussed (More about these scenarios are discussed in Section 2.4.3).

In the „user-to-system‟ authentication context, it specifies LoA recommendations versus

token/credential types and authentication protocols for registration, identity proofing and

records retention.

2.2.2 The Higher Education (HE) and Grid Communities

In addition to the e-Government initiatives mentioned above, a number of HE (Higher

Education) federations across the world, including the InCommon federation in USA

[Incomm], the Switch (Switzerland) and the AAF (Australia and New Zealand

federations [Szegov, Austaf], have defined a number of LoA assurance profiles for the

purpose of access management in their respective communities.

The InCommon federation, an access management federation of US HE institutions, uses

the Shibboleth authentication and authorization system to enable cost-effective, privacy-

preserving and federated identity management among its community of participants. In

its draft document, „Bronze and Silver Credential Assessment Profiles‟ [Incomm],

InCommon recommends two classes of authentication services to be used by the

30

federation‟s IdPs and defines two Credential Assessment Profiles (CAPs), namely Bronze

and Silver. The Profiles contain the assessment criteria for IdPs wanting to be qualified

for providing the Bronze or Silver services. The InCommon Bronze and Silver Profiles

only recognise password-based authentication systems that employ Web browsers on the

client side. The Profiles neither recognise PKI certificate-based authentication systems,

nor systems that use passwords in conjunction with hard (physical) tokens or other

specialised hardware or proprietary client software. The reason for this is that campuses

across US HE support mainly the use of password-based authentication services, and

currently, they do not have any plan for broad adoption of PKI credentials. This is why

InCommon have only concentrated on defining profiles compliant with US Gov/NIST

Levels 1 and 2 (note that certificate-based authentication is a prerequisite for Levels 3

and 4).

The Swiss HE Federation, SWITCH, has published an informal proposal for using

authentication assurance levels on their web site [Szegov]. The Federation funded a pilot

project to examine the opportunities and limitations of using LoAs and multi-factor

authentication in the Shibboleth infrastructure. The proposal recommends a four-level

approach as recognised by the US Government, NIST, E-Authentication and InCommon

federations.

Parallel to these activities made in HE sectors, efforts are also being made by the Grid

community to improve access control. The most notable efforts in this category have

been made by the IGTF (International Grid Trust Federation) WG. IGTF-WG has

produced a list of authentication profiles specifying two assurance levels: the Classic

X.509 and SLCS (Short Lived Credential) profiles. The Classic X.509 profile, maintained

by the European Policy Management Authority for Grid Authentication (EUGridPMA)

[IGTF-1], focuses on the operational aspects of CAs (i.e. traditional Certificate); whereas

the SLCS profile, maintained by The Americas Grid Policy Management Authority

(TAGPMA) [IGTF-2], focuses on the operational aspects of short-lived credential (e.g.

proxy certificate) services. The profiles respectively cover traditional and SLCS CAs‟

operational aspects of LoA, such as identity vetting, certificate expiration, revocation and

renewal, the CA‟s key size, hardware requirements, the physical security of the CA‟s site

and audit and disaster recovery procedures. However, many LoA-effecting factors

31

brought up by Grid use-case scenarios, such as credential delegation, n-tier authentication,

authentication via a third-party and attribute assertion, have not been considered in these

profiles.

2.2.3 Other Research Communities

It is worth emphasising that all the LoA guidelines and efforts discussed above centre on

the user-to-system authentication use-case scenarios. They do not consider machine-to-

machine or software-to-software authentication scenarios. Nor do they address the

authentication of a person via a physical authentication mechanism, e.g. location-based or

sensor-based services. In addition, issues related to how LoA may be fed into the

authorisation process are also outside the scope of these efforts. Most of the existing

authentication LoA efforts, such as the one recommended by the OMB/NIST, use an off-

line approach to LoA compliance. With this approach, LoA definitions are given as

guidelines and the parties concerned are required to comply with these guidelines by

conducting a risk assessment of the underlying system, mapping identified risks to an

applicable assurance level, selecting appropriate authentication methods and technologies

based upon the technical guidelines, and validating the implemented system to make sure

that it has achieved the required assurance level. This off-line, or static, approach to

authentication assurance level conformance is adequate in a homogeneous environment

where resources are also homogeneous; they are well defined, their sensitivity levels are

similar and known prior to run-time, and they are often provided by a single service

provider, as is the case in e-Government. This approach is certainly not sufficient for

large-scale distributed resource sharing environments.

To overcome these limitations, a recent effort has been made to link LoA to authorisation

decision-making. The FAME-PERMIS (Flexible Authentication Middleware Extensions

to the PERMIS) software derives an LoA value based upon a user‟s authentication token

presented to the authentication service and asserts the value to a role-based access control

decision engine run at the SP (Service Provider) side, in order to achieve LoA linked fine-

grained access control [Nena06, Zhan06]. However, the software only implements the

LoA-definition versus token types as defined by the NIST guideline. It does not consider

the impacts of other LoA-effecting attributes. Nor does it provide any algorithms on

32

deriving authentication LoA given a set of LoA-effecting attributes.

Other related recent works include the algorithms proposed by the ubiquitous computing

community [Cree04, Conv04] on the estimation of the trustworthiness of a user. For

example, [Cree04] proposes a model to calculate the trustworthiness of a user‟s pervasive

device, and [Conv04] describes a parameterised authentication model for calculating the

authentication reliability of authentication sensors in sensor-based networks. These works

are largely developed for the context of a ubiquitous computing environment and centred

at a broad level of trust, rather than on using authentication LoA to achieve fine-grained

access control in large-scale distributed environments such as Data Grids.

2.3 E-Authentication Technologies

2.3.1 Username and Password Authentication

A password is a secret that a claimant memorises and uses to authenticate his/her identity.

The proof a user‟s of knowledge of a password that matches his/her with the username

authenticates the user. The username/password-based authentication method is easy to

implement and use and is familiar to most users. As a result, it is widely used in e-

authentication environments.

With this username/password-based authentication system, the assurance level in

identifying a user is mainly dependent on the strength of the chosen password, how it is

stored and the underlying authentication protocol used. A successful impersonation of an

identity only requires the impersonator to get hold of, or guess, a valid password.

Moreover, this method suffers from some password-inherent disadvantages, e.g. difficult-

to-guess passwords are difficult to remember, and easy-to-remember passwords are easy

to guess. In addition, they are vulnerable to a variety of attacks including guessing,

network spoofing and dictionary attacks. Due to these facts, username/password-based

authentication method is regarded as providing a rather low authentication level of

assurance. NIST e-authentication guideline advises that this method has the

authentication LoA of Level 2.

33

2.3.2 One Time Password Authentication

A one-time password (OTP) is a password that is only valid for a single authentication

session or transaction. OTPs avoid many of the shortcomings that are associated with the

traditional (static) passwords discussed in the last section. For example, an OTP is

difficult to guess since it is generated randomly and users are not required to remember

the password. The most important feature of OTP-based authentication is that, in contrast

to a static password-based authentication system, it is not vulnerable to replay attacks.

This means that, if a potential attacker manages to record an OTP that was previously

used to log into a service, he/she will not be able to abuse it since it will be no longer

valid. On the downside, an OTP-based authentication system requires the use of

additional devices/tokens. In an OTP-based authentication system, the assurance level is

mainly dependent on the token that stores the OTPs, how the token is activated (by PIN

or biometric) and the underlying authentication protocol used. NIST e-authentication

guideline advises that OTP-based authentication systems have the authentication LoA of

Level 3.

2.3.3 PKI Software Token Authentication

PKI software token authentication is a multi-factor authentication method, meaning it

combines two or more factors to achieve authentication. A PKI software token is a

cryptographic key stored in an encrypted file on a host computer (Factor 1: something

you have). Typically, the key is encrypted using a secret derived from a pass phase

known only to the user (Factor 2: something you know), so the knowledge of the pass

phase is required to activate the token. Authentication is accomplished by proving the

possession and control of the key. Examples of software tokens include the default

Windows Cryptographic Service Provider (CSP) keystore [Marc03] and the

Mozilla/Firefox Web browser keystore [Marc03].

Internet Explorer/Windows keystore stores a private key and the certificate of the

corresponding public key (which are collectively referred to as a cryptographic credential)

as a binary “blob” in the registry by default. This approach makes the private key and

certificate as secure as the underlying operating system, and the operating system is

http://en.wikipedia.org/wiki/Passwords
http://en.wikipedia.org/wiki/Password
http://en.wikipedia.org/wiki/Replay_attack

34

responsible for allowing/denying access to the registry. The Mozilla/Firefox Web

browser keystore stores a cryptographic credential in a subdirectory of the application

named „.mozilla‟. The private key of the credential is stored in a file named „key3.db‟ and

the certificate(s) in a file named „cert7.db‟ (Firefox uses „cert8.db‟). Both of these files

are binary data in Berkeley DB 1.85 format. These files are protected by the file structure

permission and a password specified by the owner of the credential, so that any

application capable of reading the Berkeley DB format is still required to provide the

password to read/modify the plaintext.

The standard software keystores have the disadvantage of being immobile. Once a private

key is installed and used on one host, the only way to transport it to another is to export it

onto a portable hard disk or some other mobile storage medium, and re-import it onto the

„new‟ host. In addition, after exporting the key, the user must remember to erase it from

the „old‟ host otherwise the key would be at risk of being stolen. As users become more

mobile and are expected to use multiple hosts, this immobility hinders its usability.

However, as this type of keystore is software-based and the processes that use it are

standardised, the costs incurred in its deployment and management are relatively low.

The software token authentication is vulnerable to a number of threats. [Marc03] has

given an in-depth investigation of some of these threats. For example, by hijacking a

client‟s CryptoAPI library, „crypt32.dll‟, an attacker can steal the user‟s private key and

use it to forge the client‟s signatures. For example, an attacker may implant an executable

program on the victim‟s machine and when the victim inputs the password to unlock the

key, the program steals the password and acquires a copy of the private key without

triggering any extra window that might alert the user. This attack method is particularly

useful for stealing medium-or high-security private keys from IE (in a client-side SSL

negotiation, for example). Other identified attack techniques include DLL injection and

scripts running inside the HTML. Owing to these considerations, the maximum assurance

level of this method is defined as Level 3 by NIST e-authentication guidelines.

2.3.4 PKI Hardware Token Authentication

PKI hardware token authentication is also a multi-factor authentication method. A

hardware token refers to a cryptographic key that is stored in a hardware device. Access

35

to the device is typically controlled by a PIN or a user‟s biometric information.

Authentication is accomplished by proving possession of the device as well as controlling

the use of the key. Examples of hardware tokens include smart cards and USB tokens.

Two API standards have been defined for communicating to a hardware token device in a

client desktop environment: the Cryptographic API (CAPI) [CAPIMS] defined by

Microsoft for the Windows operating system and the Internet Explorer Web browser, and

RSA‟s PKCS#11 [Pkcs11] that can be used for all operating systems and the

Mozilla/Firefox web browser.

When using a hardware token for PKI-based authentication, the key pair is generated

inside the card and the public key is exported to a CA for key certification (i.e. the public

key is digitally signed by the CA). The private key never comes out of the card, which

eliminates the risk of it being stolen or misused. Once the certificate is generated and

signed, it is loaded back into the card. Hardware tokens are generally tamper-resistant,

and in order to impersonate the card‟s owner, an attacker must get hold of his token as

well as work out the PIN used to lock the card. Hardware tokens are superior to software

tokens in terms of keeping private keys secure and supporting users‟ mobility. However,

their deployment can be costly and tedious. Token devices produced by different

manufacturers use different drivers and client software, and there is a lack of a standard

to unify them and make them inter-operable. For a specific token device connected to a

specific operating system, a specific driver and software would have to be installed on

each host to be used by a user. This deployment hurdle greatly restricts the wide-scale

adoption of this method.

Hardware tokens noticeably increase the security level of the underlying authentication

system. According to the NIST Electronic Authentication Guideline, they provide the

highest level of assurance (Level 4) among all the known authentication mechanisms.

Security threats faced by hardware tokens are of two types: Traditional Mathematical

Attacks (TMA) and physical attacks. The TMA attacks are normally done using

algorithms that can be modelled and generalised. Examples include the Single-Exponent

Multiple-Data attack, the Multiple-Exponent Single-Data attack and the Zero-Exponent

Multiple-Data attack [Mess00]. These traditional attacks require the acquisition and

manipulation of extremely large amounts of data, and thus may not necessarily be

36

practical. Physical attacks include Simple Power Analysis (SPA) and Differential Power

Analysis (DPA) [Mess00]. With the SPA attack, an attacker uses power consumption

patterns to learn the bit values of a secret key. The DPA attack, on the other hand, uses

statistical techniques to extract tiny differences in power consumption and extract the bit

values of the secret key.

2.3.5 Assertion-based Authentication

Assertions are statements from a verifier or identity provider (IdP) to a service provider

that contain authentication information about a claimant. The SP uses the information in

the assertion to identify the claimant and make authorisation decisions about his or her

access to resources controlled by the SP. An assertion includes identification and

authentication statements regarding the claimant, and may additionally include further

attribute statements of the claimant to support the authorisation decision at the SP.

Assertion-based authentication supports the process of Single-Sign-On for claimants,

allowing them to authenticate once to a verifier and subsequently obtain services from

multiple SPs without further authentication. A typical assertion-based authentication

process can be broken down into two interactions, one between the claimant and verifier,

and the other between the verifier and the SP. The interaction between claimants and

verifiers, are similar to the authentication mechanisms described in previous sections,

while the interaction between verifiers and SPs can be one of the two assertion modes:

 Push mode – In the push mode, a claimant authenticates to a verifier by using an e-

authentication mechanism. Following successful authentication of the claimant, the

verifier creates an assertion and sends it back to the claimant, which is then forwarded

to the SP. The assertion is used by the claimant to authenticate to the SP.

 Pull mode – In the pull mode, a claimant authenticates to a verifier by using an e-

authentication mechanism. Following successful authentication of the claimant, the

verifier creates an assertion as well as an assertion reference (which identifies the

verifier and includes a pointer to the full assertion held by the verifier). The assertion

reference is sent to the claimant to be forwarded to the SP. In this mode, the assertion

reference is used by the claimant to authenticate to the SP. The SP then uses the

37

assertion reference to explicitly request (pull) the assertion and, if necessary, the

attributes of the claimant from the verifier, too.

There are three types of assertion technologies, HTTP cookies, SAML (Security

Assertions Markup Language) assertions, and Kerberos.

2.3.5.1 HTTP Cookies

HTTP cookies are one of the most widely used assertion technologies. A HTTP cookie is

a small piece of text file used by a browser to store information provided by a particular

web site. The content of the cookie is sent back to the web site each time the browser

requests a page from it. The web site uses the content to identify the user and prepare

customised web pages for that user or to authorise the user for certain transactions.

There are two types of cookies: session cookies, and persistent cookies. A session cookie

is erased as soon as the related session is finished, e.g. when a user logs out from an

account or when a user closes a web browser. A session cookie is stored in the temporary

memory and is not retained after the browser is closed. A persistent cookie, on the other

hand, is stored on a user‟s hard drive until it expires (persistent cookies are set with

expiration dates) or until the user deletes it.

Cookies can be used by the claimant to re-authenticate to a server after the

communication channel between them has been closed. This may be considered a use of

assertion technology in pull mode. In this case, the server acts as a verifier when it sets

the cookie in the claimant‟s browser, and as an SP when it requests the cookie from a

claimant who wishes to re-authenticate to it. As shown in Table 2.2, NIST advises an

LoA value of 1 to 3 for this technology, depending on the assertion expiration time and

assertion integrity protection mechanism used.

2.3.5.2 SAML (Security Assertion Markup Language)

SAML is an XML-based framework for creating and exchanging authentication and

attribute-related information between trusted entities over the Internet [Samlv2]. One of

the most important design objectives of SAML is to solve the SSO (Single-Sign-On)

problem. The building blocks of SAML include the Assertion XML schema, which

defines the structure of the assertion; the SAML protocols, which are used to request

38

assertions and „artifacts‟ (that is, the assertion reference mentioned in Section 2.3.5); and

the bindings that define the underlying communication protocols (such as HTTP or

SOAP), which can be used to transport the SAML assertions. SAML supports both the

„pull‟ and „push‟ modes of assertion. Similar to the Cookie assertion, depending on the

assertion expiration time and the assertion integrity protection mechanism used, NIST

advises an LoA value of 1 to 3 for this technology. Table 2.1 details the range values.

Cookie/SAML Assertion

LoA value

Assertion Integrity

Protection

Assertion expiration time

1 Digitally signed/TLS No requirement

2 Digitally signed/TLS 12 hours

3 Digitally signed/TLS 2 hours

Table 2.1 Cookie and SAML Assertion LoA value range

2.3.5.3 Kerberos

Kerberos [Toda03, Ietf4120] is a network authentication system for use on physically

insecure networks. It is based on the symmetric key distribution model proposed by

Needham and Schroeder [Need78]. It allows entities communicating over networks to

prove their identity to each other while preventing eavesdropping or replay attacks. It also

provides for data integrity (detection of modification) and confidentiality (preventing

unauthorised reading) using symmetric crypto systems such as DES.

The authentication process proceeds as follows: a claimant sends a request to the verifier

(i.e. to an authentication server (AS)) requesting a „credential‟ for a given SP. The AS

responds with the credential encrypted, using the claimant‟s master key. The credential

consists of 1) a „ticket‟ for the SP, and 2) a temporary encryption key (often called a

“session key”). The claimant forwards (pushes) the ticket (which contains the client‟s

identity and a copy of the session key, all encrypted in the SP‟s master key by the AS) to

the SP. The session key (now shared by the claimant and the SP) is used to authenticate

the claimant to the SP, and may optionally be used to authenticate the SP to the claimant.

It may also be used to encrypt further communications between the two parties or to

exchange a separate sub-session key to be used to encrypt further communication.

39

Depending on the assertion expiration time and the Kerberos ticket generation method,

NIST advises assurance values of Level 1 to Level 3, with maximum authentication LoA

3 for this technology. Table 2.2 details the LoA value range.

Kerberos Ticket

LoA value

Assertion Integrity

Protection

Ticket generation

method

Assertion expiration

time

1 Digitally signed/TLS derived from user

generated passwords

No requirement

2 Digitally signed/TLS derived from

cryptographic key

12 hours

3 Digitally signed/TLS derived from

cryptographic key

2 hours

Table 2.2 Kerberos Ticket LoA value range

2.3.6 Location-based Authentication

Location-based authentication is an e-authentication technology that proves an

individual‟s identity and authenticity by detecting his/her presence at a distinct location.

It can be used to determine whether a person is attempting to log in from an approved

location, e.g. a user‟s office building or home. If any unauthorised activity is detected, it

will facilitate finding the individual responsible for that activity.

Compared to conventional authentication technologies, location-based authentication has

the benefits of being non-intrusive, i.e. during a location-based authentication process a

user is typically not required to explicitly present a credential to a verifier. There are a

number of location-based authentication technologies available [Azum93, Hart94,

Want92]; however, most of them are designed for ubiquitous computing environments

thus providing only local authentication. For example, Active Badge [Want92, Hart94] is

a well-known location-based authentication technology. With this technology, an Active

Badge is worn on a user and transmits a unique identifier approximately every 10 seconds

using an infra-red transmission. Sensors placed at fixed positions within a building

receive these infra-red signals and authenticate the user through software. This type of

location-based authentication does not provide e-authentication to remote parties unless

40

there is a way to transmit authentication information from a local sensor to the remote

verifier (such as assertion). By doing so, it falls into the category of assertion-based

authentication.

2.3.6.1 IP-based Authentication

In IP-based authentication, a verifier identifies a claimant by checking if the IP address of

the claimant is on the allowed list defined as part of the verifier‟s security policy. IP-

based authentication requires the confirmation of fixed IP addresses. The method

provides a rather low authentication assurance level. It suffers from IP spoofing, and it

relies on the user environment to provide user vetting and identification. It is usually used

in circumstances that involve many users but where the sensitivity level of the resource

does not require individual user identification. An exemplar use of the authentication

method is the university online library service, which grants access based upon users‟

access PC IP addresses within the campus. Therefore, in an authentication environment

that requires individual user identification and verification, IP-based authentication can

only be used as an auxiliary authentication method in combination with conventional

authentication methods to achieve a higher authentication assurance level. The NIST

recommendation does not recognise this authentication method, and thus does not

recommend any values of authentication LoA.

2.4 Grid Computing Authentication Solutions

In addition to the authentication methods discussed above, there are other factors or

attributes that may also have impacts on authentication LoA. This section uses Grid

computing, a well known large-scale distributed system, as a platform to identify and

investigate the additional LoA-effecting factors and attributes.

2.4.1 Username/Password Authentication Service

Grid Security Infrastructure (GSI) [Welc05], the de facto security solution for Grid, uses

the username/password authentication service in conjunction with a Web Service security

(WS-Security) framework [Wssv1.1]. WS-Security defines a number of approved token

types including Username Token Profile, X.509 Certificate Token Profile, SAML Token

Profile and Kerberos Token Profile. Username/password authentication uses the

41

„Username Token‟ profile. This profile defines how a Web service client can supply a

username token as a way of identifying the requester from a username and, optionally, by

supplying a password. The following XML snippet shows a sample WS-Security

UsernameToken profile:

<wsse:UsernameToken wsu:Id="Example">

 <wsse:Username> ... </wsse:Username>

 <wsse:Password Type="..."> ... </wsse:Password>

 <wsse:Nonce EncodingType="..."> ... </wsse:Nonce>

 <wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>

Table 2.3 Code snippet of WS-Security UsernameToken

Within the <wsse:UsernameToken> element, a <wsse:Password> element is specified.

Two types of passwords are supported: „PasswordText‟ and „PasswordDigest‟.

„PasswordText‟ refers to a plain password, whereas „PasswordDigest‟ is the hash of a

password. The „PasswordDigest‟ type can only be used if the Plaintext password is

available to both the requester and the recipient. Otherwise, the authentication process

cannot take place.

When a plain password is used for authentication, the underlying systems must support

the use of a secure channel to provide confidentiality and integrity. The transport level

security [Tlsv10], or SSL (secure socket layer), is widely used to protect both the token

and the entire message body. Message level security [Xmlenc, Xmlsig] may also be used

to provide these features for selected parts of a message. If a secure channel is available,

the use of digested passwords does not provide an added level of security over the use of

plaintext passwords. However, if the underlying transport system does not provide

enough protection against eavesdropping, the password should be digested and the

„PasswordDigest‟ element should be used. Even so, the password must be strong enough

so that simple password guessing attacks will not reveal the secret from a captured

message.

When a password is encrypted or hashed, the replay attack threat must be considered. If

an attacker can impersonate a user by replaying an encrypted or hashed password, then

learning the actual password is not necessary. In WS-Security, the method of preventing a

42

replay attack is to use a nonce. „<wsse:Nonce>‟ and „<wsu:Created>‟ are two optional

elements introduced in a „Username Token‟ profile for this purpose. A nonce is a random

value that the sender creates to be included in each username token that it sends. A SP

maintains a cache of used nonces and compares them with new ones to detect replay

attacks. A „<wsu:Created>‟ is a timestamp used to indicate the token‟s creation time. The

advantage of using a creation timestamp together with a nonce is that it allows the server

to set an upper-bound time limit to cache the nonce, thus potentially saving the server

resources. Also, in order for this mechanism to be effective, the nonce and timestamp

must be digitally signed.

This authentication method provides a basic authentication service. Although with the

support of a secure communication channel such as an SSL, it also provides

confidentiality and message integrity; the password-based authentication method cannot

support more advanced security features such as user credential delegation and SSO

(Single-Sign-on). Without the support of these security features, complex Grid tasks are

difficult to accomplish and/or users may suffer usability problems. For example, a user

may need to authenticate himself repeatedly during a job session should the job require

services/resources on multiple sites.

As advised in the NIST guidelines, the authentication LoA of this method varies with the

types of password used (i.e. complexity of the password) and the underlying system

security support. For digest passwords with no secure channel provided, the method has

authentication LoA 1. For plain text/digest passwords with the secure channel option, it

has authentication LoA 2. Plaintext passwords without the secure channel option stand

lower than LoA 1 and are strongly recommended against in real system implementations.

2.4.2 PKI-based Authentication Service

PKI certificate-based authentication is the most commonly used authentication method in

Grids. This is not only because it is a well-tested and realisable technology, but also

because the trust model of the X.509 ID (identity) credential allows an entity to trust

another domain‟s/organisation‟s certification authority (CA) without requiring that the

rest of its domain/organisation do so. With this method, every Grid user/service is

identified by its Distinguish Name (DN) and is issued with a PKI certificate. The

43

certificate binds the DN of the user/service to its respective public key. In Globus

security framework [Welc05], a user may even issue a proxy credential to delegate

his/her credential to an entity that may act on his/her behalf, and which can be used for

SSO purposes. More about Proxy Certificate will be discussed in Section 2.4.3.

The assurance level of PKI authentication is not only dependent on the strength of the

credential, but also on factors related to the length, storage and use of the associated

private key. To counter key guessing and brute force attacks, a key pair with sufficient

length, and which is created from a true random-number generator, is essential. A viable

and secure key storage mechanism is also very important. If an attacker can get hold of

another entity‟s private key, he would then be able to impersonate the legitimate entity

and access the resource to which the entity is entitled. Two measures are usually taken to

limit the damage caused by private key compromise. The first is to limit the lifetime of a

PKI credential (a key pair plus the corresponding certificate). The lifetime of a credential

is usually determined by the policy of the CA that issued the certificate. There is

obviously a trade-off between security and user convenience in choosing the length of a

lifetime for a credential; the longer the lifetime, the higher the risk of a key being

compromised, but the less often that the user would have to request a new credential.

Typically, the lifetime of a X.509 ID credential is one year, whereas a proxy credential is

24 hours. The second measure focuses on protecting an entity‟s private key. Apart from

software and hardware keystores, an online credential repository (OCR) is another key

storage method to achieve key security and user convenience [Novo01]. Depending on

the types of the keystore, NIST advises an LoA value of 3 and 4 for this authentication.

2.4.3 Credential Delegation and Single Sign-On (SSO) Solution

Credential delegation and SSO are additional features that are commonly seen in large-

scale distributed systems, such as Grid. The following example presents a Grid scenario

[Rfc3820] with credential delegation and SSO features and illustrates what a proxy

credential is used for in such an authentication process. In a company‟s Intranet-based

Grid, a user, Bob, wants to use a reliable file-transfer service to move a number of large

files between various hosts. From his workstation, he submits the transfer requests to a

Grid transfer service A. The transfers are expected to take place without Bob‟s

44

involvement after the initial request is made. Service A controls the schedule of the

transfers. For each transfer, service A will connect to each of the sources and destination

hosts and instruct them to initiate a file-transfer connection. A job agent is assumed to be

running on Bob‟s workstation, periodically checking the progress of the transfers by

contacting service A. All the transfers and job executions should be performed in a secure

manner and Bob uses software token-based PKI credential for authentication in his job

execution.

Figure 2.1 A Grid file transfer scenario

As shown in the figure above, this job execution requires authentication in a number of

steps. First of all, Bob needs to mutually authenticate with the file-transfer service A to

submit the transfer request (step 1). Secondly, service A, with the delegated rights from

Bob, should mutually authenticate with the storage hosts A, B, C and D (step 2). Thirdly,

the source and destination hosts of a particular transfer must be able to mutually

authenticate with each other to ensure the file is being transferred to and from the proper

parties (step 3). Finally, the agent running on Bob‟s workstation must mutually

authenticate with the file transfer service in order to check the result of the transfers (step

4).

This scenario sets out two related problems. One is credential delegation and the other is

SSO. In this scenario, various remote processes need to perform file-transfer operations

Transfer

Service A

Company Intranet Grid

Bob

Workstation

Jo
b

 agen
t

1

2

3

4

Storage

Hosts

D

C

B

A

45

on Bob‟s behalf, and to ensure these operations are performed in a legitimate manner Bob

must delegate the necessary rights to these processes. For example, service A needs to be

able to authenticate on Bob‟s behalf with the source and destination hosts, and Bob must

delegate his rights to service A so that it can authenticate with the hosts. It is also

convenient for Bob to enter his password once and then run a program that will submit all

the file-transfer requests to the transfer service. Bob can then periodically check on the

status of the transfers. This program (i.e. the job agent) needs to be given the rights to be

able to perform all of these operations securely, without requiring repeated access to the

software token or Bob‟s PIN.

GSI addresses these problems with proxy credentials. A proxy credential consists of a

short-term (proxy) private key and a proxy certificate (PC) [Rfc3820]. The PC certifies

the corresponding proxy public key. A PC is similar to a X.509 ID certificate, except that

the PC is not signed by a CA. Rather, it is signed by its owner with his/her long-term

private key corresponding to the public key certified in the ID certificate. A proxy

credential is a short-term credential delegated to another entity by its owner and is used in

places where the use of the owner‟s long-term credential is necessary.

By using the proxying technique, Bob‟s long-term private key stored in the token only

needs to be accessed once in order to create a proxy credential. The proxy credential

allows the client/agent program to be authorised as Bob when submitting the requests to

the transfer service. Access to the long-term credential is not required after the proxy

credential creation and within the life time of the proxy credential. The client program on

the workstation can delegate to service A the right to act on Bob‟s behalf. This allows

service A to authenticate to the storage hosts on behalf of Bob and to inherit Bob‟s

privileges in order to start the file transfers. Then service A can delegate to the hosts the

right to act on Bob‟s behalf so that each pair of hosts involved in a file-transfer can

mutually authenticate to each other in order to perform the file transfer operation in a

secure manner. When the agent on the workstation reconnects to service A to check on

the status of the transfer operations, it can perform mutual authentication on behalf of

Bob.

The Grid community has developed the following versions of PCs with the latest one

46

fully compliant to the RFC 3820 specification:

 The old version: Legacy proxy certificates used prior to the drafting of RFC 3820.

They are deprecated and should only be used when it is necessary to interact with

legacy Globus installations. It is recognisable if the „CommonName‟ attribute has a

value of “proxy” and “limited proxy”.

 GT4 Default version: These proxies follow the format defined in RFC 3820, except

that they use a proprietary Object ID (1.3.6.1.4.1.3536.1.222) for the „ProxyCertInfo‟

extension. It will be replaced with the fully RFC 3820 compliant in a future version of

the Globus Toolkit.

 Fully RFC 3820 compliant version: These proxies are fully compliant with RFC 3820.

They are expected to be the default in the future.

Compared to a X.509 ID certificate, a proxy certificate has a newly-defined critical X.509

extension, the „Proxy Certificate Information‟ (PCI) extension. The purpose of this

extension is to allow the PC issuer to express his/her desire to delegate rights to the PC

and also to limit further PCs that can be issued by that PC holder.

There are two fields in the PCI extension. One is the „PCPathLenConstraint‟ field, which

specifies the maximum depth of the path of PCs that can be signed with this proxy

credential. A zero value of the „PCPathLenConstraint‟ field means that this credential

cannot be used to issue other PCs. If the field is not present, then there is no restriction

and the maximum proxy path length is unlimited.

Another field is „proxyPolicy‟ which specifies policies on the use of this credential for the

purpose of authorisation. There are three modes to delegate issuer‟s policies through PCs.

 Full delegation mode - If an issuer wants to indicate that this is an unrestricted PC

that inherits all rights from the issuing credential, he/she can use the „id-ppl-

inheritAll‟ value. This mode is in fact an impersonation of its issuer‟s ID credential.

This approach can easily be integrated with a role-based authorisation system since

the PC can be treated in the same way as its issuer‟s certificate. However, from a

security point of view, this delegation mode has the highest risk of the credential

privileges being misused should the proxy credential be compromised.

47

 Restricted delegation mode - A PC with a restricted usage policy allows an attacker to

use it subject to the policy specified in the PCI extension, thus providing more

security assurances. However, the implementation of this mode is more complex than

the concept. As mentioned before, restricted PCs do not define any particular

delegation language. Instead, they provide a structure for issuers to choose a policy

language to express their delegation policy. This design increases the flexibility of a

PC but causes complications in implementation. The primary issue is that the service

provider accepting the restricted PC must understand the delegation language used

and be able to enforce the policies that it imposes. Since it is the issuer who chooses

the policy language and these policies often contain application-specific restrictions,

it is difficult to predict and ensure that all the potential delegating SPs understand the

delegation language. According to the Internet X.509 PKI Certificate and Certificate

Revocation List (CRL) Profile [Rfc3280], if a critical extension in a certificate cannot

be recognised by the SP, then the certificate must be rejected. Therefore SPs that do

not understand the delegation language will not be able to accept a restricted PC, even

for identity proofing. There have been some attempts to solve the problem. The GSI

team tried to extend the API between applications and the security libraries, so that

each of them could have the ability to handle and process given restriction delegation

policies. For example, the initial implementation of community authorisation service

(CAS) [Fost03] uses a restricted PC to delegate the policies. However, this method is

difficult in practice because there is no generalised model and it has to be done on a

per-application basis. For this reason, the restricted PC has not been widely adopted

and implemented.

 None-Delegation mode - If an issuer wants to indicate that this is an independent PC

that inherits no rights from the issuing certificate, he/she can use the „id-ppl-

independent‟ value. In this case, the PC is used solely for the purpose of confirming

identity. In this mode, the proxy credential cannot be misused because it does not

inherit any rights from its issuer. Thus the security risk is considered low.

A PC issuer can limit what a new PC can be used for by turning off bits in the „Key

Usage‟ and „Extended Key Usage‟ extensions. Once a key usage or extended key usage is

48

removed, the path validation algorithm ensures that it cannot be added back in a

subsequent PC. In other words, key usage can only be decreased in a PC chain. The

„PCPathLenConstraint‟ field of the „proxyCertInfo‟ extension can be used to limit

subsequent delegation of the PC. A service may choose only to authorise a request if it

satisfies certain conditions, such as forbidding delegation.

In summary, a proxy credential is generally less secure than an identity X.509 credential.

This is because proxy credentials are usually stored in an unencrypted form on a local file

system, protected only by the operating system‟s (OS) file system permissions. A user or

a process can access a proxy credential as long as the user logs in to the OS using the

account with the access privilege. Therefore, proxy credentials are more vulnerable to

theft and abuse. To limit any damage caused by credential compromise or abuse, proxy

credentials are typically given much shorter lifetimes than the user‟s long-term ID

credentials (usually in the order of hours or days for proxy credentials versus months or

up to a year for ID credentials). Other ways of limiting the damage are to set more

restricted policies, limit the key usage and restrict the delegation depth. To sum up, the

attributes affecting authentication LoA in proxy credentials are the following:

1) Proxy credential storage

There are basically two methods to store proxy credential file system permission and

an online credential repository. File system permission obviously represents a low

level of assurance and an online credential repository provides a higher assurance

level.

2) Policy mode

As discussed above, there are three policy modes and each policy mode has different

privilege and security levels.

3) Key usage and delegation depth

The PC delegation depth is one important attribute to limit the use of the PC. It

basically has three conditions; the first is no delegation, the second is one level

delegation and the third one is n (n>1) level delegation.

NIST does not identify proxy credential, thus does not advise an authentication LoA for

49

proxy credential-based authentication.

2.5 The Best Way Forward

Authentication LoA is an important measure of the strength of an e-authentication

instance. It can be seen from the discussion above that authentication LoA is dependent

on many factors associated with an authentication instance. In order to design a

framework that can be used to estimate an aggregate LoA for a given set of LoA-effecting

attributes in an authentication instance and to use the estimated LoA to govern access

control, we need to 1) investigate all the authentication models and examine their LoA-

effecting attributes, 2) study and quantify their respective LoA contributions (called

component LoA) to the overall strength of an authentication instance, 3) analyse the

attributes‟ inter-relationships and composite effect on the overall strength (i.e. aggregate

LoA or Agg-LoA), and 4) design algorithms to derive the Agg-LoA for the inter-

relationship. In this case, if we could classify resources into groups based upon their

sensitivity levels and the levels of risks experienced in the underlying access environment;

and assign each resource group with a minimum LoA requirement, LoAR, then we can

achieve a more fine-grained access control by linking the Agg-LoA to the LoAR via run-

time authentication method selection and authorisation decision-making. For example, an

access request for a particular resource group with the minimum LoA requirement of

LoAR can only be granted if the Agg-LoA derived from an authentication instance is not

lower than the minimum LoA value as required by the resource group, i.e. the condition

(Agg-LoA  LoAR) must hold. In order to satisfy this condition, the requester would

have to choose a stronger form of authentication method that could lead to a sufficient

assurance level in identifying the requester. This LoA-linked access control method

actually achieves LoA-linked, or in a broad sense, risk-aware access control mapping

resource sensitivity levels and/or risk levels in the underlying access environment to the

run-time authentication requirement.

50

Chapter 3

Authentication LoA-Effecting Attributes:

Identification and Analysis

3.1 Chapter Introduction

As discussed in Section 2.5, to design the framework that can be used to estimate an

aggregate LoA (Agg-LoA) for an authentication instance in an authentication

environment and to use the Agg-LoA for fine-grained access control, the following issues

should be addressed:

1) Identify all the factors, processes and procedures that may influence the assurance (i.e.

confidence) level of the authentication environment; some of these factors will be

taken into account as LoA-effecting attributes for LoA derivation in an authentication

instance.

2) Quantify or determine a component LoA for each of the LoA-effecting attributes

identified in 1).

3) Investigate, identify, and systematically express the inter-relationships among LoA-

effecting attributes.

4) Devise algorithms to capture these relationships, and use these algorithms to calculate

an Agg-LoA based upon the component LoAs of all the contributing LoA-effecting

attributes associated with an authentication process.

This chapter discusses issues 1, 2 and 3. Issue 4 will be addressed in Chapter 4, Section

3.2 presents, in detail, a comprehensive list of LoA-effecting attributes identified by the

author, as well as different working groups. Section 3.3 discusses how to quantify

component LoA values of individual attributes. Section 3.4 investigates four use-case

scenarios in a Grid environment. Based upon these scenarios, two types of relationships

among LoA-effecting attributes have been identified; namely the weakest link

relationship and the additive relationship. It further investigates potential methods that

51

can be used to quantify the impact (weighting) of additive attributes on an aggregate LoA.

3.2 Identification of LoA-effecting Attributes

Identification of LoA-effecting attributes has, to some extent, been addressed by existing

works, most notably those produced by NIST [Burr06], OASIS (Organisation for the

Advancement of Structured Information Standards) [Samlv2], and W3C-WSCWG (W3C

web security context working group) [W3cscw].

NIST, in its e-authentication guidance published in 2006 [Burr06], has identified the

following LoA-effecting attributes:

 the identity proofing process by which an entity is made known to a registration

authority (RA) or a credential service provider (CSP) prior to the issuance and

delivery of a credential to the entity;

 the type (and the strength) of the authentication credential used by a remote entity for

proving his/her identity, e.g. a PKI credential or a username/password pair;

 the authentication protocol/method used by the underlying authentication service to

establish that a remote entity is whom it claims to be;

 the credential management process, which encompasses issues such as the token

technology used to store a credential, the manner in which a claimed identity is bound

to the credential, the life cycle management of the credentials, and whether the

identity provider (IdP) has sufficient operating procedures, processes and policy

frameworks to establish the required level of trust;

 whether and how assertion mechanisms are used to convey the outcome of an

authentication instance to other parties (e.g. SPs or authorisation engines).

To date, the NIST LoA specification remains the most comprehensive set of guidelines

for identity providers implementing systems achieving a pre-defined authentication

confidence level. However, the NIST LoA recommendation only covers the user-to-

system authentication scenario. It does not address credential delegation scenarios, so it

only covers a subset of the LoA-effecting attributes. In addition, with regard to LoA

implementation, the NIST work provides guidelines on authentication technologies

52

versus LoA values which stipulate that the technologies for a given LoA are chosen,

implemented and evaluated prior to system run. It has not considered a system that gives

users and service providers the run-time choice of using a particular authentication

technology, derives an LoA based upon the authentication technology used and the user‟s

authentication environment, and feeds the LoA into the authorisation decision-making

process.

The authentication context (AC) specification [Samlac] defined in the SAML v2.0

standard specification set by OASIS has also identified a large number of LoA-effecting

attributes (in the OASIS term, they are called Authentication Contexts, or ACs for short),

as shown in Table 3.1. The specification has classified the ACs into five categories;

identification, technical protection, operational protection, authentication method and

governing agreement. In addition, this specification has also defined an XML-based

syntax for constructing ACs. It further uses the syntax to define a number of

authentication context classes. Each class contains a subset of the ACs. Classes have been

chosen as representative of the current practices and technologies for common

authentication, scenarios, such as IP-based authentication, username/password-based

authentication etc. The SAML authentication context definition and classification readily

allows identity providers and relying parties to negotiate and agree on a mutually

acceptable AC.

Category ACs Sub-ACs

Identification: User

identification

 Physical Verification

 Written consent

 Governing Agreements

Technical

Protection

Key store  Not defined

Key activation  Activation PIN

Key Sharing

(Private key

protection

only)

 Boolean (yes/no)

Authentication Principal  Password

53

Method Authentication

Mechanisms

 Restricted Password

 Token

 Smartcard

 Activation Pin

Authenticator  Previous Session

 Resume Session

 DigSig

 Password

 Restricted Password

 Zero Knowledge

 Shared Secret Challenge Response

 Shared Secret Dynamic Plaintext

 IP Address

 Asymmetric Decryption

 Asymmetric Key Agreement

 Subscriber Line Number

 User Suffix

 Complex Authenticator

Authenticator

Transport

Protocol

 HTTP

 SSL

 Mobile Network No Encryption

 Mobile Network Radio Encryption

 Mobile Network EndToEnd
Encryption

 WTLS

 IPSec

 PSTN

 ISDN

 ADSL

Operational

Protection

Operational

Protection

 Security Audit

 Deactivation Call Centre

54

Governing

Agreements

Table 3.1 List of SAML LoA-effecting attributes (ACs) [Samlac]

The topic of LoA-effecting attributes has been also discussed by the W3C web security

context working group (W3C-WSCWG) [W3cscw]. The group‟s mission is to build

consensus around what information people need from browsers in order to understand

their security context, to find innovative ways to present this information and raise

awareness, and to suggest ways to make browsers less susceptible to spoofing of the user

interfaces used to convey critical security information to end users. The W3C-SCWG has

specified a baseline set of security context information that should be accessible to web

users and defined practices for the secure and usable presentation of this information,

thus enabling users to come to a better understanding of the context within which they are

operating when making trust decisions on the Web. The work focuses more on educating

Web users and on regulating the Web browser to enable a secure and usable interface so

that Web users can make safe trust decisions on the Web. The security contexts specified

by the group reflects this focus; they are Web-oriented and include Web interactions, user

agents, entity identification, third-party recommendation and historical browsing

information areas. The limitation of this work is that all the identified security contexts

are Web-related. Non-web interaction security contexts are excluded and some important

security contexts such as protocols and the user‟s security environment are not discussed.

Table 3.2 lists a comprehensive set of LoA-effecting attributes by merging and extending

the attributes identified in NIST, OASIS and W3C-SCWG‟s specifications discussed

above. Three new attributes have been identified by the author. These newly added

attributes (X.509 proxy credential, online credential repository and IP address) are shown

in the table in order to differentiate them from work by other people. They are derived

from the Grid authentication scenarios to be discussed in Chapter 2.

The attributes listed in Table 3.2 can be classified into two groups: one that cannot be

opted by users or SPs at run-time (called Offline LoA-effecting attributes), and the other

that can be opted by users or SPs at run-time (called Run-time LoA-effecting attributes).

The offline LoA-effecting attributes are typically managed or enforced through

governance, rather than run-time choices by the user. An exemplar factor in this group is

55

user registration procedures, which are usually governed through operational processes

and procedures. The run-time LoA-effecting attributes may change dynamically at run-

time depending on the authentication or access environment contexts, e.g. the

authentication mechanism used and/or the access location of the requester. The values of

this group of attributes can be used for deriving the aggregate LoA in a run-time

authentication process. N.B. The attributes without asterisks are identified by NIST and

SAML, where those with asterisks are identified by the author.

Category Attributes Sub-attributes

Offline LoA-

effecting

attributes

User identification  Physical

 Written content

 Online, or close the loop by mail,

phone or (possibly) e-mail

 Self assertion, minimal records

Credential Lifetime, Status or

Revocation

Operational Protection  Security Audit

 Deactivation Call Centre

Run-time

LoA-effecting

attributes

Authentication Credentials  Password & PIN

 One Time Password

 X.509 ID Credential

 *X.509 Proxy Credential*

Authenticator Transport

Protocols

 Private key Proof of Possession

(PoP)

 Symmetric key PoP

 Zero knowledge or Tunnelled

Password

 Challenge-response password

Key store  Soft crypto token device

 Hard crypto token device

 *Online credential repository*

Assertion  Digitally signed SAML assertion

with 2 hours expiration time

 Digitally signed SAML assertion

with 12 hours expiration time

56

 Digitally signed SAML assertion

 Cookie

 Kerberos Ticket

Location*  * IP-based authentication*

Table 3.2 A comprehensive list of LoA-effecting attributes

Each LoA-effecting attribute has an assurance level, or LoA value. We use the term

„component LoA value‟ to denote the LoA value of an LoA-effecting attribute. In contrast,

we use the term „aggregate LoA value‟, to denote an overall LoA value contributed by a

set of LoA-effecting attributes. In other words, an aggregate LoA value can be derived

from a set of the component LoA values of the attributes involved. The next section

focuses on the determination of component LoA values. Issues in relation to the

derivation of an aggregate LoA value are to be addressed in subsequent sections.

3.3 Determining Component LoA Values

NIST has defined component LoA values for the attributes it has identified. However,

OASIS specification does not define any component LoA for the ACs, nor does it address

the impact of the attributes on the aggregate authentication LoA. As a result, we only

have a subset of the LoA-effecting attributes that have their component LoA values

specified. It is obvious that the task of defining component LoA values should not rest on

the author. It should be the responsibility of international communities and

standardisation bodies, as it requires the involvement of and consensus between

international communities. Based upon this consideration, and the reality that not all of

the attributes have their component LoA values defined, we have made an assumption

here for our work to proceed without any loss of generality. We assume that all of the

attributes that influence an authentication assurance level use the same LoA regime,

which could be the NIST LoA regime with LoA values scoped within four levels, Level 1

through to Level 4, or another LoA regime that may emerge in the near future. Working

on this assumption, we now focus our efforts on 1) identifying authentication use-case

scenarios commonly seen in Grid or other distributed resource sharing environments; 2)

analysing the relationships between multiple LoA-effecting attributes in these use-case

scenarios; 3) their composite effect on the overall authentication confidence level for a

57

given authentication instance; and 4) on deriving algorithms that could scientifically and

automatically estimate this composite effect (i.e. aggregate LoA) for a given set of LoA-

effecting attributes along with their component LoA values.

Table 3.3 shows LoA-effecting attributes versus their exemplar component LoA values.

The offline attributes have been omitted since they are not used in run-time aggregate

LoA derivation. The values without asterisks are defined by NIST, where those with

asterisks have not been defined by international communities but are assigned by the

author for illustration purposes.

Category Attributes Sub-attributes Maximum

Component

LoA value

Run-time

LoA-

effecting

attributes

Authentication

Credentials

 Password & PIN 2

 One Time Password 3

 X.509 ID Credential 4

 *X.509 Proxy Credential* *2*

Authentication

Transport Protocol

 Private key Proof of Procession

(PoP)

4

 Symmetric key PoP 4

 Zero knowledge or Tunnelled

Password

2

 Challenge-response password 1

Key store  Soft crypto token device 3

 Hard crypto token device 4

 *Online credential repository* *3*

Assertion  Digitally signed SAML assertion

with 2 hours expiration time

3

 Digitally signed SAML assertion

with 12 hours expiration time

2

58

 Digitally signed SAML assertion 1

 Cookie 1

 Kerberos Ticket *3*

Location*  IP-based authentication *2*

Table 3.3 LoA-effecting attributes versus their component LoA values

3.4 Identification of Relationships among Multiple LoA-

effecting Attributes

To derive an aggregate LoA value from the component LoA values of a set of LoA-

effecting attributes (i.e. to analyse and quantify the composite effect of the set of multiple

LoA-effecting attributes on the overall confidence level of an authentication instance), we

need to be clear about the mutual relationships among the multiple attributes. For this

purpose, we have identified and analysed four use-case scenarios of authentication in

Grid environments. Figures 3.1 – 3.4 illustrate these use-case scenarios.

 Use case 1: user-to-service direct authentication using ID credentials

In the first use-case scenario, a user authenticates directly to an SP using his/her ID

credential. It is also the most generic form of e–authentication in most authentication

environments.

Figure 3.1 Use case 1: user-to-service direct authentication using ID credentials.

 Use case 2: user-to-service authentication using proxy credentials stored locally

In the second use-case scenario, a user identifies her/himself to a local authentication

service and upon successful authentication, the user‟s proxy credential is activated. The

Grid

Services
User

Authenticate and access services using end-entity‟s

credential, e.g. username/password, long term PKI token

Message level or

transport level

(SSL)

59

user‟s proxy credential is then used by the user‟s client for remote service access. In fact,

in this authentication scenario, a single authentication instance consists of two sequential

authentication events. The first one is undertaken between the user and the local

authentication service. This authentication is typically done through the use of the user‟s

ID credential. The outcome of the authentication is the activation, or issuance, of the

user‟s proxy credential. The second authentication event is between the user‟s software

client to the remote service provider; this is carried out through the use of the proxy

credential just activated/issued.

Figure 3.2 Use case 2: user-to-service authentication using proxy credentials stored locally.

 Use case 3: user-to-service authentication using proxy credentials stored remotely

Use-case scenario 3 is similar to use case 2 except that the users‟ proxy credentials are

stored in a remote online central repository (OCR). So, upon successful authentication

with the OCR, the user fetches a proxy credential from the repository and then uses it to

access remote services; this resembles use case 2. Alternatively, the proxy credential may

be dispatched directly from the OCR to the service provider.

 Online Credential

Repository (OCR)

Grid

Services Client
Proxy credential sent by

Client

Proxy credential

sent from OCR
Client-to-OCR authN and proxy

credential retrieval

User

Long term

credential

2.2

2.1

1

User

Client
Authentication using the proxy credential

User local authentication to activate

a proxy credential

Grid

Services
1

2

60

Figure 3.3 Use case 3: user-to-service authentication using proxy credentials stored remotely.

 Use case 4: user-to-IdP authentication and IdP asserts the user’s identity to remote

services (Assertion-based Authentication)

In the fourth use-case scenario, a user authenticates to a local authentication service (i.e.

an identity provider, or IdP) and upon successful authentication, the IdP will assert the

user‟s identity to the remote service provider. Again, a single authentication instance

consists of two sequential authentication events. The difference between this use case and

use case 2 is that in the second authentication event, instead of using a user‟s credential to

authenticate to the remote service provider, the IdP sends an assertion statement asserting

the user‟s ID or his/her other attributes.

Figure 3.4 Use case 4: user-to-IdP authentication and IdP asserts the user‟s identity to remote services.

 The Weakest-Link Relationship

From these four authentication use-case scenarios, we can make an observation: for some

cases, one authentication instance involves a chain of authentication events. If there is

one LoA value associated to each of the events, then the overall confidence level (i.e.

aggregate LoA) for the entire instance should be equal to the LoA value of the event with

the lowest assurance level. In other words, the „weakest-link principle‟ applies here, or as

the section heading names it „the weakest-link relationship‟. Another exemplar case

where the weakest-link principle applies is the relationship between an authentication

token attribute and an authentication protocol attribute. A token-based authentication is

performed using an authentication protocol; so if a strong token is used in conjunction

Grid

Services

User‟s ID/attribute

assertions

IdP

End entity authN with

IdP

Client

Attributes

Authority

1
2

61

with a weak authentication protocol, the aggregate LoA for the authentication instance

should not be higher than that of the authentication protocol.

 The Additive Relationship

In addition to the weakest-link relationship, the author has identified another important

type of relationship among the identified LoA-effecting attributes: the additive

relationship. The additive relationship refers to attributes that are independent of, but

reinforce, each other so that the aggregate LoA is expected to be at least as strong as the

highest component LoA values in the set. For example, if a username and password

authentication method is used in conjunction with a location-based authentication method

to identify the same user, then the assurance level of this two-factor authentication

approach should be higher than the assurance level when either of the services is used

alone.

In order to illustrate the different relationships of the attributes accurately to help to

design aggregate LoA derivation algorithms, the author has developed a hierarchical

structure, namely the LoA-effecting attributes hierarchical structure (LoA-AHS). As

shown in Figure 3.5, this structure can accommodate existing-as well as future emerging-

LoA-effecting attributes and groups them into different levels and categories. A more

detailed discussion is given in Section 5.4.1.1.

62

LoA-effecting

Attributes

Assertion-based

Authentication

ID Credential

Authentications

Username/

password

Location based

Authentications

IP

Authentication

Token

Authentication

Protocol

SAML

Additive

Additive

Weakest Link

Authentication

Token

Authentication

Protocol

Token Type

keystore

Key Activation

Weakest Link

Weakest Link

Cookies

Additive

PKI
One Time

Password Kerberos

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

Figure 3.5 Generic LoA-effecting Attributes Hierarchical Structure

63

When a set of LoA-effecting attributes involved in an authentication instance are in the

weakest-link relationship, estimating the aggregate LoA value of the instance is relatively

straightforward, the aggregate LoA value is the minimum component LoA value in the set.

However, when the set of LoA-effecting attributes are in the additive relationship, the

estimation of the aggregate LoA based upon component LoA values of multiple attributes

is not that simple. The first hurdle to overcome is how to determine the weightings of the

multiple attributes. The next section discusses weighting determination methods.

3.4.1 Determining the Weightings of Additive LoA-effecting

attributes

Depending on authentication contexts, environments and access control policies, different

additive LoA-effecting attributes may have different levels of impact (i.e. weightings) on

the aggregate LoA of an authentication instance. For example, consider the case where a

smartcard authentication method attribute with a component LoA value 3 and an IP

authentication attribute with a component LoA value 1 are both used in an authentication

event. The calculated aggregate LoA values will be significantly different when the ratio

of their authentication impact/weighting is (1:1), or when the ratio is (3:1). Therefore,

there is a need for a method to calculate the weightings of the attributes. In real life, the

quantification and determination of the weightings can be a difficult and subjective

process. For instance, for an authentication model using a combined password-based and

location-based authentication service, how are the respective impact levels of the

password and location attributes determined? The decision may depend on many factors,

including the trust levels of the respective authentication services and the underlying

access policies defined by the organisation. As the weightings can significantly influence

the aggregate LoA of an authentication instance, an interesting research investigation is to

search for a method that can scientifically determine the weightings of multiple LoA-

effecting attributes for a given authentication process and make the method adaptable to

the variations in the LoA-effecting attribute types used. We survey the multi-criteria

decision making (MCDM) techniques and explore the use of a MCDM technique-the

Analytic Hierarchy Process (AHP)-to address this research issue.

64

3.4.1.1 Three Multi-Criteria Decision Making (MCDM) Approaches

MCDM (also referred to as Multi-Criteria Decision Analysis) is defined by the

International Society on Multiple Criteria Decision Making [Ismcdm] as the study of

methods and procedures by which concerns about multiple criteria (attributes) in different

aspects can be formally and systemically incorporated into a decision-making process.

The weighting determination of additive LoA-effecting attributes can, in a sense, be seen

as a multi-criteria (i.e. multiple LoA-effecting attributes) decision-making problem (i.e.

weight determination). An MCDM method uses a decision matrix of criteria and

performance scores to provide a systematic analytical approach for integrating risk levels,

uncertainty criteria/attributes, and valuation to enable the evaluation and ranking of many

alternatives (i.e. the possible decisions that are required to select). Almost all of the

MCDM methods share a similar approach to criteria organisation and decision matrix

construction, but differ in that they synthesise information differently [Yoec02]. They use

different types of value information and different optimisation algorithms. For example,

some methods rank options, some identify a single optimal alternative and some provide

an incomplete ranking, while others differentiate among acceptable and unacceptable

alternatives.

The different MCDM methods [Royb05] can generally be classified into three approaches:

the multi-attribute preference theory approach, the analytic hierarchy process (AHP), and

the outranking approach, though the AHP approach can be viewed as a special case or an

approximation of a multi-attribute preference model [Royb05 chapter 7, Chae04].

The multi-attribute preference theory approach [Keen93] consists of several multi-

attribute models. These models are based on alternate sets of axioms that have

implications for their assessment and use. Keeney and Raiffain [Keen93] differentiate

between these models based on the notions of (a) ordinal comparisons and (b) strength of

preference versus theories for risky choices. The term „multi-attribute value function‟ is

used to refer to the former (i.e. case a), and multi-attribute utility function (MAUT) is

used to refer to the latter (case b). The goal of MAUT is to find a simple expression of the

net benefits of a decision. Through the use of a utility or value function, MAUT

transforms diverse criteria into one common scale of utility or value. MAUT relies on the

65

assumptions that the decision-maker is rational (e.g. preferring more utilities to fewer

utilities), has perfect knowledge and is consistent in his judgments [Kike05]. The goal of

the decision-maker in this process is to maximise the utility or value. Because poor scores

on certain criteria can be compensated for by high scores on other criteria, MAUT is part

of a group of MCDA techniques known as „compensatory‟ methods.

Similar to MAUT, AHP [Saat90] aggregates various facets of the decision problem using

a single optimisation function known as an objective function. The goal of AHP is to

select an alternative that results in the greatest value of the objective function. AHP uses a

quantitative comparison method that is based on pair-wise comparisons of decision

criteria/attributes. All individual criteria/attributes must be paired against all others and

the results compiled in a matrix. The user uses a numerical scale (1 to 9) to compare the

criteria/attributes and AHP moves systematically through all of the pair-wise comparisons

of criteria/attributes and alternatives. AHP thus relies on the supposition that humans are

more capable of making relative judgments than absolute judgments [Royb05 Chapter 9].

Another approach, the outranking approach, is based on the principle that one alternative

may have a degree of dominance over another [Kang01]. Dominance occurs when one

alternative performs better than another on at least one criterion, and no worse than the

other on all criteria [Odpm04]. However, an outranking technique does not presume that

a single best alternative can be identified. It compares the performance of two (or more)

alternatives at a time, initially in terms of each criterion, to identify the extent to which a

preference for one over the other can be declared. It then aggregates the preference

information across all relevant criteria and attempts to establish the strength of the

evidence to favour the selection of one alternative over the others. For example, an

outranking technique may be in favour of an alternative that performs the best on the

greatest number of criteria. Thus, outranking techniques allow inferior performance on

some criteria to be compensated for by superior performance on others.

3.4.1.2 Choosing the Most Suitable Approach

Table 3.4 summaries the strengths and weaknesses of the three MCDM approaches

discussed above.

The characteristic of the outranking approach requires the comparisons of alternatives

66

against criteria. However our problem is not to select alternatives based on multiple

criteria, but rather to systematically compute the weightings of a set of contributing LoA-

effecting criteria/attributes. There are no alternatives in our problem, so the outranking

approach is not suitable for the weighting calculation.

In MAUT, criteria weightings are often obtained by directly surveying stakeholders, as

shown in table 3.4. Rigorous stakeholder preference solicitations are expensive, and less

rigorous stakeholders‟ surveys may not accurately reflect stakeholders‟ true preferences.

This stakeholder-based approach to criteria weightings does not address our problem

effectively as this weighing assignment process is entirely subjective, leading to a lack of

commonality, and is problematic for the implementation of interoperability. For this

reason, the MAUT approach is ruled out.

AHP, on the other hand, uses a pair-wise comparison to calculate the criteria weightings.

This weighting calculation method is systematic, flexible and relatively inexpensive in

comparison to the stakeholder-based approach. It has been proven to be useful by both

theoretical and practical applications in the business arena [Korp04, Gass05, Saat90].

Most importantly, because it uses a hierarchical structure in its solution that matches the

LoA-effecting attributes structure detailed in Section 3.4, it reflects how the LoA-

effecting attribute weightings should be calculated. Therefore, the next part of this section

will focus on the discussion of AHP procedures and their suitability for solving our

problem.

67

Method Important elements Strengths Weaknesses

MAUT  Expression of overall performance of an

alternative in a single, non-monetary

number representing the utility of that

alternative

 Criteria weights often obtained by

directly surveying stakeholders

 Easier to compare alternatives whose

overall scores are expressed as single

numbers

 Choice of an alternative can be transparent

if highest scoring alternative is chosen

 Maximisation of utility may not be

important to decision makers

 Criteria weights obtained through less

rigorous stakeholder surveys may not

accurately reflect stakeholders‟ true

preferences

 Rigorous stakeholder preference

elicitations are expensive

AHP  Criteria weights and scores are based on

pair-wise comparisons of criteria and

alternatives, respectively

 Theoretically sound–based on utilitarian

philosophy

 Many people prefer to express net utility in

non-monetary terms

 Surveying pair-wise comparisons is easy to

implement

 The weights obtained from pair-wise

comparison are criticised for not

reflecting people‟s true references

 Mathematical procedures can yield

illogical results. For example,

rankings developed through AHP are

sometimes not transitive

Outranking  One option outranks another if: (1) it

outperforms the other on enough criteria

of sufficient importance (as reflected by

the sum of criteria weights), and (2) it is

not outperformed by the others, in the

sense of recording a significantly

inferior performance on any one

criterion. Does not require the reduction

of all criteria to a single unit Does not

always take into account whether over-

performance on one criterion can make

up for underperformance on another

 Allows options to be classified as

“incomparable”

 Does not require the reduction of all criteria

to a single unit

 Explicit consideration of possibility that

very poor performance on a single criterion

may eliminate an alternative from

consideration, even if that criterion‟s

performance is compensated for by very

good performance on other criteria

 Does not always take into account

whether over- performance on one

criterion can make up for

underperformance on another

 The algorithms used in outranking are

often relatively complex and not well

understood by decision-makers

Table 3.4 Comparison of critical elements, strengths and weaknesses of three advanced MCDA methods: MAUT, AHP, and Outranking [Kike05]

68

3.1.4.3 Analytic Hierarchy Process (AHP)

AHP structures multiple attributes into a hierarchy, assesses the relative importance

of these attributes, compares alternatives (possible decisions) for each attribute, and

finally, determines an overall ranking of the alternatives [Saat90]. We use this AHP

method to assess the relative importance of multiple attributes to determine the

weightings of the additive LoA-effecting attributes used in an authentication

environment.

According to [Saat90], five steps are involved when using AHP method to solve a

multi-attribute decision problem, and the following four steps are used for

calculating the weightings of a set of additive LoA-effecting attributes.

 Step 1. Structure an AHP structure from the decision problem

AHP decomposes a decision problem (which is not structured at this stage) into

decision elements and organises them into a hierarchical structure. Navigating

through the hierarchy from top to bottom, the AHP hierarchical structure comprises

a goal, one or more criteria (evaluation parameters, i.e. attributes) and a set of

alternatives (possible decisions). Building this hierarchy requires a thorough

analysis of the problem. This involves, firstly, the identification of the attributes that

either directly or potentially affects the problem and, secondly, the identification of

possible alternatives associated with the problem. Figure 3.6 shows an exemplar

LoA-AHS structure. It fits the AHP requirement perfectly.

The benefits for arranging the goal, attributes and alternatives into a hierarchical

structure are twofold. Firstly, it provides an overall view of the complex

relationships among the attributes. Secondly, it helps decision-makers to assess

whether issues at each level are of the same order of magnitude and to compare any

homogeneous elements more accurately.

Decision-makers take full control of the hierarchy. They may insert or eliminate

levels and/or attributes as necessary to clarify priorities or to sharpen the focus on

69

one or more aspects of the problem. Attributes that have a global character can be

represented at a higher level of the hierarchy while others, which specifically

characterise the problem, can be represented at a lower level.

Assertion-based

Authentication

ID Credential

Authentications

LoA-effecting

Attributes

Authentication

method 1

Location based

Authentications

...

Authentication

method 1

Authentication

Token

Authentication

Protocol

Token Type

keystore

Key Activation

Authentication

method 1

...

...

General Attributes

Secondary Sub-attributes

Level 3 Sub-attributes

Level 4 Sub-attributes

Goal

Knowledge-based

Authentication

...

...

...

Figure 3.6 An exemplar LoA-AHS structure

 Step 2. Create the input values by pair-wise comparisons of decision

elements

In order to quantitatively measure the impact of each attribute on the goal, AHP

derives relative scales using judgments or data from a standard scale and performs

an arithmetic operation on the scales. The judgments are given in the form of pair-

wise comparisons [Saat77, Saat80], and the standard scale is developed as the

fundamental scale [Saat82].

One of the benefits of this hierarchical approach is that it allows us to focus on each

of the multiple properties essential for making a sound decision separately and

respectively. We can, in turn, take a pair of elements and compare them on a single

property without worrying about other properties or other elements. This is why

combining pair-wise comparisons with the hierarchical structure approach is a

useful methodology in decision-making [Saat90].

The fundamental scale, shown in Table 3.5 and developed by Prof. Saaty [Saat77],

70

is used to represent the intensity of importance among the attributes in question. The

effectiveness and theoretical justification of the fundamental scale have been

validated by [Royb05 Chapter 9]. The scale has nine levels, from 1 through 9. Five

of them (1, 3, 5, 7, 9) represent equal, moderately important, strongly important,

very strongly important, and extremely important, respectively. The other four (2, 4,

6, 8) refine the scales by taking the median values of 1, 3, 5, 7, and 9, respectively.

Intensity of importance Definition Explanation

1 Equal importance Two activities contribute

equally to the object

2 Weak Between Equal and Moderate

3 Moderate importance Experience and judgment

slightly favour one activity

over another

4 Moderate plus Between Moderate and

Strong

5 Strong importance Experience and judgment

strongly favour one activity

over another

6 Strong plus Between Strong and Very

Strong

7 Very strong or demonstrated

importance

An activity is favoured very

strongly over another; its

dominance is demonstrated

in practice

8 Very, very strong Between Very Strong and

Extreme

9 Extreme importance The evidence favouring one

activity over another is

compelling

Table 3.5 The Fundamental Scale for AHP [Royb05]

71

The pair-wise comparison can be expressed using a matrix. Assume that we have a

problem with n attributes, {a1, a2, … , an}. Element aij is used to denote the intensity

of importance (Table 3.5) difference between two attributes, ai and aj (i.e. ai/aj).

Thus, we have the comparison matrix,

 














































1/1/1

1

1/1

1

21

212

112

21

22221

11211

















nn

n

n

nnnn

n

n

nnij

aa

aa

aa

aaa

aaa

aaa

aA (3.1)

where nia
a

aa ij

ji

ijii ,...,2,1,0,
1

,1  .

From matrix A, it can be seen that with n*n elements in a matrix, one needs

2/)(2 nn  comparisons. This is because there are n 1‟s on the diagonal for

comparing elements with themselves, and of the remaining judgments, half are

reciprocals.

 Step 3. Estimate the relative weightings of the attributes

Once the comparison matrix is constructed, the weightings of elements (attributes)

niai ,...,2,1,  can be determined. Assume iw is the weight of attribute ia and

],...,,[321 nwwwwW  denotes the set of weightings for n attributes

{ niai ,...,2,1,  }, respectively, then nnmwwa nmmn ,...,2,1,,/  . Using the

AHP method, W can be calculated from matrix A by recovering the vector

],...,,[321 nwwwwW  as follows,

72

nW

w

w

w

n

w

w

w

wwwwww

wwwwww

wwwwww

w

w

w

aaa

aaa

aaa

AW

nnnnnn

n

n

nnnnn

n

n













































































































......

///

///

///

...

2

1

2

1

21

22212

12111

2

1

21

22221

11211

















(3.2)

The equation multiplies A on the right by the vector of weightings,

],...,,[321 nwwwwW  . The result of this multiplication is nW . [Saat90, Royb05

Chapter 9] have proved that n is an eigenvalue of A, and W is the corresponding

eigenvector of n. The solution of AW = nW , called the principal right eigenvector

of A.

 Step 4. Check for result consistency

According to [Saat90], once the weightings of the matrix are determined, the

consistency of the matrix should be checked before the weightings can be trusted.

[Saat90] also proved that a comparison matrix A is said to be consistent if and only

if ikjkij aaa  for all i, j and k.

It has been proved in [Saat90] that for consistent reciprocal matrices (equation 3.1),

the largest eigenvalue max is equal to the number of comparisons, i.e. nmax .

Based on this, a measurement of consistency is given, which is called the

Consistency Index (CI) and is defined as the deviation or degree of consistency

using the following equation:

1

max






n

n
CI


 (3.3)

In order to find out what the CI might mean, a simulation solution has been

developed by [Royb05, chapter9 pp374-375]. In the simulation, choosing the entries

of A above the main diagonal at random from the 17 values {1/9, 1/8, … , 1, 2, … ,

73

8, 9}. Then fill in the entries of A below the diagonal by taking reciprocals. Put ones

down the main diagonal and compute the consistency index. Do this many

thousands of times and take the average, which they call it the random consistency

index (RI) as shown in Table 3.6. The CI is then divided by the RI to calculate the

consistency ratio (CR), i.e.

CR = CI/RI (3.4)

n 1 2 3 4 5 6 7 8 9 10

RI 0 0 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49

Table 3.6 Random Consistency Index values

The following rules are used to judge whether or not matrix A is consistent, please

note that the 0.1 ratio threshold is carefully specified by the [Saat90]:

o If CR = 0, then matrix A is consistent;

o If CR 0.10, then matrix A is considered as acceptably consistent;

o If CR > 0.10, then matrix A is not consistent and the subjective judgements

need to be revised. I.e. repeat Step 2 to Step 4 until the matrix A is at least

acceptably consistent.

Our required algorithm needs to be able to derive an aggregate authentication LoA

value based on the component LoAs of contributing LoA-effecting attributes

associated to an authentication process, along with the impacts of these attributes.

The AHP method is used here to analyse and quantify the respective impacts (i.e.

weights) of the LoA-effecting attributes and to derive an aggregate LoA value,

taking into account the impacts and component LoA values of these multiple

attributes. The application of this AHP method to the determination of the

weightings of multiple additive LoA-effecting attributes is illustrated in Section

4.4.1.

74

 3.5 Chapter Conclusion

In this chapter, we have investigated and analysed component LoA values

associated with a comprehensive set of LoA-effecting attributes. We then identified

two types of relationships among those attributes. In addition, we surveyed and

chose an MCDM method to quantify the weightings of the additive attributes. These

are all essential steps prior to the design of aggregate LoA derivation algorithms. In

the next chapter, we will present the design of the algorithms by integrating the

LoA-effecting attributes identified in this chapter with their component LoA values

and by taking into consideration the relationships and weightings of the attributes.

75

Chapter 4

Authentication LoA Derivation Algorithms:

Design, Implementation and Evaluation

4.1 Chapter Introduction

As discussed in Section 3.4, for any given authentication instance there will be a set

of multiple LoA-effecting attributes, which can be organised into an LoA-AHS

structure. Using the structure, we can estimate the composite effect on the assurance

level in identifying a user (i.e. aggregate LoA) of these attributes. This is done in a

bottom-up manner, assuming that there are m levels (levels 1, ..., m) in the structure.

From the bottom level m, based on the relationship (the weakest link, or the additive)

of the group of attributes at the level, an aggregate LoA derivation algorithm

(corresponding to the relationship) is used to calculate an aggregate LoA for the

attribute group at this level. This aggregate LoA value is then used as the component

LoA of the connected attribute of the level immediately above, i.e. Level (m-1).

This process continues until the top level, i.e. Level 1, of the structure is reached and

the aggregate LoA value at Level 1 is the overall confidence level, i.e. the aggregate

LoA, for the entire authentication instance.

Obviously, for different relationships among multiple attributes, different LoA

derivation algorithms should be used. This chapter presents the design and

evaluation of the algorithms. Section 4.2 specifies the design requirements for the

algorithms. Section 4.3 and 4.4 describe the weakest-link relationship Agg-LoA

derivation (ALoAWL) algorithm and additive relationship Agg-LoA derivation

(ALoAAD) algorithm, respectively. Section 4.5 presents a performance evaluation

and an algorithm result evaluation. Section 4.6 summaries the chapter.

76

4.2 Design Requirements

This section specifies three requirements (R1, R2, R3) for the design of the

algorithms.

R1 – Derivation of aggregate LoA:

Given a set of LoA-effecting attributes, their component LoA values, their

respective weightings and their mutual relationship, there is an algorithm that should

be able to derive an aggregate LoA value for this set of attributes.

R2 – Algorithm efficiency:

Computational and communication overheads introduced as a result of using the

algorithms should be kept as low as possible.

R3 – Support the use of policy-driven attribute LoAs:

Each of the LoA-effecting attributes will have a component LoA associated with it.

The values of these component LoAs are usually dependent on the LoA regime used,

which should be defined by relevant international communities. To support the use

of any-either existing (such as the NIST definition [Burr06]) or emerging-LoA

regimes, the algorithms will use a policy-driven component to handle component

LoA values.

Each set imposes an aggregate LoA value on an attribute at the level immediately

above this level. If multiple attributes in a set are in the weakest-link relationship,

then the ALoAWL algorithm should be used to calculate the aggregate LoA for this

set. This aggregate LoA value is then taken as the component LoA value for the

attribute at the level above this set. Similarly, if a set‟s attributes are in an additive

relationship then the aggregate LoA for this set should be derived using the ALoAAD

algorithm.

77

4.3 Aggregate LoA Derivation for Attributes in the

Weakest Link Relationship –the ALoAWL Algorithm

Assume that at level k there are multiple sets of attributes {SETA, SETB, …, SETN}.

Also assume that the attributes {a1, a2, … , an} in SETA are in the weakest-link

relationship, and their respective component LoA values are {LoAa1, LoAa2, …,

LoAan}. Then the composite effect of these attributes in SETA on the authentication

assurance level of the attribute at the level immediately above should be the lowest

component LoA value in the set. Mathematically, this can be expressed as:

Agg_LoA(WL, SET_N, level_k) = min(LoAa1,LoAa2, …, LoAan) (4.1)

where min is the minimum function, and Agg_LoA(WL, SET_N, level_k) is the aggregate

LoA value for set N at level k.

From this discussion, it can be seen that the derivation of an aggregate LoA value

for a group of attributes that are in the weakest-link relationship only requires the

attributes‟ component LoA values. The pseudo code for the algorithm is given below:

INPUT: LoA-effecting attributes Set N, N>1

OUTPUT: Agg-LoA Value Agg-LoA

Integer Method Weakest_LoA(Object Set N)

 WHILE Set N STILL HAS ELEMENT

 READ one attribute LoA value in N;

 SAVE into Integer ARRAY LoA[];

 ENDWHILE

 SORT ARRAY LoA[];

 Agg-LoA = the Lowest LoA[x];

 RETURN Agg-LoA;

Table 4.1 The weakest link algorithm pseudo code

78

An implementation of this algorithm is in Appendix A and the evaluation of this

algorithm is undertaken in Section 4.5.

4.4 Aggregate LoA Derivation for Attributes in the

Additive Relationship –the ALoAAD Algorithms

An ALoAAD algorithm is required for estimating an aggregate LoA value given a set

of attributes that are in an additive relationship. Three tasks are required to devise

the algorithm. The first is to determine the attributes‟ weightings. This can be done

by using the AHP technique, as discussed in Section 3.4.1.3. The second task is to

find a way to integrate the weightings into the algorithm. The third task is to find a

method to quantify the reinforcement effect collectively contributed by the additive

attributes. Section 4.4.1 describes a method for the integration of the weightings of

each attribute into their corresponding component LoA values. Section 4.4.2 and

4.4.3 present two ALoAAD algorithms that could be used to derive an aggregate LoA

value given component LoA values of a set of additive LoA-effecting attributes.

4.4.1 Attribute Weightings and Their Integration with

Component LoA Values

In Section 3.4.1, the author pointed out that when a set of attributes are in an

additive relationship, the quantification of their composite effect on the assurance

level of an authentication instance requires the consideration of their respective

weightings. Also in that section, the author proposed to use the AHP technique to

calculate the weightings for a set of additive LoA-effecting attributes. Here in this

section, we demonstrate how attributes‟ weightings are determined and how these

weightings are integrated into the aggregate LoA derivation process.

Figure 4.1 shows an exemplar LoA-AHS structure in an authentication environment.

Level-2 in Figure 4.1 shows a set of three additive attributes, Set A = {„ID

Credential-based Authentication‟, „Location-based Authentication‟, „Assertion-

79

based Authentication‟}. Using the AHP method described in Section 3.4.1, the

weightings of these three attributes are determined as follows.

LoA-effecting

Attributes

Assertion-based

Authentication

ID Credential

Authentications

Username/

password

Location based

Authentications

IP

Authentication

Token

Authentication

Protocol

SAML

Additive

Additive

Weakest Link

Authentication

Token

Authentication

Protocol

Token Type

keystore

Key Activation

Weakest Link

Weakest Link

Cookies

Additive

PKI

Principle

Authentication
SAML Assertion

Weakest Link

One Time

Password Kerberos

LEVEL-1

LEVEL-2

LEVEL-3

LEVEL-4

LEVEL-5

Figure 4.1 An exemplar LoA-AHS structure in an authentication environment

1) Based on the fundamental scale as shown in Table 3.5, a decision-maker (e.g. an

administrator managing the authentication environment) uses his/her subjective

opinion and inputs pair-wise comparison values (as shown in Table 4.2) and

constructs matrix

























1
4

1

3

1

41
6

1
361

A .

 ID credential-based

Authentication

Location-based

Authentication

Assertion-based

Authentication

ID credential-based

Authentication

1 6/1 3/1

Location-based

Authentication

1/6 1 1/4

Assertion-based

Authentication

1/3 4 1

Table 4.2 Pair-wise comparison matrix for the attribute set

2) Compute matrix A‟s principle eigenvalue 054.3max  and the corresponding

80

eigenvector]384.0,121.0,915.0[W using the equation (3.2).

3) Check for consistency by calculating the consistency ratio (CR), and if the CR is

equal to 0 or less than 0.1, the matrix is consistent. In this case, by using the

equation (3.3) we can calculate CI=0.027, and because the size of matrix A is 3,

thus RI=0.52, thus CR=CI/RI=0.052<0.1, which indicates that matrix A is

consistent.

4) If matrix A is consistent or acceptably consistent, the normalised eigenvector

]271.0,085.0,644.0['W is derived from W, and W‟ is the normalised weight

(i.e. weights summing to one) for the attribute set {„ID Credential-based

Authentication‟, „Location-based Authentication‟, „Assertion-based

Authentication‟}.

5) Repeat steps (1)-(4) above for every additive attribute group in the LoA-AHS

hierarchy. These steps are done offline prior to the running of the authentication

service.

At this point, the weightings are determined for the entire additive attributes groups

in the authentication environment. However in an authentication instance, there are

cases in which only some of the additive attributes are used. For example, a user

uses „ID Credential-based Authentication‟ and „Location-based Authentication‟ in

an authentication instance. In this case, the weightings]271.0,085.0,644.0['W for

Set A = {„ID Credential-based Authentication‟, „Location-based Authentication‟,

„Assertion-based Authentication‟} need to be modified to reflect the weightings for

Set B = {„ID Credential-based Authentication‟, „Location-based Authentication‟}.

Again, this is done by taking the weightings [0.644, 0.085] for „ID Credential-based

Authentication‟ and „Location-based Authentication‟ in Set A and normalising it to

weightings]117.0,883.0['' W for Set B. This process is dynamic and does not

involve the judgement of the decision-maker therefore it is a real-time process to

81

suit different authentication instances.

Once the weightings of the attributes are determined, they should be integrated into

the derivation algorithm. We do this by integrating the weighting of an attribute into

its component LoA. The method is described in the following.

Assume that wi is attribute i‟s weighting, LoAi is its original component LoA value,

and LoAai is i‟s adjusted LoA value. The adjusted LoA value is the one that has

taken into account the effect of wi on LoAi. In other words, the effect of attribute i‟s

weighting on the final aggregate LoA is embedded into its adjusted component LoA

value, LoAai. So },,...,,{ 21 nwwwW  },,...,,{ 21 nLoALoALoALoA and

},...,,{ 21 anaaa LoALoALoALoA  now denote the set of weightings, original

component LoA values, and weighting adjusted component LoA values for n

additive attributes (n>1), respectively.

It is worth noting that the sum of the weightings of all of the attributes in an additive

group is always 1. Thus, without specifying a weighting for each of the attributes, an

additive algorithm initially assumes that each of the n attributes in a group has the

same level of contribution (weighting), i.e. each attribute initially has a weighting

equal to 1/n. Then the adjusted weighting for attribute i will be the difference

between the real weighting, wi, and the assumed weighting, 1/n. wi may be greater

than, less than or equal to 1/n. If wi = 1/n, attribute i is said to contribute the same as

it initially does, therefore its adjusted component LoA value is the same as its

original component LoA value. If wi > 1/n, attribute i contributes more to the

aggregate LoA than it initially does. Reflecting its component LoA value, the

adjusted component LoA is its original component LoA plus the difference, and vice

versa if wi < 1/n. Therefore, the adjusted component LoA value for attribute i can be

estimated using the following equation:

))
1

(1(*
n

wLoALoA iiai  (4.2)

82

By integrating attributes‟ weightings into their respective component LoA values,

the adjusted component LoA values can capture the effects of the attributes on the

overall authentication assurance level of an authentication event in a more accurate

manner. By taking the adjusted component LoA values of the attributes involved in

an authentication instance as input, a more precise Agg-LoA value could be derived

using an aggregate LoA derivation algorithm. The next two subsections describe

two such algorithms. The first algorithm is built on Subjective Logic, and the second

one is built on Probability Theory, thus these algorithms are, called the Subjective

Logic-based aggregate LoA derivation algorithm and the Probability Theory-based

aggregate LoA derivation algorithm respectively.

4.4.2 Algorithm One: Subjective Logic-based Aggregate

LoA Derivation Algorithm (ALoAAD-SL)

4.4.2.1 Subjective Logic for Aggregate LoA Derivation

In standard logic, propositions that are considered either true or false are binary.

However, Josang believes that the absolute certainty of a statement cannot be

determined in the real world. Since the statements are always assessed by

individuals, they can never be considered as representing complete general and

objective opinions [Josa00]. Therefore, Joang has defined a framework called

„subjective logic‟ that consists of a belief model, named an opinion model, and a set

of operations for combining opinions. Subjective logic is developed to

mathematically describe and manipulate subjective beliefs; it is an extension of

standard logic that uses continuous uncertainty and belief parameters instead of only

using discrete truth values.

The Opinion Model

The opinion model defines an opinion about a proposition, which translates into

degrees of belief or disbelief. In addition to belief and disbelief, it is necessary to

83

take into consideration degrees of ignorance, which can be interpreted as the lack of

evidence to support either belief or disbelief [Joan00].

For a single opinion about a proposition, the model has:

]1,0[},,{,1  idbidb (4.3)

where b, d and i designate belief, disbelief and ignorance, respectively.

Figure 4.2 shows the opinion model triangle, where an opinion can be uniquely

described as a point {b, d, i} on the triangle. For example, the bottom line between

belief and disbelief represents situations with zero ignorance and is equivalent to a

traditional probability model, i.e. the opinion {0.5, 0.5, 0} means there are equally

strong reasons to believe that the proposition is true as false; whereas the opinion

{0.4, 0.5, 0.1} indicates there are the reasons 40% to believe, 50% to disbelieve and

10% uncertain about the proposition.

Figure 4.2 Opinion Triangle

In this opinion model, various operations for processing multiple opinions are

defined, including conjunction, disjunction, negation, consensus, recommendation

and ordering. The following introduces the consensus operation, given that it is the

most relevant operation for the derivation of an aggregate LoA of additive LoA-

effecting attributes.

84

Consensus between Independent Opinions

The consensus rule for combining independent opinions consists of combining two

or more independent opinions about the same proposition into a single opinion. In

[Joan00], the following definition is proposed:

Definition 4 – Let },,{ A

p

A

p

A

p

A

p idb and },,{ B

p

B

p

B

p

B

p idb be opinions held by

agents A and B, respectively, about the same proposition p. Let

},,{ ,,,, BA

p

BA

p

BA

p

BA

p idb be the opinion such that

kibibb A

p

B

p

B

p

A

p

BA

p /)(, 

kididd A

p

B

p

B

p

A

p

BA

p /)(, 

kiii B

p

A

p

BA

p /)(,  ,

where
B

p

A

p

B

p

A

p iiiik  such that 0k .

Then
BA

p

, is called the Bayesian consensus between
A

p and
B

p , representing an

imaginary agent [A, B]‟s opinion about p. This operation uses operator  . The

consensus operation can be expressed as
B

p

A

p

BA

p  ,
. Note that two opinions

both containing zero ignorance cannot be calculated by a consensus operation. This

is explained by interpreting ignorance as room for influence, meaning that it is only

possible to influence an opinion that has not yet been committed to belief or

disbelief.

From the above discussion, it can be seen that subjective logic holds that it is

impossible to determine with absolute certainty whether some propositions are true

or false. This concept matches the case of authentication LoA, i.e. the authentication

will not always produce a perfect outcome. By defining an opinion model and

defining a set of operations (e.g. consensus operation) to process multiple opinions,

85

subjective logic can be used to make a binary proposition into a quantifiable

statement and provides a way to derive a consensus opinion of two independent

opinions.

One of the biggest challenges in the design of an aggregate LoA derivation

algorithm is determining how to combine the assurance levels of multiple additive

(i.e. independent) LoA-effecting attributes to form a unified aggregate LoA. By

applying the opinion model to the algorithm design, the additive LoA-effecting

attributes can effectively be transformed as „opinions‟ about the same proposition

(e.g., “The user‟s identity as A can be verified,”). A single aggregated opinion (i.e.

an aggregate LoA) can then be computed by applying the consensus operation.

More details on how to transform the component LoA values of multiple LoA-

effecting attributes into subjective logic „opinions‟ and how to use the consensus

operation to calculate an aggregate LoA value based upon the opinions are presented

in the next section.

4.4.2.2 ALoAAD-SL Algorithm Design

Using the SLO model, each of the additive attributes is transformed into an

„opinion‟ in the opinion model. For example, an attribute x‟s opinion about the

aggregated authentication assurance level p can be expressed as:

x

p b + d + u = 1, {b, d, u}  [0, 1] (4.4)

Where  is the opinion function, p is the proposition which  has an opinion of (in

this case, p refers to the aggregate LoA), x is the attribute, and b, d, and u represent

belief, disbelief and uncertainty, respectively.

We now need to determine the values for the tuple < b, d, u>. Belief b refers to the

level of trust in attribute x‟s opinion. It is set to a value in the range [0,1], where 0

stands for no trust at all and 1 stands for absolute certainty. The level of trust in an

authentication outcome (i.e. the meaning of b) obviously has a similar meaning to

86

the component LoA (which refers to the level of confidence in an authentication

outcome). However, as LoA values are scoped between 1 and 4, and b in the

subjective logic uses a scale from 0 to 1, we need a transformation method to

transform LoA values from the scale of [1, 4] to values in the scale of [0, 1]. This

scale transformation is done using the following mapping: b(0.25) = LoAx(1), b(0.5)

= LoAx(2), b(0.75) = LoAx(3), and b(1) = LoAx(4).

Disbelief d refers to the level of inaccuracy in attribute x‟s opinion. It is usually

used to measure the inaccuracy (hardware fault) of some hardware-based attributes,

such as the case in sensor network and hardware location-based authentication.

Therefore, an inaccuracy level d needs to be specified for such authentication

attributes. On the other hand, unlike hardware-based authentication attributes,

credential-based authentication attributes only have belief and uncertainty values,

but not accuracy value. This is because, for credential-based authentication, if the

authentication outcome is successful, then the level of accuracy is taken as 100%

(i.e. d = 0).

Based upon these considerations, we can define the opinion for attribute x as

follows:

















mLoAu

md

LoAb

x

x

x

p

1

 , in which, m is the inaccuracy parameter, and

b+d+u = 1.

Once the opinions of all the attributes involved are defined, we can calculate a

combined opinion by using the consensus operation defined in Definition 4. For an

additive attributes set with more than two attributes, a recursion operation is used to

calculate the final aggregate LoA. The pseudo code for this algorithm is given

below.

INPUT: Additive LoA-effecting attributes Set N, N >= 1

OUTPUT: Agg-LoA Value Agg-LoA

87

Integer Method Additive_LoA(Object Set N)

 READ attribute LoA values in N;

 SAVE into Integer ARRAY LoA[];

 READ attribute weightings in N;

 SAVE into Integer ARRAY weighting[];

 SET LoA_Length to the Length of ARRAY LoA[];

 SET Agg-LoA to the aggregate LoA value;

 /* if Set N contains only one attribute, the component LoA

value of this attribute is returned */

 IF LoA_Length IS equals to 1 THEN

 RETURN LoA[0];

 /* if Set N contains more than one attribute, calculate

adjusted component LoA value based on the weightings*/

 ELSE IF LoA_length is more than 1 THEN

 REPEAT

 LoA[x] = LoA[x]*(1 + weighting[x]-(1/LoA_length));

 SET X to X+1;

 UNTIL x equals to LoA_length;

 /* calculate the agg-LoA based on first two attributes */

 CALL Agg-LoA = Add_LoAAD(LoA[0], LoA[1]);

 SET index to 2;

 IF index equals to LoA_length THEN

 RETURN Agg_LoA;

/* check if LoA_length is more than 2, recursion operation */

 ELSE

 REPEAT

 CALL Agg-LoA = Add_LoAAD(Agg_LoA, LoA[index]);

 SET index to index+1;

 UNTIL index equals to LoA_length

 RETURN Agg_LoA;

88

 ENDIF

 ENDIF

/* method to calculate Agg-LoA */

Integer Method Add_LoAAD(Object LoAa, Object LoAb)

 SET beliefa to LoAa;

 SET uncertaina to 1- belief0;

 SET beliefb to LoAb;

 SET uncertainb to 1- belief1;

 DEFINE

 },0,{ aa

a

p uncertainbelief

},0,{ bb

b

p uncertainbelief

Compute

 baba uncertainuncertainuncertainuncertaink 

kuncertainbeliefuncertainbeliefbelief abbaba /)*(, 

 RETURN babelief , ;

Table 4.3 The pseudo code of the ALoAAD-SL algorithm

An implementation of this algorithm is in Appendix A and the evaluation of this

algorithm is undertaken in Section 4.5.

4.4.3 Algorithm Two: Probability Theory-Based Aggregate

LoA Derivation Algorithm (ALoAAD-PT)

The derivation of an aggregate LoA value given the component LoA values of a set

of additive LoA-effecting attributes may also be done based on a Probability Theory

(PT). The design of such a PT-based aggregate LoA derivation algorithm, i.e.

ALoAAD-PT algorithm is more straightforward when compared to the ALoAAD-SL

algorithm. This method employs the inclusion-exclusion principle of probability

theory to calculate the consensus of multiple additive LoA-effecting attributes. For a

89

set of additive LoA-effecting attributes },...,{ 21 naaaS  , the probability of an

attribute Sai  is represented as a number]1,0[)(iaP . In other words,)(iaP is

the probability of the trustworthiness of an attribute ia ,which declares the

authenticity of someone‟s identity. It is obvious that the meaning of)(iaP and the

meaning of the component LoA value LoAai are similar. Since component LoA

values are scoped between 1 and 4, and)(iaP in the probability theory uses a scale

from 0 to 1, similar to the mapping mechanism we used in the ALoAAD-SL design,

we transform LoA values from the scale of [1, 4] to values in the scale of [0, 1] by

using the following mapping, P(0.25) = LoAx(1), P(0.5) = LoAx(2), P(0.75) =

LoAx(3), and P(1) = LoAx(4).

For independent events (attributes in our case) },...,{ 21 naaa in a set S , the

inclusion-exclusion principle is given in equation (4.5) below when n=2,

)()()()()(212121 aPaPaPaPaaP  (4.5)

In equation (4.5),)(21 aaP  denotes the consensus of trustworthiness of attribute

a1 and a2 that declares the authenticity of someone‟s identity. When n > 2, it can be

extended to the general equation of the inclusion-exclusion principle, as expressed

in (4.6).

)()1(...)()()()(
1

1

:,,:,11


n

i

i

n

kjikji

kji

jiji

ji

n

k

i

n

i

i aPaaaPaaPaPaP






  (4.6)

In order to simplify the equation (4.6), we use the complement rule, i.e. for the

entire event A in a set S,)(AP is the complement of)(AP , where

)(1)(APAP  (4.7)

When n=2, we combine equations (4.5) and (4.7), i.e.

90

))(1))((1()()()()(1)(1)(2121212121 aPaPaPaPaPaPaaPaaP 

 Then, we have

))(1))((1(1)(1)(212121 aPaPaaPaaP  (4.8)

Similarly, when n=3, we have

))(1))((1))((1(1)(321321 aPaPaPaaaP  (4.9)

Thus,

 


n

i in

n

i i aPaPaPaPaP
1211

))(1(1))(1))...((1))((1(1)( (4.10)

Therefore, the ALoAAD algorithm is

 


n

i iKlevelAD aPALoA
1)_,())(1(1 (4.11)

To illustrate the use of this algorithm, suppose there are two additive LoA-effecting

attributes at a particular level of LoA-AHS: }2,2{ /  locationpasswordusername aaS in

the scale of [1, 4]. We then use the mapping mechanism described above to compute

the corresponding mapped value }5.0)(,5.0)({ /  locationpasswordusername aPaP in the

scale of [0, 1]. By applying equation (4.11), the calculated aggregate LoA value for

this set of additive attributes is 0.75, which is assurance Level 3. In other words, the

aggregated authentication assurance achieves level 3 by combining two Level 2

authentication methods. The pseudo code of this algorithm is given in Table 4.4.

INPUT: Additive LoA-effecting attributes Set N, N >= 1

OUTPUT: Agg-LoA Value Agg-LoA

Integer Method Additive_LoA(Object Set N)

 READ attribute LoA values in N;

 SAVE into Integer ARRAY LoA[];

 READ attribute weightings in N;

91

 SAVE into Integer ARRAY weighting[];

 SET LoA_Length to the Length of ARRAY LoA[];

 SET Agg-LoA to the aggregate LoA value;

 /* if Set N contains only one attribute, the component LoA

value of this attribute is returned */

 IF LoA_Length IS equals to 1 THEN

 RETURN LoA[0];

 /* if Set N contains more than one attribute, calculate

adjusted component LoA value based on the weightings*/

 ELSE IF LoA_length is more than 1 THEN

 REPEAT

 LoA[x] = LoA[x]*(1 + weighting[x]-(1/LoA_length));

 SET X to X+1;

 UNTIL x is equal to LoA_length;

/* calculate the agg-LoA */

 SET variable index to 0;

 SET variable temp to 1;

 REPEAT

 temp=temp*(1-LoA[index]);

 SET index to index+1;

 UNTIL index equals to LoA_length

 SET Agg_LoA = temp;

 RETURN Agg_LoA;

Table 4.4 The pseudo code of the ALoAAD-PT algorithm

An implementation of this algorithm is in Appendix A, and the evaluation of this

algorithm is undertaken in Section 4.5.

4.5 Algorithms Evaluation

This section evaluates the three aggregate LoA derivation algorithms with regard to

performance and the satisfactory rates of the derived aggregate LoA values. The

performance is measured in terms of their computational cost. The satisfactory rate

92

is measured by comparing the derived aggregate LoA values to the algorithms with

the anticipated values. Two sets of experiments are conducted for the evaluation.

The first set assesses the computational time consumed by each of the algorithms,

and the second set calculates the aggregate LoA and compare the values on different

sets of LoA-effecting attributes with different component LoA values.

4.5.1 Evaluation Environment

The experiments are hosted on a Windows 7 OS running on a ThinkPad laptop with

two 2.53GHz processors and 3072MB of memory. The prototype is implemented as

a JAVA application with Java SE™ Runtime Environment version 6. The

performance evaluation tool used is NetBeans IDE v6.8, which provides a wide

range of profiling instruments for measuring CPU and memory costs.

4.5.2 Algorithms Performance Evaluation

The performance evaluation is done by measuring computational times consumed

by the algorithms. To ensure statistical significance, the number of iterations

(denoted as n) over which the performance is measured need to be determined.

Three experiments have been conducted; each sets n to a different value and the

computational times are measured in milliseconds. Figures 4.3 to 4.5 show the

results of the experiments for the three algorithms: ALoAWL, ALoAAD-SL and

ALoAAD-PT, respectively. From the figures we can see that the bigger the value of n,

the less of an effect arbitrariness has on the algorithm execution time. The linear

regression line in the figures suggests an n value higher than 2.2k (i.e. 2200

iterations) is sufficient for ALoAWL algorithm, an n value higher than 2.3k (i.e. 2300

iterations) is sufficient for ALoAAD-SL algorithm and an n value higher than 2.5k

(i.e. 2500 iterations) is sufficient for ALoAAD-PT algorithm. Thus an n value of

3000 is used in all the experiments.

Prior to performing the experiments, two main results were anticipated. Firstly, for

93

all three algorithms, the larger the input attribute set size is, the longer it would take

to calculate the Agg-LoA value. This is because none of the algorithm‟s

computational complexity is)1(O (i.e. constant time and not related to the length of

the input), which means the computational time grows when input size grows.

Secondly, the computational times of the ALoAAD-SL and ALoAAD-PT algorithms

would grow at the same rate and the computational time of ALoAWL would grows at

a faster rate in comparison to the other two. This is because the time complexity of

the ALoAWL algorithm is))log(*(nnO [Javaapi], which is „linearithmic time‟, and

the time complexity of both the ALoAAD-SL and ALoAAD-PT algorithms is)(nO ,

which is „linear time‟. For the same increment of input size n, „linearithmic time‟

grows faster than „linear time‟.

Figure 4.3 Linear Regression to determine number of iterations in ALoAWL Algorithm

94

Figure 4.4 Linear Regression to determine number of iterations in ALoAAD-SL Algorithm

Figure 4.5 Linear Regression to determine number of iterations in ALoAAD-PT Algorithm

The algorithm performance evaluation experiments took six sets of LoA-effecting

attributes as input and measured the computational cost of each set on each of the

algorithms. Figure 4.6 shows the results of the experiments. It shows three sets of

95

execution times in milliseconds against five inputs. The three sets are from the

weakest link AloAWL, additive ALoAAD-PT and ALoAAD-SL, respectively. Five

inputs contain 1, 2, 5, 10 and 20 LoA-effecting attributes respectively. Three

observations can be made from these results. First, the execution times increase in

the three algorithms as the input size increases. This observation is in line with our

expectations. The second observation is that when input size grows, the results for

the ALoAWL algorithm increase faster than the ALoAAD-SL and ALoAAD-PT

algorithms. This result is also within our anticipations. The third observation is that

the results for the ALoAAD-SL algorithm are slightly bigger than that for the

ALoAAD-PT algorithm. This is due to the fact that the calculation of the ALoAAD-

SL algorithm is slightly more complex than the ALoAAD-PT algorithm, as shown in

Tables 4.2 and 4.3. Therefore, though the computational complexity of both

algorithms is in the same magnitude, the execution time of the ALoAAD-SL

algorithm is longer than that of the ALoAAD-PT algorithm.

96

Figure 4.6 Algorithms performance comparison

4.5.3 Algorithm Satisfactory Rate Evaluations

As shown in Table 4.5, evaluations are done given five sets of LoA-effecting

attributes as input values. The anticipated results are listed next to the input values.

The calculated results using ALoAWL, ALoAAD-PT and ALoAAD-SL algorithms are

listed in columns 3, 4 and 5 respectively.

From the table, it can be seen that the algorithms returned satisfactory results. In

input set A, only one attribute is considered, thus the anticipated result is the

attribute‟s component LoA value. In input sets B, C and D, ALoAWL returned the

aggregate LoA values, which are the lowest values among all the attributes‟

component LoA values. This result is satisfactory. The ALoAAD-PT and ALoAAD-

SL algorithms returned aggregate LoA values that are larger than the largest

individual component LoA values from the input sets, which is also satisfactory. In

97

input set E, both ALoAAD-PT and ALoAAD-SL algorithms give a result of 1. This is

because set E contains an attribute with a component value of 1, which means

absolute certainty in the ALoAAD-SL algorithm and 100% trustworthiness in the

ALoAAD-PT algorithm. Therefore, no matter what the other attributes‟ component

LoA values are, as long as they are in an additive relationship, the largest aggregate

LoA value is 1. To sum up, the experiments showed a 100% satisfactory rate of the

derived aggregate LoA values for all of the algorithms under various input values.

Input Anticipated

results

ALoAWL ALoAAD-

PT

ALoAAD-

SL

Agg-

SR

A {a1=0.75} ALoAWL=0.75

ALoAAD-SL=0.75

ALoAAD-PT=0.75

0.75 0.75 0.75 100%

B {b1=0.25, b2=

0.5}

ALoAWL=0.25

ALoAAD-SL>0.5

ALoAAD-PT>0.5

0.25 0.625 0.571 100%

C {c1=0.25,

c2=0.5, c3=0.75}

ALoAWL=0.25

ALoAAD-SL>0.75

ALoAAD-PT>0.75

0.25 0.9 0.8125 100%

D{ d1=0.25,

d2=0.5, d3=0.75,

d4=0.25}

ALoAWL=0.25

ALoAAD-SL>0.75

ALoAAD-PT>0.75

0.25 0.92 0.83 100%

E { d1=0.25,

d2=0.5, d3=1}

ALoAWL=0.25

ALoAAD-SL=1

ALoAAD-PT=1

0.25 1 1 100%

Table 4.5 Satisfactory rate of LoA derivation algorithms results

4.6 Chapter Summary

This chapter has presented the design of three aggregate LoA derivation algorithms:

the weakest link ALoAWL algorithm, the subjective logic-based additive ALoAAD-

SL algorithm, and the probability theory-based additive ALoAAD-PT algorithm. For

the aggregate LoA derivation when attributes are in an additive relationship, we

have also presented a method by which different weightings of different attributes

can also be taken into account. The performance and satisfactory rate of these

algorithms have been evaluated via experiments. In the next chapter, we will present

the design of the GEA-LoADM Model; the algorithms described in this chapter are

part of this model.

98

Chapter 5

A Generic E-Authentication LoA

Derivation Model

In the previous chapter, we described three aggregate LoA derivation algorithms.

This chapter integrates these algorithms to devise our approach to real-time

aggregate LoA derivation, the Generic E-authentication LoA Derivation Model

(GEA-LoADM).

5.1 Design Requirement Specifications

The design of the GEA-LoADM model is non-trivial, and the following issues

should be resolved: 1) identify all LoA-effecting attributes and determine their

component LoA values in an authentication environment; 2) construct an LoA-AHS

structure based on the identified LoA-effecting attributes and allocate weightings to

each of the attributes in the additive relationship; 3) reliably acquire dynamic real-

time LoA-effecting attributes (i.e. the contributing LoA-effecting attributes) in an

authentication instance; and 4) derive an aggregate LoA value based upon the

contributing LoA-effecting attributes in a systematic manner. The model should be

flexible enough to accommodate any changes in the attribute set, and the resulting

weighting changes for the set. We have identified in detail the following design

requirements for the GEA-LoADM:

R1 - Extensibility:

The model supports the use of an extensible set of LoA-effecting attributes. The

current set of LoA-effecting attributes (Table 3.2) is decomposed from a range of

existing works [Burr06, Samlac] and Grid authentication scenarios/models. In the

future, there may be new or emerging authentication technologies that could bring in

new LoA-effecting attributes, so, the design of the model should allow new

99

attributes to be easily added in and obsolete ones to be removed from it.

R2 – Support the use of policy-driven attribute LoA values:

Each of the LoA-effecting attributes will have a component LoA associated with it.

These component LoA values are usually dependent on the LoA regime used, which

is expected to be defined by the relevant international communities. To support the

use of any, either existing (such as the NIST definition [Burr06]) or emerging, LoA

regimes, the model will use a policy-driven component to process component LoA

values.

R3 – Systematic determination of weightings for LoA-effecting attributes:

An authentication process may involve a number of LoA-effecting attributes. Some

of these attributes may be intangible or their impacts difficult to measure and

quantify. For such attributes, the GEA-LoADM model should use a scientific

approach to determine their impacts (i.e. weightings) on the aggregated assurance

level of an entire authentication instance.

R4 – Derivation of aggregate LoA:

Given a set of LoA-effecting attributes, their types of relationships and their

component LoA values and weightings, the model should be able to derive an

aggregate LoA for an authentication instance.

R5 – LoA conveyance:

The model should be able to convey to a relying party the aggregate LoA, the LoA-

effecting attributes‟ names and any other items that the CSP has verified. The

relying party can then use this information to make access control or authorisation

decisions.

R6 – Modular structure:

The model should employ a modular structure such that any change made to one

architectural module does not lead to any changes in other modules. Each module

100

(component) of the model is designed to fulfil a specific function and can be easily

plugged in or taken out.

R7 – Security:

The application of the model should not weaken or lower the level of security

afforded by the original access control service (i.e. before applying the GEA-

LoADM model).

R8 – Performance:

Adequate considerations should be given to the design of the model to reduce the

level of overhead and run-time delay as introduced by the LoA derivation service

provided by the GEA-LoADM model.

5.2 Architecture Overview

Figure 5.1 shows the GEA-LoADM architecture. From the figure, it can be seen that

it has a number of architectural components. These components can largely be

classified into the following groups: an off-line component, a real-time component

and an LoA-effecting attributes policy database. The output of the GEA-LoADM is

an Agg-LoA value calculated for an authentication instance performed by a

requester. This value is consumed by a relying party (i.e. a service provider), which

can be either a shibboleth attribute authority [Shib05] or an authorisation decision

engine to grant access to the requester.

The off-line component is an LoA-effecting Attributes Policy Manager (LoA-APM).

It is responsible for identifying a set of LoA-effecting attributes in an authentication

environment, structuring them into a hierarchy based on their mutual relationships,

and calculating the weightings for the additive attributes in the set. The component

comprises two further functional modules: an LoA-effecting Attributes Hierarchical

Structure (LoA-AHS) and an LoA-effecting Attributes Weightings Allocation

Module (LoA-AWAM). The LoA-AHS is responsible for identifying a set of LoA-

101

effecting attributes in a given authentication environment, constructing a

hierarchical LoA-effecting attributes structure (such as the one shown in Figure 5.3),

and categorising the attributes into different groups and levels based on their mutual

relationships. These tasks are expected to be undertaken manually by an

authentication administrator or access policy decision-maker, based on their security

policies and access control requirements. The LoA-AWAM is responsible for

calculating the LoA weightings for additive LoA attributes. The weightings, the

attribute hierarchical structure, the indicators of the relationships among different

attributes, and the component LoA values are all then stored in an LoA-effecting

attributes policy database (LoA-APDB). The working mechanisms of, and the

methodology used in the design of, these functional modules are detailed in Section

5.3.1.

Figure 5.1. GEA-LoADM architecture

The real-time component has two functional modules: an LoA-effecting Attributes

Collection Module (LoA-ACM) and an Authentication LoA Derivation Module

Off-line component

Off-line component

Real-time Components

LoA-APM

ALoA-DM

LoA-

APDB

LoA-ACM

LoA-AHS

LoA-AWAM

A 3
rd

 party Attribute

Authority (or Relying

Party)

 AuthN Server1

 AuthN Server2

 AuthN Servern

102

(ALoA-DM). The LoA-ACM performs three tasks. It first receives a set of

contributing LoA-effecting attributes involved in an authentication instance from the

authentication services in a SAML assertion format. It then parses the assertions and

retrieves the contributing LoA-effecting attributes‟ names from it. Next, the LoA-

ACM sends the retrieved attributes‟ names to the ALoA-DM. The ALoA-DM

receives the contributing LoA-effecting attributes‟ names and fetches both their and

their parent attributes‟ names (the database stores the hierarchical structure),

component LoA values, relationship indicators and weightings. This information is

used to form a sub-LoA-AHS for this particular authentication instance. Then the

ALoA-DM uses the sub-LoA-AHS as input to calculate the aggregate LoA using an

authentication LoA derivation algorithm corresponding to the settings of the

authentication environment. The design details of the LoA-ACM and ALoA-DM are

described in Sections 5.3.3 and 5.3.4, respectively.

The LoA-APDB (LoA-effecting attributes policy database) is a database storing all

of the LoA-effecting attributes identified by the LoA-AHS, their relationships, their

component LoA values and the additive LoA attributes‟ weightings. The technical

details of this module are described in Section 5.2.

As depicted by Figure 5.2, the working of the GEA-LoADM model is as follows:

Offline-Step 1: The authentication environment is analysed and all of the LoA-

effecting attributes of the authentication environment are identified and constructed

in the LoA-AHS structure. The corresponding component LoA values are estimated,

too. Section 5.4.1.1 discusses this in detail.

Offline-Step 2: The LoA-AWAM module (as shown in Section 5.3.1.2) is used to

estimate the weightings of the additive attributes.

At this point, all of the LoA-effecting attributes in the authentication environment

have been structured, their component LoA values estimated and the weightings of

the additive attributes calculated. All of the information is stored in the LoA-APDB.

103

The off-line steps are executed the first time the model is implemented in an

authentication environment and should be reviewed or redone when there is a policy

change (e.g. adjustment of the LoA values of LoA-effecting attributes; change of the

authentication impact among additive attributes), or when new attributes are added

or obsolete attributes omitted.

The following real-time steps are executed per authentication instance:

Real-time Step 1: Upon the execution of an authentication instance, the LoA-ACM

receives the SAML assertions of the contributing LoA-effecting attributes from the

authentication services for this instance.

Real-time Step 2: The LoA-ACM parses the assertions and retrieves the

contributing LoA-effecting attributes‟ names and sends them to the ALoA-DM.

Real-time Step 3: The LoA-DM calls the LoA-APDB to fetch the attributes‟

component LoA values, the relationship indicators and the additive attributes

weightings from the LoA-APDB. The attributes‟ parent attributes (based on the

LoA-AHS) are also retrieved to form a sub-LoA-AHS for the authentication

instance. The algorithm in the ALoA-DM (as discussed in Section 4.3 and 4.4)

derives the aggregate LoA value based on the sub-LoA-AHS structure.

The decision-maker reviews the authentication events and the derived LoA values

periodically. If there is a policy change or any abnormal situation such as

faulty/unsatisfactory results, the decision-maker can revise the hierarchical structure

and the weighting policies to make the appropriate modifications.

104

Define LoA-AHS

Structure

Store the structured

attributes, their

component LoA values,

relationships and

weightings

Establish

Weightings for

Additive Attributes

LoA-effecting

attributes in a

real-time

authentication

instance

Collect attributes and

send them to ALoA-DM

module

retrieve contributing attributes

AHS and their component loA

values, their relationships and

corresponding weightings

Calculate aggregated LoA

value

Off-line Phase per

authentication

environment

Real-time Phase per

authentication instance

R
e
v
ie

w
 L

o
A

-A
H

S
 a

n
d
 w

e
ig

h
tin

g

Reviewing

Figure 5.2 GEA-LoADM system execution flow

105

5.3 Architectural Components Design

5.3.1 LoA-effecting Attributes Policy Manager (LoA-APM)

The LoA-APM is proposed as an off-line component, meaning that its functions are

performed prior to the execution of authentication procedures.

5.3.1.1 LoA-effecting Attributes Hierarchical Structure (LoA-AHS)

The LoA-AHS module is responsible for

 managing (i.e. adding, deleting and classifying) LoA-effecting attributes;

 assigning component (or attribute) LoA values to each of the attributes; and

 constructing the attributes into a hierarchical structure based on their mutual

relationships.

The first two tasks are authentication environment-dependent. They are also

dependent on access policies that are, in turn, influenced by factors such as the

values of the asset under protection and the risks in the underlying access

environment. We have examined and extended the attributes identified by NIST and

OASIS and produced a generic set of LoA-effecting attributes, as described in

Section 3.2. In addition, we have examined the mutual relationships among these

attributes and organised them into the hierarchical structure shown in Figure 5.3.

From the figure, it can be seen that the attributes at the same horizontal level enjoy

one type of mutual relationship, either additive or weakest link. The aggregate LoA

value for a group of related attributes (shown as circled with a dashed line) at that

level is determined by the component LoA values of the attributes in that group, as

well as their mutual relationship. This aggregate LoA, say level-k aggregate LoA,

once calculated, is then fed into the level immediately above it, i.e. level (k+1), as

the component LoA value of the attribute directly connected to the group. For

example, as shown in the figure, the bottom group of two attributes, {„Token Type‟,

„KeyStore‟} located at level 5, are connected to the „Authentication Token‟ attribute

106

at level 4. The component LoA value for the „Authentication Token‟, called the

LoAAuthNToken, is then equal to the aggregate LoA value (named LoA5,1, denoting the

LoA value for the first group of attributes at level 5) of the two connected attributes

at the level immediately below it. These two attributes have the weakest link mutual

relationship; therefore, the aggregate LoA value of the group, LoA5,1, is equal to

min(LoATokenType, LoAKeyStore). LoA5,1 is then taken as the component LoA value for

the attribute, the „Authentication Token‟, i.e. LoAAuthNToken = LoA5,1. Applying the

same method to all of the attribute groups in the structure in a bottom-up manner,

we will eventually get an LoA value for the root node; this root LoA value is the

aggregate LoA value for the entire authentication instance.

This structured approach to LoA-effecting attributes‟ identification, classification,

and organisation is an essential step towards the determination of their respective

weightings on, and derivation of, the overall confidence level for an authentication

instance, in a scientific manner. This structure has a number of additional merits.

For example, it is flexible and extensible. Any emerging LoA-effecting attributes

can easily be added into the structure, and any obsolete ones removed from it

without affecting other levels in the hierarchy. Also, once constructed, an LoA-AHS

for a given authentication environment will only need to be revised when there is a

change in the authentication attributes at any level.

5.3.1.2 LoA-effecting Attributes Weighting Allocation Module (LoA-

AWAM)

When calculating an aggregate LoA for a set of attributes that are in an additive

relationship, their respective weightings should be determined first. The LoA-

AWAM module uses the AHP‟s pair-wise comparison technique discussed in

Section 4.4.1 to calculate the relative weightings of the attributes.

107

LoA-effecting

Attributes

Assertion-based

Authentication

ID Credential

Authentications

Username/

password

Location based

Authentications

IP LoA=2

Authentication

Token

Authentication

Protocol

SAML

Additive

Additive

Weakest Link

Authentication

Token

Authentication

Protocol

Token Type

keystore

Weakest Link

Weakest Link

Cookies

Additive

PKI

Digitally signed/

TLS LoA=1

One Time

Password LoA=3 Kerberos

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

X.509 Proxy

Credential

LoA=2

X.509 ID

Credential

LoA=4

Soft Token

LoA=3

Hardware

Token LoA=4

Online

Credential

Repository

LoA=3

Digitally signed/

TLS 12 hours

expiration

LoA=2

Digitally signed/

TLS 2 hours

expiration

LoA=3

Derived from

cryptographic

key 12 hours

expiration

LoA=2

Derived from

cryptographic

key 2 hours

expiration

LoA=3

Derived from

user password

LoA=1

PoP LoA=4

Symmetric key

PoP LoA=4

Zero

Knowledge or

tunnelled

LoA=2

Challenge

response

LoA=1

Password

LoA=2

PoP LoA=4

Symmetric key

PoP LoA=4

Zero

Knowledge or

tunnelled

LoA=2

Challenge

response

LoA=1

Figure 5.3 A generic LoA-AHS structure

108

5.3.2 LoA-effecting Attributes Policy Database (LoA-APDB)

The LoA-APDB is a database containing four tables. Table one, called the „AHS‟

table, stores the LoA-AHS structure, the „Weightings‟ and the „Relationship Types‟ of

the LoA-effecting attributes. Table two, called the „attributes‟ table, stores „Attribute

Names‟ and „Component LoA Values‟ of the LoA-effecting attributes. Table three,

called the „aggregate LoA‟ table, stores the aggregate LoA value derived by the

ALoA-DM for each authentication instance. Table four, called the „Contributing

AHS‟ table, links with the „aggregate LoA‟ table and stores the corresponding

contributing LoA-effecting attributes in a hierarchal structure for each authentication

instance.

attributes

PK attribute_ID INTEGER

 attr_name VARCHAR(200)

 Comp_LoA INTEGER

AHS

 parent_attr_ID INTEGER

 child_attr_ID INTEGER

 left_node INTEGER

 right_node INTEGER

 relationship CHAR(10)

 weighting INTEGER

attributes_AHS_FK1

Aggregate LoA

PK Agg_LoA_ID INTEGER

 Agg_LoA DOUBLE

 Time DATETIME

contributing AHS

PK hie_ID INTEGER

 parent_attr_ID INTEGER

 child_attr_ID INTEGER

FK1 Agg_LoA_ID INTEGER

Aggregate LoA_contributing AHS_FK1

attributes_contributing AHS_FK1

Figure 5.4 LoA-APDB ER Model

5.3.3 LoA-effecting Attributes Collection Module (LoA-

ACM)

The LoA-ACM module performs three tasks. Firstly, it interacts with all of the

authentication services involved in an authentication instance to receive the SAML

assertions that contain the contributing LoA-effecting attributes. Secondly, it parses

the assertions to retrieve the contributing LoA-effecting attributes‟ names. Thirdly, it

sends the retrieved data to the ALoA-DM. Figure 5.5 shows the sequences involved

109

when a user authenticates to a GEA-LoADM model-aware authentication service.

One issue we have observed during the design of the LoA-ACM module is that while

conveying the LoA-effecting attributes between different parties (e.g. between

different modules in the GEA-LoADM model, or between an authentication service

provider and relying party), a unified attributes namespace is required so that both

parties can refer to the same attributes without confusion. One way to address this

issue is to use SAML authentication context (AC) specification [Samlac]. As we have

discussed in Section 3.2, SAML AC specification has defined an XML-based syntax

for constructing ACs. Most of the LoA-effecting attributes we have identified are

defined in the AC specification (i.e. they have a unified identifier), and for attributes

that are not defined in the AC specification, we can extend the definition to

accommodate them.

queries

User Authentication Services LoA_ACM LoA_APDB LoA_DM

authenticates:

responses

redirect user to resources

After successful

authentication,

the AS sends

contributing LoA-

effecting

attributes to LoA-

ACM

Stores Agg-

LoA value and

contributing

attributes

sends attributes data:

calculate

Agg-LoA

value

Parse

assertion to

retrieve

contributing

attributes’

names

Figure 5.5 GEA-LoADM real-time authentication sequence diagram

5.3.4 Authentication LoA Derivation Module (ALoA-DM)

The ALoA-DM obtains the contributing LoA-effecting attributes names from the

LoA-ACM. It then queries the LoA-APDB to fetch the attributes‟ component LoA

values, relationship indicators and weightings and form a sub-LoA-AHS. It then uses

the sub-LoA-AHS to derive an aggregated authentication LoA value for the

authentication instance. The derivation is done by using the algorithms detailed in

110

Chapter 4. Once the aggregate LoA value is calculated, the sub-LoA-AHS is stored in

the „Contributing AHS‟ table, and the aggregate LoA value, along with a time stamp,

is stored in the „Aggregate LoA‟ table in the LoA-APDB for auditing purposes and

future reference. Optionally, these data may be stored in a third-party attribute

directory managed by an attribute authority for consumption by other relying parties.

For example, the data may be sent to the attribute authority in the Shibboleth system

for attribute assertion [Shib05, Zhan06], or to the attribute authority for creating and

assigning an attribute certificate.

5.4 Model Analysis against Design Requirements

In this section, we analyse the GEA-LoADM model against the design requirements

specified in Section 5.1.

R1 - Extensibility:

The model has designed and developed an LoA-AHS structure. By using such a

structure, the model can easily support removal of any obsolete attributes,

modification of any existing attributes and addition of any new attributes. So if a new

authentication service is introduced to the authentication environment, there is no

need to alter other attributes in the hierarchy. This feature is particularly important in

an area where the technology advances at a rapid pace.

R2 – Support the use of policy-driven attribute LoA values:

The model uses a mapping mechanism to transform existing LoA values to a value

between 0 and 1. If another LoA regime is used the only modification is to replace the

LoA value mapping mechanism. Other modules in the architecture remain unchanged.

In other words, the LoA derivation model will still be applicable regardless of the

LoA regime.

R3 – Systematic determination of weightings for LoA-effecting attributes:

Determining the weightings of a set of LoA-effecting attributes in an additive

relationship is a challenging issue. The model employs a multi-criteria decision

making technique, the analytic hierarchy process (AHP), to establish the weightings

of such attributes. By using the pair-wise comparison method, the decision-maker

can make subjective decision based on the importance of the services and use AHP to

systematically measures the relative weightings between attributes, deriving overall

111

weightings for all of the attributes.

R4 – Derivation of aggregate LoA:

In an authentication instance, an aggregate LoA can be derived from a set of LoA-

effecting attributes based upon their component LoA values. The model has identified

a comprehensive set of LoA-effecting attributes, identified two types of relationships

for the LoA-effecting attributes and developed three aggregate LoA derivation

algorithms. By combining the algorithms and taking the LoA-effecting attributes‟

component LoA value as input (for attributes that are in an additive relationship, their

respective weightings are also required), the model can derive an aggregate LoA for

the entire authentication instance.

R5 – LoA conveyance:

The model uses the SAML authentication context specification to convey LoA and

LoA-effecting attributes. In this way, all of the attributes and the aggregate LoA are

transmitted in a standard, unified and secure manner, thus providing security and

convenience for sending and receiving parties.

R6 – Modular structure:

The design of the model uses a modular approach, as described in Section 5.3. Each

module of the model is designed to fulfil a specific function and can easily be plugged

in or taken out. For example, we can change the aggregate LoA derivation algorithm

without modifying/interfering with other components of the model. The LoA-

effecting attributes can be added/modified/removed without affecting the attribute

collection and aggregate LoA derivation.

R7 – Security and R8 – Performance: The security and performance evaluations

will be conducted in Chapter 6.

5.6 Chapter Summary

This chapter has given the design details of the GEA-LoADM model, by which the

aggregate LoA, as influenced by multiple LoA-effecting attributes, can be

systematically estimated. There are two novel contributions in this model design. The

first is the LoA-AHS structure, by which a large number of LoA-effecting attributes

can be organised into a hierarchical structure with distinctive mutual relationships.

The second major contribution is the design of three aggregated LoA derivation

112

algorithms. They capture the two identified relationships. With the use of these

algorithms, supported by the LoA-AHS structure and additional architectural

components, the model is able to systematically and automatically derive a composite

LoA value given a set of LoA-effecting attributes in an authentication instance. The

major advantage of this model is its ability to accommodate a complex set of

attributes and to provide a quantitative measure for authentication assurance levels in

the face of complex authentication tasks. In the next chapter, we will prototype and

evaluate the GEA-LoADM model using a real-life case study. The performance and

security of the GEA-LoADM model will also be analysed.

113

Chapter 6

GEA-LoADM Real System Evaluation

6.1 Chapter Introduction

Chapters 4 and 5 presented the design of three aggregate LoA derivation algorithms

and the design of the GEA-LoADM model. This chapter presents a prototype of the

GEA-LoADM model. Based on the prototype, the performance of the model is

evaluated to further assess the costs introduced as a result of using this approach. A

security evaluation is also conducted to assess the resistance level of the model

against various security attacks. Section 6.2 reports an implementation of the GEA-

LoADM model in detail. The implementation is done in a real-time system, the MAIS

(Multi-Agency Electronic Information Sharing) system. Section 6.3 gives a

performance evaluation of the GEA-LoADM, and the security evaluation is presented

in Section 6.4. Finally, Section 6.5 concludes the chapter.

6.2 GEA-LoADM Model Prototype

6.2.1 Multi-Agency Electronic Information Sharing (MAIS)

System

The Pilot Electronic (Web-based) Multi-Agency Information Sharing (MAIS) System

for Mentally Disordered Offenders is a project awarded by the NHS Service Delivery

and Organisation R&D Programme to the School of Computer Science, in

collaboration with the Psychiatry Research Group in the School of Community-Based

Medicine, at The University of Manchester. The aim of the project is to establish a

multi-agency information sharing IT network that will provide a mechanism through

which information about a recently released prisoner, who has severe and enduring

mental health problems, can be shared promptly, securely and reliably between the

community health (police custody nurses, forensic medical examiners and the

criminal justice mental health team) and criminal justice agencies (i.e. police custody

sergeants). The MAIS system is a web-based networked system involving the

establishment of a secure web-based e-Workbench service to provide browser-based

fine-grain controlled access to the health records of mentally ill prisoners upon their

114

release from the MAIS network prisons.

Figure 6.1 shows the architecture of the MAIS system. From the figure, it can be seen

that the e-Workbench is equipped with the following components: a database that

contains a selection of the prisoner‟s personal, criminal and health information; a

number of authentication services; a role-based access control service to ensure users

from different agencies are only able to access the data they are entitled to; a data

access service that facilitates the database access and delivers the required

information to the user; and an audit service that records all activities related to the

data access in the MAIS system.

Figure 6.1 MAIS system architecture

At the current stage, the access control service of the MAIS system works as follows.

It employs three authentication services: the first one is a username/password-based

authentication service, the second one is a PKI certificate-based software/hardware

based authentication service and the third one is an IP-based authentication service.

An access control process begins with user authentication, in which a user can choose

to use either the username/password-based authentication service or the PKI

certificate-based authentication service. The IP-based authentication is a compulsory

service. More discussions about the compulsory use of IP-based authentication

service are given in the next paragraph. In the case of successful authentication, the

role-based authorisation service assigns one of two roles (one is „police‟ and the other

is „clinician‟) to the user. This role assignment is done based on the user‟s ID. Each of

MAIS

E-workbench

Authentication Services

Role-based

authorisation service

E-health

Database

Web browser

Username/password

PKI certificate

Data Access

service
IP-based

Audit service

115

the roles is assigned with a set of access privileges. For example, as shown in the use-

case diagram in Figure 6.2, the „clinician‟ role has „write‟ access to the prisoner data,

whereas the „police‟ role can only view the data. Another example is that the

„clinician‟ role can access a prisoner‟s „prescription detail‟ data, but the „police‟ role

cannot. These access policies are used by the authorisation service to make an access

control decision. The decision is executed by the data access service to deliver the

appropriate prisoners‟ data to the user making the request. During the access control

process, the audit service records the user ID, user access time, user‟s access IP

address and user‟s activities, including what data information for which prisoner is

viewed/modified by whom at what time. The auditing service ensures accountability

in data access and usage.

Police

Login

MAIS System

Clinician

<<uses>>
<<extends>>

search prisoner

view data section B

write to databaseview/modify personal info

view data section A

<<uses>>

<<extends>>

<<extends>>

Login

<<extends>>

<<extends>>

<<extends>>

<<extends>>

<<extends>>

Figure 6.2 MAIS system use case diagram

Owing to the requirement for the project, IP-based authentication is a compulsory

authentication service. This means that users can only access data stored in the MAIS

system from a few pre-defined IP subnets, such as a police custody suite or a

clinician‟s office. This security policy was requested by the project stakeholders. It is

enforced to provide enhanced protection of the highly sensitive personal information

and health data of the prisoners. However, this policy greatly reduced the accessibility

of the MAIS system. For example, if a clinician from an agency is called out for an

emergency regarding a prisoner‟s mental health problems, the clinician would want to

check the mental health history and prescription details of the prisoner from his/her

116

Internet-enabled mobile phone or an Internet-connected computer in the visiting

location. However he/she cannot do this because the system is IP-restricted and he/she

can only access the MAIS service from his/her office computer.

By integrating the GEA-LoADM model into the MAIS system and linking the

authentication LoA to access control decisions in the MAIS authorisation process, we

can achieve a more fine-grained access control without sacrificing the usability of the

system. For example, there is no need to make compulsory use of the IP-based

authentication as the whole point of this security policy is to improve the strength of

authentication, thus enhancing the protection of prisoners‟ data. If a user does not opt

for the IP-based authentication, then the user will be assigned with a lower

authentication LoA. A lower authentication LoA means less access privilege should

be granted to the user. For example, if a user accesses MAIS data using his/her office

computer and opts for IP-based authentication, then the user could be granted with

„read‟, „write‟ and „append‟ access to the data. However, if the same user accesses the

data from somewhere else, and/or does not opt for IP-based authentication, then

he/she would only be granted with „read‟ and „append‟ access. In this way, the

restricted user privileges limit the risk of data being compromised and also provide

enhanced protection of prisoners‟ data. The next section presents the implementation

and integration of the GEA-LoADM model with the MAIS system.

6.2.2 Integrating GEA-LoADM into the MAIS System

Figure 6.3 shows the integration of the GEA-LoADM model into the MAIS system.

Comparing this figure to Figure 6.1, we can see that in order to integrate the GEA-

LoADM model, the MAIS system needs to have two modifications. The first

modification is to change the authentication services to make them send LoA-

effecting attributes to the GEA-LoADM model upon successful authentication. A

more detailed discussion of this is given in Section 6.2.2.4. The second modification

is to define the LoA requirements of each section of the e-health database and to write

access control policies so that they use the LoA as one of the attributes for access

control. For prototyping purposes, the author has assigned LoA values to different

sections of the e-health database and the authorisation service‟s security policies have

been amended accordingly. In the next four sub-sections, we follow the steps

discussed in Section 5.3 to implement the GEA-LoADM model.

117

Figure 6.3 MAIS architecture with GEA-LoADM

6.2.2.1Constructing an LoA-AHS for the MAIS system

The first step in building the GEA-LoADM model is to identify the LoA-effecting

attributes from the MAIS authentication environment and construct the LoA-AHS

structure. As shown in Table 6.1, we have identified seven LoA-effecting attributes

based on three authentication services in the MAIS system. The username/password

authentication service has „password‟ as the authentication credential and „SSL‟ as the

authentication protocol. The certificate-based authentication service has „X.509 ID

credential‟ and „X.509 proxy credential‟, and the keystores are „software token device‟

and „hardware token device‟. The authentication protocol used is „SSL‟. The IP-based

authentication service has no further attributes. In addition, the component LoA

values of the attributes are estimated. Some of these values are taken from the NIST

e-authentication guideline [Burr06] and some of them (i.e. those not defined by NIST)

are assigned by the author for prototyping purposes. The attributes whose LoA values

have been given by the author are annotated with an asterisk.

MAIS

E-workbench

GEA-LoADM

Authentication Services

Role-based

authorisation service E-health

Database

Web browser

Username/password

PKI certificate

Data Access

service

IP-based

Audit service

LoA-ACM

ALoA-DM

LoA-

PADB

118

Category Attributes Sub-attributes Component

LoA value

MAIS LoA-

effecting

attributes

Authentication

Credentials

 Password 2

 X.509 ID Credential 4

 *X.509 Proxy Credential* *2*

Authenticator

Transport Protocol

 Private key Proof of Procession

(PoP), e.g. SSL

4

Key store  Software token device 3

 Hardware token device 4

Location*  IP-based authentication *2*

Table 6.1 MAIS system LoA-effecting attributes list

Based on the LoA-effecting attributes we have identified, we can construct the LoA-

AHS structure for the MAIS authentication environment as shown in Figure 6.4.

LoA-effecting

Attributes

ID Credential

Authentications

Username/

password

Location based

Authentications

IP LoA=2

Authentication

Token

Authentication

Protocol

Additive

Additive

Weakest Link

Authentication

Token

Authentication

Protocol

Token Type keystore

Weakest Link

Weakest Link

PKI

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

X.509 Proxy

Credential

LoA=2

X.509 ID

Credential

LoA=4

Soft Token

LoA=3

SSL LoA=4Password

LoA=2

SSL LoA=4

Hardware

Token LoA=4

Figure 6.4 MAIS authentication environment LoA-AHS structure

119

6.2.2.2 Estimating weightings of additive attributes

After structuring all of the LoA-effecting attributes and identifying the relationships

for each group of attributes, the weightings of the additive attribute groups need to be

determined. We follow the steps described in Section 4.4.1 to determine the

weightings of the additive attributes in the MAIS LoA-AHS structure. For

prototyping purposes, the author has chosen pair-wise comparison values for the

additive attributes groups, as shown in Table 6.2 and 6.3. A Java web application is

developed to calculate the weightings for each of the additives attributes. Figure 6.5

shows the GUI of the application. In Table 6.2 and 6.3, the pair-wise comparison

matrix, the calculated eigenvector and the corresponding normalised weightings of

each additive attributes groups are presented.

Figure 6.5 Weighting determination GUI

120

 ID credential-

based

Authentication

Location-based

Authentication

Eigenvector Normalised

weightings

ID credential-

based

Authentication

1 4/1 4 0.8

Location-based

Authentication

1/4 1 1 0.2

Table 6.2 Pair-wise comparison matrix for level 2 additive attributes group

 Username/passwor

d Authentication

Certificate-

based

authenticatio

n

Eigenvecto

r

Normalise

d

weightings

Username/passwor

d Authentication

1 1/3 0.315 0.249

Certificate-based

Authentication

3 1 0.949 0.751

Table 6.3 Pair-wise comparison matrix for level 3 additive attributes group

At this point, all of the LoA-effecting attributes in the MAIS authentication

environment have been structured, their component LoA values estimated and the

weightings of additive attributes calculated. The next step is to implement and

populate the LoA-APDB database and store the information into the database for the

real-time component of the GEA-LoADM to use.

6.2.2.3 Implementation of the LoA-APDB

The LoA-APDB database is implemented using Mysql technology. As mentioned in

Section 5.4.2, four tables have been created in the LoA-APDB database. Appendix B

contains the database schema.

6.2.2.4 Implementation of the LoA-ACM module

The LoA-ACM module is developed as a Java servlet that does the following tasks:

1). Receiving SAML assertions that contain the contributing LoA-effecting attributes‟

names from authentication services during the authentication process in an

authentication instance.

121

2). Parsing the assertions and retrieving the LoA-effecting attributes‟ names from

them.

3). Sending the retrieved information to the ALoA-DM.

Here we use an example to illustrate the process of the LoA-ACM module. Assume a

user, Bob, chooses to authenticate to the MAIS system using both username/password

and IP-based authentication services. After successful authentication, the LoA-ACM

module receives one SAML assertion from each of the authentication services, as

shown in Tables 6.4 and 6.5. The LoA-ACM parses the SAML assertions and

retrieves the corresponding LoA-effecting attributes‟ names. Table 6.6 shows the

retrieved LoA-effecting attributes‟ names from the assertions. This information is then

sent to the ALoA-DM module via an SSL channel to ensure the integrity and the

confidentiality of the message.

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

AssertionID="db3c2838db744f704c5363059bb7a0eb" IssueInstant="2010-05-

17T14:58:34.763Z" Issuer="EGA-LoADM" MajorVersion="1"

MinorVersion="1">

 <Conditions>

 <DoNotCacheCondition></DoNotCacheCondition>

 </Conditions>

 <AttributeStatement>

 <Subject>

 <NameIdentifier

Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"

NameQualifier="EGA-LoADM:AS">password authentication</NameIdentifier>

 <SubjectConfirmation>

 <ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:sender-

vouches</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

 <Attribute AttributeName="password authentication token"

AttributeNamespace="urn:bea:security:saml:AC">

 <AttributeValue>password</AttributeValue>

 </Attribute>

 <Attribute AttributeName="password authentication

protocol" AttributeNamespace="urn:bea:security:saml:AC">

 <AttributeValue>ssl</AttributeValue>

 </Attribute>

 </AttributeStatement>

</Assertion>
Table 6.4 Username/password authentication service SAML assertion

<Assertion xmlns="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"

xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol"

AssertionID="db3c2838db744f704c5363059bb7a0eb" IssueInstant="2010-05-

17T14:58:34.763Z" Issuer="EGA-LoADM" MajorVersion="1"

122

MinorVersion="1">

 <Conditions>

 <DoNotCacheCondition></DoNotCacheCondition>

 </Conditions>

 <AttributeStatement>

 <Subject>

 <NameIdentifier

Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"

NameQualifier="EGA-LoADM:AS">IP authentication</NameIdentifier>

 <SubjectConfirmation>

 <ConfirmationMethod>urn:oasis:names:tc:SAML:1.0:cm:sender-

vouches</ConfirmationMethod>

 </SubjectConfirmation>

 </Subject>

</Assertion>
Table 6.5 IP-based authentication service SAML assertion

Level 3 attributes Level 4 attributes Attributes values

Password authentication Password authentication token password

Password authentication protocol SSL

IP authentication

Table 6.6 Retrieved LoA-effecting attributes names from SAML assertions

6.2.2.5 Implementation of the ALoA-DM module

The ALoA-DM module receives the contributing LoA-effecting attributes‟ names

from the LoA-ACM and queries to the LoA-APDB to retrieve both the contributing

attributes‟ and their parent attributes‟ names (the database stores the hierarchical

structure), component LoA values, weightings and relationship indicators. These

attributes form a sub-LoA-AHS, as illustrated in Figure 6.5.

123

LoA-effecting

Attributes

ID Credential

Authentications

 Weighting=0.8

Username/

password

Location based

Authentications

 Weighting=0.2

IP LoA=2

Authentication

Token

 LoA=2

Authentication

Protocol

 LoA=4

Additive

Weakest Link

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

SSL LoA=4Password

LoA=2

Figure 6.6 The sub-LoA-AHS for an authentication instance

The ALoA-DM uses the structure as input to calculate the final aggregate LoA value.

Using the algorithms described in Chapter 4, the results are the following:

Aggregate LoA value for

this authentication instance

Use ALoAAD-SL

algorithm

Use ALoAAD-PT

algorithm

0.71 0.77

NIST LoA definition 3 4

Table 6.7 Aggregate LoA calculated in two additive algorithms

The ALoAAD-SL algorithm gives an aggregate LoA value „0.71‟; the ALoAAD-PT

algorithm gives an aggregate LoA value „0.77‟; and based on the mapping mechanism

discussed in Section 4.4, the threshold of NIST level 3 and 4 is 0.75, thus the

aggregate LoA values are transformed to 3 and 4 in the NIST definition respectively.

It can been seen that the small changes in the numerical values of the LoA can lead to

the same procedure being placed in two different NIST LoA levels. An observation

can be made from this result. I.e. the numerical LoA values represent the

authentication assurance in a more precise way than NIST LoA levels. More

refinement for NIST LoA levels is needed.

After the derivation of the aggregated LoA, the corresponding LoA-effecting

124

attributes and the LoA value for this authentication instance are stored in the LoA-

APDB for authorisation services to use.

6.3 GEA-LoADM Performance Evaluation

This section aims to investigate the level of the additional overheads the GEA-

LoADM introduces into an authentication process. In the following experiments, the

Authentication Execution Times (AETs) in both the GEA-LoADM-enabled MAIS

system and the MAIS system without the GEA-LoADM are measured and compared.

An AET is defined as the time difference between when an authentication service

receives an authentication request and when the authentication service makes an

authentication decision for the request. The unit of the AET is a millisecond.

Two sets of experiments (Set A and Set B) have been conducted for the evaluation.

Set A is performed in the GEA-LoADM enabled MAIS system and Set B is

performed in the MAIS system without the GEA-LoADM. Each set contains four

identical experiments. Experiment one uses a username/password authentication

service. Experiment two uses a certificated-based authentication service. Experiment

three uses username/password and IP-based authentication services, and experiment

four uses certificate-based and IP-based authentication services.

Prior to performing the experiments, two main results were anticipated. Firstly, that

all the AETs in Set A experiments would be longer than the AETs in Set B

experiments. The reason is apparent as the GEA-LoADM would add additional

overheads to the MAIS system. Secondly, the AETs in both sets would be longer

when multiple authentication services are used (i.e. experiments 3 and 4) than the

AETs when a single authentication service is used (experiments 1 and 2). This is

because more computational time will be consumed when the sizes of attributes‟ input

for the algorithms are larger, as we have evaluated in Section 4.5.2.

6.3.1 Evaluation Environment

The experiments are hosted on a Windows 7 OS running on a ThinkPad laptop with

two 2.53GHz processors and 3072MB of memory. The prototype is implemented as a

JAVA web application with Java EE™ Runtime Environment version 5. The

performance evaluation tool used is NetBeans IDE v6.8.

125

6.3.2 Experiment Results

Figure 6.7 shows the results of the experiments. As can be seen in the figure, one set

is from the MAIS system with the GEA-LoADM and the other set from the MAIS

system without the GEA-LoADM. The four experiments are „username/password

authentication service‟, „certificated-based authentication service‟,

„username/password and IP-based authentication services‟ and „certificate-based and

IP-based authentication services‟, respectively. Two observations can be made from

these results. The first one is that the AETs in Set A are significantly bigger than the

AETs in Set B. This observation is in line with our expectations. The average

difference is around 4 times longer. For example, in these experiments, the average

AET in Set A is 2.3 seconds, but the average value in Set B is 0.64 seconds. Another

observation is that in Set A, the AETs in experiments 3 and 4 are much longer than in

experiments 1 and 2. This result is also expected.

In order to improve the performance and reduce the AET in the GEA-LoADM model,

we need to find out which component in the GEA-LoADM cost the most AET. For

this purpose, we have done another set of experiments and investigated the execution

times of each of the components involved in the authentication process. Figure 6.8

shows the experiment results. It shows three sets of execution times in milliseconds

against the four experiments. The three sets are from the LoA-ACM module, the

ALoA-DM module and the authentication service, respectively. The four experiments

are the same as the previous ones. The results show that the LoA-ACM module

contributes the most AETs. After further investigating the program, we found that this

is because the SAML assertions are XML-based messages, and parsing these

messages (typically involving the construction of a DOM tree) is a very time-

consuming operation. Therefore, it costs a large amount of execution time. There is

little we can do from the software point of view, but a high-performance computer

would be able to reduce this execution time.

126

Figure 6.7 GEA-LoADM AET experiments

 Figure 6.8 GEA-LoADM components execution time experiments

127

6.4 Tests against Security Attacks

This section evaluates the security strength of the GEA-LoADM and discusses

whether the overall security level of the MAIS system would be weakened by

applying the GEA-LoADM model.

From the discussion in Section 6.2.2, we can see that the GEA-LoADM model does

not interfere with the user-to-system authentication process; therefore, the security of

this part is unchanged. However, because the authentication services send SAML

assertions to the GEA-LoADM, the authenticity of the authentication services and the

integrity and confidentiality of the SAML assertions need to be guaranteed. We do so

by issuing certificates to each of the authentication services and enabling SSL mutual

authentication services to verify the authenticity of the authentication services.

We have attempted some well-known attacks against our prototype and analysed the

resistance level of the GEA-LoADM against them. Four security attacks have been

attempted against the system: the first one is a forged assertion attack, the second one

is a replay attack, the third one is a man-in-the-middle attack and the fourth one is a

denial of service (DoS) attack. In the forged assertion attack, an attacker forges or

alters an SAML assertion and sends it to the GEA-LoADM model. Based on the

countermeasure specified in the SAML specification [Samlv2], the authentication

service can digitally sign the SAML assertion before sending it to the GEA-LoADM

model, thus providing both message integrity and authenticity. The replay attack is

when an attacker intercepts a valid data transmission and retransmits it to the GEA-

LoADM. The countermeasure is to use the SSL transmitting channel between the

authentication services and the LoA-ACM, thereby preventing the message‟s

eavesdropping and interception. In addition, we have enabled a timestamp in the

signature on an assertion (alternatively, a nonce continued by the receiving module

can be included) to provide an additional assurance. The man-in-the-middle attack is a

form of active eavesdropping in which the attacker makes independent connections

with the authentication services and the GEA-LoADM model and relays messages

between them, making them believe that they are talking directly to each other over a

private connection, when in fact the entire conversation is controlled by the attacker.

Again, the countermeasure is to use SSL mutual authentication to verify the

authenticity of the authentication services thus ensuring the authenticity of the

128

message. In a DoS attack, an attacker attempts to prevent legitimate users from

accessing services/resources by making them unavailable. The most common form is

to send enormous valid but useless requests to a service provider thus blocking the

network and/or crashing the server. Since the operations in the GEA-LoADM model

are computationally more expensive than conventional authentication services as we

demonstrated in the last section, the GEA-LoADM model could potentially be

vulnerable to this type of attack. However, as the GEA-LoADM model takes

messages sent by authentication services rather than receiving authentication requests

directly from users, we can thwart this attack by assuring the authenticity between the

authentication service and the GEA-LoADM using SSL mutual authentication. In this

way, the GEA-LoADM could filter out invalid messages more efficiently. They will

have to first successfully pass the authentication services. In other words, only

authorised users could cause harm by launching such attacks; measures such as

auditing can be used to identify and deter the attackers.

In addition, the protection of the LoA-APDB database is also an important issue since

the aggregate LoA values of each authentication instance (live or completed) are

stored there. The database should be installed on a separate machine where only the

server has access to it, and the database machine should not be linked to the Internet

directly.

6.5 Chapter Summary

This chapter has described a prototype of the GEA-LoADM model based on a real-

life system, the MAIS system. Using the prototype, performance and security

evaluations have been conducted. Major contributions demonstrated in this chapter

are threefold. Firstly, the GEA-LoADM model has been implemented in a real-life

system. Secondly, based on this prototype, the performance of the model has been

investigated and compared with a conventional authentication process to understand

the extent of the overheads introduced by the model. Thirdly, by simulating well-

known attacks on the prototype, the security of the model has been validated, which

has demonstrated that the model is able to resist these attacks.

The next chapter concludes this thesis and give recommendations for future work.

129

Chapter 7

Conclusion and Future Work

This chapter summarises the work presented in this thesis, gives the conclusions

drawn from the research findings, and finally, recommends future work.

7.1 Thesis Summary

 7.1.1 Review of the Thesis

The work presented in this thesis can be arranged into four parts: research background,

authentication levels of assurance (LoA) derivation algorithms, the generic e-

authentication levels of assurance derivation model (GEA-LoADM), and the

implementation and evaluation of the model.

Research Background

The thesis has explained what authentication LoA is and how to link it to a user‟s

access privilege to achieve a fine-grained access control. Chapter 2 gave an overview

of the authentication LoA and investigated its related works. It also provided an in-

depth survey of e-authentication technologies and examined the authentication

solutions in large-scale distributed system environments. Chapter 3 identified the

LoA-effecting attributes from different authentication LoA-related works. It further

identified two types of relationships from them, namely the weakest link relationship

and the additive relationship. Finally it investigated potential methods that could be

used to quantify the impact (weighting) of additive relationship attributes on an

aggregate LoA.

LoA Derivation Algorithms

Chapter 4 presented our innovative authentication LoA derivation algorithms. It first

specified the requirements for designing such algorithms. It then presented the design

of one LoA derivation algorithm for attributes with the weakest link relationship, and

the design of two LoA derivation algorithms for attributes with the additive

relationship. Finally, it evaluated the performance and results of the algorithms.

GEA-LoADM Model

130

Chapter 5 presented the design of a real-time authentication LoA derivation model,

the GEA-LoADM, and integrated the LoA derivation algorithms into the model. It

first detailed the design requirements for designing such a model. It then described the

architecture and architectural components of the model. Finally, it analysed the model

against its design requirements.

Implementation and Evaluation

The implementation of the GEA-LoADM model was done on a real-life system, the

MAIS system. Based on the prototype, the performance of the model has been

evaluated and compared to the system without the GEA-LoADM. This evaluation and

comparison further assess the costs introduced as a result of using this approach. A

security evaluation has also been conducted to assess the resistance level of the model

against well-known security attacks.

7.1.2 Contributions

The thesis has made the following contributions and discoveries:

The LoA-effecting attributes hierarchical structure (LoA-AHS)

The author has identified and analysed a wide range of LoA-effecting attributes,

examined the mutual relationships among them and designed a novel LoA-effecting

attributes hierarchical structure (LoA-AHS). The LoA-AHS is flexible and extensible,

and can accommodate existing, as well as future emerging, LoA-effecting attributes.

By grouping multiple attributes into hierarchical levels and different categories based

on their mutual relationships, this structured approach provides a systematic method

for determination of an aggregated LoA value for an authentication instance, given

component LoA values of the attributes involved as well as the weightings of the

additive attributes.

Aggregate LoA Derivation Algorithms

The second major novel contribution is the design, prototype and evaluation of the

three aggregate LoA derivation algorithms. One of the algorithms is for capturing the

weakest link relationship among attributes and the other two are for capturing the

additive relationship among attributes.

131

Generic e-authentication LoA derivation model

The third major novel contribution is the design of the GEA-LoADM model that

incorporates the aggregate LoA algorithms and the AHS structure. The model is

capable of gathering LoA-effecting attributes, retrieving component LoA values of

these attributes and the weightings of those attributes that are in an additive

relationship, and deriving an aggregate LoA value for an authentication instance in

real-time.

Prototype-based evaluation

A prototype-based evaluation has been carried out, which demonstrates that our

solution, the GEA-LoADM, is capable of deriving an aggregate LoA based on a set of

LoA-effecting attributes in real-time. It also demonstrates that the model is secure.

The overheads introduced by the GEA-LoADM solution are the price to pay in order

to achieve a more fine-grained access control. Real-system experiments have shown

that, on average, the GEA-LoADM increases an authentication delay by 3.6 times in

comparison to the system when LoA derivation is not enabled. A bigger portion of this

increase is caused by parsing the XML messages generated as a result of using SAML

assertions.

To summarise, the research has explored the use of authentication LoA to facilitate a

fine-grained access control that allows a user‟s access privilege to be linked to the

authentication LoA in identifying the user.

7.2 Future Work

The following are recommended for future work.

 The functionality of the GEA-LoADM model can be extended. For example, it

can be equipped with a negotiation mechanism so that if the authentication LoA of

a user is not sufficient for certain resources/services access, instead of denying the

access request, the model can negotiate with the user to allow the user to choose

an alternative authentication method in order to achieve the desired authentication

LoA, or to grant the user with a lower level of access privilege.

 The current prototype uses SAML assertions as the underlying LoA-effecting

attributes mechanism to encapsulate and transport their component values, and

other data required by the GEA-LoADM. As shown in our experiments that XML

132

message parsing is a time-consuming task, other transportation methods should be

investigated to find a more efficient way of conveying data between

authentication services and the GEA-LoADM model.

 The evaluation of the GEA-LoADM has only considered the user-to-system

scenario. More work is required to evaluate the model under other authentication

scenarios, such as the assertion-based authentication scenario and delegation

scenario. The GEA-LoADM model has considered the credential delegation, and

more work is required to prototype the solution in a Grid application context to

demonstrate the applicability of the model.

 A ubiquitous computing environment involves the use of more LoA-effecting

attributes than a conventional Internet environment. It would be interesting to

investigate the use of the GEA-LoADM in a ubiquitous environment. In addition

to identifying new attribute types, new authentication LoA derivation algorithms

may need to be designed if new relationships among the attributes are identified.

133

BIBLIOGRAPHY

[Austaf] „The Australian Access Federation‟, available at http://www.aaf.edu.au/ last

access Oct 200

[Auegov] „Australian e-Government & Information Management‟, available at

http://www.finance.gov.au/e-government/index.html last access Oct 2009

[Azum93] R. Azuma. „Tracking Requirements for Augmented Reality‟,

Communications of the ACM, 36(7):50-51, July 1993.

[Burr06] W. E. Burr; D,F. Dodson and W.T. Polk, „Electronic Authentication

Guideline, version 1.02‟, NIST Special Publication 800-63, April 2006.

Available at: http://csrc.nist.gov/publications/nistpubs/800-63/SP800-

63V1_0_2.pdf last access April 2010

[Caegov] „Canadian e-authentication‟, 2004 Available at:

http://www.ic.gc.ca/epic/site/ecicceac.nsf/en/h gv00090e.html last access

Oct 2009

[Capims] „The Cryptography API‟, available at http://msdn.microsoft.com/en-

us/library/aa380256%28VS.85%29.aspx last access Oct 2009

[Chae04] J. Chae; G.K.Mostefaoui and Mokdong Chung, „An Adaptive Security

Model for Heterogeneous Networks Using MAUT and Simple Heuristics‟,

Computational Science and Its Applications; LNCS 3046, 2004 pp .983–

993,2004

[Conv04] M. J. Covington; M. Ahamad; I. Essa and H. Venkateswaran

„Parameterized Authentication‟, European Symposium on Research in

Computer Security 2004, pp. 276–292, Sophia Antipolis, French Riviera,

France 2004.

[Cree04] S. Creese; M. Goldsmith; B. Roscoe and I. Zakiuddin, Authentication for

Pervasive Computing, in Proceedings of the First International Conference

on Security in Pervasive Computing, 2003, pp.116-129, Boppard, Germany,

2004.

http://www.aaf.edu.au/
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://csrc.nist.gov/publications/nistpubs/800-63/SP800-63V1_0_2.pdf
http://www.ic.gc.ca/epic/site/ecicceac.nsf/en/h%20gv00090e.html
http://msdn.microsoft.com/en-us/library/aa380256%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/aa380256%28VS.85%29.aspx

134

[Euegov] IDABC, Interoperable Delivery of European e-Government Services to

public Administrations, Businesses and Citizens,

http://ec.europa.eu/idabc/en/home.

[Fips01] National Institute for Standards and Technology, FIPS PUB 140-2: Security

Requirements for Cryptographic Modules, http://csrc.nist.gov/cryptval/140-

2.htm last access Feb 2010

[Fost03] I. Foster; V. Welch; S. Tuecke; L. Pearlman and C. Kesselman, „The

Community Authorization Service: Status and future‟, In the Proceedings of

2003 Conference for Computing in High-Energy and Nuclear Physics

(CHEP 03), La Jolla, California, 24-28 Mar 2003, pp TUBT003

[Gang01] G.R. Ganger, „Authentication Confidences‟, hotos, pp.0169, Eighth

Workshop on Hot Topics in Operating Systems, 2001

[Gass05] S. I. Gass, „Model World: The Great Debate - MAUT Versus AHP‟,

Interfaces Volume 35 , Issue 4 (July-August 2005) Pages: 308-312 Year

of Publication: 2005 ISSN:0092-2102

[Hart94] A Harter and A Hopper. „A Distributed Location System for the Active

Office‟, IEEE Network, January 1994.

[Ietf4120] The Kerberos Network Authentication Service (V5)

http://www.ietf.org/rfc/rfc4120.txt last accessed Oct 2009

[IGTF-1] Profile for Traditional X.509 Public key Certification Authorities with

Secured infrastructure, version 4; available at

http://eugridpma.org/guidelines/IGTF-AP-classic-20050930-4-0.doc. last

access Feb 2010

[IGTF-2] Profile for Short Lived Credential Services X.509 Public key Certification

Authorities with Secured infrastructure, version 1; available at

http://www.tagpma.org/files/IGTF-AP-SLCS.doc. last access Feb 2010

[Incomm] „InCommon Bronze and Silver Credential Assessment Profiles v0.3‟,

available at

http://www.incommonfederation.org/docs/drafts/InC_Bronze_CAP_0.3.doc

last access Feb 2010

[Ismcdm] „International Society on Multiple Criteria Decision Making‟, available at

http://ec.europa.eu/idabc/en/home
http://csrc.nist.gov/cryptval/140-2.htm
http://csrc.nist.gov/cryptval/140-2.htm

135

http://www.mit.jyu.fi/MCDM/intro.html last access June 2009

[Javaapi] JavaTM 2 Platform Standard Edition 5.0 API Specification available at

http://java.sun.com/j2se/1.5.0/docs/api/ last access May 2010

[Josa00] A. Josang and V.A. Bondi, „Legal Reasoning with Subjective Logic‟.

Artificial Intelligence and Law, 8(4), pp.289-315, Kluwer 2000.

[Jpegov] Japan, An overview of International Initiatives in the field of Electronic

Authentication, 2005 Available at: http://www.japanpkiforum.jp/shiryou/e-

auth policy/overview e-auth v07.pdf last access Oct 2009

[Kang01] J. Kangas; A. Kangas; P. Leskinen and J. Pykalainen. „MCDM methods in

strategic planning of forestry on state-owned lands in Finland: applications

and experiences‟. Journal of Multi-Criteria Decision Analysis 2001;10:257

–71.

[Keen93] R.L. Keeney and H. Raiffa. Decision with Multiple Objectives: Preference

and Value Tradeoffs. Cambridge University Press, New York, 1993.

[Kike05] G.A Kiker; T.S. Bridges; A. Varghese; P.T. Seager and I. Linkov,

„Application of multicriteria decision analysis in environmental decision

making‟, Integration. Environment. Assess. Manage 2005. 1(2), 95–108.

[Korp04] J.Korpela; A.Lehmusvaara; K.Kylaheiko and M.Tuominen, „Adjusting

Safety Stock Requirements with an AHP-based Risk Analysis‟, System

Sciences, conference on Proceedings of the 36th Annual Hawaii

international ISBN: 0-7695-1874-5, 2004

[Marc03] J. Marchesini; S.W. Smith and M.Y Zhao, „Keyjacking: Risks of the

Current Client-side Infrastructure‟, In 2nd Annual PKI Resarch Workshop.

NIST, April 2003

[Mess00] T. S. Messerges, „Using Second-Order Power Analysis to Attack DPA

Resistant Software‟, Lecture Notes in Computer Science, 2000, Volume

1965/2000, 27-78, DOI: 10.1007/3-540-44499-8_19

[Need78] R. M. Needham and M. D. Schroeder, „Using Encryption for Authentication

inLarge Networks of Computers‟, Communications of the ACM, Vol.

21(12), 1978 pp.993-999

http://www.japanpkiforum.jp/shiryou/e-auth%20policy/overview%20e-auth%20v07.pdf
http://www.japanpkiforum.jp/shiryou/e-auth%20policy/overview%20e-auth%20v07.pdf
http://www.springerlink.com/content/0302-9743/

136

[Nena06] A. Nenadic; N. Zhang; J. Chin and C. Goble, „Fame: Adding Multi-Level

Authentication to Shibboleth‟, IEEE Conference of E-Science and Grid

Computing, Page(s):157 - 157, Amsterdam, Holland, 2006.

[Novo01] J. Novotny; S. Tuecke and V. Welch, „An Online Credential Repository for

the Grid: MyProxy‟, hpdc, p. 0104, 10th IEEE International Symposium on

High Performance Distributed Computing (HPDC-10 '01), 2001.

[OMB03] OMB Memorandum M-04-04, E-Authentication Guidance for Federal

agencies, December 16, 2003. Available at:

http://www.whitehouse.gov/OMB/memoranda/fy04/m04-04.pdf, last access

March 2010

[Odpm04] ODPM (Office of the Deputy Prime Minister). DLTR multi-criteria

decision analysis manual; 2004. Available at

http://www.odpm.gov.uk/stellent/groups/odpm_about/documents/page/odp

m_about_608524-02.hcsp.

[Pkcs11] PKCS #11: Cryptographic Token Interface Standard

http://www.rsa.com/rsalabs/node.asp?id=2133 last access Oct 2009

[Rfc3280] R. Housley, et al; “Internet X.509 Public Key Infrastructure Certificate and

Certificate Revocation List (CRL) Profile”, available at:

http://www.faqs.org/rfcs/rfc3280.html, last access August 2009.

[Rfc3820] S. Tuecke, et al; Internet X.509 Public Key Infrastructure (PKI) Proxy

Certificate Profile, available at: http://www.faqs.org/rfcs/rfc3820.html, last

access July 2009.

[Royb05] B. Roy, „Multiple Criteria Decision Analysis: State of the Art Surveys‟,

ISSN0884-8289, Springer New York, 2005

[Samlv2] Security Assertion Markup Language version 2 specificaitons,

http://saml.xml.org/saml-specifications last access Feb 2010

[Samlac] SAML 2.0 Authentication Context specification Available via OASIS.

http://docs.oasisopen.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf

last access April 2010

[Saat77] T.L. Saaty, „Scaling method for priorities in hierarchical structures‟, Journal

of Mathematical Psychology 15/3 (1977) 234-281.

http://www.whitehouse.gov/OMB/memoranda/fy04/m04-04.pdf
http://www.rsa.com/rsalabs/node.asp?id=2133
http://www.faqs.org/rfcs/rfc3280.html
http://www.faqs.org/rfcs/rfc3820.html
http://saml.xml.org/saml-specifications
http://docs.oasisopen.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf%20last%20access%20April%202010
http://docs.oasisopen.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf%20last%20access%20April%202010

137

[Saat80] T.L. Saaty, „Multicriteria Decision Making: The Analytic Hierarchy Process‟,

1988; Revised and published by the author; Original version published by

McGraw-Hill, New York, 1980.

[Saat82] T.L. Saaty, „Decision Making for Leaders: The Analytic Hierarchy Process

for Decisions in a Complex World‟, RWS Publications, Pittsburgh, PA,

1986; Original version published by Lifetime Learning Publications, 1982.

[Saat90] T. L.Saaty, „How to make a decision: The analytic hierarchy process‟,

European Journal of Operational Research. No: IC/1990/48, pp. 9-26, 1990

[Shib05] Shibboleth Architecture technical overview, 2005, available at:

http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-

latest.pdf, last access Nov 2006

[Szegov] Switch Pilot Assurance Levels Definition, https://aai-

wiki.switch.ch/bin/view/AAIHomeOrgs/AssuranceLevels last access Oct

2009

[Tlsv10] the Transport Layer Security (TLS) protocol, available

http://www.ietf.org/rfc/rfc2246.txt last access Oct 2009

[Toda03] P. Todaro, “An Overview of the Kerberos Authentication Protocol”, 2003.

http://www.giac.org/practical/GSEC/Pam_Todaro_GSEC.pdf last accessed

August 2009

[UKloa00] e-government authentication framework, Version 1.0, December 2000.

Available at: http://archive.cabinetoffice.gov.uk/e-envoy/resources-

pdfs/$file/authentic.pdf last access March 2010.

[UKloa02] Registration and Authentication e-Government Strategy Framework

Policy and Guidelines, Version 3.0, September 2002. Available at:

http://archive.cabinetoffice.gov.uk/e-envoy/frameworks-

authentication/$file/Registration-AuthenticationV3.pdf last access March

2010

[W3cscw] W3C Web Security Context Working Group

http://www.w3.org/2006/WSC/ last access June 2009

[Want92] R.Want; A. Hopper; V. Falcao and J. Gibbons, „The Active Badge Location

System‟, ACM Transactions on Information Systems, Vol. 10, No. 1,

http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-tech-overview-latest.pdf
https://aai-wiki.switch.ch/bin/view/AAIHomeOrgs/AssuranceLevels
https://aai-wiki.switch.ch/bin/view/AAIHomeOrgs/AssuranceLevels
http://www.giac.org/practical/GSEC/Pam_Todaro_GSEC.pdf
http://archive.cabinetoffice.gov.uk/e-envoy/resources-pdfs/$file/authentic.pdf
http://archive.cabinetoffice.gov.uk/e-envoy/resources-pdfs/$file/authentic.pdf
http://archive.cabinetoffice.gov.uk/e-envoy/frameworks-authentication/$file/Registration-AuthenticationV3.pdf
http://archive.cabinetoffice.gov.uk/e-envoy/frameworks-authentication/$file/Registration-AuthenticationV3.pdf

138

January 1992. 91-102.

[Welc05] V. Welch, „Globus Toolkit Version 4 Grid Security Infrastructure: A

Standards Perspective‟, 2005. Available at:

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf, last

access July 2009

[Wssv1.1] Web Services Security specification version 1.1 http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wss last access Oct 2010

[Xmlenc] D. Eastlake, et al, XML Encryption Syntax and Processing, W3C

Recommendation, 10 December 2002.Available at:

http://www.w3.org/TR/xmlenc-core/, last access June 2009

[Xmlsig] D. Eastlake, et al, XML Signature Syntax and Processing, W3C

Recommendation, 12 February 2002. Available at:

http://www.w3.org/TR/xmldsig-core/, last access June 2009

[Yoec02] C. Yoe, „Trade-Off Analysis Planning and Procedures Guidebook‟.

Prepared for Institute for Water Resources. U.S. 2002 Army Corps of

Engineers.

[Zhan06] N. Zhang; L. Yao; A. Nenaic; J. Chin; C. Goble; A. Rector; D. Chadwick; S.

Otenko and Q. Shi, „Achieving Fine-grained Access Control in Virtual

Organisations‟, doi: 10.1002/cpe.v19:9 Concurrency and Computation:

Practice and Experience Volume 19 Issue 9, Pages 1333 – 1352

http://www.globus.org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmldsig-core/

139

APPENDIX A

Authentication LoA Derivation Algorithms

ALoAWL Algorithm (WL_LoADA.java)
package loa_algorithms;

import java.util.Arrays;

/**

 *

 * @author yaol

 */

public class WL_LoADA {

 public WL_LoADA() {

 }

 double Agg_LoA;//[addAttrGroup.length];

 //double Agg_LoAS;

 //int index;

 public double wl_LoA(double addAttrGroup[]) {

 int length = addAttrGroup.length;

 //for (int j = 0; j < length; j++) {

 //for (int i = 0; i < addAttrGroup[j].length; i++) {

 if (length > 1) {

 Arrays.sort(addAttrGroup);

 return addAttrGroup[0];

 } else if (length == 1) {

 Agg_LoA = addAttrGroup[0];

 } else {

 Agg_LoA = -1;

 }

 //}

 //}

 return Agg_LoA;

 }

}

ALoAAD-SL Algorithm (SL_LoADA.java)
package loa_algorithms;

/**

 *

 * @author yaol

 */

public class SL_LoADA {

 public SL_LoADA() {

 }

 double Agg_LoA;

140

 public double add_LoA(double addAttrGroup[]) {

 //int index;

 int length = addAttrGroup.length;

 if (length > 2) {

 Agg_LoA = add_LoASL(addAttrGroup[0], addAttrGroup[1]);

 for (int index = 1; index < addAttrGroup.length - 1;

index++) {

 Agg_LoA = add_LoASL(Agg_LoA, addAttrGroup[index +

1]);

 }

 } else if (length == 2) {

 //add weightings to component LoA value

 Agg_LoA = add_LoASL(addAttrGroup[0], addAttrGroup[1]);

 } else if (length == 1) {

 Agg_LoA = addAttrGroup[0];

 } else {

 Agg_LoA = -1;

 }

 return Agg_LoA;

 }

 protected double add_LoASL(double loa1, double loa2) {

 double uncert1 = 1 - loa1;

 double uncert2 = 1 - loa2;

 double k = uncert1 + uncert2 - uncert1 * uncert2;

 if (k == 0) {

 Agg_LoAS = 1;

 } else {

 Agg_LoAS = (loa1 * uncert2 + loa2 * uncert1) / k;

 }

 return Agg_LoAS;

 }

}

ALoAAD-PT Algorithm (PT_LoADA.java)
package loa_algorithms;

/**

 *

 * @author yaol

 */

public class PT_LoADA {

 double Agg_LoA;

 public PT_LoADA() {

 }

 public double add_LoA(double addAttrGroup[]) {

 double temp = 1;

 int length = addAttrGroup.length;

 if (length > 1) {

 for (int i = 0; i < length; i++) {

 temp = temp * (1 - addAttrGroup[i]);

 }

 Agg_LoA = 1 - temp;

 } else if (length == 1) {

 Agg_LoA = addAttrGroup[0];

141

 } else {

 Agg_LoA = -1;

 }

 return Agg_LoA;

 }

}

142

APPENDIX B

LoA-APDB Database Schema

/*

MySQL Data Transfer

Source Host: localhost

Source Database: loa_apdb

Target Host: localhost

Target Database: loa_apdb

Date: 29/05/2010 23:21:27

*/

SET FOREIGN_KEY_CHECKS=0;

-- ----------------------------

-- Table structure for aggregate loa

-- ----------------------------

DROP TABLE IF EXISTS `aggregate loa`;

CREATE TABLE `aggregate loa` (

 `agg_loa_id` int(11) NOT NULL,

 `agg_loa` double NOT NULL,

 `time` datetime NOT NULL,

 PRIMARY KEY (`agg_loa_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- ----------------------------

-- Table structure for ahs

-- ----------------------------

DROP TABLE IF EXISTS `ahs`;

CREATE TABLE `ahs` (

 `parent_attr_id` int(5) DEFAULT NULL,

 `child_attr_id` int(5) DEFAULT NULL,

 `left_node` int(5) DEFAULT NULL,

 `right_node` int(5) DEFAULT NULL,

 `relationship` varchar(100) DEFAULT NULL,

 `weighting` double DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- ----------------------------

-- Table structure for attributes

-- ----------------------------

DROP TABLE IF EXISTS `attributes`;

CREATE TABLE `attributes` (

 `attr_ID` int(5) NOT NULL,

 `attr_name` varchar(200) NOT NULL,

 `comp_loa` int(2) DEFAULT NULL,

 PRIMARY KEY (`attr_ID`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- ----------------------------

-- Table structure for contributing ahs

-- ----------------------------

DROP TABLE IF EXISTS `contributing ahs`;

CREATE TABLE `contributing ahs` (

143

 `hie_id` int(11) NOT NULL,

 `parent_attr_id` int(11) DEFAULT NULL,

 `child_attr_id` int(11) NOT NULL,

 `agg_loa_id` int(11) NOT NULL,

 PRIMARY KEY (`hie_id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

-- ----------------------------

-- Records

-- ----------------------------

INSERT INTO `aggregate loa` VALUES ('1', '0.71', '2010-05-20

23:15:14');

INSERT INTO `ahs` VALUES (null, '1', '1', '24', 'additive', null);

INSERT INTO `ahs` VALUES ('1', '2', '2', '19', 'additive', '0.8');

INSERT INTO `ahs` VALUES ('1', '3', '20', '23', 'additive', '0.2');

INSERT INTO `ahs` VALUES ('2', '4', '3', '8', 'weakest', '0.33');

INSERT INTO `ahs` VALUES ('2', '5', '9', '18', 'weakest', '0.67');

INSERT INTO `ahs` VALUES ('4', '6', '4', '5', null, null);

INSERT INTO `ahs` VALUES ('4', '7', '6', '7', null, null);

INSERT INTO `ahs` VALUES ('5', '8', '10', '15', 'weakest', null);

INSERT INTO `ahs` VALUES ('5', '9', '16', '17', null, null);

INSERT INTO `ahs` VALUES ('8', '10', '11', '12', null, null);

INSERT INTO `ahs` VALUES ('8', '11', '13', '14', null, null);

INSERT INTO `ahs` VALUES ('3', '19', '21', '22', null, null);

INSERT INTO `attributes` VALUES ('1', 'agg_loa', null);

INSERT INTO `attributes` VALUES ('2', 'id_authN', null);

INSERT INTO `attributes` VALUES ('3', 'location_authN', null);

INSERT INTO `attributes` VALUES ('4', 'password_authN', null);

INSERT INTO `attributes` VALUES ('5', 'certificate_authN', null);

INSERT INTO `attributes` VALUES ('6', 'passwd_authN_token', null);

INSERT INTO `attributes` VALUES ('7', 'passwd_protocol', null);

INSERT INTO `attributes` VALUES ('8', 'cert_authN_token', null);

INSERT INTO `attributes` VALUES ('9', 'cert_protocol', null);

INSERT INTO `attributes` VALUES ('10', 'cert_token_type', null);

INSERT INTO `attributes` VALUES ('11', 'cert_keystore', null);

INSERT INTO `attributes` VALUES ('12', 'passwd', '2');

INSERT INTO `attributes` VALUES ('13', 'ssl', '4');

INSERT INTO `attributes` VALUES ('14', 'id_certificate', '4');

INSERT INTO `attributes` VALUES ('15', 'proxy_certificate', '2');

INSERT INTO `attributes` VALUES ('16', 'cert_soft', '3');

INSERT INTO `attributes` VALUES ('17', 'cert_hard', '4');

INSERT INTO `attributes` VALUES ('19', 'ip', '2');

INSERT INTO `contributing ahs` VALUES ('1', null, '1', '1');

INSERT INTO `contributing ahs` VALUES ('2', '1', '2', '1');

INSERT INTO `contributing ahs` VALUES ('3', '1', '3', '1');

INSERT INTO `contributing ahs` VALUES ('4', '2', '4', '1');

INSERT INTO `contributing ahs` VALUES ('5', '3', '19', '1');

INSERT INTO `contributing ahs` VALUES ('6', '4', '6', '1');

INSERT INTO `contributing ahs` VALUES ('7', '4', '7', '1');

INSERT INTO `contributing ahs` VALUES ('8', '6', '12', '1');

INSERT INTO `contributing ahs` VALUES ('9', '7', '13', '1');

144

APPENDIX C

SAML Assertion Creation method

private SAMLAssertion saml() {

 String strIssuer = "EGA-LoADM";

 String strNameID = "password_authN";

 String strNameQualifier = "EGA-LoADM:AS";

 String strNamespace = "urn:bea:security:saml:AC";

 String strAttrName1 = "passwd_authN_token";

 String strAttrName2 = "passwd_protocol";

 SAMLAssertion assertion = null;

 try {

 // Crate the assertion

 assertion = new SAMLAssertion(strIssuer, null, null,

null, null, null);

 // Create the subject

 SAMLSubject subject = new SAMLSubject(new

SAMLNameIdentifier(strNameID, strNameQualifier,

SAMLNameIdentifier.FORMAT_UNSPECIFIED), null, null, null);

subject.addConfirmationMethod(SAMLSubject.CONF_SENDER_VOUCHES);

 // Create the authentication statement

 //Date date = new Date();

 //SAMLAuthenticationStatement authStatement = new

SAMLAuthenticationStatement(subject, LoAAttr, date, null, null,

null);

 //assertion.addStatement(authStatement);

 // Create the attribute statement

 SAMLAttribute attr = new SAMLAttribute(strAttrName1,

strNamespace, null, 0, null);

 SAMLAttribute attr1 = new SAMLAttribute(strAttrName2,

strNamespace, null, 0, null);

 // Here some hardcoded values for the groups attributes

 attr.addValue("passwd");

 attr1.addValue("ssl");

 HashSet set = new HashSet();

 set.add(attr);

 set.add(attr1);

 SAMLSubject subject2 = (SAMLSubject) subject.clone();

 SAMLAttributeStatement attrStatement = new

SAMLAttributeStatement(subject2, set);

 assertion.addStatement(attrStatement);

 SAMLDoNotCacheCondition condition = new

SAMLDoNotCacheCondition();

 assertion.addCondition(condition);

 //System.out.println("AMUserAssertion 1:\n" +

145

assertion.toString());

 //SAMLAttributeStatement attr3 = (SAMLAttributeStatement)

assertion.getStatements().next();

//System.out.println(attr3.getAttributes().next().toString());

 } catch (Exception e) {

 e.printStackTrace();

 }

 return assertion;

 }

Weighting Determination code (weightingDet.java)
public strictfp class weightingDet

{

 public static void eigen(Complex A[][], Complex lambda[],

 Complex vec[][], boolean fail[])

 {

 System.out.println("Eigene.eigen(A, lambda, vec, fail)");

 // driver for computing eigenvalues and eigenvectors

 if(A==null || lambda==null || vec==null)

 {

 System.out.println("Error in Eigen2.eigen,"+

 " null or inconsistent array sizes.");

 return;

 }

 int n = A.length;

 if(A[0].length!=n || vec.length!=n || vec[0].length!=n ||

lambda.length!=n)

 {

 System.out.println("Error in Eigen.eigen,"+

 " inconsistent array sizes.");

 return;

 }

 fail[0] = false;

 // special cases

 if(n<1) {System.out.println("zero size matrix"); return;}

 int rowcol[] = new int[n];

 Complex B[][] = new Complex[n][n];

 ComplexMatrix.copy(A, B);

 if(n==1)

 {

 lambda[0] = B[0][0];

 vec[0][0] = new Complex(1.0, 0.0);

 return;

 }

 if(n==2)

 {

 twobytwo(B, lambda, vec);

 return;

 }

 System.out.println("calling cxhess");

 cxhess(B, rowcol);

 for(int i=0; i<n; i++) lambda[i] = new Complex(-999.0, -999.0);

 System.out.println("calling cxeig2c");

 cxeig2c(B, lambda, vec, rowcol, fail);

 } // end eigen

 private static void twobytwo(Complex A[][], Complex lambda[],

 Complex vec[][])

 {

146

 Complex b, c, rad, l1, l2;

 Complex Z[] = new Complex[2];

 double t;

 b = A[0][0].add(A[1][1]); // negative

 c = A[0][0].multiply(A[1][1]);

 c = c.subtract(A[0][1].multiply(A[1][0]));

 rad = (b.multiply(b)).subtract(c.multiply(4.0)); // a==1

 rad = rad.sqrt();

 l1 = (b.add(rad)).divide(2.0);

 l2 = (b.subtract(rad)).divide(2.0);

 lambda[0] = l1;

 lambda[1] = l2;

 // eigenvectors in columns

 Z[0] = A[0][1].negate();

 Z[1] = A[0][0].subtract(l1);

 t = ComplexMatrix.norm2(Z);

 vec[0][0] = Z[0].divide(t);

 vec[1][0] = Z[1].divide(t);

 Z[0] = A[1][1].subtract(l2);

 Z[1] = A[1][0].negate();

 t = ComplexMatrix.norm2(Z);

 vec[0][1] = Z[0].divide(t);

 vec[1][1] = Z[1].divide(t);

 }

 private static double sumabs(Complex Z)

 {

 return Math.abs(Z.real())+Math.abs(Z.imaginary());

 } // end sumabs

 private static void cxhess(Complex A[][], int rowcol[])

 {

 int i, k, t;

 Complex x;

 Complex y;

 System.out.println("cxhess(A, rowcol)");

 int n = A.length; // checked before call

 for(int j=0; j<n; j++) rowcol[j] = j;

 k = 0;

 for(int m=k+1; m<n-1; m++) // main reduction loop

 {

 i= m;

 x = new Complex(0.0, 0.0);

 for(int j=m; j<n; j++)

 {

 if(sumabs(A[j][m-1]) > sumabs(x))

 {

 x = A[j][m-1];

 i = j;

 }

 }

 if(i != m)

 {

 // rowcol row column interchange of H

 t = rowcol[m];

 rowcol[m] = rowcol[i];

 rowcol[i] = t;

 for(int j=m-1; j<n; j++)

147

 {

 y = A[i][j];

 A[i][j] = A[m][j];

 A[m][j] = y;

 }

 for(int j=0; j<n; j++) //for J in 1..N loop

 {

 y = A[j][i];

 A[j][i] = A[j][m];

 A[j][m] = y;

 }

 }

 if(sumabs(x) != 0.0)

 {

 for(int ii=m+1; ii<n; ii++)

 {

 y = A[ii][m-1];

 if(sumabs(y) > 0.0)

 {

 y = y.divide(x);

 A[ii][m-1] = y;

 for(int j=m; j<n; j++)

 {

 A[ii][j] = A[ii][j].subtract(y.multiply(A[m][j]));

 }

 for(int j=0; j<n; j++)

 {

 A[j][m] = A[j][m].add(y.multiply(A[j][ii]));

 }

 } // end if

 A[ii][m-1] = new Complex(0.0, 0.0); // just cleanup

 }

 } // end if

 } // end main reduction loop

 System.out.println("result of cxhess=");

 ComplexMatrix.print(A);

 System.out.println("based on rowcol interchanges=");

 Matrix.print(rowcol);

 System.out.println(" ");

 } // end cxhess

 private static void cxeig2c(Complex A[][], Complex lambda[],

 Complex vec[][],

 int rowcol[], boolean fail[])

 {

 int j, k, m, mm, low, its, itn, ien;

 double anorm = 0.0;

 double ahr, aahr, acc, xr, xi, yr, yi, zr;

 Complex accnorm;

 Complex x, y, z, yy, T, S;

 int n = A.length; // checked in driver

 low = 0;

 acc = Math.pow(2.0, -23);

 System.out.println("acc="+acc+" = 2^-23");

 T = new Complex(0.0, 0.0);

 itn = 30 * n; // heuristic on maximum iterations

 ComplexMatrix.identity(vec); // initialize to identity Matrix

 // starting from Hessenberg reduction

 for(int ii=n-2; ii>0; ii--) //for i in reverse A'FIRST+1..A'LAST-

148

1 loop

 {

 j = rowcol[ii];

 for(k=ii+1; k<n; k++) //for K in i+1..A'LAST loop

 {

 vec[k][ii] = A[k][ii-1];

 }

 if(ii != j)

 {

 for(k=ii; k<n; k++) //for k in i..A'LAST loop

 {

 vec[ii][k] = vec[j][k];

 vec[j][k] = new Complex(0.0, 0.0);

 }

 vec[j][ii] = new Complex(1.0, 0.0);

 }

 }

 ien = n-1; // used as subscript, loop test <=ien

 // ien is decremented

 while(low <= ien) // 260

 {

 System.out.println("260 low="+low+", ien="+ien);

 its = 0;

 // look for small single subdiagonal element

 L280: while(true) // 280

 {

 System.out.println("in 280");

 k = low;

 // for kk in reverse low+1..ien loop // 300

 for(int kk=ien; kk>low; kk--) // 300

 {

 System.out.println("300 kk="+kk);

 ahr = sumabs(A[kk][kk-1]);

 aahr = acc * (sumabs(A[kk-1][kk-1]) + sumabs(A[kk][kk]));

 if(ahr <= aahr)

 {

 k = kk;

 break;

 }

 } // 300

 System.out.println("exiting 300 with k="+k);

 if(k == ien) break L280; //exit L280 when k = ien; // 780

 if(itn <= 0)

 {

 fail[0] = true;

 return;

 }

 // compute shift

 if(its == 10 || its == 20)

 {

 S = new Complex(Math.abs(A[ien][ien-1].real()) +

 Math.abs(A[ien-1][ien-2].real()) ,

 Math.abs(A[ien][ien-1].imaginary()) +

 Math.abs(A[ien-1][ien-2].imaginary()));

 }

 else

 {

 S = A[ien][ien];

149

 x = A[ien-1][ien].multiply(A[ien][ien-1]);

 if(sumabs(x) > 0.0)

 {

 y = (A[ien-1][ien-1].subtract(S)).divide(new Complex(2.0,

0.0));

 z = ((y.multiply(y)).add(x)).sqrt();

 if(y.real() * z.real() + y.imaginary() * z.imaginary() <

0.0)

 {

 z = z.negate();

 }

 yy = y.add(z);

 S = S.subtract(x.divide(yy));

 } // end if;

 } // end if; // 400

 for(int i=low; i<=ien; i++) // for i in low..ien loop // 420

 {

 A[i][i] = A[i][i].subtract(S);

 } // end loop; // 420

 T = T.add(S);

 its = its + 1;

 itn = itn - 1;

 j = k + 1;

 // look for two consecutive small sub-diagonal elements

 xr = sumabs(A[ien-1][ien-1]);

 yr = sumabs(A[ien][ien-1]);

 zr = sumabs(A[ien][ien]);

 m = k;

 for(mm=ien-1; mm>=j; mm--) // for mm in reverse j..ien-1 loop

// 460

 {

 System.out.println("460 mm="+mm+", m="+m+", j="+j);

 yi = yr;

 yr = sumabs(A[mm][mm-1]);

 xi = zr;

 zr = xr;

 xr = sumabs(A[mm-1][mm-1]);

 if(yr <= (acc * zr/yi *(zr + xr + xi)))

 {

 m = mm;

 break;

 }

 } //end loop; // 460

 // triangular decomposition A = L*R

 for(int i=m+1; i<=ien; i++) //for i in m+1..ien loop // 620

 {

 System.out.println("620 mm="+mm+", m="+m+", i="+i);

 x = A[i-1][i-1];

 y = A[i][i-1];

 if(sumabs(x) >= sumabs(y))

 {

 z = y.divide(x);

 lambda[i] = new Complex(-1.0, 0.0);

 }

 else

 {

 // interchange rows of A

 for(int jj=i-1; jj<n; jj++) // for j in i-1..n loop // 540

 {

150

 z = A[i-1][jj];

 A[i-1][jj] = A[i][jj];

 A[i][jj] = z;

 } // end loop; // 540

 z = x.divide(y);

 lambda[i] = new Complex(1.0, 0.0);

 } // end if;

 A[i][i-1] = z;

 for(int jj=i; jj<n; jj++) // for j in i .. N loop // 600

 {

 A[i][jj] = A[i][jj].subtract(z.multiply(A[i-1][jj]));

 } // end loop; // 600

 } // end loop; // 620

 // composition R*L = H

 for(int jj=m+1; jj<=ien; jj++) // for j in m+1..ien loop //

760

 {

 x = A[jj][jj-1];

 A[jj][jj-1] = new Complex(0.0, 0.0);

 // interchange columns of A and vec if necessary

 if(lambda[jj].real() > 0.0)

 {

 for(int i=low; i<=jj; i++) // for i in low .. j loop //

660

 {

 z = A[i][jj-1];

 A[i][jj-1] = A[i][jj];

 A[i][jj] = z;

 } // end loop; // 660

 for(int i=low; i<n; i++) // for i in low .. N loop //

680

 {

 z = vec[i][jj-1];

 vec[i][jj-1] = vec[i][jj];

 vec[i][jj] = z;

 } // end loop; // 680

 } // end if

 // end interchange columns

 for(int i=low; i<=jj; i++) // for i in low..j loop // 720

 {

 A[i][jj-1] = A[i][jj-1].add(x.multiply(A[i][jj]));

 } // 720

 for(int i=low; i<n; i++) // for i in low..N loop // 740

 {

 vec[i][jj-1] = vec[i][jj-1].add(x.multiply(vec[i][jj]));

 } // 740

 // end accumulate transformations

 } // 760

 } // 280

 // a root found

 lambda[ien] = A[ien][ien].add(T);

 ien = ien - 1;

 } // end loop; // 260 while

 // all roots found

 for(int i=0; i<n; i++) // for i in A'RANGE loop

151

 {

 anorm = anorm + sumabs(lambda[i]);

 for(int jj=i+1; jj<n; jj++) // for j in i + 1 .. A'LAST loop

 {

 anorm = anorm + sumabs(A[i][jj]);

 }

 }

 accnorm = new Complex(anorm * Math.pow(2.0,-23), 0.0);

 if(anorm == 0.0 || n < 2)

 {

 return; // done

 }

 // back substitute to set up vec of upper triangular form

 for(ien=n-1; ien>low; ien--) // for ien in reverse low+1..N loop

 {

 x = lambda[ien];

 for(int i=ien-1; i>=low; i--) // for i in reverse low .. ien -

1 loop

 {

 z = A[i][ien];

 for(int jj=i+1; jj<ien; jj++) // for j in i+1..ien-1 loop

 {

 z = z.add(A[i][jj].multiply(A[jj][ien]));

 }

 y = x.subtract(lambda[i]);

 if(sumabs(y) == 0.0)

 {

 y = accnorm;

 }

 A[i][ien] = z.divide(y);

 }

 }

 // multiply by transformation Matrix to give vec of original full

Matrix

 for(int jj=n-1; jj>=0; jj--) // for j in reverse A'RANGE loop

 {

 for(int i=0; i<n; i++) // for i in A'RANGE loop

 {

 z = vec[i][jj];

 for(k=0; k<jj; k++) // for k in A'first..j-1 loop

 {

 z = z.add(vec[i][k].multiply(A[k][jj]));

 }

 vec[i][jj] = z;

 }

 }

 } // end cxeig2c

} // end class Eigen2

// Complex.java

/*

 * Copyright (c) 2003 Jon S. Squire. All Rights Reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * -Redistributions of source code must retain the above copyright

 * notice, this list of conditions and the following disclaimer.

152

 *

 * -Redistribution in binary form must reproduce the above copyright

 * notice, this list of conditions and the following disclaimer in

 * the documentation and/or other materials provided with the

distribution.

 *

 * Neither the name of the author or the names of contributors

 * may be used to endorse or promote products derived from this

software

 * without specific prior written permission.

 *

 * This software is provided "AS IS," without a warranty of any kind.

ALL

 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING

 * ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE

 * OR NON-INFRINGEMENT, ARE HEREBY EXCLUDED. THE AUTHOR AND

CONTRIBUTORS

 * SHALL NOT BE LIABLE FOR ANY DAMAGES OR LIABILITIES SUFFERED BY

LICENSEE

 * AS A RESULT OF OR RELATING TO USE, MODIFICATION OR DISTRIBUTION OF

THE

 * SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL THE AUTHOR OR

CONTRIBUTORS

 * OR SUCCEEDING LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR

DATA,

 * OR FOR DIRECT, INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR

PUNITIVE

 * DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY,

 * ARISING OUT OF THE USE OF OR INABILITY TO USE SOFTWARE, EVEN IF

THE AUTHOR

 * OR CONTRIBUTORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH

DAMAGES.

 *

 * You acknowledge that this software is not designed, licensed or

 * intended for use in the design, construction, operation or

 * maintenance of any human use medical device.

 */

/** Immutable, complex numbers. A Complex consists of a real

 * and imaginary part, called Cartesian coordinates.

 *

 * The Complex class provides methods for arithmetic such as:

 * add, subtract, multiply, divide, negate and invert.

 * Also provided are complex functions sin, cos, tan, asin, acos,

atan,

 * sqrt, log, exp, pow, sinh, cosh, tanh, atanh.

 *

 * Source code Complex.java

 */

strictfp class Complex extends Object

{

 double x, y; // Cartesian representation of complex

 /** cartesian coordinates real and imaginary are NaN */

 public Complex(){x=Double.NaN; y=Double.NaN;}

 /** construct a copy of a Complex object */

153

 public Complex(Complex z){x=z.real(); y=z.imaginary();}

 /** real value, imaginary=0.0 */

 public Complex(double x){this.x=x; y=0.0;}

 /** cartesian coordinates real and imaginary */

 public Complex(double x, double y){this.x=x; this.y=y;}

 /** convert cartesian to polar */

 public Complex polar(){double r = StrictMath.sqrt(

 this.x*this.x+this.y*this.y);

 double a = StrictMath.atan2(this.y,this.x);

 return new Complex(r,a);}

 /** convert polar to cartesian */

 public Complex cartesian(){return new

Complex(this.x*StrictMath.cos(this.y),

this.x*StrictMath.sin(this.y));}

 /** extract the real part of the complex number */

 public double real(){return this.x;}

 /** extract the imaginary part of the complex number */

 public double imaginary(){return this.y;}

 /** extract the magnitude of the complex number */

 public double magnitude(){return

StrictMath.sqrt(this.x*this.x+this.y*this.y);}

 /** extract the argument of the complex number */

 public double argument(){return StrictMath.atan2(this.y,this.x);}

 /** add complex numbers */

 public Complex add(Complex z){return new Complex

 (this.x+z.x, this.y+z.y);}

 /** add a double to a complex number */

 public Complex add(double d){return new Complex

 (this.x+d, this.y);}

 /** subtract z from the complex number */

 public Complex subtract(Complex z){return new Complex

 (this.x-z.x, this.y-z.y);}

 /** subtract the double d from the complex number */

 public Complex subtract(double d){return new Complex

 (this.x-d, this.y);}

 /** negate the complex number */

 public Complex negate(){return new Complex(-this.x, -this.y);}

 /** multiply complex numbers */

 public Complex multiply(Complex z){return new Complex

 (this.x*z.x-this.y*z.y,

 this.x*z.y+this.y*z.x);}

 /** multiply a complex number by a double */

 public Complex multiply(double d){return new

Complex(this.x*d,this.y*d);}

154

 /** divide the complex number by z */

 public Complex divide(Complex z){double r=z.x*z.x+z.y*z.y;

 return new Complex

 ((this.x*z.x+this.y*z.y)/r,

 (this.y*z.x-this.x*z.y)/r);}

 /** divide the complex number by the double d */

 public Complex divide(double d){return new

Complex(this.x/d,this.y/d);}

 /** invert the complex number */

 public Complex invert(){double r=this.x*this.x+this.y*this.y;

 return new Complex(this.x/r, -this.y/r);}

 /** conjugate the complex number */

 public Complex conjugate(){return new Complex(this.x, -this.y);}

 /** compute the absolute value of a complex number */

 public double abs(){return

StrictMath.sqrt(this.x*this.x+this.y*this.y);}

 /** compare complex numbers for equality */

 public boolean equals(Complex z){return (z.x==this.x) &&

 (z.y==this.y);}

 /** convert a complex number to a String.

 * Complex z = new Complex(1.0,2.0);

 * System.out.println("z="+z); */

 public String toString(){return new

String("("+this.x+","+this.y+")");}

 /** convert text representation to a Complex.

 * input format (real_double,imaginary_double) */

 public static Complex parseComplex(String s){

 int from = s.indexOf('(');

 if(from==-1) return null;

 int to = s.indexOf(',',from);

 double x = Double.parseDouble(s.substring(from+1,to));

 from = to;

 to = s.indexOf(')',from);

 double y = Double.parseDouble(s.substring(from+1,to));

 return new Complex(x,y); }

 /** compute e to the power of the complex number */

 public Complex exp(){double exp_x=StrictMath.exp(this.x);

 return new Complex

 (exp_x*StrictMath.cos(this.y),

 exp_x*StrictMath.sin(this.y));}

 /** compute the natural logarithm of the complex number */

 public Complex log(){double rpart=StrictMath.sqrt(

 this.x*this.x+this.y*this.y);

 double ipart=StrictMath.atan2(this.y,this.x);

 if(ipart>StrictMath.PI) ipart=ipart-

2.0*StrictMath.PI;

 return new Complex(StrictMath.log(rpart),

ipart);}

 /** compute the square root of the complex number */

 public Complex sqrt(){double

155

r=StrictMath.sqrt(this.x*this.x+this.y*this.y);

 double rpart=StrictMath.sqrt(0.5*(r+this.x));

 double ipart=StrictMath.sqrt(0.5*(r-this.x));

 if(this.y<0.0) ipart=-ipart;

 return new Complex(rpart,ipart);}

 /** compute the complex number raised to the power z */

 public Complex pow(Complex z){Complex a=z.multiply(this.log());

 return a.exp();}

 /** compute the complex number raised to the power double d */

 public Complex pow(double d){Complex a=(this.log()).multiply(d);

 return a.exp();}

 /** compute the sin of the complex number */

 public Complex sin(){return new Complex

 (StrictMath.sin(this.x)*cosh(this.y),

 StrictMath.cos(this.x)*sinh(this.y));}

 /** compute the cosine of the complex number */

 public Complex cos(){return new Complex

 (StrictMath.cos(this.x)*cosh(this.y),

 -StrictMath.sin(this.x)*sinh(this.y));}

 /** compute the tangent of the complex number */

 public Complex tan(){return (this.sin()).divide(this.cos());}

 /** compute the arcsine of a complex number */

 public Complex asin(){Complex IM = new Complex(0.0,-1.0);

 Complex ZP = this.multiply(IM);

 Complex ZM = (new Complex(1.0,0.0)).subtract

(this.multiply(this)).sqrt().add(ZP);

 return ZM.log().multiply(new

Complex(0.0,1.0));}

 /** compute the arccosine of a complex number */

 public Complex acos(){Complex IM = new Complex(0.0,-1.0);

 Complex ZM = (new Complex(1.0,0.0)).subtract

(this.multiply(this)).sqrt().multiply

 (IM).add(this);

 return ZM.log().multiply(new

Complex(0.0,1.0));}

 /** compute the arctangent of a complex number */

 public Complex atan(){Complex IM = new Complex(0.0,-1.0);

 Complex ZP = new Complex(this.x,this.y-1.0);

 Complex ZM = new Complex(-this.x,-this.y-

1.0);

 return

IM.multiply(ZP.divide(ZM).log()).divide(2.0);}

 /** compute the hyperbolic sin of the complex number */

 public Complex sinh(){return new Complex

 (sinh(this.x)*StrictMath.cos(this.y),

 cosh(this.x)*StrictMath.sin(this.y));}

 /** compute the hyperbolic cosine of the complex number */

 public Complex cosh(){return new Complex

 (cosh(this.x)*StrictMath.cos(this.y),

156

 sinh(this.x)*StrictMath.sin(this.y));}

 /** compute the hyperbolic tangent of the complex number */

 public Complex tanh(){return (this.sinh()).divide(this.cosh());}

 /** compute the inverse hyperbolic tangent of a complex number */

 public Complex atanh(){return (((this.add(1.0)).log()).subtract(

 ((this.subtract(1.0)).negate()).log())

 .divide(2.0));}

 // local - should be a good implementation in StrictMath

 private double sinh(double x){return(

 StrictMath.exp(x)-StrictMath.exp(-

x))/2.0;}

 private double cosh(double x){return(

 StrictMath.exp(x)+StrictMath.exp(-

x))/2.0;}

}

LoA-ACM module (loa_acm.java)
package ehealth.security.LoA;

/*

 * To change this template, choose Tools | Templates

 * and open the template in the editor.

 */

import java.io.IOException;

import java.io.PrintWriter;

import java.util.Hashtable;

import java.util.Iterator;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import javax.servlet.http.HttpSession;

import org.opensaml.SAMLAssertion;

import org.opensaml.SAMLAttribute;

import org.opensaml.SAMLAttributeStatement;

/**

 *

 * @author yaol

 */

public class loa_acm extends HttpServlet {

 /**

 * Processes requests for both HTTP <code>GET</code> and

<code>POST</code> methods.

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 protected void processRequest(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 PrintWriter out = response.getWriter();

 try {

 HttpSession session = request.getSession(true);

 SAMLAssertion assertion = (SAMLAssertion)

157

session.getAttribute("saml");

 SAMLAttributeStatement samlAttrState =

(SAMLAttributeStatement) assertion.getStatements().next();

 Iterator samlAttrs = samlAttrState.getAttributes();

 Hashtable contributing_attr = new Hashtable();

 SAMLAttribute samlAttr = null;

 while (samlAttrs.hasNext()) {

 samlAttr = (SAMLAttribute) samlAttrs.next();

 contributing_attr.put(samlAttr.getName(),

samlAttr.getValues().next().toString());

 }

 session.setAttribute("contributing_Attributes",

contributing_attr);

response.sendRedirect(response.encodeRedirectURL("aloa_dm"));

 } finally {

 out.close();

 }

 }

 // <editor-fold defaultstate="collapsed" desc="HttpServlet

methods. Click on the + sign on the left to edit the code.">

 /**

 * Handles the HTTP <code>GET</code> method.

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doGet(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Handles the HTTP <code>POST</code> method.

 * @param request servlet request

 * @param response servlet response

 * @throws ServletException if a servlet-specific error occurs

 * @throws IOException if an I/O error occurs

 */

 @Override

 protected void doPost(HttpServletRequest request,

HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 /**

 * Returns a short description of the servlet.

 * @return a String containing servlet description

 */

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

