4 research outputs found

    Method of Simulating Flow-Through Area of a Pressure Regulator

    Get PDF
    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure

    Dynamic Effect of the Intermediate Block in a Hydraulic Control System

    Full text link
    International audienceThe intermediate block is a basic element in an hydraulic control system, and is usually used to install all hydraulic components and guides the fluid flows. However, the effect of this block is usually neglected, but it has to be taken into consideration when high performance applications, especially at high frequencies, have to be achieved. This paper focuses on this component and shows how it can influence the hydraulic system dynamics. The main contributions of this work are the implementation of a Bond Graph model of this component, which can easily be integrated in the whole system model, and a complete analysis of the effects (pressure drop, compressibility, inertia) induced by the intermediate block on the whole system performances. The relationship between flow rates and pressure drops along with the energy losses in the block are obtained according to a method based on the decomposition of the circuit in parts for which the local losses can be obtained from abacuses. The Computational Fluid Dynamics (CFD) is used for the validation of the results. Besides, the compressibility and inertial effects are carefully studied since they have a great influence on the hydraulic frequency. Finally, simulations and experiments are implemented for demonstrating the importance of the effect of the intermediate block in the hydraulic system modeling. By introducing compressibility and inertial effects of the intermediate block, the simulation result shows better agreement with experimental results at high frequencies. This comparison demonstrates that the control design can reach better performance when considering the dynamic model of the intermediate block

    Metodologia per a la miniaturitzaci贸 de components oleohidr脿ulics.

    Get PDF
    La Tesi en q眉esti贸 presenta una metodologia per a l'estudi de les V脿lvules Limitadores de Pressi贸 i concretament en les que presenten un tamany redu茂t, taps de 10 [mm] i amb seccions de pas de fins a 2 [mm], amb prestacions definides per a QEs pret茅n deduir criteris de disseny en base a- Comportament din脿mic. Estudi de l'equaci贸 del moviment de l'obturador en funci贸 dels par脿metres globals de disseny com, rigidesa de la molla, di脿metre d'entrada, massa del tap de la mini VLP. - La fluidodin脿mica interna. Estudi de la fluidodin脿mica interna de la mini VLP en funci贸 dels par脿metres de disseny espec铆fics del tap o obturador de la mateixa. per tal de realitzar aquesta tasca s'utilitza el programa de simulaci贸 num猫rica Fluent.La Tesi s'estructura en base a aquests dos estudis i presenta les seg眉ents etapes.- An脿lisis cr铆tic de l'estat de l'art.- Desenvolupament d'un model te貌ric de funcionament en r猫gim permanent i transitori d'una mini VLP. Aquesta modelitzaci贸 es realitza per mitj脿 de la linealitzaci贸 de les equacions governants del proc茅s i la posterior implementaci贸 en un programa de simulaci贸, Matlab-Simulink, per a la obtenci贸 de les corbes de funcionament i les zones d'estabilitat de la mini VLP.- An脿lisis, mitjan莽ant simulaci贸 num猫rica, de la fluidodin脿mica interna de la mini VLP en funci贸 d'una geometria definida.- An脿lisis experimental. Es dissenya i construeix un banc experimental d'assaig per a contrastar i validar experimentalment els models proposats de la mini VLP.L'objectiu de la Tesi es desenvolupar una nova metodologia que combini les eines de simulaci贸 amb equacions governants amb m猫todes computacionals avan莽ats i test de laboratori profund per tal de comprendre el comportament de nous components oleohidr脿ulics de tamany redu茂t, aprofundint en aquells criteris de disseny que s贸n m茅s sensibles a la miniaturitzaci贸. S'ha aplicat aquesta metodologia en diferents tipologies geom猫triques de tap. S'han simulat i assajat geometries c貌niques guiades i no guiades, geometries amb valona (xamfr脿) sense guiar i geometries planes amb disseny singular guiades i sense guiar.Es presenta a continuaci贸 un recull dels aspectes m茅s importants del desenvolupament de la Tesi.Els resultats de la simulaci贸 fluidodin脿mica posa d'evid猫ncia la import脿ncia de la simetria del fluxe i el guiat de l'obturador amb l'objecte d'evitar inestabilitats no desitjables. El guiat del tap 茅s clau per a l'obtenci贸 d'un nivell de funcionament 貌ptim. Sobret tot en el cas del nivell sonor.Les inestabilitats i sorolls generats com a conseq眉猫ncia de l'aparici贸 de cavitaci贸 s贸n inevitables. En general es manifesten en una gamma de freq眉猫ncies superiors als 3000 [Hz]. La seva incid猫ncia en el comportament global de la mini VLP es pot considerar moderat i acceptable.Les inestabilitats els efectes de les quals s贸n m茅s severes s贸n conseq眉猫ncia dels graus de llibertat que posseeix l'obturador. La autoexcitaci贸 en aquests casos pot arribar a efectes sonors molt apreciables i molestos. S'ha de facilitar per tots els mitjans el guiat de l'obturador. Ha quedat demostrat la idone茂tat de la metodologia de pre disseny de la mini VLP basada en l'aplicaci贸 dels principis b脿sics de conservaci贸 de la massa, quantitat de moviment i energia en forma de balan莽os integrals. Per estudiar el comportament din脿mic i predir la influ猫ncia de par脿metres b脿sics tals com massa de l'obturador, constant el脿stica de la molla, etc, 茅s suficient deduir el criteri d'estabilitat a partir de la linealitzaci贸 de les equacions anteriors. De tots els resultats es destaquen les idees seg眉ents.Utilitzaci贸 de carcassa de metacrilat en la realitzaci贸 de les proves experimentals que ha perm猫s entendre la fenomologia fluidodin脿mica existent i relacionar-la amb els valors de les variables de funcionament, poden establir zones diferents de funcionament.La utilitzaci贸 de les eines de simulaci贸, concretament el m貌dul de malla din脿mica del programa de volums finits Fluent, ha perm猫s obtenir resultats fins ara no presentats. Considerant-ne un avan莽 important, la introducci贸 d'aquest tipus de simulacions en el sector oleohidr脿ulic.Els fen貌mens de vibraci贸 en valors de freq眉猫ncia pr貌pia es destaquen com els m茅s perjudicials en el funcionament de la mini VLP. Es demostra que la geometria no juga cap paper esmorte茂dor d'aquest fenomen.This Thesis presents a methodology for the study of mini relief valve of small size, plugs of 10 [mm] and flow paths of about 2 [mm]. The main characteristics of this component are Q- Dynamic behaviour. Study of the movement equation of the plug as a function of the global design parameters like for example spring stiffness, inlet diameter or plug mass.- Internal fluid dynamic. Study of the internal fluid dynamic behaviour of the mini relief valve as a function of the specific design characteristics of the plug. This work is made by the use of numerical simulations.The Thesis is structured as follow,- State of the art. Critical analysis.- Development of a theoric model in steady and transient state. This modelization is done with Matlab-Simulink and the stability zones are obtained.- Analysis using numerical simulations of the internal flow as function of a defined geometry.- Experimental test. A test bench has been designed and constructed to obtain the real behavior of the mini relief valve and to be compared with theoric models.The aim of this Thesis is to develop a new methodology that assembly the theoretical models, the numerical simulation tools and experimental tests, to understand the behavior of mini hydraulic components and the design variables that are more affected by the miniaturization.This methodology has been applied to different plug geometries. Conical or non conical plugs, guided or non guided plugs have been simulated and tested. Is shown briefly the most important results of this work.The numerical simulation results show how important is the flow symmetry and the plug guidance in order to eliminate non desired instabilities. This is a key point in the attenuation of the sound level. The instabilities and noise generated as a consequence of cavitation are non avoidable. They appear at 3000 [Hz] or higher. The affectation degree in the mini relief valve global behavior is acceptable.Depending on the freedom degrees of the plug, the instabilities increase and the global behavior can be really affected. Guidance is strongly recommended. The application of the main equations as a predesign methodology has allowed the obtaining of the stability criterion related to the mini relief valve basic parameters.The use of a methacrilate body in the test has made possible the understanding of the internal fluid dynamic and the relation with the global working parameters. The results obtained with the dynamic mesh used in the numerical simulations open a new and interesting research field in hydraulic components. The most detrimental behavior is related with the mini relief valve resonance frequency. The geometry does not attenuate this vibration behavior
    corecore