2,003 research outputs found

    Pressure and flow control of a pulverized coal injection vessel

    Full text link

    The Petrocarb pneumatic feeding system: A proven method for feeding particulate solids at controlled rates

    Get PDF
    An outline of the principal features of the Petrocarb Pneumatic Feeding System is given. Early development and various commercial applications are included. It is concluded that the Petrocarb Injection System is capable of feeding dry solids into most of the processes being developed for utilizing coal

    Coal desulfurization by aqueous chlorination

    Get PDF
    A method of desulfurizing coal is described in which chlorine gas is bubbled through an aqueous slurry of coal at low temperature below 130 degrees C., and at ambient pressure. Chlorinolysis converts both inorganic and organic sulfur components of coal into water soluble compounds which enter the aqueous suspending media. The media is separated after chlorinolysis and the coal dechlorinated at a temperature of from 300 C to 500 C to form a non-caking, low-sulfur coal product

    Explosive Dust Test Vessel Comparison using Pulverized Pittsburgh Coal

    Get PDF
    Explosions of coal dust are a major safety concern within the coal mining industry. The explosion and subsequent fires caused by coal dust can result in significant property damage, loss of life in underground coal mines and damage to coal processing facilities. The United States Bureau of Mines conducted research on coal dust explosions until 1996 when it was dissolved. In the following years, the American Society for Testing and Materials (ASTM) developed a test standard, ASTM E1226, to provide a standard test method characterizing the “explosibility” of particulate solids of combustible materials suspended in air. The research presented herein investigates the explosive characteristic of Pulverized Pittsburgh Coal dust using the ASTM E1226-12 test standard. The explosibility characteristics include: maximum explosion pressure, (Pmax); maximum rate of pressure rise, (dP/dt)max; and explosibility index, (Kst). Nine Pulverized Pittsburgh Coal dust concentrations, ranging from 30 to 1,500 g/m3 , were tested in a 20-Liter Siwek Sphere. The newly recorded dust explosibility characteristics are then compared to explosibility characteristics published by the Bureau of Mines in their 20 liter vessel and procedure predating ASTM E1126-12. The information presented in this paper will allow for structures and devices to be built to protect people from the effects of coal dust explosions

    Blast Furnace Granulated Coal Injection System Demonstration Project public design report. Topical report

    Full text link

    Flame speed and Kst reactivity data for pulverised corn cobs and peanut shells.

    Get PDF
    Power generation using waste material from the processing of agricultural crops can be a viable biomass energy source. However, there is scant data on their burning properties and this work presents flame speed and explosion Kst data for two agricultural waste materials: corn cobs and peanut shells. Both parameters were measured on the ISO 1 m3 dust explosion equipment. Two coarse size fractions of corn cobs (CC) and peanut shells (PS) of size less than 500 μm were tested using the Leeds 1 m3 vessel and were compared with two pulverized coal samples. This is typical of the size fraction used in pulverized coal power stations and of pulverized biomass currently used in power generation. The explosion parameters minimum explosive concentration (MEC), rate of pressure rise (dP/dt), deflagration constant (Kst), peak to initial pressure rise (Pm/Pi), turbulent and laminar flame speeds were determined using a calibrated hemispherical disperser in the 1 m3 vessel. MEC were measured in the range of 0.6-0.85 in terms of burnt equivalence ratio, Øburnt, which were comparable to the coal samples. The measured Kst (25-60 bar m/s) and turbulent flame speeds (~1.3 m/s) were lower than for coal, which was a reflection of the lower calorific value. These results showed that these crop residues are technically feasible power plant fuels to burn alongside coal or as a renewable biofuel on their own

    Coal pump development phase 3

    Get PDF
    Techniques for achieving continuous coal sprays were studied. Coazial injection with gas and pressure atomization were studied. Coal particles, upon cooling, were found to be porous and fragile. Reactivity tests on the extruded coal showed overall conversion to gases and liquids unchanged from that of the raw coal. The potentials for applications of the coal pump to eight coal conversion processes were examined

    Towards Large Eddy Simulation of a Staged, Pressurized Oxy-fuel Combustor

    Get PDF
    Identified by the DoE among the novel and transformational technologies, staged-pressurized oxy-fuel combustion (SPOC) is a promising low-cost, low-emission, and highly efficient tool for carbon capture utilization and storage (CCUS), with pulverized coal burning under elevated pressures and low recycled flue gas. A lab-scale SPOC facility, under establishment at Washington University in St. Louis (WUSTL), causes the critical need to develop accurate and reliable computational models to assist the ongoing WUSTL experiments. This constitutes the driving motivation of the present work. Specifically, comprehensive three-dimensional Large-eddy simulations (LES) of the lab-scale SPOC reactor, with most of important characteristics of a multi-phase flow, are performed by means of the commercial computational fluid dynamics (CFD) package ANSYS Fluent. Various models for fluid-particle interaction, pulverized coal combustion, convective and radiative heat transfer, transport of species, and turbulence-chemistry interaction under pressurized oxy-firing conditions are scrutinized. The overall 100 kW of the thermal power generated by the SPOC reactor is divided between 90 kW resulting from oxy-coal combustion and 10 kW from a methane-aided pilot-flame, which serves as a stabilizer for oxy-coal combustion. The Eulerian-Lagrangian description of the phases is employed to model fluid-particle interaction, with a two-way coupling mechanism enabled. Turbulent burning is modeled with the species transport model, solving for the transport of eight species (volatiles, O2, H2O vapor, CO, N2, H2, CH4, and bulk CO2). The simulations account for such key phenomena as coal devolatilization and char combustion; gasification and oxidation with modified diffusion rates in a pressurized environment; and radiation heat transfer. In particular, user-defined functions (UDF) are implemented in the ANSYS Fluent to properly model the particle emissivity and the gas mixture absorption coefficients. The present research has resulted in the following three major conclusions. First, it is demonstrated that the effect of particle-particle interaction on the injection of pulverized coal into the SPOC burner is negligible, while fluid-particle interaction is the dominant mechanism. Second, a successful strategy how to transition from the Reynolds-averaged Navier Stokes (RANS) simulations to an LES is developed and tested on various sub-grid scale (SGS) models. In particular, it is shown that the Classical Smagorinsky model is unable to model SPOC with purely coal burning. Instead, the Dynamic-Stress Smagorinsky-Lilly model is proposed to be used in the LES framework. Finally, turbulent dispersion of particles is analyzed, with a particular focus on the Stokes number. It is concluded that a poor dispersion and possible wall impactions occur for pulverized coal particles exceeding 500 μm, which may subsequently cause the slagging problems in the experimental facility

    Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    Get PDF
    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant
    corecore