6,581 research outputs found

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization

    Constraining the Size Growth of the Task Space with Socially Guided Intrinsic Motivation using Demonstrations

    Get PDF
    This paper presents an algorithm for learning a highly redundant inverse model in continuous and non-preset environments. Our Socially Guided Intrinsic Motivation by Demonstrations (SGIM-D) algorithm combines the advantages of both social learning and intrinsic motivation, to specialise in a wide range of skills, while lessening its dependence on the teacher. SGIM-D is evaluated on a fishing skill learning experiment.Comment: JCAI Workshop on Agents Learning Interactively from Human Teachers (ALIHT), Barcelona : Spain (2011

    A guided Monte Carlo method for optimization problems

    Get PDF
    We introduce a new Monte Carlo method by incorporating a guided distribution function to the conventional Monte Carlo method. In this way, the efficiency of Monte Carlo methods is drastically improved. To further speed up the algorithm, we include two more ingredients into the algorithm. First, we freeze the sub-patterns that have high probability of appearance during the search for optimal solution, resulting in a reduction of the phase space of the problem. Second, we perform the simulation at a temperature which is within the optimal temperature range of the optimization search in our algorithm. We use this algorithm to search for the optimal path of the traveling salesman problem and the ground state energy of the spin glass model and demonstrate that its performance is comparable with more elaborate and heuristic methods.Comment: 4 pages, ReVTe

    A Zoomable Mapping of a Musical Parameter Space Using Hilbert Curves

    Get PDF
    The final publication is available at Computer Music Journal via http://dx.doi.org/10.1162/COMJ_a_0025

    An Alternative Approach to Functional Linear Partial Quantile Regression

    Full text link
    We have previously proposed the partial quantile regression (PQR) prediction procedure for functional linear model by using partial quantile covariance techniques and developed the simple partial quantile regression (SIMPQR) algorithm to efficiently extract PQR basis for estimating functional coefficients. However, although the PQR approach is considered as an attractive alternative to projections onto the principal component basis, there are certain limitations to uncovering the corresponding asymptotic properties mainly because of its iterative nature and the non-differentiability of the quantile loss function. In this article, we propose and implement an alternative formulation of partial quantile regression (APQR) for functional linear model by using block relaxation method and finite smoothing techniques. The proposed reformulation leads to insightful results and motivates new theory, demonstrating consistency and establishing convergence rates by applying advanced techniques from empirical process theory. Two simulations and two real data from ADHD-200 sample and ADNI are investigated to show the superiority of our proposed methods

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied

    Representation and generation of plans using graph spectra

    Get PDF
    Numerical comparison of spaces with one another is often achieved with set scalar measures such as global and local integration, connectivity, etc., which capture a particular quality of the space but therefore lose much of the detail of its overall structure. More detailed methods such as graph edit distance are difficult to calculate, particularly for large plans. This paper proposes the use of the graph spectrum, or the ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space as a whole. The result is a vector of high dimensionality that can be easily measured against others for detailed comparison. Several graph types are investigated, including boundary and axial representations, as are several methods for deriving the spectral vector. The effectiveness of these is evaluated using a genetic algorithm optimisation to generate plans to match a given spectrum, and evolution is seen to produce plans similar to the initial targets, even in very large search spaces. Results indicate that boundary graphs alone can capture the gross topological qualities of a space, but axial graphs are needed to indicate local relationships. Methods of scaling the spectra are investigated in relation to both global local changes to plan arrangement. For all graph types, the spectra were seen to capture local patterns of spatial arrangement even as global size is varied
    • 

    corecore