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Abstract 

This paper presents a novel evolutionary approach for function optimization  

Incremental Evolution Strategy (IES). Two strategies are proposed. One is to evolve 

the input variables incrementally. The whole evolution consists of several phases and 

one more variable is focused in each phase. The number of phases is equal to the 

number of variables in maximum. Each phase is composed of two stages: in the 

single-variable evolution (SVE) stage, evolution is taken on one independent variable 

in a series of cutting planes; in the multi-variable evolving (MVE) stage, the initial 

population is formed by integrating the populations obtained by the SVE and the 

MVE in the last phase. And the evolution is taken on the incremented variable set. 

The other strategy is a hybrid of particle swarm optimization (PSO) and evolution 

strategy (ES). PSO is applied to adjust the cutting planes/hyper-planes (in 

SVEs/MVEs) while (1+1)-ES is applied to searching optima in the cutting 

planes/hyper-planes. The results of experiments show that the performance of IES is 

generally better than that of three other evolutionary algorithms, improved normal 

GA, PSO and SADE_CERAF, in the sense that IES finds solutions closer to the true 

optima and with more optimal objective values. 
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1. INTRODUCTION 

1.1 Background 

The need to solve function optimization problems arises in one form or another in the 

engineering world. Although many optimization techniques have been developed, 

there are still large classes of functions which are beyond the reach of analytical 

methods and present significant difficulties for numerical techniques. Unfortunately, 

such functions are quite commonplace, for example, functions which are not 

continuous or differentiable everywhere, functions which are non-convex, 

multi-modal (multiple peaks), and functions which contain noise. As a consequence, 

there is continuing search for new and more robust optimization techniques capable 

of handling such problems. In the past few decades we have seen an increasing 

interest in biologically motivated approaches of solving optimization problems, 

including neural networks (NNs), evolutionary algorithms (EAs), and particle swarm 

optimization (PSO) [23-25]. 

 

Evolutionary Algorithms (EAs) serve as popular tools for search, optimization, 

machine learning and solving design problems. Historically, genetic algorithms (GAs) 

and evolution strategies (ESs) are two of the most basic forms of EAs. Both of them 

have been used for optimization. GAs have long been viewed as multi-purpose tools 

with applications in search, optimization, design and machine learning [5, 6], while 

most of the work in ESs focused on optimization [7-9]. 

 

Evolution Strategies were developed in Germany under the leadership of Ingo 

Rechenberg and Hans-Paul Schwefel [25]. ESs tend to use more direct 

representations than GAs [4], thus they are generally applied to real-valued 

representations of optimization problems. And in ESs mutation is emphasized over 

recombination. The two basic types of ESs are known as the ( ),µ λ -ES and the 

( )µ λ+ -ES ( µ  is the size of the parent population and λ  is the number of 
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offspring that are produced in a single generation before selection is applied). In a 

( ),µ λ -ES the offspring replace the parents. In a ( )µ λ+ -ES, selection picks from 

both the offspring and the parents to create the next generation [10]. Different values 

of parameter µ  and λ  could have a large impact on the performance of ESs. In 

this paper, ( )1 1+ -ES is chosen for the algorithm proposed for its simplicity using 

[10]. 

 

Particle swarm optimization (PSO) is a novel multi-agent optimization system 

(MAOS) inspired by social behavior metaphor [11]. And the concept of a 

more-or-less permanent social topology is fundamental to PSO [11, 18]. Each agent 

in PSO, called particle, flies in a d -dimensional space S  according to the historical 

experiences of its own and its colleagues. The velocity and location for the i th 

particle is represented as ( )1, , , ,
i i ij id

v v v v=
��

… …  and ( )1, , , ,
i i ij id

x x x x=
��

… … , 

respectively. Its best previous location is recorded and represented as 

( )1, , , ,
i i ij id

p p p p=
���

… … , which is also called pbest. The index of the best pbest is 

represented by the symbol g , and is called gbest. At each step, the particles are 

manipulated according to the following equations [12]: 

( ) ( ) ( ) ( )1 2ij ij ij ij gj ij

ij ij ij

v w v c rand p x c rand p x

x x v

= ⋅ + ⋅ ⋅ − + ⋅ ⋅ −

= +
 

where w  is inertia weight, 1c  and 2c  are acceleration constants between 0 and 1, 

( )rand  represent random values between 0 and 1.  

 

Several researchers have analyzed this optimization algorithm empirically [13-15] 

and theoretically [16, 17]. They showed that the particles oscillate in different 

sinusoidal waves and converge quickly, especially for PSO with a small w  [15] or 

constriction coefficient [16].  
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1.2 Challenges and proposed solution 

Although biologically inspired algorithms are more effective for the difficult 

functions discussed above than some classical numerical methods, some features of 

the functions, such as ridges and local optima, often obstruct them from converging to 

the global optima. The algorithmic challenge in handling ridges is to change multiple 

variables simultaneously in order to search in the direction of the ridge orientation 

and thereby avoid reduction in fitness. A lot of problems with ridges could be 

successfully solved by self-adaptive ES [7]. However, self-adaptive ES is unsuitable 

for high-dimensional problems. According to [10], a chromosome of self-adaptive ES 

should include the “object parameter” together with the “strategy parameters” and 

even with the “rotation parameter”. Thus if there are d  object parameters, namely, 

d variables in the objective function, there will be d  strategy parameters and 

( 1) 2d d −  rotation parameters. When the problem is a high dimensional one, that’s 

to say d  is a large value, the chromosome will become quite complex and the 

performance of ES may be not so satisfying. For instance, a 100-dimensional problem 

requires 4950 angles to allow rotation between all dimensions. Thus we attempt to 

focus on evolving in lower dimensions, that’s why the incremental mechanism is used. 

Problem with local optima, namely multi-modal problem, is also quite common and 

unavoidable in real-world applications. And it is well received to be hard to handle, 

especially when the number of local optima is rather large. The basic algorithms have 

a tendency to stagnate in a local optimum because escaping from such optima may 

require a significant amount of backtracking, namely “downhill movement”, before 

new fitness improvements occur. Thus, a great deal of work has been dedicated to it. 

However, since the dimensionality of functions they tackled is not very high, usually 

less than 30, the number of local optima won’t be huge then [29]. 

 

In this paper a new algorithm, Incremental Evolution Strategy (IES), is proposed, To 

reduce the dimensionality of searching, we slice the searching space with cutting 

planes/hyper-planes. Particle swarm optimization is used to adjust the cutting 
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planes/hyper-planes to approach the planes/hyper-planes containing global optima 

while ES is used to search the optima in these cutting planes/hyper-planes. In fact, 

some researchers did try to combine the power of EAs and PSO. In [19], a hybrid 

algorithm of GA and PSO is proposed and the results showed that this algorithm 

outperforms simple PSO and simple GA. However, this PSO-GA hybrid is just a 

simple combination of the two algorithms, which is done by taking the population of 

PSO when the improvement starts to level off and using it as the starting population 

of GA.  

 

IES uses incremental evolution strategy as a basic vehicle for optimizing, together 

with particle swarm optimization to assist in incremental evolving. In fact, the 

concept of incremental learning/evolution has been proved feasible and effective in 

some previous work of our team, including incremental learning both in the input 

space and the output space [27-32] and incrementally evolving multi-objective 

problems [33]. Different from normal ESs which evolve variables in their full 

dimension to optimize the objective function, IES evolves the variables one after 

another under a scenario of continuous incremental optimization. Each time when a 

new variable is introduced, single-variable evolution is first implemented under 

particle swarm (PS) assisted ES, then the found solutions are integrated with the 

solutions found earlier, and lastly multi-variable evolution is implemented with 

regard to the variable set evolved so far. When the dimensionality is high, not all the 

variables need to be evolved individually, rather, a stagnation criterion will decide 

how many variables need individual evolution. The simulation results showed that 

IES can achieve generally better performance than normal ES in terms of obtaining 

solutions with higher quality both in the input space and the output space.  

 

For performance comparison, SADE_CERAF, an evolutionary algorithm claimed for 

global optimization in real domains, is used. Simplified Atavistic Differential 

Evolution (SADE) combines the features of differential evolution (DE) with those of 

traditional genetic algorithms [21]. DE is a modern and efficient optimization method 
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essentially relying on so-called differential operator, which was invented as the 

solution method for the Chebychev trial polynomial problem by Stone and Price [20]. 

CERAF is a technology enabling the population of solutions to escape from local 

extremes, which aims to improve the performance of SADE by preventing premature 

convergence [21]. 

 

The rest of the paper is organized as follows. In section 2, orthographic projection of 

objective function is presented and cutting plane mechanism is defined. Based on the 

analysis in section 2, section 3 proposes the new algorithm, IES. Section 4 presents 

the results of experiments and relevant analysis. Section 5 discusses why IES works. 

Section 6 concludes this paper. 

 

2. RELATED THEORY 

The concept of IES originates from the idea of function projection. This section 

presents the concept of function projection and its extension.  

 

2.1 Motivation 

As we know, a 3-dimensional object can be described exactly by three-view 

orthographic projection drawing, which is some kind of mechanical drawing. A 

three-view orthographic projection drawing shows the front, top, and right sides of an 

object as shown in Fig. 1. An important factor in a three-view drawing is the 

relationship among height, width, and depth. The top and front views share width. 

The top and side views share depth. The front and side views share height.  

 

With respect to a function optimization problem, the aim is to find the optimal 

objective value of a function with d  variables. Such a function can be seen as a 

hyper-surface in the ( 1d + )-dimensional space and the nadir (or the zenith in 

maximization problem) of the hyper-surface is to be found. (Since any maximization 
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problem can be turned into a minimization one, this paper considers minimization 

only.) Inspired by the phenomenon that in a three-view orthographic projection 

drawing the height information won’t be lost with orthographic projection from the 

front view or the side view, we consider taking orthographic projection of objective 

function from ‘variable view’, which means to project the corresponding 

hyper-surface orthographically onto variable-objective value planes. The detailed 

formal descriptions of this concept are presented as follows. 

 

2.2 Orthographic Projection of Function 

Consider a single objective minimization problem with d  attributes in the input 

space, we formulate the optimization problem as finding ( )1 2, , , dX x x x= �  to 

minimize the value of ( )y f X=  within the feasible input region I . 

 

Definitions: 

1) Feasible input region I  is the set of all vectors that satisfy the constraints and 

bounds of the problem. 

2) { }1 2 1, , , ,
d d

u u u u +

�� ��� ��� ����

�  is the set of orthogonal bases in the ( 1)d + -dimensional 

space 1dR + , corresponding to { }1 2, , , ,dx x x y� . A 3-dimensional example is 

demonstrated as follows. 

3) Orthographic projection refers to the projection along the orthogonal bases, 

vectors 
i

u
��

, 1, 2, , 1i d∈ +… . 

4) 
ix y

P − , 1,2, ,i d= � , is the boundary of the orthographic projection of the original 

function ( )1 2, , , dy f x x x= �  on the 
i

x y−  plane. And we use a function 

( ) ( ) ( )i i

i
y f x=  to describe 

ix y
P − .  

5) To facilitate discussion without losing generality, assume that there is only one 

global optimal solution ( )1 2, , , ,g g g g

d
x x x y�  for the original problem. And one 
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optimal solution ( )* ( )*, i

i
x y  for each projected problem could be found. 

 

In IES, we try to minimize the problem incrementally. Consider the extreme situation, 

in which the variables are incrementally evolved one by one. That means we project 

the original problem into d  projected sub-problems, i.e. to find: 

 ( ) ( ) ( ){ }* (1)* * (2)* * ( )*

1 2, , , , , , d

d
x y x y x y� . 

 

Statement 1: The minimum of
ix y

P − , ( )* ( )*, i

i
x y , is the projection of the global 

minimum ( )1 2, , , ,g g g g

d
x x x y�  of the original problem on the 

ix y−  plane, 

1,2, ,i d= � . 

 

Apagoge is used: 

Assume ( )* ( )*, i

i
x y is not the projection of ( )1 2, , , ,g g g g

d
x x x y�  on the 

i
x y−  plane, 

1,2, ,i d= � . 

 

When we project ( )1 2, , , dy f x x x= �  onto the 
i

x y−  plane, each point 

1 2( , , , , )o o o o

d
x x x y�  on the original hyper-surface ( )1 2, , , dy f x x x= �  corresponds 

to a point in the area of the orthographic projection. And, when taking orthographic 

projection along all the directions except 
i

u
��

 and 1d
u +

����

 in the 1dR +  space, there is 

0j ju u× =
��� ���

, 1, 2, , ,j d j i= ≠… . And in the 
i

x y−  plane, there is 1
i i

u u =
�� ��

i  and 

1 1 1
d d

u u+ + =
���� ����

i . Thus the projection point ( )( ),p i p

i
x y will be 

( )

p o

i i

i p o

x x

y y

 =


=
. That’s to say, 

the “height” information in the i th and the 1d + th dimensions is retained, and the 

“height” information in the other dimensions is discarded. 

 So there is at least one point on the original hyper-surface corresponding to each 

point ( )( ), i

i
x y  on

ix y
P − , a curve described by ( ) ( ) ( )i i

i
y f x= . 
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According to the assumption, there should be a point ( )( , )c i c

i
x y  in the area of 

the projection in the 
i

x y−  plane other than ( )* ( )*, i

i
x y  corresponding to the global 

minimum ( )1 2, , , ,g g g g

d
x x x y� , which has

( )

c g

i i

i c g

x x

y y

 =


=
.  

With regard to the global minimum, { }ming oy y= , then it can be deduced that 

{ }( ) ( )mini c i py y= , that’s to say ( ) ( )*i c iy y< .  However, there is the premise that 

( )* ( )*, i

i
x y  is the minimum point of

ix y
P − , and since 

ix y
P −  is the boundary of 

projection on the 
i

x y−  plane, ( )* ( )*, i

i
x y is the minimum point of the area of 

projection.  

Therefore, the conclusion contradicts with the premise, and it is proved that 

( )* ( )*, i

i
x y  is the projection of the global minimum point on the 

i
x y−  plane. 

 

In some cases the assumption that there is only one global optimal solution of the 

original problem may not hold. This means there could be multiple global optimal 

solutions of the original problem. Nonetheless, it is obvious that the proof above still 

holds in the sense that the global optimal solutions won’t lose their predominance in 

terms of y  value after taking orthographic projection. The only difference would be 

that multiple optimal solutions could be found in some or all of the projected 

problems, which are the projections of the original global optimal solutions. 

Obviously the conclusion can be generalized to orthographic projection of higher 

dimensions. That is: the minima of the boundary functions resulting from the 

projection of the hyper-surface corresponding to the original objective function, are 

the projection of the global optima.  

2.3 Cutting Plane Mechanism: Local via Global Search 

From the previous discussions, it is proved that if the exact boundary functions of the 

orthographic projection can be obtained. We can find the optimum easily by just 
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evolving a one-variable problem. Unfortunately, we cannot easily find the exact 

function which describes the projection boundaries. Nevertheless, we can still make 

use of the features and concepts discussed above through a mechanism called cutting 

plane. 

 

Definitions: 

1) For an optimization problem with d  variables, fix some variables and evolve 

the other variables. The fixed ones are called unconcerned variables ( ucX ) while 

the rest are called concerned variables ( cX ).  

2) A point in the space of concerned variables is called the projection of the 

corresponding point in the original space and that the original point is the 

proto-point of the projection. 

3) When there is only one concerned variable, the projection method is called 

cutting plane mechanism. The concerned variable-objective value plane is the 

cutting plane. And the cutting plane intersects the original hyper-surface resulting 

in an intercepted curve. 

4) If the fixed values for those unconcerned variables are equal to the values of 

corresponding variables of the global optimum, i.e. 0uc g

i i
x x− =  (where 

uc uc

i
x X∈ , g

i
x  is the value of corresponding variable of the global optimum), the 

cutting plane is called the optimal cutting plane (OCP for short). The cutting 

planes falling into the ε -region of an OCP, uc g

i i
x x ε− ≤  (ε  is the tolerance), 

are called the ideal cutting planes (ICPs). 

 

The cutting plane mechanism could reduce the problem to a one-variable problem 

(e.g. the concerned variable is 
i

x ) and this reduced problem will be finely searched. 

To form a cutting plane, the unconcerned variables ( 1 1 1, , , , ,
i i d

x x x x− +… … ) are treated 

as dummies by setting them at certain fixed values, which means the cutting plane is 

applied to intersect the hyper-surface. Take a two-variable problem ( )1 2,y f x x=  as 
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an example. Assume 1x  is the current concerned variable and the unconcerned 

variable 2x  is treated as a dummy by setting 2x a= , the cutting plane is the gray 

area in Fig. 2 and the intercepted curve in the surface is shown in Fig. 3. 

 

As shown in Fig. 3, ( )1 ,
p p

P x y  is the optimum point of the intercepted curve. 

Obviously, only if the cutting plane is the OCP or an ICP, ( )1' , ,
p p

P x a y , the 

proto-point of P  will be the desired global optimum or a satisfactory solution very 

close to the global optimum. Although the cutting plane in the example is not the 

OCP and thus P  is not the projection of the global optimum, P  is at least a 

solution near local optimum or global optimum.  

 

Assume the probability that a randomly set value for a unconcerned variable uc

i
x  is 

within the tolerance ε , denoted as ( )uc g

i i i
P P x x ε= − ≤ . Then the probability of 

getting an ICP is 
ICP i

i

P P= ∏ . Since 
i

P  is inversely proportional to the range of 

value of uc

i
x , denoted as 

i
r , 

ICP
P  would be rather small when 

i
r  is large or the 

number of variables is large. The position of cutting plane is an important factor in 

obtaining a good projection of global optima. Therefore, the cutting plane needs to be 

moved adaptively. Hence, we adopt the concept of particle swarm optimization to 

assist in adjusting the cutting planes and set the cutting plane candidates as particles.  

 

In each cutting plane, the optimum of the intercepted curve is to be searched by 

(1+1)-ES. PSO guides globally the cutting planes to the promising area and then local 

searching is conducted in the reduced search space (i.e. cutting planes). This kind of 

local via global search is believed to improve efficiency and accuracy. The details of 

the cutting plane moving mechanism will be described in Section 3. 
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2.4 Summary 

In short,  

1. The optima of a projected function in any dimension are the projections in that 

dimension of the corresponding global optima. This conclusion implies the 

feasibility of lowering the searching dimensionality of an optimization problem.  

2. In the cutting plane mechanism, the closer to the OCP the cutting planes are, the 

more significant the found optima in the cutting planes. This analysis suggests 

the use of particle swarm optimization. 

3. IES benefits from the combination of PSO and (1+1)-ES. PSO acts as a global 

guide while (1+1)-ES acts as a local fine tuner. 

 

3. Incremental Evolution Strategy (IES) 

Undoubtedly, searching in a lower dimensional space is easier and less time 

consuming. So, we can start the search for optima from only one concerned variable 

and approach the ultimate global optima by increments. If the information obtained 

before concerned-variable-increment can help evolution after the increment, such an 

incremental evolution can assure good quality of solution. The analysis in Section 2 

shows the feasibility of such an incremental approach. This is the basic principle of 

IES, the details are shown below. 

 

3.1 Architecture and Procedure of IES 

IES divides the whole evolution into several phases. One more variable is considered 

in each phase until the global optima are found. Among all the phases, we call the 

first phase as the initial phase, the last phase as the ending phase, and those in 

between as intermediate phases. Each phase is composed of two steps. First, a 

population is evolved with regard to a certain concerned variable on some moving 

cutting plane adaptively, which is called SVE (Single-concerned-Variable Evolution). 
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Next, the better-performing individuals obtained from step one and the population 

obtained from the last phase are joined together in step two to form an initial 

population, to which PS-assisted MVE (Multi-concerned-Variable Evolution) is 

applied. The procedure is shown in Fig. 4, where Si stands for SVE on variable i, 

i=1,2, … ,d. Mj stands for MVE with regard to from variable 1 to variable j+1, 

j=1,2, … , d-1, where d is the dimensionality of the original problem. 

 

The algorithm works as follows (Assume there are d  variables and N  is the initial 

population size):  

1. Set 1k = , where k  is the phase number. Generate a population and implement 

SVE (The details of SVE will be given later.) with regard to the first concerned 

variable. After that, m  fittest individuals survive into 1MP  (
k

MP  represents 

the multi-concerned-variable population for phase k ). Phase 1, namely the 

initial phase, then ends.  

2. Set 1k k= + . The next phase starts. 

3. Generate a population and implement SVE with regard to the k -th concerned 

variable. After that, the m  fittest individuals survive into 
k

SP  (
k

SP  represents 

the single-concerned-variable population for phase k ). 

4. Generate the initial population for the multi-concerned-variable evolution in 

phase k , 
k

I , which is the result of integration operation on 
k

SP  and 1k
MP − . 

The details of integration operation will be given later. 

5. If the size of 
k

I  is larger than N , select the N  fittest individuals. Then 

perform MVE (The details of MVE will be given later.) on 
k

I  with the first to 

the k -th concerned variables. After the evolution, 
k

I  evolves into 
k

MP . Phase 

k  ends. 

6. If none of the following stopping criteria is satisfied, go to 2. 

The stopping criteria are: 
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1) Stagnation Criteria: The improvement of the best individual in the past 
strip

g  

generations is less than a preset threshold ρ . 

2) Generation Criteria: The generation number is larger than a preset threshold 

thred
g . 

If anyone of them is satisfied, the whole evolution process finishes. The fittest 

individuals in the final population are the found optima. 

3.2 Implementation of SVE and MVE 

SVE aims to evolve the population with regard to only one concerned variable 

through continuously moving the cutting plane and finding optima on each cutting 

plane. To evolve the population on a certain cutting plane, (1+1) evolution strategy is 

used. To adaptively move cutting plane according to its previous performance in 

terms of the optima found on it, particle swarm optimization is applied. 

 

� (1+1)-ES evolving 

In a population, for each individual (chromosome), fix the cutting plane and evolve 

the concerned variable using mutation only. For global mutation we reset the 

concerned variable with a randomly generated value within the dynamic range of that 

variable at a small probability, while for local mutation we add the concerned variable 

with a small random value at a large probability. Each individual produces one 

offspring in a generation, and the better one among the parents and the offspring will 

be retained. This (1+1) evolution procedure is shown in Fig. 5.  

 

As shown in the Fig. 5, the concerned variable-y plane is a cutting plane and the 

curve is the intercepted curve at the original hyper-surface intercepted by the cutting 

plane. The point K  represents the projection of a chromosome on the cutting plane 

in the current population. During reproduction, the concerned variable would be 

mutated to a new random value at a small mutation probability 
ms

p  and the 
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projection of the offspring on the current cutting plane is represented by the point R . 

Since the objective value of the offspring is less than that of the parent (minimization 

problem), the parent is replaced by the offspring. In the next generation, the 

concerned variable would be mutated to a new adjacent value at a large probability 

ml
p  and the projection of the offspring on the current cutting plane is represented by 

the point B . Since the objective value of the offspring is again less than that of the 

parent, the parent is replaced by the offspring. Based on the stagnation criterion, the 

optima of the cutting plane could be found. There is one optimum in this cutting plane, 

represented by the point P , which is the target to be found using (1+1)-ES evolving 

on this cutting plane.  

 

� Particle Swarm-assisted Moving Cutting Plane  

PSO is a method that pulls the initial population of particles to the optimal solutions, 

which is what we need: moving the cutting planes towards the OCP. The detailed 

moving steps are described as follows: 

a. In the initial phase, the concerned variable is 1x , there is one cutting plane 

corresponding to each chromosome that has different 2 3, ,
d

x x x…  from the 

others. The chromosome is shown in Fig. 6. 

b. To find the optimal 1x , represented by 
1 *x  as shown in Fig. 7, for each cutting 

plane by using (1+1)-ES evolving. 

c. To compare all the chromosomes, choose the one with the smallest objective 

value as the global_best 
gb

P  and update the local_best i

lb
P  ( 2, ,i d= … ) of each 

chromosome if its current objective value is the smallest it ever achieved. And 

then adjust the cutting plane according to the update rule of PSO. The adjustment 

of the j th unconcerned variable of the i th chromosome i

jx  at time k  is 

described as follows: 
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( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )

1 21

1 1

i i i i i

j j gb j lb j

i i i

j j j

v k w v k c rand P k x k c rand P k x k

x k x k v k

 + = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −


+ = + +

1,2, , 2, ,i M and j d= =… …  

where M  is the number of chromosomes in the current population and w , 1c  

and 2c  are all constants in common PSO.  

 

MVE is an extension of the cutting plane mechanism for SVE. The number of 

concerned variables is more than one and is equal to the sequence number of current 

phase. So we search the projection of global optima in cutting spaces with 

continuously incremented dimensions rather than in a cutting plane. The steps in 

MVE are similar to those in SVE. Firstly, use (1+1)-ES with regard to the current 

concerned variables to find the projections of global optima in a cutting space of 

certain dimensionality. Secondly, with the assistance from PSO, move the cutting 

space according to its previous performance in terms of minimal objective value 

found in it and the guide information from the best cutting space ever achieved. 

Continuously perform these two steps until stagnation in terms of the objective value 

of the best individuals. 

3.3 Operation of Integration 

The motivation of integration is to retain all the useful information and combine them 

to create some potential solutions. The procedure of integrating 1k
MP −  with 

k
SP  

into 
k

I , which is the initial population of k -th MVE 
k

M , is illustrated in Fig. 8. As 

shown in Fig. 8, all the chromosomes in both 1k
MP −  and 

k
SP  are copied into 

k
I . 

Besides, for each chromosome in 1k
MP − , its concerned variables are retained  (from 

1x  to 1k
x − ), then get a value for 

k
x  from each chromosome in 

k
SP , lastly fill up the 

chromosome from 1k
x +  to 

d
x  respectively with the corresponding parts of the two 
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chromosomes under integration. The found optimal value is marked by ‘*’. Please 

note that when k d=  the integration operation will be simply copying 1d
MP −  and 

d
SP  into 

d
I . 

4. Experiments and Results 

4.1 Performance Evaluation Metrics 

For parameter optimization problems, namely, both the independent variables and the 

objective function are scalar quantities, the numerical values of the variables are 

sought for which the value of the objective function is an optimum [1]. 

Corresponding to this goal, the following metrics were used: 

1) y  is the optimal objective value obtained. 

2) γ  is the Euclidean distance between the found optimum and the true global 

optimum. 

Besides, the standard deviations of the above metrics are given as 
y

σ , γσ . 

4.2 Experimental Scheme 

The proposed algorithm has been implemented to solve several benchmark problems, 

which are commonly used test functions with different characteristics and degrees of 

difficulties. The results are the average of 50 runs with different seeds. In each run a 

different random sequence is used by setting the initial seed from 1 to 50. 

 

The results are compared to the results of improved normal GA (INGA), PSO and 

SADE_CERAF. INGA improves the normal GA by dynamically changing the 

crossover and mutation probabilities [22]. There are two types of adaptation 

procedure as shown in Fig. 9, where gdm  represents the ratio between the mean and 

the maximum values of the fitness function at each generation, called genetic 

diversity. pc  and pm  are respectively the probability of crossover and mutation. 
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One is based on linear interpolation (LI), while the other one is based on a measure of 

genetic diversity exterior to some limits (EL). The PSO program and the SADE 

program were downloaded respectively from their creator’s homepages. And the 

SADE program was combined with the CERAF technology based on the concept 

from [21].  

 

All the stopping criteria used in our experiments are stagnation criteria. Since the 

parameters for evolutionary algorithms are always set according to experiences, the 

parameters in our experiments were chosen according to a preprocessing procedure, 

in which different values were set to each parameter and those resulting in better 

results were chosen as shown in Table 1. All the experiments were done on a Pentium 

M 1.5GHz PC with 512MB memory. 

 

4.3 Experimental Results 

To ensure fairness of comparison, researchers usually use equal generation 

number/evaluation number of objective function/running time for comparison. In our 

experiments, the semantics of one generation for the algorithms in comparison is 

different. And since the object of an optimization algorithm is to find solutions as 

soon as possible, we use time limit, which means the evolutions for solving a problem 

by each algorithm are confined with the same period of time. 

 

Since optimization algorithms often have their own strategies for achieving good 

performance, there would be some special parameters for each algorithm. With regard 

to the algorithms in comparison, the settings for their specific parameters follow the 

same settings as described in the original papers [22][2][21], as shown in Table 1. 

 

4.3.1 Problem 1: Peaks Function (refer to APPENDIX) 

In this 2-d problem, there is nonlinear interaction between the two variables and thus 
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the function is non-separable. Two OCPs of the Peak function and are shown in Fig. 

10. And the true global minimum ( )1 2, ,g g gx x y  is ( )0.23, 1.6250, 6.5511− − . 

 

The time limit as the stopping criterion is 0.3s. The performance of the compared 

algorithms is shown in Table 2. As the results show, IES, PSO and SADE_CERAF 

can obtain the global solution for Problem 1 but INGA can not. Among these three 

algorithms, IES performs slightly better in the metric γ . 

4.3.2 Problem 2: Rastrigin Function (refer to APPENDIX) 

In this problem, the Rastrigin function is scalable and the interaction among variables 

is linear. The OCPs along all the dimensions are the same due to symmetry, as shown 

in Fig. 11. The true global minimum ( )1 , , ,g g g

d
x x y…  for the scalable Rastrigin 

problem is ( )0, ,0,0… . 

 

In order to test the searching capacity of IES in higher dimensional searching spaces, 

the performance of IES and the other three algorithms on the Rastrigin function with 

the number of variable increased up to 30 is compared. Since the time consumed by 

IES would become long if all the phases are evolved in a high dimensional situation, 

a stopping criteria for each phase is imposed as described in 4.3. The average 

numbers of phases done when 20d =  and 30d =  over 50 runs are respectively 

10.92 and 11.06. The time limit varies with the increase of dimensionality, 

respectively 0.3s, 2s, 6s, 15s, 20s. The results are shown in Table 3. 

 

As the results in Problem 2 show, for almost all the dimensionalities IES performs 

better then the other three algorithms in metrics: y , 
yσ , γ  and γσ . With regard to 

these four metrics, the performance of IES, INGA and PSO gets worse with an 

increasing number of variables, while INGA achieves its best performance when 

10d = .  
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4.3.3 Problem 3: Griewangk Function (refer to APPENDIX) 

In this problem, the Griewangk function is scalable and the interactions among 

variables are nonlinear. So, this is a non-separable problem. And the true global 

minimum ( )1 , ,g g g

d
x x y…  for the scalable Griewangk problem is also ( )0, ,0,0… . 

According to [3], the Griewangk function has a flaw when scaled. The summation 

term of it induces a parabolic shape while the cosine function in the product term 

creates “waves” over the parabolic surface creating local optima. However, as the 

dimensionality of the search space is increased the contribution of the product term is 

reduced and the local optima become small. When the dimensionality is increased up 

to 10, the local optima almost disappear. So, we just test the performance of the 

algorithms on the Griewangk function with the number of variables increased from 2 

to 6. Fig. 12 shows the OCPs of Griewangk function, when 2d =  and 6d = . The 

time limit varies with the increasing of dimensionality, respectively 0.3s, 1s, 1.5s, 2s, 

3.5s. The results are shown in Table 4.  

 

As the results in Problem 3 show, for almost all the dimensionalities IES performs 

better than the other three algorithms in metrics: y , 
yσ , γ  and γσ . With regard to 

these four metrics, the performance of IES, INGA and PSO gets worse with an 

increasing number of variables, while that of INGA gets better.  

 

4.4 Analysis of Experimental Results 

From the experiments on these three benchmark functions, we have an overall picture 

of IES. In summary, the results showed that: 

1. IES generally outperforms the other three algorithms in the sense that the 

solutions found by IES are closer to the true optima and the minimal objective 

values found by IES are more optimal. And the chance of being trapped in local 

optima using IES is smaller than using the other three algorithms. 
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2. As the number of variables increases, not all the variables need to be evolved 

finely. If all the variables are evolved, which means the number of evolving 

phases is equal to the number of variables, the superiority of IES could be 

improved as the number of variables is increased as shown in Problem 3 (Fig. 13). 

Since the performance of INGA is much worse than the other three algorithms in 

this problem, its results are not presented in the figure to avoid affecting the scale. 

If a smaller number of evolving phases is implemented instead, the difference 

between the performance of IES and the other algorithms may be decreased, 

which can be observed in Problem 2. In any case the superiority of IES would not 

disappear, as shown in Fig. 14. 

 

Given enough time, IES generally can help find solutions closer to the true optima 

with more optimal objective values. Especially, the results also suggested that with 

regard to high dimensionality problems on which normal algorithms could not give 

satisfactory performance, IES could perform better. In order to get some tradeoff 

between performance and time consumption, the number of phases evolved in IES 

should be less than the number of variables when the dimensionality is huge. The 

partially evolved IES still could obtain better solutions, given the comparison results 

in this paper.  

 

5. Discussion 

The reason why IES could have such a good performance is explained as follows: 

1)  PSO collaborates with ES in searching. 

Let : df R R→  be the objective function to be minimized. The simple (1+1)-ES can 

be modeled as a Markov process ( )
0k k

X
≥

 such that [26]: 

( ) ( )
1

,

,

k k k k k k k

k

k

X l Z if f X l Z f X
X

X otherwise
+

+ + <
= 
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where 
k

l  is the step length. A state in the Markov process only depends on the state 

just before it. There is no memory and dependence on the states further before. That is 

to say, (1+1) ES is to some extent a local search algorithm. 

 

In contrast, the process ( )
0k k

X
≥

, generated by the PSO can be modeled as follows: 

( ) ( ) ( ) ( )

( ) ( )

( )

1

1

1 1

2 ,

,

1 ( ) 2 ,

k k k k k k k

k k k k

k k k k k k k

X r GB X if f GB f X f LB

X X if f X f GB

X r LB X r GB X otherwise

+

+

+ +

+ − ≤ ≤


= ≤


+ − + −

 

where 11
k

r +  and 12
k

r +  are the random velocity acceleration factors, 
k

GB  is the 

global best chromosome out of all the chromosomes found in the past k  generations 

and 
k

LB  is the best point on the trace of a chromosome in the past k  generations. 

The search performed by PSO is a non-Markov process, which depends on the 

memory of previous traces of the chromosomes. So PSO could specialize in global 

search. 

 

To integrate these two algorithms, the global one should play the role of directing the 

search and the local one finetuning the search. Following this guideline, in IES, PSO 

is used to adjust the cutting plane/hyper-plane and the (1+1) ES is for finely searching 

on the cutting planes. In this way, the success probability of finding the global optima 

is increased as expected in Section 2. 

 

2) Effective information accumulation by incremental evolution 

� Contribution of SVEs 

Assumptions: 

a) In total n  SVEs are conducted for a d -dimensional problem, 1 n d< ≤ .  

b) The success probability of finding the global optima by each SVE is  

1 2, , ,
n

p p p… respectively, and the minimum success probability is 

{ }min 1 2min , , , ip p p p= … . 
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c) The success probabilities of single PSO and single (1+1)-ES are respectively 

PSO
p  and 11ES

p , and the larger one between these two is 

{ }11max ,PSO ESp p p= . 

 

Let S  denote the number of successful SVEs that find the global optimum. 

Then, the possibility of finding the global optimum in the n  SVEs should be: 

( ) ( ) ( )
1

1 1 0 1 1
n

SVEs i

i

p P S P S p
=

= ≥ = − = = − −∏  

 Since usually 1
i

p � , 

( )
1 11

1 1 1 1
n n n

SVEs i i i

i ii

p p p p
= ==

 
= − − ≈ − − = 

 
∑ ∑∏  

The probability of finding the global optimum can be increased by using n  

SVEs. 

 

According to the discussion in 1), in each SVE there is a dimension to be finely 

searched by the cooperation of (1+1)-ES and PSO. This combination of global 

and local search could result in better performance. Thus, the success probability 

of any SVE is believed to be larger than (at least equal to) the success probability 

of solely using (1+1)-ES or PSO, which means minp p≥ . Then, 

( ) ( ) ( )min

1

1 1 1 1 1 1
n

n n

SVEs i

i

p p p p
=

= − − ≥ − − ≥ − −∏  

Since the success probability for any difficult problem by using (1+1)-ES or PSO 

is very small, which can be denoted as 1p� , then 

( ) ( )1 1 1 1
n

SVEs
p p np np≥ − − ≈ − − = . 

Consequently for a difficult problem, the SVEs could make contribution in the 

sense that the probability of finding global optimum using n  SVEs will be more 

than n  times greater than using single (1+1)-ES or PSO. 
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� Role of MVEs 

The searching in MVEs is focused near the solutions obtained from SVEs. Since 

the solutions derived from SVEs are in the adjacent region of either some local 

optima or global optimum, searching around them can further approach the local 

or global optimum. And the multi-SVE mechanism increases the possibility of 

approaching the adjacent region of the global optimum, as discussed above. 

 

This can also be explained using the schema theorem and building block 

hypothesis [5]. A schema is a similarity template describing a subset of strings 

with similarities at certain string positions. It is postulated that an individual's 

high fitness is due to the fact that it contains good schemata. Short and 

high-performance schemata are combined to form building blocks with higher 

performance expected. Building blocks are propagated from generation to 

generation, which leads to a keystone of the GA approach. Research on GA has 

proved that it is beneficial to preserve building blocks during the evolution 

process. MVEs inherit the old chromosomes from SVEs and the previous MVEs, 

where the building blocks likely reside. The integration of these building blocks 

into the initial population provides a solid foundation for the following 

evolutions. 

 

6. CONCLUSIONS 

This paper first analyzed the effect of taking orthographic projection on objective 

functions. A conclusion was drawn which stated that the minima of the boundary 

function of orthographic projection of the hyper-surface corresponding to the original 

function are projections of the global optima. The cutting plane mechanism was 

proposed as an extension of this orthographic projection. We discussed and motivated 

the validity of optimizing projections of the objective function in lower dimensional 

spaces, thereby the feasibility of incremental evolution. 
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The incremental evolution strategy (IES) is proposed as a continuous incremental 

optimizer. Rather than evolving parameters in batch as done by normal optimization 

algorithms, IES finely evolves parameters one after another. Particle swarm 

optimization helps adjust the cutting planes, while (1+1)-ES helps find optima in the 

cutting planes/hyper-planes.  

 

Experiments on three benchmark functions were done and the performance of IES 

was compared with other evolutionary algorithms, namely INGA, PSO and 

SADE_CERAF. The results showed that IES outperformed them such that it could 

find solutions with higher qualities both in the input space and the output space. Some 

explanation was given for the better performance obtained by IES. 

 

In future, we will continue the study in two aspects: 1) The success of IES exhibits its 

potential to solve problems with a dynamic variable set as expected in Section 1. We 

plan to apply incremental evolution to such dynamic function optimization problems. 

2) We would also like to see if we can apply the proposed algorithm in other domains, 

which have dynamic fitness landscapes with a changing number of variables, such as 

clustering problems without prior knowledge of the number of clusters. 
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TABLES 

Table 1 Parameter settings 

Common Settings Swarm size: 50 

LI
 

_ min 0gdm = , _ max 1.0gdm =  

crossover parameters: 

_ min 0.5pc = , _ max 1.0pc =  

mutation parameters: 

_ min 0.025pm = , _ max 0.25pm =  

INGA
1) 

EL 
_ min 0.005gdm = , _ max 0.15gdm = , 1.1km kc= =  

crossover parameters: 

_ min 0.5pc = , _ max 1.0pc =  

mutation parameters: 

_ min 0.001pm = , _ max 0.25pm =  

PSO
2) 

inertia weight: 0.729w =  

acceleration constants: 1 2 1.49445c c= =    

SADE_CERAF
3) 

crossover rate: 0.2pc =  

mutation parameters: 0.5pm = , 0.25mf =  

radioactivity factor: 0.25rf =  

Specific 

Settings 

IES
4) 

mutation parameters: _ 0.2pgm s = , _ 1/pgm m n= , 0.8plm =  

inertia weight: 0.729w =  

acceleration constants: 1 2 1.49445c c= =  

inheritance parameters: _ 6in s = , _ 20in m =  

Remarks:  

1) Refer to Fig. 7 with regard to the meanings of the parameters. 

3) pm  is the mutation rate. mf  is the ratio of the mutation range to the corresponding domain 

range. rf  is the ratio of the radioactivity area to the corresponding domain. 
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4) _pgm s  and _pgm m  are the mutation rates for global search of SVEs and MVEs, 

respectively. plm  is the mutation rate for local search. _in s  and _in m  are the numbers of 

solutions inherited from SVE and MVE, respectively. 

The stopping criteria for searching in the cutting plane: the enhancement of the fittest individual in the 

population is less than 0.1% over the last 10 generations or the generation number is more than 1000. 

Similarly, the stopping criteria for SVEs and intermediate MVEs: the enhancement of the fittest 

individual is less than 0.1% in the last 10 cutting planes or the time of moving cutting plane is more 

than 1000. 

In addition, if the variable number is larger than 10, the number of phases could be less than the 

number of variables. The stopping criteria: the enhancement of the fittest individual is less than 0.1% 

in the last 5 phases or all the phases are finished. 
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Table 2 Performance comparison on Peaks function  

INGA 
  IES 

LI EL PSO SADE_CERAF 

( )

y

yσ
 -6.5511      

(1.95E-07) 
1.1641  

(1.1967) 
-1.1534   

(1.2029)   
-6.5511 

(2.72E-07) 
-6.5511 

(2.72E-07) 

( )

γ

σγ
 0.0012 

(7.08E-11) 
1.5207  

(0.7190) 
1.5422  

(0.7290) 
0.0022 

(7.8E-11) 
0.0018 

(7.06E-11) 

Legends: y : The optimal objective value obtained; 
y

σ : The standard deviation of y ; 

γ : The Euclidean distance between the found optima and the true global optima; 

γσ : The standard deviation of γ ; 

t : The elapsed time of the whole evolving process evaluated in seconds;  

t
σ : The standard deviation of t . 
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Table 3 Performance comparison on Rastrigin function  

INGA 
    IES 

LI EL PSO SADE_CERAF 

d = 2 0.0199  

(0.0141) 
26.0220 

(9.4635) 
25.6106 

(9.1913) 
0.0254        

(0.0092) 
0.2404  

(0.2863) 

d = 5 0.3869  

(0.5410) 
3.5152  

(1.9426) 
9.1151  

(4.1200) 
0.5851         

(0.5884) 
3.3630  

(1.7967) 

d = 10 0.9950  

(0.8039) 
2.0111  

(1.1732) 
4.1545  

(2.1026) 
1.6989  

(0.9039) 
11.9992 

(5.2702) 

d = 20 2.7110  

(1.5592) 
7.9696  

(7.1554) 
18.6603 

(5.0669) 
19.9083   

(5.2019) 
25.5107 

(10.2846) 

 
( )

y

y∆
 

d = 30 21.6967 

(11.1530) 
32.7483 

(23.9350) 
40.0999 

(7.2578) 
41.3081   

(11.0087) 
38.2263 

(12.4872) 

d = 2 1.2E-05 

(3.44E-13) 
4.1473  

(1.4125) 
4.2066  

(1.4078) 
0.0661  

(0.1948) 
0.1990  

(0.1407) 

d = 5 0.2971  

(0.4480) 
1.3080  

(0.6668) 
2.5010  

(0.7167) 
0.6405  

(0.3521) 
1.7556  

(0.5190) 

d = 10 0.3326 

(0.4807) 
0.4871  

(0.5742) 
1.8143  

(0.5979) 
0.9949  

(0.3810) 
3.3732  

(0.7562) 

d = 20 0.4198  

(0.6088) 
1.5798  

(1.4707) 
3.8619  

(0.6756) 
4.1970  

(0.9215) 
4.9394  

(1.0018) 

 
( )

γ

γ∆
 

d = 30 2.4668  

(0.5416) 
3.4726  

(2.1372) 
5.5345  

(1.1122) 
5.1196   

(0.9002) 
6.0925  

(0.9661) 
Legends: Refer to Table 2. 
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Table 4 Performance comparison on Griewangk function  

INGA 
    IES 

LI EL PSO SADE_CERAF 

d = 2 2.5E-05 

(1.8E-11) 
34.8332 

(23.0031) 
34.9743 

(23.2077) 
0.0001        

(0) 
0.0007  

(0.0022) 

d = 3 0.0024   

(0.0015) 
19.0690 

(14.3134) 
27.4298 

(19.3736) 
0.0099     

(0.0011) 
0.0118  

(0.0106) 

d = 4 0.0128  

(0.0086) 
2.3957  

(0.7123) 
9.3614 

(12.2083) 
0.0321  

(0.0095) 
0.0323  

(0.0244) 

d = 5 0.0481  

(0.0257) 
1.2291  

(0.3048) 
2.2387  

(1.9611) 
0.1275     

(0.0228) 
0.0724   

(0.0580) 

 
( )

y

y∆
 

d = 6 0.0645  

(0.0304) 
0.9968  

(0.2725) 
1.3770  

(0.3134) 
0.2862    

(0.0297) 
0.1170  

(0.0681) 

d = 2 0.0657  

(0.0004) 
340.6121       

(140.8748) 
341.2636 

(141.6924) 
0.3    

(0.0085) 
0.5437  

(1.6476) 

d = 3 5.0714  

(2.9330) 
252.7572 

(93.3550) 
304.2037  

(116.0900) 
6.2754     

(3.0002) 
6.0395  

(3.3202) 

d = 4 9.0965  

(3.6979) 
87.0347 

(13.8549) 
165.6331 

(83.2273) 
9.9067  

(3.9980) 
10.4361 

(4.5472) 

d = 5 10.8636 

(3.4865) 
61.8433 

(7.6757) 
80.2798 

(26.4945) 
20.75909    

(4.0392) 
15.9084  

(6.0774) 

 
( )

γ

γ∆
 

d = 6 13.2547  

(3.6254) 
53.1455   

(8.1528) 
61.0173 

(9.6957) 
29.1942 

(6.2351) 
20.8049 

(5.9272) 
Legends: refer to Table 2. 
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FIGURES 

 

Fig. 1 A three-view orthographic projection 
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Fig. 2 Cutting plane for a two-variable problem 
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Fig. 3 Intercepted curve in the surface 
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Fig. 4 IES procedure 
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Fig. 5 Illustration of (1+1)-ES in SVE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 37 

 

Fig. 6 Chromosome in SVE1 
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Fig. 7 Solution found in a cutting plane of SVE1 
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Fig. 8 Integration operation (assume 3k = ) 
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Fig. 9 Two types of dynamic adaptation 
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            ( )2 1.625x = −                        ( )1 0.23x =  

Fig. 10 Peaks function and two OCPs 
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Fig. 11 Hyper-surface of Rastrigin function ( 2d = ) and OCP for all dimensions 
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OCP ( )2d =                         OCP ( )6d =  

Fig. 12 Hyper-surface of Griewangk function ( 2d = ) and OCPs along 1x , … , 6x  
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Fig. 13 Superiority of IES on Griewangk problem (Problem 3) 
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Fig. 14 Superiority of IES on Rastrigin problem (Problem 2) 
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APPENDIX 

The Peaks function is: 

( ) ( ) ( ) ( ) ( )
2 22 22 2

1 2 1 21 2
2 1 13 5

1 2 1 1 1 2, 3* 1 * 10* 5 * 1 3*
x x x xx x

f x x x e x x x e e
− − + − + −− − = − − − − +  

 

[ ]1 2, 3.0,3.0x x ∈ −  

 

The Rastrigin function is: 

( ) ( )2

1, ,

1

| 10* 10*cos 2* *
d

i i d i i

i

f x d x xπ=
=

 = + − ∑…
, [ ]5.12,5.11ix ∈ −  

 

The Griewangk function is: 

( )
2

1, ,

1 1

| 1 cos
4000

dd
i i

i i d

i i

x x
f x

i
=

= =

  = + −   
  

∑ ∏…
, [ ]512,511ix ∈ −  
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