
Creating, Visualizing, and Analyzing Dynamic Music Objects in the

Browser with the Dymo Designer
THALMANN, FS; FAZEKAS,; WIGGINS,; SANDLER,; Audio Mostly 2016

© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM

For additional information about this publication click this link.

http://qmro.qmul.ac.uk/xmlui/handle/123456789/16155

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

http://qmro.qmul.ac.uk/xmlui/handle/123456789/16155

Creating, Visualizing, and Analyzing Dynamic Music
Objects in the Browser with the Dymo Designer

Florian Thalmann, György Fazekas, Geraint A. Wiggins, Mark B. Sandler
Centre for Digital Music

Queen Mary University of London
f.thalmann@qmul.ac.uk

ABSTRACT
Dynamic music is gaining increasing popularity outside of
its initial environment, the videogame industry, and is grad-
ually becoming an autonomous medium. Responsible for
this is doubtlessly the prevalence of integrated multisensory
platforms such as smartphones as well as the omnipresence
of the internet as a provider of content on demand. The mu-
sic format Dynamic Music Objects builds on these assump-
tions and on recent advances in music information retrieval
and semantic web technologies. It is capable of describing
a multitude of adaptive, interactive, and immersive musical
experiences. This paper introduces the Dymo Designer, a
prototypical web app that allows people to create and an-
alyze Dynamic Music Objects in a visual, interactive, and
computer-assisted way.

CCS Concepts
•Information systems → Music retrieval; •Human-
centered computing→ Interaction design process and
methods; Mobile devices; •Applied computing →
Sound and music computing; •Hardware → Sensor
devices and platforms;

Keywords
semantic audio; dynamic music; interaction design; adaptive
music; interactive music; music visualization; mobile music;
mobile devices; semantic web; music information retrieval;
web audio api

1. INTRODUCTION
Having remained within the world of computer games for

a long time, dynamic music is gradually emancipating itself
from its initial environment [3]. Within the last five years,
increasingly many artists have released dynamic musical ex-
periences that include interactive, adaptive, and dynamic
aspects. They were primarily released in the form of mo-
bile apps which are often closed-source and custom-made by

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AM ’16, October 04 - 06, 2016, Norrköping, Sweden
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4822-5/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2986416.2986445

developer teams in close collaboration with the artists.1

Without the help of computer professionals, designing such
experiences can be tedious and may require significant train-
ing in computer programming and electronic music. In the
case of RjDj2, for instance, the most sophisticated and ver-
satile environment for mobile musical experiences to date,
users need to learn Pure Data, a visual programming lan-
guage for computer music. Other solutions are inspired by
digital audio workstations and studio software and typically
offer less dynamic possibilities.3 The most advanced of these
solutions, fmod studio4, specializes on adaptive computer
game sound and music, presupposes knowledge in audio pro-
duction, and is arguably limited by a thinking in multitrack
recording and loop-based rendering.

In this paper, we introduce the Dymo Designer, a web
application that enables non-expert users to design dynamic
mobile music experiences in a graphical and interactive way,
while being assisted by the semantic web and the audio anal-
ysis techniques. At its first stage of implementation, the app
provides functionality for automatically defining a variety of
types of Dynamic Music Objects (Dymos) [14]. Dymos con-
sist of a set of audio files, a semantically annotated struc-
tural description, and a rendering instruction that describes
a scheduling and interaction scheme. While creating dy-
mos so far consisted in manually writing semantic web files,
annotating each object with analytical values, and defining
complex mapping functions, the purpose of the Dymo De-
signer is to automate and simplify this process. Users can
simply input a number of audio files, which the system an-
alyzes and organizes automatically, depending on the users’
needs, and finally generates dymos following given standard
templates. The users can also choose to gain more control
over certain steps of this process and they can visualize and
browse the created dymos and mappings in various ways and
modify them interactively. Finally, they can preview how
a dynamic music player will render and navigate the ob-

1e.g. Love by Air (https://www.youtube.com/watch?
v=zklBcmqbNsM), created with RjDj (see below), The
National Mall by Bluebrain (https://itunes.apple.com/
gb/app/national-mall-by-bluebrain/id437754072), Fantom
Sensory Music by Massive Attack (https://itunes.apple.
com/us/app/fantom-sensory-music/id1062360670)
2http://rjdj.me
3For example, Weav (http://weav.io) is currently based on
just one variable music parameter, tempo, and ensures that
the musical material sounds satisfying at any value. Spotify
recently built an equivalent format (https://www.spotify.
com/running/).
4http://www.fmod.org

jects and how various types of controls available on a mobile
device will affect the musical outcome. We will first sum-
marize the concepts introduced in earlier papers, especially
Dynamic Music Objects, and then go through the current
functionality of the Dymo Designer and illustrate it using
various examples.

2. DYNAMIC MUSIC AND DYNAMIC MU-
SIC OBJECTS

Dynamic music is often used as an overarching term for
both adaptive and interactive music [3]. Adaptive music in-
directly adapts to the listener’s context and is typically con-
trolled by parameters describing the listener’s state, whereas
interactive music depends on direct user interaction where
the listener has noticeable control over musical parameters.
However, it is often overlooked that dynamic music can also
include autonomously dynamic aspects, where certain mu-
sical characteristics are malleable and can change from one
listening experience to the next, without any interference
from the listener. In practice, dynamic music often inte-
grates all three of these types of dynamicity, leading to a
highly complex interaction scheme that is typically not en-
tirely comprehensible by the listener, which has been shown
to be desirable and which without a doubt keeps the musical
experience more interesting in the long run [11, p. 235/255].

Both in the music industry and the videogame industry,
multiple formats and standards for dynamic music have been
introduced in the past, each of them focusing on various as-
pects and platforms. RjDj and iXMF 5 are highly versatile
but the former is uniquely aimed at mobile app development
and does not support any kind of mobile sensor in a plat-
form independent way, whereas the latter was directed at the
gaming industry and has been discontinued. Object-based
audio models such as IM AF [10] and the Audio Defini-
tion Model [1] encapsulate audio files and XML metadata,
the former being largely limited to basic mixing parameters
(amplitude and panning) and the latter being specialized in
platform-adaptive spatial rendering. None of these formats
use linked data to represent the metadata, which offers the
significant advantages that one can directly build on other
specifications, unambiguously specify the meaning of and
the relationships between the concepts used within the for-
mat, and draw information from various knowledge bases.

More recently, some of these limitations were addressed
with the introduction of the concept of a Digital Music Ob-
ject (DMO), which unites various representations of musical
content in a bundle of music files for research, composition,
production, or consumption.[4].6 Dynamic Music Objects
(Dymos), in turn, are a special kind of DMO oriented to-
wards the intermediary or end consumer and designed to be
musically malleable and flexible with precisely defined de-
grees of freedom and constraints. They can be dynamic in
all of the three ways discussed above, i.e. adaptive, interac-
tive, or autonomously dynamic.

Dymos currently consist of a number of linked audio files
which can be stored locally or in a distributed environment.
A structural definition specifies the relationships between
these audio files by defining a number of objects that refer

5http://www.iasig.org/wg/ixwg/
6It was defined in analogy to the Research Object [2]
which includes exact specifications of experimental proce-
dures along with the input or resulting data.

to these files and can be annotated with musical features
and metadata and contain a number of modifiable musical
parameters. A playback configuration called rendering then
describes how various types of controls map to the objects
and their parameters. Both the structural definition and
the rendering can be specified in OWL/RDF7 by referring
to concepts defined in the Mobile Audio Ontology [14] and
other musical ontologies. Using SPARQL8 or graph query
algorithms the structure can then be queried and navigated
in particular ways by a player for which a prototype is cur-
rently being developed, the Semantic Music Player [15].

2.1 The Structural Definition
At the basis of the structural definition is a new implemen-

tation of CHARM, an abstract music representation system
allowing multiple hierarchies (meronomies) of musical ob-
jects or events related by arbitrary logical formulae and ab-
stracted from concrete applications [9, 8]. Each object can
have an arbitrary number of parts and a type that deter-
mines the relationship of the parts to each other and their
parent.9 It can also have a number of musical attributes
which have a hierarchy of types themselves. The two most
basic types of attributes are features and parameters. We
define features as immutable analytical values directly ex-
tracted from the audio or gathered from various other rep-
resentations, such as for instance the Vamp Ontology or the
Audio Feature Ontology [5]. Parameters, on the other hand,
are modifiable values that describe aspects of the music that
can be changed. In addition to these hierarchies we can de-
scribe any kind of relationship between any of the objects
in the structure, for instance similarity relations between
different segments of a temporal structure.

Figure 1 shows a highly simplified example of a dymo
structure representing a simple two-track mix that exposes
parameters on various hierarchical levels.10 A main object
named mix has two parts which are played simultaneously
(conjunction). The Amplitude parameter, for instance, is
made accessible on several hierarchical levels, in all three ob-
jects. Depending on the functional dependencies we define
between parameters, their modifications can have different
effects. In this case, we define that changing the ampli-
tude of the mix object affects the overall amplitude, whereas
changing the one of track1 or track2 affects these tracks
separately. Each object’s amplitude is the product of its
parent amplitudes. With the Pan parameter, in turn, it
makes more sense to define the resulting pan as the sum of
an object’s and its parents’ panning values. The example
also shows how music files can be linked from dymos. Here,
only the objects without parts refer to an audio file. If one
of them is played back, we hear the respective file alone,
whereas a playback of the mix object results in a simulta-

7http://www.w3.org/TR/owl2-overview/
8http://www.w3.org/TR/sparql11-query/
9The most basic such types are conjunction, disjunction,
and sequence, but these types can get arbitrarily complex
and describe more specific musical entities.

10The definitions in the figure are formulated in
(pseudo-)Turtle, a textual syntax for OWL ontologies
(www.w3.org/TR/turtle/). The a keyword refers to the
rdf:type property, which defines instances of OWL
classes, written in capitalized words. For instance, Dymo is
a class and so are all parameters, such as Amplitude or
Reverb. All properties, in turn, are written starting with
a lowercase letter, such as part or parameter.

Figure 1: A sample Dynamic Music Object.

neous playback of the two files.

2.2 Mappings, Renderings, and Higher-Level
Parameters

Once the structural definition of a dymo is specified we
can turn to defining the ways in which a player will modify
and navigate the structure. What makes a dymo dynamic is
the fact that it has modifiable parameters. It is the purpose
of mappings to define how these parameters can be modified
during playback. Mappings are currently based on arbitrary
JavaScript functions which can have features, controls, and
parameters as arguments and an arbitrary function body.
They also specify which objects are reached, either using
another JavaScript function that defines a set of constraints
on the dymos’ attributes, or by simply referencing the target
objects’ uris.

We distinguish between two types of mappings, ones that
define higher-level parameters by mapping from any parame-
ters and features of a dymo to parameters of any of its parts,
and ones that define a rendering by mapping from any of the
available mobile controls to the defined higher- and lower-
level parameters of a dymo. The controls currently avail-
able in the ontology and the Semantic Music Player include
sensor controls (accelerometer, compass, geolocation, etc),
UI controls (sliders, buttons, toggles, etc), and autonomous
controls (ramps, statistical controls, AI). The former two al-
low users to influence the music or interact with it, whereas
the latter let the player take decisions on its own. In the
future, we will also add contextual controls which are based
on contextual information gathered from the web, such as
user preferences, trends, or weather information.

Figure 2 shows an example of how we can use mappings
to achieve automatic mixing between two conjunctive tracks.
We define a higher-level Fade parameter via a function that
interpolates between the amplitudes of the two tracks by
using the index feature of the tracks.11

Fade× index→ Amplitude

(a, b) 7→ (1− b) ∗ (1− a) + b ∗ a

For illustration, in JSON-LD we write the following:12

11The index feature denotes the index of a part in a conjunc-
tion or a sequence.

12The dymos function selects the subset of dymos to by
mapped to (here all parts of the main dymo, i.e. on hi-

Figure 2: A sample rendering. The mappings are
represented as arrows with multiple origins for the
domains.

{
"domainDims":[

{"name":"Fade","@type":"Parameter"},
{"name":"index","@type":"Feature"}],

"function":{"args":["a", "b"],
"body":"return (1-b)*(1-a)+b*a;"},

"targets":{"args":["d"],
"body":"return d.getLevel() == 1;"},

"range":"Amplitude"
}

Listing 1: A mapping defining an amplitude cross-
fade serialized in JSON-LD.

Further, we smoothen the local tempo of both tracks, by
directly mapping the duration feature of each bar or beat
to the TimeStretchRatio parameter. Simultaneously, we
define a higher-level Tempo parameter which we normalize
so that we can express it in beats per minute:

Tempo× duration→ T imeStretchRatio

(a, b) 7→ a/60 ∗ b

We then map the Fade parameter defined above to the
Tempo parameter in relation to a tempo feature (contain-
ing the tempos of both tracks) so that simply by changing
the Fade parameter we can interpolate both amplitude and
tempo:

Fade× tempo→ Tempo

(a, b) 7→ b[0] + a ∗ (b[1]− b[0])

Finally, we can create a rendering which simply consists
of an identity mapping from any type of mobile control, e.g.
a slider, to the Fade parameter just defined.

3. THE DYMO DESIGNER
Dymo specification files easily get extensive and complex

as soon as we attempt to represent more intricate musical
structures, especially ones based on analytical findings, i.e.
structured based on features and annotated with features.
Furthermore, even for simpler examples such as the ones
shown above, defining use cases in Turtle [14] or JSON-LD
(above, or in [15]) can be rather tedious or confusing for

erarchical level 1)

users that have no experience with ontologies. We thus not
only need a tool that helps us generate these structures au-
tomatically based on the analysis of the audio files, but also
inspect what was generated, make modifications, and extend
the definitions intuitively.

This is why we decided to develop the Dymo Designer, a
browser-based application that visualizes dymos in flexible
ways and provides a simple and intuitive interface for auto-
matically building musical structures and adding features to
it, as well as defining all types of mappings and renderings
introduced above. All this can be done visually and inter-
actively, for example mapping functions can be drawn onto
the screen, either one-dimensional ones as simple graphs, or
multi-dimensional ones as areas in multi-dimensional space.
Finally, the musical result can be previewed audibly and
visually using mock controls.

3.1 Architecture and Technologies
The Dymo Designer builds on several npm13 and Bower14

packages defined in the context of the Semantic Music Player
framework. The central part is the dymo-core package, which
allows loading and saving Dynamic Music Objects from their
JSON-LD or Turtle representations, manages an internal
representation in the form of a graph store that can be
queried and reasoned upon, as well as an object-oriented
bidirectional observer-pattern-based representation of the
mappings between controls, features, and parameters. A
dymo-generator package administers bundling the audio, ex-
tracting features, and loading features from their ontological
representation (see below). It supports the automatic gen-
eration of various standard types of feature-based musical
structures. A music-visualization package offers a multitude
of standard visualizations of graph-based musical structures
implemented using D315 and AngularJS16. The main Dymo
Designer app draws all other packages together into an An-
gularJS web front end that defines all user interaction.17

3.2 The Main Interface
The graphical user interface of the Dymo Designer proto-

type consists of a large visualization area, which can repre-
sent various aspects of the Dynamic Music Object currently
being worked on. Most of the functionality can directly be
accessed by interacting with that area and what is being
displayed. The area above the view offers UI elements with
various more general purposes, such as switching application
mode and, depending on the mode, specifying file folders,
configuring the view, and so on.

At the current stage, the functionality of the application
is divided into four modes or activities. In each of these
modes, a different set of UI elements appears in the area
above the visualization area. In Dymo Mode, users can cre-
ate dymos by importing audio files and either importing
feature files or specifying which features to be extracted.

13https://www.npmjs.com
14http://bower.io
15https://d3js.org
16https://angularjs.org
17The reason for dividing everything into packages is that
these packages can also be used by other applications. For
instance, the Semantic Music Player merely uses dymo-core
to load and play back dymos. On the other hand, the dymo-
server, whose purpose it is to generate dymos from a large
feature database, only needs the dymo-generator package.

Then, they can define how these files are combined into any
of the available standard dymo types. They can also directly
interact with the view surface and add dymos and part re-
lations, represented by nodes and edges, respectively. Map-
ping Mode allows users to define mappings in a similar way,
by selecting a set of dymos as targets and then specifying
domain and range dimensions from the available controls,
features, and parameters. Then, they can either enter an
arbitrary javascript mapping function into a text field or
draw a function onto the view area. Visualization Mode of-
fers UI elements for customizing the view, specifying which
object classes or types and which of their relationships are
displayed, and how visual characteristics such as size and
color are assigned to any of the objects’ datatype proper-
ties. Finally, Rendering Mode brings up mock controls for
any UI and sensor controls so that their effects on the mu-
sic can be tested and experimented with. Optionally, users
can also visualize the state of auto controls, e.g. as moving
sliders, and similarly any of the modifiable musical param-
eters present in the dymo structure. The following sections
describe the functionality underlying these modes and the
associated technologies in greater detail.

3.3 Creating Dymos
In Dymo Mode, users can create dymos either manually or

automatically by letting the system generate them based on
features extracted from the audio. For the manual option,
they can draw nodes onto the view surface, assign audio files
to them, and define their dependencies, which are visualized
as edges. This works particularly well for dymos with a
simple structure such as multitrack- or loop-based objects
that do not contain any feature information, such as the one
depicted in Figure 1. By right-clicking on nodes or edges,
users can inspect and modify the objects’ parameter values
and properties as well as their relations.

The automatic option is better suited for more complex
structures with a lot of audio material. One can choose
between a number of standard types supported by the dymo-
generator package based on any given number of organized
audio files. The objects generated this way can then be
visualized, reorganized, and customized in the same way as
manually created ones. Similar methods exist for creating
feature-based dymos, the structure and semantic annotation
of which is determined by analytical information extracted
from the involved audio files. These methods are described
in the next sections.

3.3.1 Organizing the Audio and Extracting Features
At the current stage of implementation, users can choose

to extract audio features on their own, using the Sonic An-
notator software18, or any other feature extraction software
that is able to output features as linked data files based
on the Audio Feature Ontology (AFO)19. The AFO links
the features to other musical ontologies telling us about the
semantics of the musical content, which is crucial for the
Dymo Designer to understand the features’ underlying mu-
sical concepts. Alternatively, this process can be automated
by letting the Node.js application server call its own feature
extractor, so that any uploaded audio file is automatically
analyzed.

18http://www.vamp-plugins.org/sonic-annotator/
19http://w3id.org/afo/onto/1.1#

Figure 3: A visualization of a dymo with multiple
levels of segmentation (bars and beats) in Dymo De-
signer. Here, the y-axis represents the duration of
each object, size the amplitude, and color the log
spectral centroid. The object on the top represents
the entire piece with duration 64, its bars have a
duration of about 2, and each of their beats 0.5.

3.3.2 From Features to Dymos
The audio and the analytical information obtained as just

described can now be used to generate various kinds of dy-
mos, depending on the types of features available. With
structural features such as segmentations of various gran-
ularities, for instance, we can create a hierarchical dymo,
where each segment contains its subsegments as parts. In
Section 2.2 we saw how such an object, a dymo segmented
into bars which in turn are segmented into beats, can be
used in practice. Figure 3 shows how such an object looks
like in Dymo Designer.

Other features can then be used to annotate the struc-
ture generated this way, whereby a summarization method is
used for the duration of each audio segment. For instance, if
a loaded feature file contains a high-resolution signal for the
entire duration of the analyzed audio file, users can choose
to annotate each segment dymo in the hierarchy with either
the average, median, or initial value of the feature for the
segment’s temporal interval. For multidimensional features,
such as chromagrams, summarized values are calculated for
each component.

The dymo-generator package also provides some function-
ality to automatically infer similarity relationships from any
information available about a given dymo. We can select
any set of parts that are annotated with a number of sum-
marized features as just described, for instance all beat dy-
mos of a given dymo. Then, the app creates feature vectors
containing a number of specified features common to all se-
lected objects, normalizes them, and calculates their pair-
wise similarity, e.g. using a cosine distance as suggested in
[6], and finally adds similarity relations to the pairs where
the resulting value is above a given threshold (see [15] for
details). Figure 4 shows a visualization of similarity rela-
tions obtained in this way for a dymo divided into irregular
temporal sections.

Figure 4: A visualization of similarity relations be-
tween segments of a dymo.

3.4 Creating Mappings
After building a dymo as just described, one can switch to

Mapping Mode to start specifying the relationships between
the parameters and features of any dymos in the hierarchy
and defining custom higher-level parameters in a similarly
interactive way. One can also add any of the controls avail-
able in the ontology and define a rendering by adding map-
pings from these controls to parameters.

3.4.1 Defining a Mapping Target
The first step of defining a mapping in Dymo Designer is

the selection of a mapping target, the set of dymos affected
by the mapping.20 There are two ways in which users can
do this.

Selecting Dymos.
They can simply select a set of dymos by dragging the

mouse around them or clicking on them, whereby they can
switch back and forth between arbitrary visualizations (see
Section 3.5). When defining targets this way, the resulting
RDF consists of a toTarget triple for each target. In other
words, the set of targets is defined explicitly, referencing each
target dymo by its uri. This way one can reach an arbitrary
set of dymos, independently of any of their properties.

Defining A New Type.
On the other hand, if the set of target dymos can be de-

fined implicitly through rules, for instance all dymos on a
certain level of the hierarchy or all the ones that have a
datatype property with a value within a certain range, there
is a more convenient approach. The users can define a cer-
tain set of constraints or rules in the form of a JavaScript
function (see Listing 1 above). The Dymo Designer will then
add a new OWL class corresponding to these rules (if they
can be expressed in OWL), so that the system can infer via
reasoning at any time, which dymos belong to the class and
which do not.

3.4.2 Defining Renderings and Interaction Schemes
Once the target dymos are selected, the users can switch

20When defining mappings in RDF, their target can also be
a set of controls, which can have parameters as well. Cur-
rently, the Dymo Designer does not support the definition
of such mappings. However, this functionality will be added
in future versions.

to Mapping Mode, where they see a visualization of all avail-
able parameters common to all dymos they selected as a tar-
get, as well as all available controls. They can start defining
mappings by right-clicking on the view surface, upon which
a node appears, which they can connect to an arbitrary num-
ber of controls and one parameter.21

Defining Mapping Functions.
So far, the users selected domain and codomain, as well

as the target dymos. What now remains to be defined is the
mapping function itself. Analogous to selecting the set of
target dymos, there are several ways in which the mapping
function can be defined. As a first option, the users can write
the body of an arbitrary JavaScript function into a text field
above the viewing area. In the case of the function defined in
the JSON-LD example above (Listing 1), the function body
would simply be return (1-b)*(1-a)+b*a;. The vari-
ables used in the body correspond to the domain dimensions
in their added order.

Alternatively, users can select from a number of standard
function presets (linear, triangle, rectangle, etc), upon which
the text field obtains an automatically generated code, which
they can then edit. For example, a simple triangle function
with domain and codomain in [0, 1] looks as follows:

return 0.5-Math.abs(0.5-a);

As a third alternative, for simple two-dimensional func-
tions, users can define them in a visual way. From two
drop-down lists, they can select the domain and codomain
dimension to be displayed on a two-dimensional coordinate
system and then simply start drawing any valid function
shape (for each x only one y). The Dymo Designer then
samples a number of points from the drawn shape and in-
terpolates all function values in between.

Defining Spaces Using Functions.
At a later stage, the Dymo Designer will enable users to

draw more complex functional patterns. In the current pro-
totype, one such functionality is already available. One can
select two domain dimensions and draw polygons, which will
be translated into multidimensional distribution functions,
so that the function is zero outside the polygon and 1 in
its centroid. Many such functions can then be visualized in
the same space, as shown in Figure 5. Such constellations
result in an abstract space that can then be navigated using
various techniques (see [15] for example use cases).

3.4.3 Adding High-Level Parameters
Such spaces can be kept entirely abstract and thus flexi-

ble by not directly defining mappings from controls, but by
defining new higher-level parameters for a parent dymo, as
described in Section 2.2. This can also be done in Dymo
Designer. After selecting the target dymos (Section 3.4.1),
the app optionally shows all dymos that are parent dymos
of all selected targets. The users can then click on the one
they choose to use, and when they switch to Mapping Mode,
they see that parent dymo’s new parameter as well as all of
its features (in addition to the target dymo parameters), all
of which they can then use to define mappings in exactly

21Currently, the codomain of a mapping can only include one
parameter, which directly enables one-to-one and many-to-
one mappings. Yet, many-to-many mappings can be emu-
lated by defining a mapping for each codomain dimension.

Figure 5: A multidimensional spatial arrangement of
polygonal distribution functions. In this case, each
polygon is mapped to the amplitude parameter of a
dymo.

the same way as they would for control mappings. These
higher-level parameters can then be used in different ways
in renderings, e.g. both a slider and a geolocation sensor
can be mapped to it.

3.5 Visualizing Dymos and Mappings
We have already encountered some images that show the

capabilities of the visualization system of the Dymo De-
signer. The system is designed to be modular, which means
that any visualization code written using D3 that suits the
structure of dymos and mappings (or object and graph vi-
sualization in general) can be plugged into the system. In
the course of the development of the prototype we imple-
mented a few standard visualization methods and bundled
them in the music-visualization package. In the Dymo De-
signer users can choose between these preset options as well
as define their own custom visualization based on selected
OWL object classes and datatype properties.

3.5.1 The Music Visualization Package
The preliminary visualization schemes implemented so far

are all based on standard music and graph visualization
methods [12, 7, 13]. With all of them, users can assign
the characteristics of the visual objects to properties of the
objects being visualized, which are typically dymos or pa-
rameters. For instance, when visualizing dymos, one might
choose to visualize the dymos’ durations using the visual ob-
jects’ sizes, their loudness with opacity, and their tim-
bral characteristics such as the spectral crest with color.

Specifically, the current package includes four presets, all
of them using a varying number of coordinate axes, different
object types, and different variable visual characteristics.

Axes.
This preset shows any type of object as bubbles (circles)

on a two-dimensional coordinate system. Any attribute or
numeric datatype property of the visualized objects can be
assigned to either of the two axes, as well as the size and
color of the bubbles. Any relation or object property can
be shown as connecting lines between the bubbles. The hi-
erarchical dymo shown in Figure 3 is visualized in this way,
where the x-axis depicts the onset of each segment, the y-

Figure 6: A juxtaposition of various dymos repre-
senting segmentations of various recorded live ver-
sions of the song Throwing Stones. X-axis represents
onset, width duration, height loudness, and color
timbre.

axis its duration, the size its amplitude, and the color its log
spectral centroid. The lines, in turn, show the dymo’s part
relation.

Arcs.
This preset consists of the same kinds of bubbles as in

Axes, however, depicted along a horizontal axis with any re-
lation shown as arced lines. Figure 4 is based on this preset,
where the size of the bubbles show the corresponding ob-
ject’s spectral crest, the color its loudness, and the position
on the axis its onset. The lines depict the calculated simi-
larity relationships between the objects. In a future version,
a similarity value could be represented by the width of the
lines.

Blocks.
This preset consists of a number of rectangles, aligned

along a horizontal axis, similar to the Axes preset. However,
here the objects have two dimension parameters, width and
height, replacing the size parameter. Figure 6 shows how the
Rectangles preset can be used to compare several dymos’
temporal proportions and segmentations.22 The position
along the axis depicts a segment’s onset, width its duration,
height its loudness, and color its timbre (spectral crest).

Graph.
Finally, this preset contains no coordinate axes and orga-

nizes the depicted objects based on their relationships using
a spring algorithm. Figure 7 shows a dymo’s hierarchical
structure by visualizing the part relations as lines. The
same kind of visualization can be created for any graph,
e.g. similarity graphs, where we can simply visualize the
similar relation as edges, as described in the next section.
The visual axis parameters have no effect here, but all non-
spatial parameters are customizable in the same way as with
the other presets.

22This screenshot is taken from another app using the music-
visualization package dedicated to the navigation of the
Grateful Dead collection of the Live Music Archive [16].

Figure 7: A graph representation of a multilevel
dymo representing a bar and beat segmentation,
which is still reorganizing its orientation.

3.5.2 Custom Visualization Mode
Each of the four application modes described in Section 3.2

has a standard way of visualizing the objects in question: dy-
mos and their relationships in Dymo Mode, mappings and
parameters in Mapping Mode, and again dymos in Rendering
Mode, usually using the Graph visualization scheme. How-
ever, users can customize the visualization at any time so
that it suits their needs, for instance if they wish to select
a particular group of objects to be edited. They can do
this by switching to Visualization Mode, where they can de-
cide which of the available music visualization schemes they
would like to use and which of the depicted objects’ proper-
ties they which to visualize.

In addition to this, they can also fully customize which ob-
jects and relations are shown by setting constraints. Specif-
ically, nodes can be chosen to depict any set of OWL classes
and edges any set of OWL object properties. For instance,
users could choose to show only objects of type Amplitude
and show the mappings between them.

3.6 Testing Dymos and their Renderings
Once a dymo and some mappings that include controls

are defined, users can start testing the experience they cre-
ated by playing it back and interacting with it. In Ren-
dering Mode, for each control used in the definition of their
mappings (see Section 3.4), a mock control appears on the
screen, in the form of simple UI controls such as sliders and
buttons, depending on the control’s nature. Once the dymo
starts playing, the mock controls for both UI and sensor
controls can be used to simulate the sensor and UI inter-
action, whereas the mock controls for any auto controls in
the mapping hierarchy visualize the respective auto control’s
state.

By clicking on parts of the dymo hierarchy, users can
choose to play back only part of the structure in order to
monitor specific aspects of the experience. While the dymo
is being played back, any visualization of its dynamic as-
pects, such as its parameters, change dynamically as well.
For instance, if the objects’ amplitude parameter is visu-

alized as the size of the corresponding bubble, it changes
dynamically as the dymo’s amplitude changes. In a simi-
lar way, dynamic spatial positions can be visualized using
the Axes template, where panning could be assigned to the
x-axis position, height to the y-axis position, and distance
inversely to the size of the visual objects. From Rendering
Mode, the users can go back to any of the other modes and
edit the dymo and rendering until they are satisfied with the
result.

4. CONCLUSION AND FUTURE WORK
From the brief summary of the current functionality of

the Dymo Designer and the examples shown, we can see
how the app facilitates the definition of Dynamic Music Ob-
jects in comparison to defining them in RDF using JSON-LD
or Turtle. RDF suffices for simple definitions, such as the
example in Figure 1, which consists of a few dozen lines of
code in JSON-LD. However, for feature-based dymos this
quickly gets out of control. The dymo represented in Fig-
ure 3, for instance, when serialized to JSON-LD, comprises
almost 6000 lines of code. This dymo takes less than a sec-
ond to be generated in Dymo Designer and it can then not
only be visualized so that the user can see if it turned out as
desired, but also tested, where any part can be listened to
and experimented with upon a simple mouse click. During
playback, any current parameter values and thus the dy-
namicity itself of the dymo can be visualized in unlimited
ways.

So far, the Dymo Designer has not yet been evaluated
with a larger audience, but it has served as valuable proto-
typing and example generating tool to the project. Many
of the examples created to illustrate the capabilities of the
Semantic Music Player would have not been possible to be
created without the Dymo Designer and the dymo-generator
package (see examples cited in [14, 15]). It has also proven
helpful in illustrating the concept of Dynamic Music Objects
and the various examples to a non-expert audience.

In the near future, the app will be extended with new
functionality, some of which was mentioned in the paper,
including designing arbitrary contextual controls by directly
referencing entities on the web or fetching results from APIs,
defining mappings to parameters of controls rather than just
dymos, or extending the visualization package with more
presets, such as a three-dimensional coordinate system or
additional music visualization standards, and with more cus-
tomizable visual parameters, such as the width of edges or
the shapes of objects.

5. ACKNOWLEDGMENTS
This work is supported by EPSRC Grant EP/L019981/1

“Fusing Audio and Semantic Technologies for Intelligent Mu-
sic Production and Consumption (FAST-IMPACt)”. San-
dler acknowledges the support of the Royal Society as a re-
cipient of a Wolfson Research Merit Award.

6. REFERENCES
[1] T. 3364. Audio definition model – metadata definition.

Technical report, European Broadcasting Union, 2014.

[2] S. Bechhofer, I. Buchan, D. D. Roure, P. Missier,
J. Ainsworth, J. Bhagat, P. Couch, D. Cruickshank,
M. Delderfield, I. Dunlop, M. Gamble, D. Michaelides,
S. Owen, D. Newman, S. Sufi, and C. Goble. Why

linked data is not enough for scientists. Future
Generation Computer Systems, 29(2):599 – 611, 2013.
Special section: Recent advances in e-Science.

[3] K. Collins. An introduction to procedural music in
video games. Contemporary Music Review, 28(1):5–15,
2009.

[4] D. De Roure. Executable music documents. In
Proceedings of the 1st International Workshop on
Digital Libraries for Musicology, pages 91–3, 2014.

[5] G. Fazekas, Y. Raimond, K. Jacobson, and
M. Sandler. An overview of semantic web activities in
the omras2 project. Journal of New Music Research,
39(4):295–311, 2010.

[6] J. Foote and M. Cooper. Visualizing musical structure
and rhythm via self-similarity. In Proceedings of the
2001 International Computer Music Conference, pages
419–422, 2001.

[7] D. W. Fourney and D. I. Fels. Creating access to
music through visualization. In Science and
Technology for Humanity (TIC-STH), 2009 IEEE
Toronto International Conference, volume 939, pages
26–27. IEEE, 2009.

[8] N. Harley. An ontology for abstract, hierarchical music
representation. In Demo at the 16th International
Society for Music Information Retrieval Conference
(ISMIR 2015), Malaga, Spain, 2015.

[9] M. Harris, A. Smaill, and G. Wiggins. Representing
music symbolically. In Proceedings of the IX Colloquio
di Informatica Musicale, Venice, 1991.

[10] G. Herrero, P. Kudumakis, L. J. Tardón,
I. Barbancho, and M. Sandler. An html5 interactive
(mpeg-a im af) music player. In Proceedings of the
10th International Symposium on Computer Music
Multidisciplinary Research (CMMR), Marseille,
France, pages 15–18, 2013.

[11] A. Hunt and R. Kirk. Mapping strategies for musical
performance. In M. Wanderley and M. Battier,
editors, Trends in Gestural Control of Music. Ircam -
Centre Pompidou, Paris, 2000.

[12] E. J. Isaacson. What you see is what you get: on
visualizing music. In Proceedings of the International
Conference on Music Information Retrieval (ISMIR),
pages 389–395, 2005.

[13] F. Thalmann and G. Mazzola. Visualization and
transformation in general musical and
music-theoretical spaces. In Proceedings of the Music
Encoding Conference 2013, Mainz, 2013. MEI.

[14] F. Thalmann, A. Perez Carillo, G. Fazekas, G. A.
Wiggins, and M. Sandler. The mobile audio ontology:
Experiencing dynamic music objects on mobile
devices. In Tenth IEEE International Conference on
Semantic Computing, Laguna Hills, CA, 2016.

[15] F. Thalmann, A. Perez Carillo, G. Fazekas, G. A.
Wiggins, and M. Sandler. The semantic music player:
A smart mobile player based on ontological structures
and analytical feature metadata. In Web Audio
Conference WAC-2016, Atlanta, GA, 2016.

[16] T. Wilmering, F. Thalmann, and M. B. Sandler.
Grateful live: Mixing multiple recordings of a dead
performance into an immersive experience. In
Proceedings of the Audio Engineering Society
Convention 141, Los Angeles, CA, 2016.

