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Abstract 
Numerical comparison of spaces with one another is often achieved with set scalar 
measures such as global and local integration, connectivity, etc., which capture a 
particular quality of the space but therefore lose much of the detail of its overall 
structure. More detailed methods such as graph edit distance are difficult to calculate, 
particularly for large plans. This paper proposes the use of the graph spectrum, or the 
ordered eigenvalues of a graph adjacency matrix, as a means to characterise the space 
as a whole. The result is a vector of high dimensionality that can be easily measured 
against others for detailed comparison. 

Several graph types are investigated, including boundary and axial representations, as 
are several methods for deriving the spectral vector. The effectiveness of these is 
evaluated using a genetic algorithm optimisation to generate plans to match a given 
spectrum, and evolution is seen to produce plans similar to the initial targets, even in 
very large search spaces. Results indicate that boundary graphs alone can capture the 
gross topological qualities of a space, but axial graphs are needed to indicate local 
relationships. Methods of scaling the spectra are investigated in relation to both global 
local changes to plan arrangement. For all graph types, the spectra were seen to 
capture local patterns of spatial arrangement even as global size is varied.  

Introduction 
Various graph types, including adjacency, axial and boundary graphs 
(Hillier & Hanson 1984; Turner 2005), have been used to effectively 
represent spaces, the comparison of which is then normally achieved 
by set scalar measures such as integration, control (Hillier & Hanson 
1984) or clustering coefficient (Watts & Strogatz 1998) derived from 
these. These measures capture locally that particular quality of the 
space, but are not sufficient to identify the graph as a whole uniquely. 
For detailed statistical analyses, database search, and applications 
that may refer to the overall structure of the space a richer 
quantification of the entire space is desirable. This paper introduces 
the use of graph spectral analysis to automatically represent spaces 
by graphs derived from the plan. The resulting representation is 
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sufficiently rich to be used not only for detailed statistical comparison, 
but also in an optimisation algorithm to generate plans with similar 
spatial configuration. Both axial line and boundary graphs are 
evaluated as methods of representation, to determine which one is the 
more appropriate basis for measurement. 

Several approaches to similarity measurement have been based on 
small graphs of adjacency or connectivity of spaces in plan. Dalton 
and Kirsan (2005) use the edit distance between two graphs to 
measure the similarity between buildings, and have shown that these 
correlate with cultural similarities and differences. Jupp and Gero 
(2003) suggest an analysis based on similarity and complexity 
measures of semantic graphs. With very large graphs as generated by 
axial lines (Turner 2005) or visibility graph analysis (Turner et al. 
2001), calculation of similarity becomes more difficult. Graph spectra 
have been used in image analysis and pattern recognition to 
effectively index, classify and retrieve complex, high dimensional data 
(Luo et al. 2003; Robles-Kelly & Hancock 2003) and are used here in 
a similar manner. 

Graphs may be initially derived from a given plan in several ways, 
each one encoding different features of spatial structure. This paper 
examines which graph types are necessary to capture the 
arrangement of the plan both in terms of topology and specific shape 
at both the local and global level. A definition of the graph types is 
given in the next section, followed by a description of the spectral 
feature vector. Section 4 examines the ways in which different spectra 
are affected by global and local variations in a set of test plans. To 
strictly and fully represent spaces, it is necessary that a procedure 
exists whereby any given plan can be mapped to exactly one 
spectrum, and also that the resulting spectrum can be mapped to 
exactly one plan. This second criterion is known not to hold true for 
graphs of small size, but it is thought that almost all graphs have 
unique spectra, increasingly so as the number of nodes increases to 
the level of detail in real plans (Van Dam and Haemers 2002), and in 
Section 5 a genetic algorithm (GA) is used to generate plans to match 
a given arrangement, thereby evaluating the effectiveness of the 
representation. The objective function is set to minimise the Euclidian 
distance between the generated population and a set target as 
represented by the graph spectra. Evolution is seen to produce plans 
similar to the initial targets, even in very large search spaces.  

Selection of Plan Features 
The plans used in this work are of office interiors, and consist of units 
of paired desks and chairs arranged orthogonally, but this overall 
structure is generic enough to just as well represent units of built/open 
space at an urban scale or other spaces. The situation of a desk, 
however, highlights the fact that there are two types of interaction 
involved at each unit: the connection of the chair to an open space of 
the floor, and the possible connection of the desk itself to other desks 
through which documents, messages and conversation might pass in 
the course of normal office activities. Three map types used by Hillier 
and Hanson (1984), the axial, convex and interface maps, result in 
graph representations of space, but this drawing of space alone does 
not capture the relationship between desks that face one another, so 
an additional graph of desk adjacencies is introduced. 

Three map types have been used, two for open space and one for 
desk connections. Each captures different features of the plan, and 
their use alone and together will be compared. Common to all three is 
that the basic unit if spatial division is the desk or chair grid point 
rather than the more generic notion of the convex space. This follows 
roughly from the terminal nodes of buildings used in the interface map 
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(Hillier and Hanson 1984), which are essential in expressing 
connection in systems consisting of two types of space, and is also a 
standard which is economical to implement, particularly for the 
iterative optimisation in section 5. On this basis three graphs are 
constructed: a visibility graph between seats, and two versions of a 
modified boundary graph: one for open spaces and another for desk 
groups. 

Axial / Visibility Graph Features 
An algorithm was implemented to generate axial (visibility) maps from 
the cellular desk structure. This differs from the axial line map defined 
by plan vertices, and is more like Depthmap’s (Turner 2001) grid 
visibility analysis, but the use of the set modules with chair points as 
the only possible nodes greatly reduces the computation time 
necessary to generate a graph. Graph nodes in this representation 
are not the lines themselves, but the chair points in the plan. 

The algorithm simply draws links between from each chair node to 
every other chair node that can be connected by an unobstructed, 
direct sight line through empty space. Three examples of the resulting 
axial graphs are displayed in figure 1 (a). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: 

Graph types displayed on 
three different plans 
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Boundary Graph Features 
The boundary graph treats as a unity all space within a given 
boundary, regardless of its shape, and therefore captures all 
immediate or continuous spatial connections, regardless of sight. The 
basic node is still taken as the individual chair point, but empty space 
is also considered and links are drawn only between nodes that are 
directly face-wise adjacent. A chair point is connected to any other 
immediately behind or to the side or to an open space onto which it 
backs. All adjacent void spaces are then grouped together into one 
single node, regardless of size, representing all continuous space 
within the boundaries formed by the desks. This is roughly equivalent 
to the interface map (Hillier and Hanson 1984). Boundary graphs are 
shown in figure 1 (b). 

Desk Graph Features 
Desk graphs capture the relationships between adjacent desks. They 
are generated by the same method as the boundary graphs, except 
the graph nodes are the desks rather than chairs, and these are 
connected to all other adjacent desks. The resulting graph will 
generally not be unified, but segmented into discrete sub-graphs each 
corresponding to a connected group of desks. The desk graphs for 
three plans are in figure 1 (c). 

Defining the Spectrum for Plan Representation 
The spectrum of a graph, or ordered set of eigenvalues of its 
connectivity matrix, is useful in that it can be used to represent the 
graph as a single feature vector. This spectrum is useful as a 
representation of the graph because it is invariant under all 
permutations of the original matrix, and therefore identical for all 
isomorphic graphs. (Zhu and Wilson 2005) While it is possible that two 
non-isomorphic graphs can share the same spectrum, it has been 
suggested that this occurs less frequently as the graph size increases 
(Zhu and Wilson 2005) and therefore almost all graphs, particularly of 
the sizes yielded by plans, may be uniquely determined by their 
spectrum (Van Dam and Haemers 2002).  

For any graph with a set of nodes V and a set of edges E, the most 
straightforward way of representing the graph in matrix form is to use 
the adjacency matrix A, a |V| × |V| matrix defined by: 

 ⎧  1 if (i,j) ∈ E 

A(i,j) = ⎨     or, (1) 

 ⎩  0 otherwise  

Alternatively, the Laplacian is often used to represent the graph. 
Spectra of the Laplacian or its derivatives have been shown to be 
superior to the straight adjacency matrix for graph representation and 
classification (Zhu and Wilson 2005). In particular, they have been 
shown to have a higher correlation to graph edit distance (the number 
of edges deleted or added to change one graph to another) and result 
in fewer cospectral graphs (graphs which have identical spectra). 
Where the elements of a diagonal matrix D = diag( deg(V1), deg(V2), 
… deg(V|V|)) indicate the degree of each of the nodes, the Laplacian is 
constructed from this and the adjacency matrix, 

L = D – A (2) 

The spectrum of the graph is found by taking the eigendecomposition 
of the matrix representation. The eigenvalues λ and eigenvectors φ for 
A are given by solving for, 
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A = ΦΛΦT (3) 

or 

L = ΦΛΦT,  (4) 

where the matrix Φ = ( φ1 | φ2 | … | φ|V| ) contains the eigenvectors as 
columns and the matrix Λ = diag( λ1, λ2, … , λ|V|) contains the 
eigenvalues as diagonal elements. The spectrum is defined as the set 
of ordered eigenvalues 

{ λ1, λ2, … , λ|V| } (5) 

Assembling the Feature Vector 
Several approaches may be taken to assembling the spectral feature 
vector from the above set. It is essential that this be ordered 
consistently for all graphs, and for ease of comparison that it be a 
constant length.  

While graph nodes and eigenvalues of the adjacency matrix have no 
intrinsic order, the spectrum has to be sorted such that any isomorphic 
graphs will have the same order of eigenvalues. In many analyses 
(Luo et al. 2003), values (and corresponding vectors) are sorted by 
absolute magnitude, such that |λ1| > |λ2| > … > |λ|V|| and to ensure a 
constant length the spectrum is a vector composed of the first n 
values: 

S = ( λ1, λ2, … , λn )T (6) 

This can be problematic when the set of eigenvalues contains several 
values that are of the same magnitude, either positive or negative, 
and the resulting sort yields a different order for identical graphs. 
Sorting by actual value, including the sign such that λ1 > λ2 > … > λ|V|, 
avoids this problem and is the method used here. 

Local / Global Features and Scale Changes 
In representing the plan as a whole, both global attributes such as 
overall plan size, and local attributes such as desk configuration, are 
relevant. This section examines the plan spectra to determine the 
effect of changes to the plan at both scales on the feature vector. 

Capturing Local and Global Features in the Spectrum 
The spectra of two plan types were compared to judge the effects of 
global vs. local changes to each. In the plots below (figure 2), the 
same local arrangement of desks is repeated a different number of 
times for both the straight rows and the outward facing clusters, but 
the global configuration is changed by increasing the plan area and 
total number of desks. The spectra of the boundary graph (left) and 
axial graph (right) are shown, with axes scaled to the same overall 
length for ease of comparison. In both cases the overall distribution of 
values in the spectrum and their magnitudes appear identical, but are 
spread over a wider number of values when the plans increase in size. 
Spectra have a total number of values equal to the number of nodes 
in the graph, thus doubling the graph increases this.  

Local changes to a simple pattern of desks affect both the values in 
the spectrum and their distribution. In the plans in figure 3, extra desks 
are added across the horizontal rows in the desk clusters, which 
increases the values of the spectrum and its overall length. Although 
the precise relationship is not immediately obvious, values appear to 
be roughly proportional to spatial integration – in particular the largest 
magnitude eigenvalues, which increase as the number of desks 
adjoining the open space grows. 
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(insert figure_2 here) 

 

 

 

 

 

 

The number of positive or negative ‘steps’, or distinct values in the 
spectra of the boundary graphs shown, is always equal to the number 

Figure 2: 

Global changes to the plan 
increase the length of the 
spectrum, but not the 
distribution of values 

Figure 3: 

Adding nodes locally to the 
plan increases the 
magnitude of the spectral 
range, and the number of 
distinct values 
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of nodes of distinct connectivity (degree) values in the graph, and the 
number of units within each ‘step’ is equal to the number of nodes of 
that type. In the bottom plan, for example, the first step is of two 
values of very high magnitude, corresponding to the two main open 
spaces. This is followed by four smaller steps corresponding to the 
four levels of integration along the rows of desks. These steps 
decrease appropriately in the smaller plans above. 

Choices of Graph Spectra 
The full graph spectrum has |V| values, or the number of nodes in the 
corresponding graph, but a feature vector of constant dimensionality is 
required even when comparing different sized graphs. To achieve this, 
the feature vector length n must be predetermined, and then either 
truncated by discarding some eigenvalues as in (6) or interpolated 
over n new values. In the second case a feature vector of 
dimensionality n is derived by performing a cubic spline interpolation 
of the |V| values in (5) to a new vector 

S = ( l1, l2, … , ln)T (7) 

Luo et al. (2003) suggest truncation as in (6), however the similarity of 
spectra as changes are made to global configuration (figure 2) would 
suggest that interpolation is also appropriate. The two methods were 
examined with the spectra of both the adjacency matrix and the 
Laplacian. 

Zhu and Wilson (2005) measure the effectiveness of spectral 
representations by comparing sequential distances between spectra 
with known edit distances when creating the graphs themselves. A 
similar method is adopted here in a comparison of the spectra of plans 
that differ by a standard amount. Both global and local changes are 
considered. A new plan set, SeqPlan, was used, consisting of four 
groups of 100 plans, each of which varies monotonically in ten steps 
of two parameters. One of these parameters is local (number of desks 
to a group), and the other is global (overall plan size). Each of these 
four plan sets has a different general configuration of desks.  

The distances in parameter space are taken as the number of 
additions to an initial plan: with the linear addition of between one and 
nine extra desks along a group, or the increase in plan size in 
increments of two units from 12 x 12 to 30 x 30. Spectral feature 
spaces that best describe the incremental progression should be 
those in which the Euclidian distances between spectra have the 
same linear progression – i.e. the ideal output in the plots in figure 4 
will be linear. 

Each plot in figure 4 displays these distances for each of the four plan 
types in the set for a single plan progression (solid line) and for the 
mean over ten of a similar type (dotted line). The mean relative 
deviation was measured for each. Progressions are shown for both 
the global and local parameters. The spectra are either interpolated or 
truncated to 100 dimensions, and spectra from both adjacency 
matrices (3) and Laplacians (4) are used. 

All four spectral methods display roughly linear approximations to the 
increasing distances in parameter space. The choice between the use 
of the adjacency matrix or the Laplacian for the spectrum does not 
appear to make a great deal of difference, although the Laplacian 
slightly outperforms the adjacency in three out of four cases. 

When global changes are made (plan sizes), the interpolated spectra 
perform reasonably well as suggested by the tests in section 4.1 
(figure 2), however local changes (desk groups) are represented far 
better by truncation. Truncation yields a lower deviation than 
interpolation in each case. 
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Optimisation toward Plan Spectra 
To investigate the use of the GA in plan generation, optimisation was 
initially performed toward a preset goal of a given plan. This plan can 
be considered a prototype, as it is a single, real example that the 
optimisation algorithm is set to match. Evaluation of success in this 
case would thus be a simple comparison of how similar the result was 
to the initial goal plan, and so the objective function is a distance 
measurement in the n-dimensional space of the spectra. More 
precisely, the fitness is taken to be inversely proportional to the 
distance between a given plan’s graph and that of the given prototype: 

∑
=

−=
ni

goali jSjSif
:1

2))()(()(  (8) 

where S is the spectrum as given in (6) or (7). 

The genome representation chosen was the simplest known to avoid 
(as much as possible) building in bias and as a general test of the 
method: each possible desk position on the planning grid is equated 
with a single base-6 allele indicating the orientation or absence of a 
desk. As a result the search space involved is vast (6n² for an n × n 
plan or roughly 10112 for even a small plan of n=12), and seemingly 
simple changes to plans as rotation of sections, mirroring, etc., can 
not be expressed except by individual changes to desks. It is highly 
unlikely that a matching plan will be found using this representation in 
a reasonable length of time, but the analysis of the results can 
indicate what plan features are being captured by the graphs. 
Boundary graphs only are investigated in the following section, and 
the results then compared with the use of other graphs. 

Plan Matching with Boundary Graphs 
The algorithm (a GA with a population size of 35) was tested with 
goals of two generic plan types: an arrangement of simple rows, and a 
linked set of outward facing clusters. The diagrams below show first 
the prototype plan (left), then the result of the fitness evaluation over 
time counted in generations, and the resulting final output when the 
optimisation was terminated. 

Figure 4: 

Incremental plan changes 
are plotted as distances in 
four spectral feature spaces 
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The results initially appear unpromising, except for the replication of 
the gross topology of the second plan: a series of two separated 
spaces divided by a central row of desks. A closer inspection reveals 
that the finer details of desk adjacency have also been duplicated, 
however, inasmuch as they are captured by the boundary graph alone. 
The graph represents all connected open spaces as a single node, 
and each chair as a separate node, with connections between face-
wise adjacent neighbouring squares. The graph in the second test 
plan consists of two unconnected sub-graphs, each of which has a 
single node (of white space) connected to 12 pairs of adjacent desks 
and 6 single desks. The resulting optimised solution has a similar 
structure, except the number of pairs is only 10 and the number of 
connected single desks is 5 or 7. The structure of the first test plan is 
less clear, but the general arrangement of three main open spaces 
joined by groups of desks (in many cases they are three, but not all) is 
captured. In both cases the number of desks or ratio of empty space 
is also approximately correct. 

Correlation between Topology and Fitness Level 
A sharp increase in fitness is evident in the evolution of the plan to 
match the second test. Fitness jumps from about 0.5 to 0.8 in just a 
few generations around generation 1600. Because of the simplicity of 
the genome representation used, it appears likely that this was due to 
a sudden arrival at a large feature match like the overall topological 
division into two sub-graphs. This is examined more closely by 
comparing the spectra and fitnesses of very similar plans that do or do 
not display this topological division. The initial prototype plan is shown 
below (top), with its spectrum to the right. Below this are the plan 
produced by the genetic algorithm, and finally the same plan with 
several desks removed to connect the two separated spatial regions.  

Figure 5: 

Results of a GA search for a 
boundary graph spectrum 
taken from straight rows 
(above) and convex desk 
groups (below) 
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The spectra appear very similar to one another in overall shape and 
magnitude, but in fact the numerical difference between the two lower 
plans is significant. The distance of the optimised plan (centre) from 
the goal is 1.2953, resulting in a fitness of 0.7780, whereas the 
distance of the linked plan below from the goal is 7.8061, resulting in a 
fitness of only 0.1281. This difference is largely due to the change in 
the eigenvalues of second greatest magnitude (plotted first and last on 
the horizontal axis, above), which correspond to the division of the 
graph into two distinct sections. 

The overall form of the plan in each case looks unlike the initial goal, 
in part because of the vast search space and relative simplicity of the 
genome to efficiently represent patterns. But the plan similarities and 
the degree to which the spectrum of the evolved graph resembles its 
goal indicate this is due to the inherent limit of what the boundary 
graph alone can represent. As a method of fitness measurement, the 
distance between spectra appears to be an appropriate indication of 
overall topology, and the optimisation appears successful in capturing 

Figure 6: 

Spectra of Topologically 
Similar (a & b), and Distinct 
Plans (c) 



Hanna; Representation and Generation of Plans Using Graph Spectra 

Proceedings, 6th International Space Syntax Symposium, İstanbul, 2007 

099-11

the essential topological features represented by the boundary graph 
chosen. 

Using Multiple Graphs and Spectra for GA Search 
The use of the other graph types will be used to clarify the results 
obtained in section 5.1 above. Graph representations based on 
unobstructed lines of sight, either as axial lines or grid visibility graphs, 
are the most prevalent in space syntax analyses and the type 
represented in Depthmap. While the boundary graphs used above 
capture only the topology of the space, axial graphs record what can 
be seen from a given point, and therefore the shape of the space: the 
typical minimal line axial map produced by Depthmap, for example, 
represents each convex space by a retained axial line. The following 
tests compare the result of plan matching by GA with the use of the 
spectra of axial graphs as described in section 2.1, with those 
combining both axial and boundary graphs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A further refinement to the representation is also tested. Axial graphs 
do not typically have self connected nodes, that is diag(A) = 0 for the 
adjacency matrix, which effectively removes nodes which have no 
other connections from the graph entirely. Isolated desks as appear in 

Figure 7: 

Comparative results of a GA 
search for two plans using 
various graph types: (a) axial 
graphs, (b) axial and 
boundary graphs, (c) self-
connected axial graphs, and 
(d, e) self-connected axial 
and boundary graphs 
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the results of section 5.1 are therefore invisible, and ignored in the 
similarity measurement that determines fitness. The results are 
compared for both versions of the axial graph: without self-connected 
nodes (figure 7 a, b) and with self-connected nodes (figure 7 c, d, e). 

The largest improvement in terms of the characterisation of the open 
spaces (and removal of unconnected nodes) came from connecting 
each node to itself, thus allowing unconnected nodes to appear on the 
resulting graphs and thereby providing an automatic penalty to the 
fitness. 

In none of the examples is the original plan duplicated exactly, but as 
mentioned in section 5 it seems unlikely that the genome 
representation would do so even with a graph that captures all the 
features of the plan, simply because of the vastness of the search 
space. In most cases the fitness measurement rises initially but 
appears eventually to plateau at an incorrect local optimum, a result of 
the genome only expressing individual desks and not larger scale 
patterns. The rise in fitness appears smoother however when two 
graph types are used than with one. 

The use of both graph types together also produces better evolved 
plans. It appears from the GA output that the axial method is far better 
at characterising the space than the boundary graphs alone, yielding 
clearer reconstructions of the initial plans. The plan in figure 7 (d, 
right) very closely resembles the convex group arrangement of its goal. 
If evolution is continued for several thousands of generations the plan 
improves to quite closely approximate the target plan (figure 7 e). The 
addition of both the boundary and desk graphs to the axial appears to 
yield marginally better results, although with a further increase in 
computation time. This similarity and correspondence of measured 
fitness to perceived plan similarity indicates that the essential features 
of the plan are indeed captured by the combination of plan spectra. 

Conclusion 
The spectra of various graphs has been shown in this paper to be an 
effective representation of spaces, which can be used to measure 
similarity of both global and local spatial structure. For all graph types, 
the spectra were seen to capture local patterns of spatial arrangement 
even as global size is varied, and thus may be used in comparing 
plans of differing overall scale. They constitute a reliable metric of 
plans, in that similar plans have spectral vectors that fall close 
together in a high dimensional space, while very different plans fall 
farther apart (section 4.2). In GA search, even with a large search 
space and an intentionally restricted genome, the resulting plans 
resembled the goal sufficiently well to suggest that the spectrum 
encodes almost all of the spatial structure of the plan. 

Several graph types were examined, and results indicate that 
boundary graphs alone can capture the gross topological qualities of a 
space, but axial graphs are needed to indicate local relationships 
concerned with the actual shape of spaces and lines of sight. Using 
both the boundary and axial graphs together better represents the 
overall geometry of the space, and allows for a finer and more 
effective measurement of similarity. The result in a GA search appears 
to be that the fitness increase is smoother and the final plan more 
closely resembles the goal, as it is less likely to become trapped in a 
local optimum. 

As a high dimensional vector the spectrum represents a more detailed 
description of the overall structure of the space than any single graph 
measurement taken in isolation, and can therefore be used for more 
detailed statistical comparison. Unlike string edit distance (Dalton and 
Kirsan 2005) and similar measurements, it is straightforward to 
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calculate even for large graphs and map to a universal space for 
comparison. Recent related work (Hanna 2006) has shown that axial 
graphs of buildings cluster well in PCA mapping into groups that 
correlate highly with building type. The use of a distance 
measurement has been used here to guide an optimisation algorithm 
to reproduce individual plans, but the technique may also be 
employed in comparative analyses between large sets of plans, and in 
any application for which a method of comparison is required but an 
appropriate single measure of a spatial structure is unknown. 
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