14,364 research outputs found

    Privacy in Transport? Exploring Perceptions of Location Privacy Through User Segmentation

    Get PDF
    Unanticipated accumulation and dissemination of accurate location information flows is the latest iteration of the privacy debate. This mixed-methods research contributes a grounded understanding of risk perceptions, enablers and barriers to privacy preserving behaviour in a cyber-physical environment. We conducted the first representative survey on internet privacy concerns, cyber and physical risk taking, privacy victimisation, usage of location sharing apps and transport choices in the UK with 466 participants. The responses segregated participants into four distinct, novel clusters (cyber risk takers, physical risk takers, transport innovators, and risk abstainers) with cross-validated prediction accuracy of 92%. In the second part of the study, we qualitatively explored these clusters through 12 homogeneous focus groups with 6 participants each. The predominant themes of the groups matched their clusters with little overlap between the groups. The differences in risk perception and behaviours varied greatly between the clusters. Future transport systems, apps and websites that rely on location data therefore need a more personalised approach to information provision surrounding location sharing. Failing to recognise these differences could lead to reduced data sharing, riskier sharing behaviour or even total avoidance of new forms of technology in transport

    A privacy preserving framework for cyber-physical systems and its integration in real world applications

    Get PDF
    A cyber-physical system (CPS) comprises of a network of processing and communication capable sensors and actuators that are pervasively embedded in the physical world. These intelligent computing elements achieve the tight combination and coordination between the logic processing and physical resources. It is envisioned that CPS will have great economic and societal impact, and alter the qualify of life like what Internet has done. This dissertation focuses on the privacy issues in current and future CPS applications. as thousands of the intelligent devices are deeply embedded in human societies, the system operations may potentially disclose the sensitive information if no privacy preserving mechanism is designed. This dissertation identifies data privacy and location privacy as the representatives to investigate the privacy problems in CPS. The data content privacy infringement occurs if the adversary can determine or partially determine the meaning of the transmitted data or the data stored in the storage. The location privacy, on the other hand, is the secrecy that a certain sensed object is associated to a specific location, the disclosure of which may endanger the sensed object. The location privacy may be compromised by the adversary through hop-by-hop traceback along the reverse direction of the message routing path. This dissertation proposes a public key based access control scheme to protect the data content privacy. Recent advances in efficient public key schemes, such as ECC, have already shown the feasibility to use public key schemes on low power devices including sensor motes. In this dissertation, an efficient public key security primitives, WM-ECC, has been implemented for TelosB and MICAz, the two major hardware platform in current sensor networks. WM-ECC achieves the best performance among the academic implementations. Based on WM-ECC, this dissertation has designed various security schemes, including pairwise key establishment, user access control and false data filtering mechanism, to protect the data content privacy. The experiments presented in this dissertation have shown that the proposed schemes are practical for real world applications. to protect the location privacy, this dissertation has considered two adversary models. For the first model in which an adversary has limited radio detection capability, the privacy-aware routing schemes are designed to slow down the adversary\u27s traceback progress. Through theoretical analysis, this dissertation shows how to maximize the adversary\u27s traceback time given a power consumption budget for message routing. Based on the theoretical results, this dissertation also proposes a simple and practical weighted random stride (WRS) routing scheme. The second model assumes a more powerful adversary that is able to monitor all radio communications in the network. This dissertation proposes a random schedule scheme in which each node transmits at a certain time slot in a period so that the adversary would not be able to profile the difference in communication patterns among all the nodes. Finally, this dissertation integrates the proposed privacy preserving framework into Snoogle, a sensor nodes based search engine for the physical world. Snoogle allows people to search for the physical objects in their vicinity. The previously proposed privacy preserving schemes are applied in the application to achieve the flexible and resilient privacy preserving capabilities. In addition to security and privacy, Snoogle also incorporates a number of energy saving and communication compression techniques that are carefully designed for systems composed of low-cost, low-power embedded devices. The evaluation study comprises of the real world experiments on a prototype Snoogle system and the scalability simulations

    Emerging privacy challenges and approaches in CAV systems

    Get PDF
    The growth of Internet-connected devices, Internet-enabled services and Internet of Things systems continues at a rapid pace, and their application to transport systems is heralded as game-changing. Numerous developing CAV (Connected and Autonomous Vehicle) functions, such as traffic planning, optimisation, management, safety-critical and cooperative autonomous driving applications, rely on data from various sources. The efficacy of these functions is highly dependent on the dimensionality, amount and accuracy of the data being shared. It holds, in general, that the greater the amount of data available, the greater the efficacy of the function. However, much of this data is privacy-sensitive, including personal, commercial and research data. Location data and its correlation with identity and temporal data can help infer other personal information, such as home/work locations, age, job, behavioural features, habits, social relationships. This work categorises the emerging privacy challenges and solutions for CAV systems and identifies the knowledge gap for future research, which will minimise and mitigate privacy concerns without hampering the efficacy of the functions
    corecore