2,332 research outputs found

    Inductive-data-type Systems

    Get PDF
    In a previous work ("Abstract Data Type Systems", TCS 173(2), 1997), the last two authors presented a combined language made of a (strongly normalizing) algebraic rewrite system and a typed lambda-calculus enriched by pattern-matching definitions following a certain format, called the "General Schema", which generalizes the usual recursor definitions for natural numbers and similar "basic inductive types". This combined language was shown to be strongly normalizing. The purpose of this paper is to reformulate and extend the General Schema in order to make it easily extensible, to capture a more general class of inductive types, called "strictly positive", and to ease the strong normalization proof of the resulting system. This result provides a computation model for the combination of an algebraic specification language based on abstract data types and of a strongly typed functional language with strictly positive inductive types.Comment: Theoretical Computer Science (2002

    Definitions by Rewriting in the Calculus of Constructions

    Get PDF
    The main novelty of this paper is to consider an extension of the Calculus of Constructions where predicates can be defined with a general form of rewrite rules. We prove the strong normalization of the reduction relation generated by the beta-rule and the user-defined rules under some general syntactic conditions including confluence. As examples, we show that two important systems satisfy these conditions: a sub-system of the Calculus of Inductive Constructions which is the basis of the proof assistant Coq, and the Natural Deduction Modulo a large class of equational theories.Comment: Best student paper (Kleene Award

    Observation of implicit complexity by non confluence

    Get PDF
    We propose to consider non confluence with respect to implicit complexity. We come back to some well known classes of first-order functional program, for which we have a characterization of their intentional properties, namely the class of cons-free programs, the class of programs with an interpretation, and the class of programs with a quasi-interpretation together with a termination proof by the product path ordering. They all correspond to PTIME. We prove that adding non confluence to the rules leads to respectively PTIME, NPTIME and PSPACE. Our thesis is that the separation of the classes is actually a witness of the intentional properties of the initial classes of programs

    Termination of rewrite relations on λ\lambda-terms based on Girard's notion of reducibility

    Get PDF
    In this paper, we show how to extend the notion of reducibility introduced by Girard for proving the termination of β\beta-reduction in the polymorphic λ\lambda-calculus, to prove the termination of various kinds of rewrite relations on λ\lambda-terms, including rewriting modulo some equational theory and rewriting with matching modulo β\betaη\eta, by using the notion of computability closure. This provides a powerful termination criterion for various higher-order rewriting frameworks, including Klop's Combinatory Reductions Systems with simple types and Nipkow's Higher-order Rewrite Systems

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Cyclic Datatypes modulo Bisimulation based on Second-Order Algebraic Theories

    Full text link
    Cyclic data structures, such as cyclic lists, in functional programming are tricky to handle because of their cyclicity. This paper presents an investigation of categorical, algebraic, and computational foundations of cyclic datatypes. Our framework of cyclic datatypes is based on second-order algebraic theories of Fiore et al., which give a uniform setting for syntax, types, and computation rules for describing and reasoning about cyclic datatypes. We extract the "fold" computation rules from the categorical semantics based on iteration categories of Bloom and Esik. Thereby, the rules are correct by construction. We prove strong normalisation using the General Schema criterion for second-order computation rules. Rather than the fixed point law, we particularly choose Bekic law for computation, which is a key to obtaining strong normalisation. We also prove the property of "Church-Rosser modulo bisimulation" for the computation rules. Combining these results, we have a remarkable decidability result of the equational theory of cyclic data and fold.Comment: 38 page

    The dagger lambda calculus

    Full text link
    We present a novel lambda calculus that casts the categorical approach to the study of quantum protocols into the rich and well established tradition of type theory. Our construction extends the linear typed lambda calculus with a linear negation of "trivialised" De Morgan duality. Reduction is realised through explicit substitution, based on a symmetric notion of binding of global scope, with rules acting on the entire typing judgement instead of on a specific subterm. Proofs of subject reduction, confluence, strong normalisation and consistency are provided, and the language is shown to be an internal language for dagger compact categories.Comment: In Proceedings QPL 2014, arXiv:1412.810

    On the confluence of lambda-calculus with conditional rewriting

    Get PDF
    The confluence of untyped \lambda-calculus with unconditional rewriting is now well un- derstood. In this paper, we investigate the confluence of \lambda-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of M\"uller and Dougherty for unconditional rewriting. Two cases are considered, whether \beta-reduction is allowed or not in the evaluation of conditions. Moreover, Dougherty's result is improved from the assumption of strongly normalizing \beta-reduction to weakly normalizing \beta-reduction. We also provide examples showing that outside these conditions, modularity of confluence is difficult to achieve. Second, we go beyond the algebraic framework and get new confluence results using a restricted notion of orthogonality that takes advantage of the conditional part of rewrite rules

    State space c-reductions for concurrent systems in rewriting logic

    Get PDF
    We present c-reductions, a state space reduction technique. The rough idea is to exploit some equivalence relation on states (possibly capturing system regularities) that preserves behavioral properties, and explore the induced quotient system. This is done by means of a canonizer function, which maps each state into a (non necessarily unique) canonical representative of its equivalence class. The approach exploits the expressiveness of rewriting logic and its realization in Maude to enjoy several advantages over similar approaches: exibility and simplicity in the definition of the reductions (supporting not only traditional symmetry reductions, but also name reuse and name abstraction); reasoning support for checking and proving correctness of the reductions; and automatization of the reduction infrastructure via Maude's meta-programming features. The approach has been validated over a set of representative case studies, exhibiting comparable results with respect to other tools
    • …
    corecore