46 research outputs found

    Investigation of radiation-hardened design of electronic systems with applications to post-accident monitoring for nuclear power plants

    Get PDF
    This research aims at improving the robustness of electronic systems used-in high level radiation environments by combining with radiation-hardened (rad-hardened) design and fault-tolerant techniques based on commercial off-the-shelf (COTS) components. A specific of the research is to use such systems for wireless post-accident monitoring in nuclear power plants (NPPs). More specifically, the following methods and systems are developed and investigated to accomplish expected research objectives: analysis of radiation responses, design of a radiation-tolerant system, implementation of a wireless post-accident monitoring system for NPPs, performance evaluation without repeat physical tests, and experimental validation in a radiation environment. A method is developed to analyze ionizing radiation responses of COTS-based devices and circuits in various radiation conditions, which can be applied to design circuits robust to ionizing radiation effects without repeated destructive tests in a physical radiation environment. Some mathematical models of semiconductor devices for post-irradiation conditions are investigated, and their radiation responses are analyzed using Technology Computer Aided Design (TCAD) simulator. Those models are then used in the analysis of circuits and systems under radiation condition. Based on the simulation results, method of rapid power off may be effectively to protect electronic systems under ionizing radiation. It can be a potential solution to mitigate damages of electronic components caused by radiation. With simulation studies of photocurrent responses of semiconductor devices, two methods are presented to mitigate the damages of total ionizing dose: component selection and radiation shielding protection. According to the investigation of radiation-tolerance of regular COTS components, most COTS-based semiconductor components may experience performance degradation and radiation damages when the total dose is greater than 20 K Rad (Si). A principle of component selection is given to obtain the suitable components, as well as a method is proposed to assess the component reliability under radiation environments, which uses radiation degradation factors, instead of the usual failure rate data in the reliability model. Radiation degradation factor is as the input to describe the radiation response of a component under a total radiation dose. In addition, a number of typical semiconductor components are also selected as the candidate components for the application of wireless monitoring in nuclear power plants. On the other hand, a multi-layer shielding protection is used to reduce the total dose to be less than 20 K Rad (Si) for a given radiation condition; the selected semiconductor devices can then survive in the radiation condition with the reduced total dose. The calculation method of required shielding thickness is also proposed to achieve the design objectives. Several shielding solutions are also developed and compared for applications in wireless monitoring system in nuclear power plants. A radiation-tolerant architecture is proposed to allow COTS-based electronic systems to be used in high-level radiation environments without using rad-hardened components. Regular COTS components are used with some fault-tolerant techniques to mitigate damages of the system through redundancy, online fault detection, real-time preventive remedial actions, and rapid power off. The functions of measurement, processing, communication, and fault-tolerance are integrated locally within all channels without additional detection units. A hardware emulation bench with redundant channels is constructed to verify the effectiveness of the developed radiation-tolerant architecture. Experimental results have shown that the developed architecture works effectively and redundant channels can switch smoothly in 500 milliseconds or less when a single fault or multiple faults occur. An online mechanism is also investigated to timely detect and diagnose radiation damages in the developed redundant architecture for its radiation tolerance enhancement. This is implemented by the built-in-test technique. A number of tests by using fault injection techniques have been carried out in the developed hardware emulation bench to validate the proposed detection mechanism. The test results have shown that faults and errors can be effectively detected and diagnosed. For the developed redundant wireless devices under given radiation dose (20 K Rad (Si)), the fault detection coverage is about 62.11%. This level of protection could be improved further by putting more resources (CPU consumption, etc.) into the function of fault detection, but the cost will increase. To apply the above investigated techniques and systems, under a severe accident condition in a nuclear power plant, a prototype of wireless post-accident monitoring system (WPAMS) is designed and constructed. Specifically, the radiation-tolerant wireless device is implemented with redundant and diversified channels. The developed system operates effectively to measure up-to-date information from a specific area/process and to transmit that information to remote monitoring station wirelessly. Hence, the correctness of the proposed architecture and approaches in this research has been successfully validated. In the design phase, an assessment method without performing repeated destructive physical tests is investigated to evaluate the radiation-tolerance of electronic systems by combining the evaluation of radiation protection and the analysis of the system reliability under the given radiation conditions. The results of the assessment studies have shown that, under given radiation conditions, the reliability of the developed radiation-tolerant wireless system can be much higher than those of non-redundant channels; and it can work in high-level radiation environments with total dose up to 1 M Rad (Si). Finally, a number of total dose tests are performed to investigate radiation effects induced by gamma radiation on distinct modern wireless monitoring devices. An experimental setup is developed to monitor the performance of signal measurement online and transmission of the developed distinct wireless electronic devices directly under gamma radiator at The Ohio State University Nuclear Reactor Lab (OSU-NRL). The gamma irradiator generates dose rates of 20 K Rad/h and 200 Rad/h on the samples, respectively. It was found that both measurement and transmission functions of distinct wireless measurement and transmission devices work well under gamma radiation conditions before the devices permanently damage. The experimental results have also shown that the developed radiation-tolerant design can be applied to effectively extend the lifespan of COTS-based electronic systems in the high-level radiation environment, as well as to improve the performance of wireless communication systems. According to testing results, the developed radiation-tolerant wireless device with a shielding protection can work at least 21 hours under the highest dose rate (20 K Rad/h). In summary, this research has addressed important issues on the design of radiation-tolerant systems without using rad-hardened electronic components. The proposed methods and systems provide an effective and economical solution to implement monitoring systems for obtaining up-to-date information in high-level radiation environments. The reported contributions are of significance both academically and in practice

    A Dual-Mode Adaptive MAC Protocol for Process Control in Industrial Wireless Sensor Networks

    Get PDF
    Doktorgradsavhandling ved Fakultet for teknologi og realfag, Universitetet i Agder, 2017Wireless Sensor Networks (WSNs) consist of sensors and actuators operating together to provide monitoring and control services. These services are used in versatile applications ranging from environmental monitoring t oindustrial automation applications. Industrial Wireless Sensor Network (IWSN) is a sub domain of the WSN domain, focussing the industrial monitoring and automation applications. The IWSN domain differs from the generic WSN domains in terms of its requirements. General IWSN requirements include: energy efficiency and quality of service, and strict requirements are imposed on the quality of service expected by IWSN applications. Quality of service in particular relates to reliability, robustness, and predictability. Medium Access Control (MAC) protocols in an IWSN solution are responsible for managing radio communications, the main consumer of power in every IWSN element. With proper measures, MAC protocols can provide energy efficient solutions along with required quality of service for process control applications. The first goal of the thesis was to assess the possibility of creating a MAC protocol exploiting properties of the application domain, the process control domain. This resulted in the creation of the Dual-Mode Adaptive Medium Access Control Protocol (DMAMAC) which constitutes the main contribution of this thesis. The DMAMAC protocol is energy efficient,while preserving real-time requirements, and is robust to packet failure. This has been guaranteed by the thorough evaluation of the protocol via simulation, verification, and implementation with deployment testing. In parallel, we also investigated the possibility of using an alternative development approach for MAC protocols. Specifically, we have proposed a development approach based on MAC protocol model in CPN tools. The development approach consists of automatic code generation for the MiXiM simulation tool and the TinyOS platform. We used the related GinMAC protocol as a running example for the development approach. The generated code for MiXiM simulation platform and the TinyOS implementation platform are evaluated via simulation and deployment respectively. This results in a faster design to implementation time, and closely related protocol artifacts, improving on the traditional approach

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Wireless Sensor Data Transport, Aggregation and Security

    Get PDF
    abstract: Wireless sensor networks (WSN) and the communication and the security therein have been gaining further prominence in the tech-industry recently, with the emergence of the so called Internet of Things (IoT). The steps from acquiring data and making a reactive decision base on the acquired sensor measurements are complex and requires careful execution of several steps. In many of these steps there are still technological gaps to fill that are due to the fact that several primitives that are desirable in a sensor network environment are bolt on the networks as application layer functionalities, rather than built in them. For several important functionalities that are at the core of IoT architectures we have developed a solution that is analyzed and discussed in the following chapters. The chain of steps from the acquisition of sensor samples until these samples reach a control center or the cloud where the data analytics are performed, starts with the acquisition of the sensor measurements at the correct time and, importantly, synchronously among all sensors deployed. This synchronization has to be network wide, including both the wired core network as well as the wireless edge devices. This thesis studies a decentralized and lightweight solution to synchronize and schedule IoT devices over wireless and wired networks adaptively, with very simple local signaling. Furthermore, measurement results have to be transported and aggregated over the same interface, requiring clever coordination among all nodes, as network resources are shared, keeping scalability and fail-safe operation in mind. Furthermore ensuring the integrity of measurements is a complicated task. On the one hand Cryptography can shield the network from outside attackers and therefore is the first step to take, but due to the volume of sensors must rely on an automated key distribution mechanism. On the other hand cryptography does not protect against exposed keys or inside attackers. One however can exploit statistical properties to detect and identify nodes that send false information and exclude these attacker nodes from the network to avoid data manipulation. Furthermore, if data is supplied by a third party, one can apply automated trust metric for each individual data source to define which data to accept and consider for mentioned statistical tests in the first place. Monitoring the cyber and physical activities of an IoT infrastructure in concert is another topic that is investigated in this thesis.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    An open virtual testbed for industrial control system security research

    Get PDF
    ICS security has been a topic of scrutiny and research for several years, and many security issues are well known. However, research efforts are impeded by a lack of an open virtual industrial control system testbed for security research. This thesis describes a virtual testbed framework using Python to create discrete testbed components (including virtual devices and process simulators). This testbed is designed such that the testbeds are interoperable with real ICS devices and that the virtual testbeds can provide comparable ICS network behavior to a laboratory testbed. Two testbeds based on laboratory testbeds have been developed and have been shown to be interoperable with real industrial control systemequipment and vulnerable to attacks in the samemanner as a real system. Additionally, these testbeds have been quantitatively shown to produce traffic close to laboratory systems (within 90% similarity on most metrics)

    Holistic Control for Cyber-Physical Systems

    Get PDF
    The Industrial Internet of Things (IIoT) are transforming industries through emerging technologies such as wireless networks, edge computing, and machine learning. However, IIoT technologies are not ready for control systems for industrial automation that demands control performance of physical processes, resiliency to both cyber and physical disturbances, and energy efficiency. To meet the challenges of IIoT-driven control, we propose holistic control as a cyber-physical system (CPS) approach to next-generation industrial automation systems. In contrast to traditional industrial automation systems where computing, communication, and control are managed in isolation, holistic control orchestrates the management of cyber platforms (networks and computing platforms) and physical plant control at run-time in an integrated architecture. Specifically, this dissertation research comprises the following primary components. Holistic wireless control: The core of holistic wireless control is a holistic controller comprising a plant controller and a network controller cooperating with each other. At run-time the holistic controller generates (1) control commands to the physical plant and (2) network reconfiguration commands to wireless networks based on both physical and network states. This part of dissertation research focused on the design and evaluation of holistic controllers exploiting a range of network reconfiguration strategies: (1) adapting transmission redundancy, (2) adapting sampling rates, (3) self-triggered control, and (4) dynamic transmission scheduling. Furthermore, we develop novel network reconfiguration protocols (NRP) as actuators to control network configurations in holistic control. Holistic edge control: This part of dissertation research explores edge computing as a multitier computing platform for holistic control. The proposed switching multi-tier control (SMC) dynamically switches controllers located on different computation platforms, thereby exploiting the trade-off between computation and communication in a multi-tier computing platform. We also design the stability switch between local and edge controllers under information loss from another perspective, based on co-design of edge and local controllers that are designed via a joint Lyapunov function. Real-time wireless cyber-physical simulators: To evaluate holistic control, we extend the Wireless Cyber-Physical Simulator (WCPS) to integrate simulated physical plants (in Simulink) with real wireless networks (WCPS-RT) and edge computing platforms (WCPS-EC). The real-time WCPS provides a holistic environment for CPS simulations that incorporate wireless dynamics that are challenging to simulate accurately, explore the impacts and trade-off of computation and communication of multi-tier platforms, and leverage simulation support for controllers and plants

    Optimisation of vibration monitoring nodes in wireless sensor networks

    Get PDF
    This PhD research focuses on developing a wireless vibration condition monitoring (CM) node which allows an optimal implementation of advanced signal processing algorithms. Obviously, such a node should meet additional yet practical requirements including high robustness and low investments in achieving predictive maintenance. There are a number of wireless protocols which can be utilised to establish a wireless sensor network (WSN). Protocols like WiFi HaLow, Bluetooth low energy (BLE), ZigBee and Thread are more suitable for long-term non-critical CM battery powered nodes as they provide inherent merits like low cost, self-organising network, and low power consumption. WirelessHART and ISA100.11a provide more reliable and robust performance but their solutions are usually more expensive, thus they are more suitable for strict industrial control applications. Distributed computation can utilise the limited bandwidth of wireless network and battery life of sensor nodes more wisely. Hence it is becoming increasingly popular in wireless CM with the fast development of electronics and wireless technologies in recent years. Therefore, distributed computation is the primary focus of this research in order to develop an advanced sensor node for realising wireless networks which allow high-performance CM at minimal network traffic and economic cost. On this basis, a ZigBee-based vibration monitoring node is designed for the evaluation of embedding signal processing algorithms. A state-of-the-art Cortex-M4F processor is employed as the core processor on the wireless sensor node, which has been optimised for implementing complex signal processing algorithms at low power consumption. Meanwhile, an envelope analysis is focused on as the main intelligent technique embedded on the node due to the envelope analysis being the most effective and general method to characterise impulsive and modulating signatures. Such signatures can commonly be found on faulty signals generated by key machinery components, such as bearings, gears, turbines, and valves. Through a preliminary optimisation in implementing envelope analysis based on fast Fourier transform (FFT), an envelope spectrum of 2048 points is successfully achieved on a processor with a memory usage of 32 kB. Experimental results show that the simulated bearing faults can be clearly identified from the calculated envelope spectrum. Meanwhile, the data throughput requirement is reduced by more than 95% in comparison with the raw data transmission. To optimise the performance of the vibration monitoring node, three main techniques have been developed and validated: 1) A new data processing scheme is developed by combining three subsequent processing techniques: down-sampling, data frame overlapping and cascading. On this basis, a frequency resolution of 0.61 Hz in the envelope spectrum is achieved on the same processor. 2) The optimal band-pass filter for envelope analysis is selected by a scheme, in which the complicated fast kurtogram is implemented on the host computer for selecting optimal band-pass filter and real-time envelope analysis on the wireless sensor for extracting bearing fault features. Moreover, a frequency band of 16 kHz is analysed, which allows features to be extracted in a wide frequency band, covering a wide category of industrial applications. 3) Two new analysis methods: short-time RMS and spectral correlation algorithms are proposed for bearing fault diagnosis. They can significantly reduce the CPU usage, being over two times less and consequently much lower power consumptio

    Design and Control of Power Converters 2019

    Get PDF
    In this book, 20 papers focused on different fields of power electronics are gathered. Approximately half of the papers are focused on different control issues and techniques, ranging from the computer-aided design of digital compensators to more specific approaches such as fuzzy or sliding control techniques. The rest of the papers are focused on the design of novel topologies. The fields in which these controls and topologies are applied are varied: MMCs, photovoltaic systems, supercapacitors and traction systems, LEDs, wireless power transfer, etc

    Wide-Area Situation Awareness based on a Secure Interconnection between Cyber-Physical Control Systems

    Get PDF
    Posteriormente, examinamos e identificamos los requisitos especiales que limitan el diseño y la operación de una arquitectura de interoperabilidad segura para los SSC (particularmente los SCCF) del smart grid. Nos enfocamos en modelar requisitos no funcionales que dan forma a esta infraestructura, siguiendo la metodología NFR para extraer requisitos esenciales, técnicas para la satisfacción de los requisitos y métricas para nuestro modelo arquitectural. Estudiamos los servicios necesarios para la interoperabilidad segura de los SSC del SG revisando en profundidad los mecanismos de seguridad, desde los servicios básicos hasta los procedimientos avanzados capaces de hacer frente a las amenazas sofisticadas contra los sistemas de control, como son los sistemas de detección, protección y respuesta ante intrusiones. Nuestro análisis se divide en diferentes áreas: prevención, consciencia y reacción, y restauración; las cuales general un modelo de seguridad robusto para la protección de los sistemas críticos. Proporcionamos el diseño para un modelo arquitectural para la interoperabilidad segura y la interconexión de los SCCF del smart grid. Este escenario contempla la interconectividad de una federación de proveedores de energía del SG, que interactúan a través de la plataforma de interoperabilidad segura para gestionar y controlar sus infraestructuras de forma cooperativa. La plataforma tiene en cuenta las características inherentes y los nuevos servicios y tecnologías que acompañan al movimiento de la Industria 4.0. Por último, presentamos una prueba de concepto de nuestro modelo arquitectural, el cual ayuda a validar el diseño propuesto a través de experimentaciones. Creamos un conjunto de casos de validación que prueban algunas de las funcionalidades principales ofrecidas por la arquitectura diseñada para la interoperabilidad segura, proporcionando información sobre su rendimiento y capacidades.Las infraestructuras críticas (IICC) modernas son vastos sistemas altamente complejos, que precisan del uso de las tecnologías de la información para gestionar, controlar y monitorizar el funcionamiento de estas infraestructuras. Debido a sus funciones esenciales, la protección y seguridad de las infraestructuras críticas y, por tanto, de sus sistemas de control, se ha convertido en una tarea prioritaria para las diversas instituciones gubernamentales y académicas a nivel mundial. La interoperabilidad de las IICC, en especial de sus sistemas de control (SSC), se convierte en una característica clave para que estos sistemas sean capaces de coordinarse y realizar tareas de control y seguridad de forma cooperativa. El objetivo de esta tesis se centra, por tanto, en proporcionar herramientas para la interoperabilidad segura de los diferentes SSC, especialmente los sistemas de control ciber-físicos (SCCF), de forma que se potencie la intercomunicación y coordinación entre ellos para crear un entorno en el que las diversas infraestructuras puedan realizar tareas de control y seguridad cooperativas, creando una plataforma de interoperabilidad segura capaz de dar servicio a diversas IICC, en un entorno de consciencia situacional (del inglés situational awareness) de alto espectro o área (wide-area). Para ello, en primer lugar, revisamos las amenazas de carácter más sofisticado que amenazan la operación de los sistemas críticos, particularmente enfocándonos en los ciberataques camuflados (del inglés stealth) que amenazan los sistemas de control de infraestructuras críticas como el smart grid. Enfocamos nuestra investigación al análisis y comprensión de este nuevo tipo de ataques que aparece contra los sistemas críticos, y a las posibles contramedidas y herramientas para mitigar los efectos de estos ataques
    corecore