49 research outputs found

    Absolute calibration of satellite altimetry using linear regression and harmonic analysis

    Get PDF
    The calibration of satellite radar altimetry has been extremely important for altimetry community and studying sea level changes. The main purpose of this contribution is to provide ongoing absolute calibration of altimeter bias near the Southern seas of Iran using the Iranian tide gauge network that equipped with GPS receivers to measure the sea surface heights synchronously in the same geocentric reference frame as the corresponding altimetry records. The sea level time series of coastal tide gauges have been used to estimate the bias, drift and annual/semiannual constituents of altimeter range measurements using (i) linear regression and (ii) combination of linear regression and harmonic analysis. To this end, three Iranian tide gauges located at Bushehr, Bandar Abbas and Chahbahar ports as well as Geophysical Data Records (GDR) products of Topex/Poseidon, Jason-1and Jason-2 have been considered. The numerical results have indicated that the mean absolute biases of Topex/Poseidon, Jason-1 and Jason-2 are about –26.23, 120.21 and 205.17 mm, respectively. The reliability of method has been assessed via GPS vessel at the altimeter bin nearby the Bushehr tidal stations. The presented method is viable to perfectly estimate the systematic errors, and as such, it can address the demands of high-accurate applications

    Application de la réflectométrie GNSS à l'étude des redistributions des masses d'eau à la surface de la Terre

    Get PDF
    GNSS reflectometry (or GNSS-R) is an original and opportunistic remote sensing technique based on the analysis of the electromagnetic waves continuously emitted by GNSS positioning systems satellites (GPS, GLONASS, etc.) that are captured by an antenna after reflection on the Earth’s surface. These signals interact with the reflective surface and hence contain information about its properties. When they reach the antenna, the reflected waves interfere with those coming directly from the satellites. This interference is particularly visible in the signal-to-noise ratio (SNR) parameter recorded by conventional GNSS stations. It is thus possible to reverse the SNR time series to estimate the reflective surface characteristics. If the feasibility and usefulness of thismethod are well established, the implementation of this technique poses a number of issues. Namely the spatio-temporal accuracies and resolutions that can be achieved and thus what geophysical observables are accessible.The aim of my PhD research work is to provide some answers on this point, focusing on the methodological development and geophysical exploitation of the SNR measurements performed by conventional GNSS stations. I focused on the estimation of variations in the antenna height relative to the reflecting surface (altimetry) and on the soil moisture in continental areas. The SNR data inversion method that I propose has been successfully applied to determine local variations of: (1) the sea level near the Cordouan lighthouse (not far from Bordeaux, France) from March 3 to May 31, 2013, where the main tidal periods and waves have been clearly identified ; and (2) the soil moisture in an agricultural plot near Toulouse, France, from February 5 to March 15, 2014. My method eliminates some restrictions imposed in earlier work, where the velocity of the vertical variation of the reflective surface was assumed to be negligible. Furthermore, I developed a simulator that allowed me to assess the influence of several parameters (troposphere, satellite elevation angle, antenna height, local relief, etc.) on the path of the reflected waves and hence on the position of the reflection points. My work shows that GNSS-R is a powerful alternative and a significant complement to the current measurement techniques, establishing a link between the different temporal and spatial resolutions currently achieved by conventional tools (sensors, radar, scatterometer, etc.). This technique offers the major advantage of being based on already-developed and sustainable satellites networks, and can be applied to any GNSS geodetic station, including permanent networks (e.g., the French RGP). Therefore, by installing a processing chain of these SNR acquisitions, data from hundreds of pre-existing stations could be used to make local altimetry measurements in coastal areas or to estimate soil moisture for inland antennas.La réflectométrie GNSS (ou GNSS-R) est une technique de télédétection originale et pportuniste qui consiste à analyser les ondes électromagnétiques émises en continu par la soixantaine de satellites des systèmes de positionnement GNSS (GPS, GLONASS, etc.), qui sont captées par une antenne après réflexion sur la surface terrestre. Ces signaux interagissent avec la surface réfléchissante et contiennent donc des informations sur ses propriétés. Au niveau de l’antenne, les ondes réfléchies interfèrent avec celles arrivant directement des satellites. Ces interférences sont particulièrement visibles dans le rapport signal-sur-bruit (SNR, i.e., Signal-to-Noise Ratio), paramètre enregistré par une station GNSS classique. Il est ainsi possible d’inverser les séries temporelles du SNR pour estimer des caractéristiques du milieu réfléchissant. Si la faisabilité et l’intérêt de cette méthode ne sont plus à démontrer, la mise en oeuvre de cette technique pose un certain nombre de problèmes, à savoir quelles précisions et résolutions spatio-temporelles peuvent être atteintes, et par conséquent, quels sont les observables géophysiques accessibles.Mon travail de thèse a pour objectif d’apporter des éléments de réponse sur ce point, et est axé sur le développement méthodologique et l’exploitation géophysique des mesures de SNR réalisées par des stations GNSS classiques.Je me suis focalisé sur l’estimation des variations de hauteur de l’antenne par rapport à la surfaceréfléchissante (altimétrie) et de l’humidité du sol en domaine continental. La méthode d’inversion des mesures SNR que je propose a été appliquée avec succès pour déterminer les variations locales de : (1) la hauteur de la mer au voisinage du phare de Cordouan du 3 mars au 31 mai 2013 où les ondes de marées et la houle ont pu être parfaitement identifiées ; et (2) l’humidité du sol dans un champ agricole à proximité de Toulouse, du 5 février au 15 mars 2014. Ma méthode permet de s’affranchir de certaines restrictions imposées jusqu’à présent dans les travaux antérieurs, où la vitesse de variation verticale de la surface de réflexion était supposée négligeable. De plus, j’ai développé un simulateur qui m’a permis de tester l’influence de nombreux paramètres (troposphère, angle d’élévation du satellite, hauteur d’antenne, relief local, etc.) sur la trajectoire des ondes réfléchies et donc sur la position des points de réflexion. Mon travail de thèse montre que le GNSS-R est une alternative performante et un complément non négligeable aux techniques de mesure actuelles, en faisant le lien entre les différentes résolutions temporelles et spatiales actuellement atteintes par les outils classiques (sondes, radar, diffusiomètres, etc.). Cette technique offre l’avantage majeur d’être basé sur un réseau de satellites déjà en place et pérenne, et est applicable à n’importe quelle station GNSS géodésique, notamment celles des réseaux permanents (e.g., le RGP français). Ainsi, en installant une chaîne de traitement de ces acquisitions de SNR en domaine côtier, il serait possible d’utiliser les mesures continues des centaines de stations pré-existantes, et d’envisager de réaliser des mesures altimétriques à l’échelle locale, ou de mesurer l’humidité du sol pour les antennes situées à l’intérieur des terres

    Multisatellite altimetry calibration and validation using a GNSS Wave Glider in the North Sea

    Get PDF
    The concept of in situ multisatellite altimetry calibration and validation in the absolute sense using ocean autonomous surface vehicles as global navigation satellite systems (GNSS) platforms is demonstrated through an experiment in the North Sea during 2016. A Wave Glider (WG) equipped with geodetic GNSS traveled to locations ranging from 21 to 78 km from the coast to be directly under four Jason-series tracks and two CryoSat-2 tracks. 5-Hz sea surface heights (SSHs) were estimated from precise point positioning (PPP) mode processing of GPS+GLONASS data, together with hourly zenith wet tropospheric delays (ZWDs), and used as reference values for altimetry satellite measured SSH, tropospheric delay, and significant wave height (SWH). SSH biases obtained were −30 to −8 mm for Jason-2 using geophysical data record (GDR)-D products, −40 to +1 mm for Jason-3 using GDR-F products, and −29 and +18 mm for CryoSat-2 using SAR mode GOP baseline C products. These biases are almost commensurate with results from previous studies in other regions that used GNSS buoys or onshore GNSS reference stations with geoid and tide extrapolation. The Jason-2 and Jason-3 microwave radiometer (MWR)-measured ZWDs differed, respectively, by −15 and −10 mm on average from those measured by the GNSS WG. Root-mean-square SWH differences of 2–6 cm were obtained between Jason-2/3 and the co-located GNSS WG, and equivalent differences of 19–21 cm for CryoSat-2

    Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    Get PDF
    The only remote sensing technique capable of obtain- ing sea-ice thickness on basin-scale are satellite altime- ter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which mea- sures the height of the ice surface above the sea level. This method requires highly accurate range measure- ments. During the CryoSat Validation Experiment (Cry- oVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electro- magnetic induction device for direct sea-ice thickness re- trieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness dis- tribution of airborne validation and CryoSat-2 measure- ments within the multi-year sea-ice region of the Lincoln Sea in spring, with respect to the penetration of the Ku- Band signal into the snow
    corecore