8 research outputs found

    Preliminary Experiments with XKaapi on Intel Xeon Phi Coprocessor

    Get PDF
    International audienceThis paper presents preliminary performance comparisons of parallel applications developed natively for the Intel Xeon Phi accelerator using three different parallel programming environments and their associated runtime systems. We compare Intel OpenMP, Intel CilkPlus and XKaapi together on the same benchmark suite and we provide comparisons between an Intel Xeon Phi coprocessor and a Sandy Bridge Xeon-based machine. Our benchmark suite is composed of three computing kernels: a Fibonacci computation that allows to study the overhead and the scalability of the runtime system, a NQueens application generating irregular and dynamic tasks and a Cholesky factorization algorithm. We also compare the Cholesky factorization with the parallel algorithm provided by the Intel MKL library for Intel Xeon Phi. Performance evaluation shows our XKaapi data-flow parallel programming environment exposes the lowest overhead of all and is highly competitive with native OpenMP and CilkPlus environments on Xeon Phi. Moreover, the efficient handling of data-flow dependencies between tasks makes our XKaapi environment exhibit more parallelism for some applications such as the Cholesky factorization. In that case, we observe substantial gains with up to 180 hardware threads over the state of the art MKL, with a 47% performance increase for 60 hardware threads

    Hierarchical DAG Scheduling for Hybrid Distributed Systems

    Get PDF
    International audienceAccelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak com-putational capacity. Despite significant advances in the pro-gramming interfaces to such hybrid architectures, traditional programming paradigms struggle mapping the resulting multi-dimensional heterogeneity and the expression of algorithm parallelism, resulting in sub-optimal effective performance. Task-based programming paradigms have the capability to alleviate some of the programming challenges on distributed hybrid many-core architectures. In this paper we take this concept a step further by showing that the potential of task-based programming paradigms can be greatly increased with minimal modification of the underlying runtime combined with the right algorithmic changes. We propose two novel recursive algorithmic variants for one-sided factorizations and describe the changes to the PaRSEC task-scheduling runtime to build a framework where the task granularity is dynamically adjusted to adapt the degree of available parallelism and kernel effi-ciency according to runtime conditions. Based on an extensive set of results we show that, with one-sided factorizations, i.e. Cholesky and QR, a carefully written algorithm, supported by an adaptive tasks-based runtime, is capable of reaching a degree of performance and scalability never achieved before in distributed hybrid environments

    Optimización del rendimiento y la eficiencia energética en sistemas masivamente paralelos

    Get PDF
    RESUMEN Los sistemas heterogéneos son cada vez más relevantes, debido a sus capacidades de rendimiento y eficiencia energética, estando presentes en todo tipo de plataformas de cómputo, desde dispositivos embebidos y servidores, hasta nodos HPC de grandes centros de datos. Su complejidad hace que sean habitualmente usados bajo el paradigma de tareas y el modelo de programación host-device. Esto penaliza fuertemente el aprovechamiento de los aceleradores y el consumo energético del sistema, además de dificultar la adaptación de las aplicaciones. La co-ejecución permite que todos los dispositivos cooperen para computar el mismo problema, consumiendo menos tiempo y energía. No obstante, los programadores deben encargarse de toda la gestión de los dispositivos, la distribución de la carga y la portabilidad del código entre sistemas, complicando notablemente su programación. Esta tesis ofrece contribuciones para mejorar el rendimiento y la eficiencia energética en estos sistemas masivamente paralelos. Se realizan propuestas que abordan objetivos generalmente contrapuestos: se mejora la usabilidad y la programabilidad, a la vez que se garantiza una mayor abstracción y extensibilidad del sistema, y al mismo tiempo se aumenta el rendimiento, la escalabilidad y la eficiencia energética. Para ello, se proponen dos motores de ejecución con enfoques completamente distintos. EngineCL, centrado en OpenCL y con una API de alto nivel, favorece la máxima compatibilidad entre todo tipo de dispositivos y proporciona un sistema modular extensible. Su versatilidad permite adaptarlo a entornos para los que no fue concebido, como aplicaciones con ejecuciones restringidas por tiempo o simuladores HPC de dinámica molecular, como el utilizado en un centro de investigación internacional. Considerando las tendencias industriales y enfatizando la aplicabilidad profesional, CoexecutorRuntime proporciona un sistema flexible centrado en C++/SYCL que dota de soporte a la co-ejecución a la tecnología oneAPI. Este runtime acerca a los programadores al dominio del problema, posibilitando la explotación de estrategias dinámicas adaptativas que mejoran la eficiencia en todo tipo de aplicaciones.ABSTRACT Heterogeneous systems are becoming increasingly relevant, due to their performance and energy efficiency capabilities, being present in all types of computing platforms, from embedded devices and servers to HPC nodes in large data centers. Their complexity implies that they are usually used under the task paradigm and the host-device programming model. This strongly penalizes accelerator utilization and system energy consumption, as well as making it difficult to adapt applications. Co-execution allows all devices to simultaneously compute the same problem, cooperating to consume less time and energy. However, programmers must handle all device management, workload distribution and code portability between systems, significantly complicating their programming. This thesis offers contributions to improve performance and energy efficiency in these massively parallel systems. The proposals address the following generally conflicting objectives: usability and programmability are improved, while ensuring enhanced system abstraction and extensibility, and at the same time performance, scalability and energy efficiency are increased. To achieve this, two runtime systems with completely different approaches are proposed. EngineCL, focused on OpenCL and with a high-level API, provides an extensible modular system and favors maximum compatibility between all types of devices. Its versatility allows it to be adapted to environments for which it was not originally designed, including applications with time-constrained executions or molecular dynamics HPC simulators, such as the one used in an international research center. Considering industrial trends and emphasizing professional applicability, CoexecutorRuntime provides a flexible C++/SYCL-based system that provides co-execution support for oneAPI technology. This runtime brings programmers closer to the problem domain, enabling the exploitation of dynamic adaptive strategies that improve efficiency in all types of applications.Funding: This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant), the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R and PID2019-105660RB-C22. This work has also been partially supported by the Mont-Blanc 3: European Scalable and Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No. 671697) from the European Union’s Horizon 2020 Research and Innovation Programme (H2020 Programme). Some activities have also been funded by the Spanish Science and Technology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network). The Integration II: Hybrid programming models of Chapter 4 has been partially performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. In particular, the author gratefully acknowledges the support of the SPMT Department of the High Performance Computing Center Stuttgart (HLRS)

    GPRM: a high performance programming framework for manycore processors

    Get PDF
    Processors with large numbers of cores are becoming commonplace. In order to utilise the available resources in such systems, the programming paradigm has to move towards increased parallelism. However, increased parallelism does not necessarily lead to better performance. Parallel programming models have to provide not only flexible ways of defining parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-purpose system, applications residing in the system compete for the shared resources. Thread and task scheduling in such a multiprogrammed multithreaded environment is a significant challenge. In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow Parallel Reduction Machine (GPRM). Our main objective is to provide high performance while maintaining ease of programming. GPRM supports native parallelism; it provides a modular way of expressing parallel tasks and the communication patterns between them. Compiling a GPRM program results in an Intermediate Representation (IR) containing useful information about tasks, their dependencies, as well as the initial mapping information. This compile-time information helps reduce the overhead of runtime task scheduling and is key to high performance. Generally speaking, the granularity and the number of tasks are major factors in achieving high performance. These factors are even more important in the case of GPRM, as it is highly dependent on tasks, rather than threads. We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP, Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases, only by controlling the number of tasks. GPRM also provides a low-overhead mechanism, called “Global Sharing”, which improves performance in multiprogramming situations. We use OpenMP, as the most popular model for shared-memory parallel programming as the main GPRM competitor for solving three well-known problems on both platforms: LU factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factorisation results in notable performance improvement for sparse matrices with large numbers of small blocks. We investigate the overhead of GPRM’s task creation and distribution for very short computations using the Image Convolution benchmark. We show that this overhead can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demonstrate that our parallel worksharing construct provides an efficient solution for Linked List processing and performs better than OpenMP implementations on the Xeon Phi. The results are very promising, as they verify that our parallel programming framework for manycore processors is flexible and scalable, and can provide high performance without sacrificing productivity

    The readying of applications for heterogeneous computing

    Get PDF
    High performance computing is approaching a potentially significant change in architectural design. With pressures on the cost and sheer amount of power, additional architectural features are emerging which require a re-think to the programming models deployed over the last two decades. Today's emerging high performance computing (HPC) systems are maximising performance per unit of power consumed resulting in the constituent parts of the system to be made up of a range of different specialised building blocks, each with their own purpose. This heterogeneity is not just limited to the hardware components but also in the mechanisms that exploit the hardware components. These multiple levels of parallelism, instruction sets and memory hierarchies, result in truly heterogeneous computing in all aspects of the global system. These emerging architectural solutions will require the software to exploit tremendous amounts of on-node parallelism and indeed programming models to address this are emerging. In theory, the application developer can design new software using these models to exploit emerging low power architectures. However, in practice, real industrial scale applications last the lifetimes of many architectural generations and therefore require a migration path to these next generation supercomputing platforms. Identifying that migration path is non-trivial: With applications spanning many decades, consisting of many millions of lines of code and multiple scientific algorithms, any changes to the programming model will be extensive and invasive and may turn out to be the incorrect model for the application in question. This makes exploration of these emerging architectures and programming models using the applications themselves problematic. Additionally, the source code of many industrial applications is not available either due to commercial or security sensitivity constraints. This thesis highlights this problem by assessing current and emerging hard- ware with an industrial strength code, and demonstrating those issues described. In turn it looks at the methodology of using proxy applications in place of real industry applications, to assess their suitability on the next generation of low power HPC offerings. It shows there are significant benefits to be realised in using proxy applications, in that fundamental issues inhibiting exploration of a particular architecture are easier to identify and hence address. Evaluations of the maturity and performance portability are explored for a number of alternative programming methodologies, on a number of architectures and highlighting the broader adoption of these proxy applications, both within the authors own organisation, and across the industry as a whole

    Programming Models\u27 Support for Heterogeneous Architecture

    Get PDF
    Accelerator-enhanced computing platforms have drawn a lot of attention due to their massive peak computational capacity. Heterogeneous systems equipped with accelerators such as GPUs have become the most prominent components of High Performance Computing (HPC) systems. Even at the node level the significant heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads to challenges for fully exploiting such complex architectures. Extending outside the node scope, only escalate such challenges. Conventional programming models such as data- ow and message passing have been widely adopted in HPC communities. When moving towards heterogeneous systems, the lack of GPU integration causes such programming models to struggle in handling the heterogeneity of different computing units, leading to sub-optimal performance and drastic decrease in developer productivity. To bridge the gap between underlying heterogeneous architectures and current programming paradigms, we propose to extend such programming paradigms with architecture awareness optimization. Two programming models are used to demonstrate the impact of heterogeneous architecture awareness. The PaRSEC task-based runtime, an adopter of the data- ow model, provides opportunities for overlapping communications with computations and minimizing data movements, as well as dynamically adapting the work granularity to the capability of the hardware. To fulfill the demand of an efficient and portable Message Passing Interface (MPI) implementation to communicate GPU data, a GPU-aware design is presented based on the Open MPI infrastructure supporting efficient point-to-point and collective communications of GPU-residential data, for both contiguous and non-contiguous memory layouts, by leveraging GPU network topology and hardware capabilities such as GPUDirect. The tight integration of GPU support in a widely used programming environment, free the developers from manually move data into/out of host memory before/after relying on MPI routines for communications, allowing them to focus instead on algorithmic optimizations. Experimental results have confirmed that supported by such a tight and transparent integration, conventional programming models can once again take advantage of the state-of-the-art hardware and exhibit performance at the levels expected by the underlying hardware capabilities

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores
    corecore