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Abstract

Processors with large numbers of cores are becoming commonplace. In order to utilise the
available resources in such systems, the programming paradigm has to move towards in-
creased parallelism. However, increased parallelism does not necessarily lead to better per-
formance. Parallel programming models have to provide not only flexible ways of defining
parallel tasks, but also efficient methods to manage the created tasks. Moreover, in a general-
purpose system, applications residing in the system compete for the shared resources. Thread
and task scheduling in such a multiprogrammed multithreaded environment is a significant
challenge.

In this thesis, we introduce a new task-based parallel reduction model, called the Glasgow
Parallel Reduction Machine (GPRM). Our main objective is to provide high performance
while maintaining ease of programming. GPRM supports native parallelism; it provides a
modular way of expressing parallel tasks and the communication patterns between them.
Compiling a GPRM program results in an Intermediate Representation (IR) containing use-
ful information about tasks, their dependencies, as well as the initial mapping information.
This compile-time information helps reduce the overhead of runtime task scheduling and is
key to high performance. Generally speaking, the granularity and the number of tasks are
major factors in achieving high performance. These factors are even more important in the
case of GPRM, as it is highly dependent on tasks, rather than threads.

We use three basic benchmarks to provide a detailed comparison of GPRM with Intel OpenMP,
Cilk Plus, and Threading Building Blocks (TBB) on the Intel Xeon Phi, and with GNU
OpenMP on the Tilera TILEPro64. GPRM shows superior performance in almost all cases,
only by controlling the number of tasks. GPRM also provides a low-overhead mechanism,
called “Global Sharing”, which improves performance in multiprogramming situations.

We use OpenMP, as the most popular model for shared-memory parallel programming as the
main GPRM competitor for solving three well-known problems on both platforms: LU fac-
torisation of Sparse Matrices, Image Convolution, and Linked List Processing. We focus on
proposing solutions that best fit into the GPRM’s model of execution. GPRM outperforms



OpenMP in all cases on the TILEPro64. On the Xeon Phi, our solution for the LU Factori-
sation results in notable performance improvement for sparse matrices with large numbers
of small blocks. We investigate the overhead of GPRM’s task creation and distribution for
very short computations using the Image Convolution benchmark. We show that this over-
head can be mitigated by combining smaller tasks into larger ones. As a result, GPRM can
outperform OpenMP for convolving large 2D matrices on the Xeon Phi. Finally, we demon-
strate that our parallel worksharing construct provides an efficient solution for Linked List
processing and performs better than OpenMP implementations on the Xeon Phi.

The results are very promising, as they verify that our parallel programming framework for
manycore processors is flexible and scalable, and can provide high performance without
sacrificing productivity.
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Chapter 1

Introduction

For the past few decades, microprocessor performance scaling was the result of advances in
integrated circuit technology, such as integrating more transistors on a single chip and scaling
of the processor clock [4] [5]. According to the Moore’s law [6], the number of transistors
on a chip roughly doubled every eighteen months. The industry trend was to make use
of multiple functional units within a single core in parallel, which led to instruction level
parallelism.

Superscalars could execute multiple instructions in one clock cycle by simultaneously dis-
patching them to different functional units on the processor. However, typical instruction
streams had a limited amount of potential parallelism. Therefore, the use of superscalar
hardware alone was not sufficient for the design of modern systems [7]. Moreover, building
superscalar cores with the additional logic to find parallel instructions dynamically became
really expensive [8].

A more recent approach is hardware multithreading, where multiple hardware threads run
simultaneously on a single core. An example of this design is Simultaneous Multi Threading

(SMT) [9], where multiple streams send instructions into a superscalar scheduler [10].

Today, extracting better performance from uniprocessors, even with better fabrication tech-
nologies or the use of pipelined architectures, has come to an end. Instead, the performance
growth comes from an increase in the number of processing elements on a single die. There
are many reasons behind the current shift away from uniprocessor designs, one of which is
the power consumption that could be saved by eliminating the need to increase the clock
speed.
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1.1 The Shift Towards Chip Multiprocessors (CMPs)

Extracting instruction parallelism in the superscalars became more and more complex and
costly. Moreover, compared to a wide-issue superscalar, a machine with simpler cores could
better utilise the silicon resources.

There were also some physical facts involved. Power dissipation would become a significant
problem in higher frequencies; also no more power saving could be achieved by voltage
scaling, as it had stopped due to the high leakage. The clock speed could not be increased
as before without overheating, and finally, the cooling technologies would not scale up fast
enough to cope with the power requirements [11].

Furthermore, wire delays limited the improvement of instruction throughput and the scaling
of memory-oriented structures such as caches and register files. Smaller transistors were
faster and required less power, but wires did not scale in the same way. As a result, com-
munication delays became significant for global signals, and therefore centralised structures
and global interconnects were no longer efficient [12]. A modular design was needed.

The “Free Lunch” for hardware designers and software developers was over [13]. It was
time to decentralise the micro-architecture and move towards CMP and multicore processor
designs 1 [11] with simpler and more power efficient cores.

Another trend in parallel computing was the rise of using GPUs 2 for computationally inten-
sive problems. However, we continue our discussion by focusing only on multicore proces-
sors.

Instead of scaling the clock frequency, computer scientists and engineers started to increase
the number of cores in each generation and designed simpler but more power efficient cores.
Using a CMP with two cores for example, could result in the same or better throughput with
half of the clock speed of a uniprocessor for server-oriented workloads. The processing time
for each request is doubled, but note that the request processing time is mostly limited by
the memory or disk rather than the processor. Since for a two-way CMP, two requests could
be resolved simultaneously, if there is no significant memory contention, the throughput
will be a little better or at least the same. More importantly, at the system level, with a
lower clock rate, the system can be designed with an almost linear reduction in operating
voltage. Power is proportional to the square of the voltage; therefore, the power required for
achieving the same performance is a quarter of the uniprocessor power for each core, and
half of it for the whole CMP. This is however not the whole story about the power saving,
as static power dissipation and minimum voltage levels required by transistors could be the

1The term multicore processor is used for a processor having multiple computing units. It is an example of
a CMP with the placement of several independent execution cores with all execution resources onto a single
processor chip.

2Graphics Processing Unit
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limiting factors [8].

It is also beneficial for the throughput-oriented workloads to use CMPs with multiple smaller
cores rather than a few larger ones. Superscalar-related hardware is wasted for such appli-
cations, because of the several memory stalls and the limited instruction-level parallelism.
Consider a typical server that receives hundreds of requests at once. By replacing the large
cores with multiple smaller ones, although the processing time on each core becomes larger,
there is enough work to keep all cores busy at the same time [8].

As stated above, on-chip wires do not scale in the same way as transistors do. In a digital sys-
tem, most of the power is dissipated in wires. Also, the time spent on global communication
relative to the local processing time is significant. Therefore, the performance and power
efficiency of most on-chip systems today is constrained by their interconnection. Network-
on-Chip (NoC) [14] has emerged as a promising solution to overcome such communication
challenges in modern manycore processors.

Today’s multicore and manycore chips do multiple jobs at a time to provide better perfor-
mance and power efficiency. Moving toward manycore platforms [15] could provide the
capability to handle terabytes of data. Instead of focusing solely on executing individual
tasks faster, many more tasks will be executed in parallel across a group of simpler cores.
The transition towards these parallel architectures makes today an exciting time to investigate
challenges in parallel computing.

1.2 Parallel Computing

Processors with large numbers of cores are becoming commonplace. In order to take advan-
tage of the available resources in such systems, programmers need to know about parallel
computing. We start by describing two classic performance models: Amdahl’s law and
Gustafson’s law.

Amdahl’s law [16] specifies the expected speedup after parallelisation on N processors, con-
sidering P as the parallelised portion of the program:

Speedup(P,N) =
1

(1− P ) + P/N
(1.1)

Amdahl’s law implies that if P is small, optimisations will have little effect, and also that the
maximum speedup cannot go beyond 1/(1− P ).

By adding a hardware model to the Amdahl’s law, its variations for symmetric, asymmetric,
and dynamic multicores are introduced in [17].
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While Amdahl’s law considers a fixed problem size to be solved on a changeable parallel ma-
chine, Gustafson’s law [18] indicates that the problem sizes change to exploit the capabilities
of new computers, hence on a more powerful machine, bigger problems could be solved in
the same time. Gustafson’s law states that when the problem size grows, the parallel fraction
of the problem scales much faster than the serial fraction. If that is the case, the serial portion
becomes less significant compared to the parallel portion and speedup grows by increasing
the number of processors (cores). Both of these laws are correct. It only depends on whether
the goal is to solve an existing problem faster or to solve a bigger problem in the same time.

1.2.1 From Threads to Tasks

A program in its execution is called a Process. Whenever a process is created by the Op-
erating System (OS), resources such as registers and pages of memory get allocated to that
process. Threads of a process share such resources, including the address space. Each
thread, only needs a few dedicated resources, such as a program counter and a region of
memory (stack) to keep track of its own data. Threads can run simultaneously on a single or
multiple cores/processors, and work concurrently in order to execute a program [19]. Par-
allel programming on shared memory multicore processors has been historically focused on
thread-based parallelism.

Taking the abstraction one level further, from Threads to Tasks is becoming more important
as the number of cores grows in modern processors. A task is any form of finite computation
(a unit of work) that can be run in parallel with other tasks, if their data dependencies allow
[3] [20]. Tasks are more lightweight and hence can be used to express parallelism at a finer
granularity. Threads, on the other hand, need their own stack [20]. Moreover, scheduling
both tasks on threads and threads on cores imposes increasingly larger overhead to a system
with many cores. Furthermore, without a cost model, it is very difficult, if not impossible,
for the programmers to determine the optimal number of threads for an application. The
most promising solution is to divide the program into tasks and rely on the runtime system
to schedule these tasks and achieve the expected speedup [21].

The concept of task already exists in many parallel programming models. Compared to
pure data-parallel approaches, task-based programming offers more flexibility in many sit-
uations [3]. Programmers express parallelism by defining tasks in their applications and
runtime libraries schedule the tasks on threads. However, still in many task-based parallel
programming models, choosing the right number of threads is key to performance. Hence,
the onus is on the programmer to decide not only about the granularity/number of tasks, but
also about the optimal number of threads in order to obtain good performance.
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1.3 Thesis Statement

The use of manycore platforms is still limited due to the difficulties associated with program-
ming them.

My thesis attempts to answer the question of whether a task-based parallel programming

model using a coordination language with implicit parallel semantics is a suitable approach

to manycore programming in terms of performance and productivity.

I assert that The Glasgow Parallel Reduction Machine (GPRM) parallel programming frame-

work can provide performance at the same level or better than the state-of-the-art parallel

programming approaches, while not increasing the burden of application development for

shared memory manycore processors.

In this work, I will explore popular approaches for parallel programming targeting shared
memory manycore platforms. The trade-off between high performance and productivity
(ease of programming) should be taken into account. This would help to identify the pros and
cons of the existing parallel programming models, and thus would be useful for proposing
new techniques. More importantly, this work should also investigate whether GPRM can
utilise both task and data parallelism efficiently on manycore processors and hence improve
the performance.

Our parallel programming approach (GPRM) uses partial evaluation in order to infer a task
graph at compile time. Managing the created tasks at runtime is challenging. The main con-
tribution of this work is the development of an efficient runtime system for such a task-based
parallel programming approach. A major contribution is adding an efficient stealing mecha-
nism that matches the execution model of the new framework. Adding support for loop-level
parallelism as well as designing a high level coordination language are other contributions.
None of these steps could be finalised without measuring their impact on performance. I also
looked at the important factors in concurrent running of applications on manycore proces-
sors, known as multiprogramming, and implemented a low overhead mechanism in GPRM
runtime system for such situations.

OpenMP is chosen as the main competitor of GPRM. Solving problems in GPRM and com-
paring the results with the well-known solutions implemented in OpenMP provides a better
view on when to choose GPRM over OpenMP and how to utilise its features.

1.4 Thesis Organisation

The remainder of this thesis is organised as follows:
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Chapter 2: Background

In the second chapter, we mainly talk about designing parallel programs and the well-known
parallel programming paradigms and models. We also cover task scheduling and load bal-
ancing topics. At the end of this chapter, we review some of the related work on multicore
and manycore processors, with regards to the architecture, programming, and performance
evaluation.

Chapter 3: Hardware Platforms

This chapter begins with an introduction to the classification of parallel platforms followed
by a discussion on memory organisations. We then focus on shared memory multicore and
manycores, specifically on the two platforms that are used for the purposes of this study:
the Tilera TILEPro64 and the Intel Xeon Phi. We have published a paper on cache-aware
parallel programming on the TILEPro64:

[Paper 1] Tousimojarad A, Vanderbauwhede W. Cache-aware parallel programming for
manycore processors. In: Highly Efficient Accelerators and Reconfigurable Technologies
(HEART2013); 2013.

Chapter 4: Task-based Parallel Models for Shared Memory Programming

The fourth chapter starts with a rather detailed introduction on three selected programming
models: OpenMP, Cilk Plus and TBB. Three “Basic Benchmarks” are introduced in this
chapter to examine the performance characteristics of these programming models on the
Xeon Phi. We then run the three benchmarks together to see how these models perform
in a multiprogramming environment. We continue this chapter by focusing on multipro-
gramming and “information sharing” (between the programs running concurrently) using
OpenMP-based benchmarks on the TILEPro64 . The content of this chapter is published in
the following papers:

[Paper 2] Tousimojarad A, Vanderbauwhede W. An Efficient Thread Mapping Strategy
for Multiprogramming on Manycore Processors. In: Parallel Computing: Accelerating
Computational Science and Engineering (CSE). vol. 25 of Advances in Parallel Comput-
ing. IOS Press; 2014. p. 63–71

[Paper 3] Tousimojarad A, Vanderbauwhede W. Comparison of Three Popular Paral-
lel Programming Models on the Intel Xeon Phi. In: Euro-Par 2014: Parallel Processing
Workshops. Springer; 2014. p. 314–325
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Chapter 5: GPRM: The Glasgow Parallel Reduction Machine

This chapter covers details about the design and implementation of the GPRM framework.
It covers the front-end language and its compiler, details about the runtime system, model of
execution, task scheduling as well as “information sharing” when running multiple GPRM
instances concurrently. The following papers are published:

[Paper 4] Tousimojarad A. A parallel task composition approach to manycore program-
ming. PLACES 2013. 2013;29

[Paper 5] Tousimojarad A, Vanderbauwhede W. The Glasgow Parallel Reduction Ma-
chine: Programming Shared-memory Many-core Systems using Parallel Task Composi-
tion. EPTCS. 2013;137:79–94

[Paper 6] Tousimojarad A, Vanderbauwhede W. Steal Locally, Share Globally. Interna-
tional Journal of Parallel Programming. 2015;43(5):894–917

Chapter 6: Comparison of GPRM with Popular Parallel Programming Models

In this chapter, GPRM is compared with OpenMP on the TILEPro64 and with OpenMP, Cilk
Plus, and TBB on the Xeon Phi. Both programming and performance aspects are considered.
For the only case that OpenMP has better performance compared to GPRM, a detailed com-
parison for different cases shows that GPRM performs better on average. The chapter ends
with a comparison of GPRM with the three models for two multiprogramming cases on the
Xeon Phi. The following paper is published based on the results of this chapter:

[Paper 7] Tousimojarad A, Vanderbauwhede W. Number of Tasks, not Threads, is Key.
In: 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-
Based Processing. IEEE; 2015.

Chapter 7: Parallel Lower-Upper Factorisation of Sparse Matrices

In this section, we first introduce parallel loops in GPRM and measure their performance on
the TILEPro64. We then propose a solution in GPRM to solve a fundamental linear algebra
problem: LU factorisation of sparse matrices. The performance results of the proposed
approach is compared with those of a task-based OpenMP approach. The following paper is
published based on this work:

[Paper 8] Tousimojarad A, Vanderbauwhede W. A Parallel Task-based Approach to Linear
Algebra. In: Parallel and Distributed Computing (ISPDC), 2014 IEEE 13th International
Symposium on. IEEE; 2014. p. 59–66
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Chapter 8: Parallel Image Convolution

This chapter is focused on the comparison of GPRM with OpenMP for parallel 2D image
convolution on both platforms. Two algorithms for solving the problem for a separable
kernel are covered. The main focus of this chapter is on optimisation techniques for the
Xeon Phi. In addition, task agglomeration is used as a parallelisation technique to improve
the performance of GPRM. We have published parts of this work in:

[Paper 9] Chimeh M, Cockshott P, Oehler SB, Tousimojarad A, Xu T. Compiling Vector
Pascal to the XeonPhi. Concurrency and Computation: Practice and Experience. 2015;
(The names are ordered alphabetically)

Chapter 9: Parallel Linked List Processing

In this chapter, we present a detailed comparison between GPRM and OpenMP using a
parallel linked list processing benchmark. We discuss that a cutoff-based solution is required
for achieving high performance. We then compare the GPRM implementation with two
OpenMP implementations: the conventional approach with one task per list element and a
cutoff-based approach. We show that GPRM outperforms OpenMP in almost all cases. The
following paper is published based on this work:

[Paper 10] Tousimojarad A, Vanderbauwhede W. Efficient Parallel Linked List Process-
ing. Advances in Parallel Computing. IOS Press; 2016.

Chapter 10: Conclusion and Future Work

Lastly, we present the thesis conclusions and suggest some directions for future development
of the GPRM framework.



9

Chapter 2

Background

The emergence of multicore and manycore processors has changed the computing landscape.
There are various parallel programming approaches to exploit such architectures. In this
chapter, we present an overview of designing parallel programs and introduce the most com-
mon parallel programming paradigms. We also review a number of parallel programming
models, technologies, and APIs. The studied parallel models have either widespread adop-
tion on shared memory architectures, or similarity with GPRM. We defer the discussion
about parallel architectures to the next chapter, which is focused on hardware platforms. In
the final section, we present the related work.

2.1 Design of Parallel Programs

Parallel programming comes with its price. Race conditions, thread synchronisation, and
load balancing are some of the parallel programming pitfalls. A proper separation of con-
cerns can be helpful in addressing these problems. Foster [32] divides a parallel program-
ming design methodology into four different phases:

2.1.1 Partitioning

In this phase, the designer decides about how to partition the computation, using domain
and/or functional decomposition techniques. The problem is decomposed into computational
tasks and their associated data. The number of processors (or cores) is ignored at this phase.
Therefore, the focus is on how to break down a large problem into the smaller parts and find
opportunities for parallelism and how to extract the greatest amount of parallelism from the
problem.
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Domain Decomposition

The domain decomposition approach is data-centric. Therefore, first the data is decomposed
into preferably equal pieces (chunks). The next step is to partition the computation, typically
based on its association with each piece of data. If some data is needed to be shared between
the tasks, the communication phase would resolve it. An example is decomposition of a
3D grid using one-, two-, or three-dimensional decompositions. Obviously, at the first stage
of the design, the 3D decomposition provides more flexibility and more opportunity for
parallelism, as a task will be defined for each grid point, rather than for each line or each
plane in the 2D and 1D decompositions.

Functional Decomposition

The functional decomposition is computation-centric, meaning that the main focus is on
what computation to perform rather than what data to manipulate. Therefore, the application
is divided into multiple parts, each of which performs a different function. Historically, this
step has been considered as a complementary approach, to be used for better optimisation
where looking at the data alone is not enough. An example could be the traversal of a
search tree for finding an answer: a task is created for the root, and if the root is neither the
answer nor the only node, then for each sub-tree a new task will be created. It is evident in
this case that there is no obvious data structure to be decomposed via domain decomposition.
Another common form of functional decomposition is pipeline decomposition. In this model,
pipelined threads (processes) perform processing stages one by one.

In many cases, a hybrid methodology is used. We will show examples of both domain and
functional decomposition in our benchmarks. We sometimes refer to the problem itself as
having data and task parallelism respectively.

2.1.2 Communication

The next step is to determine the type of communication between the generated tasks and
how to coordinate their execution. Most of the time, the tasks comprising a problem need to
exchange data. There are two sub-phases involved. First, designing channels of communi-
cation between tasks for data transfer. Second, design of the messages containing the data to
be sent over these channels. Since communication corresponds to the data flow between the
tasks, specifying the communication requirements is more straightforward where functional
decomposition is applied, compared to the situations where domain decomposition is used.
Foster [32] classifies communication patterns based on four metrics.
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Structured / Unstructured

In structured communication, the communication pattern forms a known regular structure,
such as tree, while in unstructured communication, the tasks can communicate in any arbi-
trary form.

Static / Dynamic

In static communication, the communicating tasks remain the same and do not change over
time, while in dynamic communication, the communicating tasks and possibly the pattern of
communication can change dynamically at runtime.

Local / Global

In local communication, a task will communicate mostly with its neighbours, while in global
communication, each task is in communication with many other tasks.

Synchronous / Asynchronous

The communication is coordinated between producers of data and its consumers in syn-

chronous communication, while in asynchronous communication, producers of data do not
know when the consumers need the data. So, the consumers should explicitly send a request
to the producers.

2.1.3 Agglomeration

In this phase, the cost and performance considerations of the previous steps are taken into
account. For example, in this phase one should decide about the granularity of the tasks
in order to reduce the overhead. Therefore, this step is all about efficient execution of the
tasks on the target platform. Apart from deciding about the number of tasks and hence their
granularity, in this phase, one would decide about the replication of tasks and/or data.

Agglomeration does not necessarily mean that the number of tasks should be limited to the
number of processing units. The aim of this phase is to provide a reasonable balance between
communication cost reduction, preserving flexibility in regards to mapping and scalability,
and software engineering cost reduction.

We use the concept of cutoff in this dissertation in order to agglomerate the tasks. We define
the cutoff value for a program as the maximum number of ready-to-run tasks it can have at
any point of time during its execution.
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2.1.4 Mapping

Mapping to the cores (or processors) is the last step, and can be considered as both assigning
the tasks to cores (where to run), and specifying the order of their execution (when to run).
The cost of communication and utilisation of the processors (cores) should be considered in
this phase. The mapping techniques can be static or dynamic at runtime, e.g. load balancing
techniques. The mapping problem, in general, is NP-complete. For the early-stage multi-
cores it was reasonable to rely on the operating system to decide about the mapping, but with
the rise of manycore processors, it has become more challenging [33].

If finding an efficient agglomeration and mapping strategies for a problem is not straightfor-
ward, then load balancing techniques might be used to determine the best mapping based on
the runtime situations.

If a functional decomposition is applied, at this stage a centralised or a decentralised task

scheduling technique will be used.

We use the above methodology, called PCAM, as a powerful reference, as its outcome can
cover SPMD 1 cases as well. However, not all the steps can be exactly identified for all pro-
grams. For example, for an SPMD program concerns of the mapping phase can be combined
with those of the agglomeration one. Another point to note is that the PCAM design itself is
a parallel process and many of these concerns can be considered simultaneously.

2.2 Parallel Programming Paradigms

A parallel programming paradigm governs the development life cycle of parallel programs,
from design to coding, testing and tuning.

Basically, parallel programming models attempt to target a broad range of parallel prob-
lems, abstract the details of the underlying architectures, and at the same time provide high
performance. For sequential programming, the von Neumann model can be used as an ef-
ficient bridge between software and hardware, as the sequential program can be compiled
efficiently to the underlying hardware [34]. When it comes to parallel programming, how-
ever, two main criteria can be considered for the classification of the paradigms: interaction

and decomposition. It is also important to notice that the following classification applies best
to the CPU-based systems. The categories should be modified/extended if heterogeneous
architectures (composed of CPUs, GPUS, FPGAs) are targeted.

1Single Program, Multiple Data. In SPMD, multiple processing cores execute independent parts of the same
program. This is different from SIMD which needs a vector processor.
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2.2.1 Interaction

Interaction determines the way the processing elements interact with each other. It is also
known as the information exchange. Two common forms of interaction in a parallel system
are shared memory and message passing. A distributed shared memory (DSM) paradigm
has also gained a lot of interest and become popular. An implicit model can be considered
as well.

Shared Memory

With the shared memory model, a common address space is accessible to the running tasks.
Typically, any task might access any data at any time. Therefore, this approach comes with
the cost of controlling the access to the global shared places, such that only one task at a time
can access a shared object. In order to implement proper data access ordering and providing
mutual exclusion, locks, semaphores, or monitors can be used.

Although without the concept of data ownership program development can be facilitated,
managing locality and writing deterministic programs using this paradigm is difficult.

Pthreads and OpenMP APIs are mainly used for multithreaded programming on shared mem-
ory systems.

Message Passing

Each task in the message passing paradigm has its own local data. The interactions between
the tasks are through sending and receiving data packets/messages. These interactions can
be synchronous or asynchronous.

One of the most common practices in the message passing paradigm is to create a fixed
number of identical tasks at the start of the program. This model of execution, known as
SPMD, implies that the same program is executed by each task, but on different data.

MPI is predominantly used for message passing on distributed memory (share nothing) sys-
tems.

Partitioned Global Address Space

The shared memory paradigm typically exploits a shared memory architecture with a global
address space. Message passing is a share nothing approach. It targets systems where each
processing element has its own local memory, and typically no knowledge about the others’
memories.
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In the Partitioned Global Address Space (PGAS) paradigm multiple processes (or threads)
share a part of their address space [35]. PGAS attempts to combine data locality (partition-

ing) and performance features of the message passing approach with ease of programming
and data referencing simplicity in a global address space of the shared memory paradigm.

Unified Parallel C (UPC) [36] and Co-array Fortran (CAF) [37] are examples of SPMD
PGAS programming models.

Implicit Parallelism

In this paradigm, the interaction between tasks (processes) is not visible to the programmer.
This interaction is determined by either compiler or the runtime system. Mostly, Domain
Specific Languages (DSL) implement this paradigm.

2.2.2 Decomposition

We have already discussed decomposition in the Section 2.1.1 of the design of the parallel
programs. It concerns the way the executing processes (or threads) are formulated. A natural
way to express message passing is called Task Parallelism, where the focus is on the pro-
cesses (or threads) of execution. In contrast, Data Parallelism focuses on the data set. The
data can be accessible to all tasks which operate on it, or be divided between local memories.
In this dissertation, we use systems where the data is accessible to all.

2.3 Parallel Programming Models and Standards

The design of manycore processors is strongly driven by demands for greater performance
at reasonable cost. To make effective use of the available parallelism in such systems, the
parallel programming model is of great importance.

There are several parallel programming models, runtime libraries, and APIs that help de-
velopers to move from sequential to parallel programming. The most common ones are
MPI [38] for distributed memory programming, and OpenMP [19] for shared memory pro-
gramming [39]. Generally, most parallel models are either runtime libraries or language
extension.

Our mission is therefore to propose a programming model that can be integrated into exist-
ing codes in imperative languages, while offering native parallelism, similar to functional
languages. Before going into the details of our approach, the Glasgow Parallel Reduction
Machine (GPRM), we would like to briefly review some of the important parallel program-
ming models:
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• Task-based: OpenMP 3+, Cilk Plus and Intel Threading Building Blocks (TBB) from
Intel, Task Parallel Library (TPL) from Microsoft

• Message passing: Message Passing Interface (MPI)

• PGAS: Unified Parallel C (UPC) and Chapel

• Task-based, with support for task dependencies: StarSs - SMPSs - OmpSs

• Dataflow: OpenStream and Swan

• Functional: Glasgow Parallel Haskell (GpH) and Clojure

• Array-based: Single Assignment C (SAC)

• Targeting heterogeneous systems: Open Computing Language (OpenCL)

• Targeting distributed systems: MapReduce

2.3.1 OpenMP

OpenMP is the de-facto standard for shared memory programming, and is based on a set of
compiler directives or pragmas, combined with a programming API to specify parallel re-
gions, data scope, synchronisation, and so on. It also supports runtime configuration through
the use of runtime environment variables, e.g. OMP NUM THREADS to specify the number of
threads at runtime. OpenMP is a portable parallel programming approach and is supported
on C, C++, and Fortran. It has been historically used for loop-level and regular parallelism
through its compiler directives. Since the release of OpenMP 3.0, OpenMP also supports
task parallelism [3]. It is now widely used in both task and data parallel scenarios.

A new trend in task-based parallel programming is to add more information to tasks, such
as information about the data regions they access. Since the runtime system can build the
dependency graph at runtime based on such information, this model –called the dataflow
programming model– relaxes the need for explicit task synchronisation. OpenMP 4.0 has
adopted this model [40] in 2013.

Since OpenMP is a language enhancement, every new construct requires compiler support.
Therefore, its functionality is not as extensive as library-based models, although at the same
time it enjoys broad support from its community.
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2.3.2 Cilk Plus

Cilk Plus which is based on the Cilk++ [41] is an extension to C/C++ to provide both
task and data parallelism. Cilk++ itself evolved from Cilk, but distanced itself from Cilk
in several ways: support for loop, support for C++ language, and offering Cilk hyperob-

jects, constructs designed to solve data race problems. Basically, hyperobjects implement
a mechanism to provide coordinated local views of non-local variables in a multithreaded
program [42]. The most common type of the hyperobject is a reduce, which has similarities
with the reduction clause in OpenMP, parallel reduce template function in TBB,
and the combinable object in Microsoft’s PPL.

Cilk Plus has become popular because of its simplicity. It has Cilk spawn and Cilk sync

keywords to spawn and synchronise the tasks. Cilk for loop is a parallel replacement for
sequential loops in C/C++. Intel Cilk Plus starts a pool of threads in the beginning of the
program which is analogous to the GPRM thread pool.

2.3.3 Intel Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) is an object-oriented C++ template library offered
by Intel for parallel programming [43] [44]. Intel TBB contains several templates for paral-
lel algorithms, such as parallel for and parallel reduce. It also contains useful
parallel data structures, such as concurrent vector and concurrent queue. Other
important features of the Intel TBB are its scalable memory allocator as well as its primitives
for synchronisation and atomic operations.

TBB abstracts the low-level threading details, which is similar to the GPRM design consider-
ation. However, the tasking comes along with an overhead. Conversion of the legacy code to
TBB requires restructuring certain parts of the program to fit the TBB templates. Moreover,
there is a significant overhead associated with the sequential execution of a TBB program,
i.e. with a single thread [39].

A task is the central unit of execution in TBB, which is scheduled by the library’s runtime
engine. One of the advantages of TBB over OpenMP and Cilk Plus is that it does not require
specific compiler support. TBB’s high level of abstraction and the fact that it is based on
runtime libraries make it very similar to GPRM. However, we will see in Chapter 5 how the
models of execution for these two are different.

2.3.4 Task Parallel Library (TPL)

Task Parallel Library (TPL) [20], a task-based parallel library for the .NET framework, is the
Microsoft approach for parallel programming. TPL is mostly based on generics and delegate
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expressions. A delegate expression in C# is the equivalent of a Lambda expression. Along
with a parallel for construct in the form of a Parallel.For method, TPL defines task
and future constructs, where future is a task that returns a result.

As in the standard work stealing technique [45], threads store tasks in their local task queue.
Whenever its local queue becomes empty, the thread steals work from others. However,
the performance of the work stealing algorithms strongly depends on the implementation of
their task queues. Microsoft uses duplicating queues for this purpose, for which the Take

operation 2 can either remove an element, or duplicate it in the queue.

2.3.5 Message Passing Interface (MPI)

Message Passing Interface (MPI) [38] is an API specification designed for high performance
computing. Since MPI provides a distributed memory model for parallel programming, its
main targets have been clusters and multiprocessor machines.

MPI Send and MPI Recv are the two basic routines for sending and receiving messages
using MPI.

The MPI implementations are evolving. For example, in MPI-1 there was support for inter-
connection topology and collective message communication. Messages could contain either
primitive or derived data types in packed or unpacked data content. Dynamic process cre-
ation, one-sided communication, remote memory access, and parallel I/O are some of the
advanced features of MPI-2.

Since there are lots of MPI implementations with emphases on different aspects of high
performance computing, Open MPI [46], an MPI-2 implementation, evolved to combine
these technologies and resources with the main focus on the components concepts.

MPI is portable, and in general, an MPI program can run on both shared memory and dis-
tributed memory systems. However, for performance reasons and due to the distributed
nature of the model, there might exist multiple copies of the global data in a shared memory
machine, resulting in an increased memory requirement. Message buffers are also consid-
ered as the associated overhead of MPI within a shared memory machine [47]. Furthermore,
MPI low level programming makes it error-prone and sometimes difficult to debug [48].

2.3.6 Unified Parallel C (UPC)

As stated earlier, Partitioned Global Address Space (PGAS) languages aim to combine the
best features of the shared memory programming with those of the message passing model.

2Push and Pop operations behave as usual
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In Unified Parallel C (UPC) [36], users can specify the distribution of data in order to utilise
data locality. UPC also enhances programmability by providing a global name space to
access remote data.

While there is an increasing interest in using PGAS languages such as UPC for high perfor-
mance computing (HPC), studies have shown that obtaining an equivalent performance to
that of MPI programs needs a careful utilisation of the language features [49].

2.3.7 Cascade High Productivity Language (Chapel)

Chapel is an object-oriented PGAS language developed by Cray, with the primary goal of
increasing supercomputer productivity. It has support for data, task, and nested parallelism.
Chapel aims to fill the gap between HPC programmers who are mostly focused on C/C++ and
Fortran and the mainstream programmers who have less experience in parallel programming
and using HPC techniques [50].

Using anonymous threads, Chapel provides a high level of abstraction for the programmers.
Generality, programmability, separation of algorithm and implementation, and data abstrac-
tions are considered to be the most important features of Chapel. Locality control is also one
of the Chapel’s features.

2.3.8 StarSs, SMPSs, and OmpSs

The Star Superscalar (StarSs) is another task-based parallel programming model, which
has multiple variations for different domains, including CellSs for the Cell/B.E. processors,
GRIDSs for the Grids, SMPSs for multicore processors, and GPUSs for the GPUs [51] [52]
[53].

StarSs uses pragmas, similar to OpenMP; it also has a source to source translator and pro-
vides a runtime system to schedule the tasks based on their dependencies. Generally, the
runtime systems have two main modules: i) a master thread, which executes the annotated
code, generates tasks, and schedules and ii) a number of worker threads for task execution.
Different variations have different implementations, though, for example, the runtime system
in GPUSs has a master thread, a helper thread and a number of workers. The master thread
creates tasks and inserts them into a Task Dependency Graph, the helper thread finds the best
device for task execution, and the worker threads (one per GPU, but running on the CPU)
perform the data transfers and invoke the tasks on GPUs.

The SMP superscalar (SMPSs) project from the Barcelona Supercomputing Center (BSC)
[52] similarly allows programmers to write sequential dependency-aware programs and the
promise is that the framework is able to exploit the parallelism by means of an automatic
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parallelisation at runtime. The SMPSs program code must be annotated using special pre-
processor directives. The SMPSs runtime builds a data dependency graph where each node
represents an instance of an annotated function and edges between nodes denote data depen-
dencies.

One of the similarities between the SMPSs and the GPRM runtime system is that they both
exploit data locality, based on the information they get from the task dependencies. The
difference is that in SMPSs, the user should annotate all the functions, because the goal is
to parallelise a sequential program, hence all the dependencies should be specified explicitly
(same approach as in OpenMP 4.0). The GPRM design, however, is based on the parallel
execution of all tasks, unless they are surrounded by a GPRM seq. Therefore, expressing
the dependencies is as simple as defining seq blocks around the user-defined tasks in the
GPC code (similar to a functional language, but with a C++ veneer).

OmpSs [54] is based on both StarSs and OpenMP, witch also supports the use of OpenCL or
CUDA kernels. Some of the new features in OpenMP 4.0 have their origin in OmpSs. It has
some differences with OpenMP though, such as having a different execution model, extra
constructs to define data dependencies [40] and specify heterogeneous architectures [55],
and so on.

Referring again to GPRM, OmpSs similarly uses a variation of the thread pool model, hence
the threads exist from the beginning until the end of the program execution (which has re-
cently become a norm in other approaches as well). As a result, using a parallel construct
is deprecated in this model. It also allows for nesting of constructs. The implementation of
OmpSs is based on the Mercurium compiler and the Nanos++ runtime library [56] [48].

2.3.9 OpenStream

The dataflow concept attempts to overcome the limitations of the control-flow model by
reducing the synchronisation overhead and exploring the maximum parallelism; activities
are initiated by the presence of their data [57].

OpenStream extends OpenMP to express dynamic dependant tasks. The dataflow execution
model in OpenStream has shown better performance compared to the “task and barrier”
models [58]. It is important to note that a dataflow approach such as OpenStream requires
explicit task dependencies in order to maintain the correctness of parallel execution, while in
a model such as StarSs, data dependencies are inferred at runtime [57].

The OpenStream compiler finds producer-consumer cases when creating tasks. Without
any polling, the producers will know when the consumers become ready. Once one of the
consumer tasks is ready, its producer adds it to its work stealing core-local ready queue.
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2.3.10 Swan

Task dataflow languages facilitate parallel programming using a scheduler that is aware of
task dependencies. In such languages, arguments of a task can be labelled with a memory ac-
cess mode, such as input, output, or input/output. Therefore, the scheduler can dynamically
track dependencies and change the order of task execution [59].

Swan is a dataflow driven language that extends a Cilk-like work stealing scheduler by al-
lowing task dependencies between tasks spawned from the same parent. In order to track de-
pendencies, a type of hyperobject [42] called “versioned object” and a ticket-based technique
are applied. Versioned objects encapsulate the metadata that is essential for dependency res-
olution and object renaming (privatisation), and the ticketing system is used to sequence the
tasks that operate on the same objects [59].

Swan’s scheduler unifies dependency-aware scheduling and work-first scheduling. The uni-
fied scheduler could retain the efficiency of the Cilk scheduler when tasks are specified with-
out dependencies. Swan can also achieve ease-of-programming without loss of performance
for parallel patterns such as pipeline, as presented in [60].

2.3.11 Glasgow Parallel Haskell

Functional programming languages play an important role in the parallel computing world.
Haskell is a pure functional programming language [61]. Glasgow Parallel Haskell (GpH)
[62] is non-strict parallel dialect of Haskell with the semi-explicit thread-based parallelism.
Glasgow Parallel Haskell provides a sophisticated runtime system for thread management,
and has support for both shared memory (via GHC-SMP) and distributed memory architec-
tures (via GUM [63]).

The first design of GpH dates back to 1990, when only two constructs were added to the
sequential Haskell: par and seq. The same constructs are defined in GPRM, but to be used
in a restricted subset of C++ (GPC code). The current version has support for the evaluation
order, evaluation strategies, and skeletons. The term “non-strict”, instead of lazy, means
that provided that the sub-expressions are needed by the result of the program, they can be
evaluated in parallel. This is another similarity between the the fundamentals of GpH and
GPRM.

2.3.12 Clojure

Functional parallel programming is not as simple as sequential programming. In addition
to what to compute, the programmer should specify how to coordinate the computation.
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Clojure [64] [65] also called a modern Lisp is a general-purpose functional programming
language that can run on the Java Virtual Machine (JVM), Common Language Runtime
(CLR), and JavaScript engines.

Clojure treats functions as first-class objects, meaning that they can be passed to other func-
tions as arguments. It also provides a set of immutable, persistent data structures. In order to
support mutable states, Clojure uses a software transactional memory system.

Clojure’s syntax is based on S-expressions, i.e. lists where the first element represents the
operation and the other elements the operands. This is similar to the functional intermediate
language (GPIR) that the GPC code is compiled to. GPIR itself is further compiled into lists
of bytecodes, which the GPRM virtual machine executes.

2.3.13 Single Assignment C (SAC)

Single Assignment C (SAC) [66] aimed to incorporate arrays with the O(1) access time into
the functional languages. In terms of programming style SAC is similar to the array program-
ming languages, such as APL. The design of SAC is focused on the numerical computations
on multi-dimensional arrays. The key features of SAC beside on focus on arrays, are the
abstract view of arrays and its state-free functional semantics.

Unlike other functional languages, data aggregation in SAC is based on stateless arrays,
rather that trees or lists. In SAC, functions consume arrays as arguments and produce arrays
as results. It also supports a generic programming style allowing the functions to abstract
away the size and number of array dimensions [67]. SAC can support a variety of architec-
tures from the same source code.

2.3.14 OpenCL

OpenCL [68] is an open standard for heterogeneous architectures. One of the main OpenCL’s
objectives is to increase portability across GPUs, multicore processors, and OS software via
its abstract memory and execution model; however its performance is not always portable
across different platforms. It has been suggested to consider the architectural specifics in
the algorithm design, in order to address its performance portability issue. The use of auto-
tuning heuristics could also improve the performance [69].

Although OpenCL is mostly compared against Nvidia’s CUDA [70], we do not aim to cover
discussions about GPUs in this work. The reason why OpenCL is listed here is firstly be-
cause it allows for sharing of workload between CPU and GPU with the same program, and
secondly because the Xeon Phi, the studied system has support for the OpenCL programs.
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2.3.15 MapReduce

MapReduce [71], which is developed by Google, is very popular for processing large data
sets and specially its use on large clusters. The processing consists of defining map and
reduce functions. The map function is responsible for processing a large volume of data sets
and generating intermediate key-value pairs in parallel. The role of the reduce function it
merge all the intermediate values with same intermediate key.

MapReduce can be used to target lots of real world problems, such as the reverse Web-
link graphs or count of URL access in the web context. The reason why we have listed
MapReduce here is that its specification does not assume a shared or distributed memory
model. Although, most of implementations have been on large clusters, there has been still
interest in optimising it for multicores [72].

A significant feature is that the partitioning, communication and message passing, and schedul-
ing across different nodes are all handled by the runtime system, and the user has to only
worry about expressing the MapReduce semantics. This is again similar to our design deci-
sions regarding GPRM.

2.4 Task Scheduling and Load Balancing

Task Scheduling in a parallel system is the arrangement of tasks of a program in time and
space on the available execution resources [73]. Therefore, not only the mapping of all jobs
to the processing cores, but also the order of execution is crucial to get good performance.
An optimal solution to the task scheduling problem cannot be found in polynomial time,
which means it is an NP-hard problem. This motivates researchers to develop heuristics to
find near optimal solutions [73].

Generally speaking, If one considers static and dynamic scheduling [74], in static scheduling,
the arrangement of jobs is done before the execution of the program begins, i.e. at compile
time, while in dynamic scheduling, redistribution of jobs among cores/processors can happen
at runtime. The act of transferring jobs from heavily loaded cores/processors to the lightly
loaded ones is often referred to as Load Balancing.

A dynamic load balancing technique typically consists of the following parts: I) Information
policy, II) Transfer policy and III) Placement policy. Information policy is about the amount
of load information that is available to the decision makers. Transfer policy specifies the
condition for a job transfer. Finally, the Placement policy specifies a core/processor to which
the job should be transferred.

Dynamic load balancing can be divided into two major subcategories [75] [76]: I) Work
Sharing and II) Work Stealing.
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2.4.1 Work Stealing

In a work sharing scheduler, whenever new jobs are created, the scheduler attempts to mi-
grate some of them to other processing elements, in hope of transferring the work to un-
derutilised cores. Conversely, in a work stealing scheme, underutilised processing cores try
to “steal” work from others. Migrations occur more frequently in a work sharing scheme,
because the jobs are always migrated by a work sharing scheduler, while in a work stealing
scheme, migration occurs only when the processing cores have no more work to do.

The idea of work stealing dates back at least as far as the 1980s [77] [78], when researchers
indicated the heuristic advantages of work stealing in terms of communication and space.
Since then, several variations of such a scheme have been considered.

Rudolph et al. [79] have addressed the problem of frequently migrating tasks in a shared
memory parallel architecture, and proposed a distributed load balancing mechanism for such
systems. In their scheme, a processor examines the task queue of another random processor,
and then they exchange tasks until the sizes of the two task queues become equal. They
also considered a multiprogramming situations, where they claimed that if the total number
of tasks is much larger than the number of processors, since the tasks of the same program
are initially places on the same queue, the load balancing mechanism is able to group them
together.

Blumofe and Lisiecki [80] presented an adaptive runtime system for parallel execution of
functional Cilk programs on a Network Of Workstations (NOWs). Each Cilk program in such
an adaptive environment was able to utilise a changing set of otherwise-idle workstations,
dynamically.

2.4.2 Scheduling on Modern Processors

In more recent years, studies have focused on the concept of work/task scheduling on multi-
core and manycore architectures.

StarPU [81] is a well-known runtime system that targets heterogeneous multicore architec-
tures. It provides a unified view of all computational resources and is capable of transferring
input data to accelerators transparently and before tasks start. Moreover, it provides a uni-
fied task scheduling scheme over heterogeneous architectures using auto-tuned performance
models. It also provides power-based scheduling, static scheduling, or even allows for defin-
ing a new scheduling policy.

Sasaki et al. [82] developed a sophisticated scheduling scheme to co-schedule multiprogram
workloads, which predicts the applications’ scalability dynamically, and allocates the op-
timal number of cores to applications in order to maximise the system utilisation. They
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have proposed a technique called Core Donation that maximises the CPU utilisation while
keeping the scalability of the programs into account.

In [83], two families of the schedulers are discussed: Breadth-First schedulers and Work-
First schedulers. The main focus is on how threads execute the tasks. In 2008, [84] suggested
that binding the threads to physical processors, also referred to as thread affinity be a part of
the OpenMP standard. It has been shown how a simple Round-Robin mapping scheme can
improve the performance. Newer versions of OpenMP provide this feature to the users.

The OpenMP task directives can be used to define units of independent work as tasks. How-
ever, the scheduling decisions are deferred to the runtime system. Olivier et al. [85] have
proposed a hierarchical scheduling strategy for efficient task scheduling on modern multi-
socket multicore shared memory systems. They have suggested that complex memory hier-
archy on the modern systems, including NUMA characteristics and shared caches need to be
considered carefully.

Nanos v4 [86] is an OpenMP runtime library that provides some mechanisms to allow users
to choose between different task scheduling policies.

Locality awareness is another important aspect of task scheduling on manycore processors.
Yoo in [87] discussed that the complexity of cache hierarchies results in high latency and en-
ergy consumption as well as non-uniformity in memory accesses. Multi-level private and/or
shared caches in hardware can be utilised with the help of locality-aware scheduling mech-
anisms. They suggest that taking the underlying cache architecture into consideration is
crucial for designing an efficient runtime scheduler. Using high-level information they have
shown that the programs can run faster at a lower energy consumption. They have also re-
lated stealing mechanisms and load balancing to locality-awareness and have shown how to
make a stealing mechanism locality-aware. This can be achieved by preserving the original
scheduling scheme and migrating tasks for load balancing.

In this section, we started the discussion about scheduling and reviewed some of the related
work in this area. Additionally, a detailed discussion on task scheduling and load balancing
in our GPRM framework can be found in Section 5.5.

2.5 Related Work

2.5.1 Architectural Aspects

We review some of the research works in the field of parallel computing and high perfor-
mance computing (HPC) that utilise the Tilera TILEPro64 or the Intel Xeon Phi. We also
include a few interesting works on the architectural aspects of shared memory parallel plat-
forms.
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Data locality in Non-Uniform Cache Architecture (NUCA) designs is discussed in [88]. The
authors propose an on-line prediction strategy which decides whether to perform a remote
access (as in traditional NUCA designs) or to migrate a thread at the instruction level.

Authors of [89] have presented the results of implementing the UPC runtime system on the
Tile64 processor, an older version of the TILEPro64. For that purpose, they have used the
Berkeley UPC to C translator [90] and the Tilera C compiler. The runtime system is built
on top of the Global Address Space Networking (GASNet) communication infrastructure
[91], which itself is implemented using either a pthreads based channel or an MPI based
one. Amongst the highlighted opportunities for optimisations on manycore systems, such
as the efficient use of the iMesh interconnects, we would like to focus on placement: the
optimisation of placement strategies for efficient utilisation of the resources. We will show
in Chapter 5 that our strategy for GPRM is to resolve the placement issue at the task level
rather than at the thread level.

In [92], the NUCA characterisation of the TILEPro64 is explored in details. Based on this
characterisation, a home cache aware task scheduling is developed to distribute task data on
home caches and minimise home cache access penalties.

Similar work to ours on a sorting algorithm but with different methods and purposes is per-
formed on the TILEPro64 [93]. They have targeted throughput and power efficiency of the
radix sort algorithm employing fine-grained control and various optimisation techniques of-
fered by the Tilera Multicore Components (TMC) API.

Podobas et al. [94] have performed a quantitative evaluation of some well-known task-based
parallel models on two different platforms, including the TILEPro64 (700MHz version).
Although their focus was more on the scalability of the models when the numbers of threads
changes, they have highlighted the importance of the cutoff values in multiple scenarios.
Their results emphasise the need to concentrate more on load balancing techniques as well
as the overhead of runtime systems.

Mirsoleimani et al. [95] have considered the scalability of the Monte Carlo Tree Search
(MCTS) algorithm, as an unbalanced and irregular workload on the Xeon Phi. They have
found that a thread pool with a work-sharing FIFO provides better performance compared
to work stealing models such as TBB and Cilk Plus. The key element of their approach is
controlling the grain size (cutoff) through a technique called Grain Size Controlled Parallel
MCTS (GSCPM).

Saule et al. [96] have used some micro-benchmarks to measure the Xeon Phi’s peak perfor-
mance. They have evaluated the performance of a number of sparse matrix multiplication
kernels on this architecture, and concluded that the memory latency (and not the bandwidth)
is the bottleneck for such applications. However, they have presented that in most cases, the
achieved performance for sparse kernels on the Xeon Phi is better than that on the studied
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NVIDIA GPUs and Intel Xeon processors.

2.5.2 Programming and Performance Aspects

It has been investigated that task distribution and task management overheads are the main
bottlenecks in modern runtime systems [97]. Authors in [98] and [99] focused on the effi-
ciency of the runtime systems for fine-grained task scheduling as well as task creation.

The trade-off between task granularity and the number of tasks in OpenMP is covered in
[100]. The authors suggest that granularity of tasks should be increased as the number of
consumer threads increases. This is to ensure that all threads are kept busy doing some useful
work. They have also explored that the number of tasks has an effect on the load balance,
which means programmers have to trade-off between the number of tasks and granularity in
order to get a fair load balance, hence a good performance.

It has been established in [100–103] that OpenMP performs poorly for large numbers of fine-
grained tasks. This indicates that the programmer is responsible to figure out how a problem
with specific input parameters would fit a particular platform. As a common solution, pro-
grammers use a cutoff value when creating OpenMP tasks to avoid composing fine-grained
tasks. firstly, for OpenMP programs both a proper cutoff and the right number of threads are
key to good performance. Secondly, finding a proper cutoff value is not straightforward, and
sometimes needs a comprehensive analysis of the program. It often depends on the appli-
cation structure and the input data set [83]. Leaving the decision to the runtime system has
been proposed as an alternative. The idea is to aggregate tasks by not creating some of the
user specified tasks and instead executing them serially. Adaptive Task Cutoff (ATC) [101]
implemented in the Nanos [86] runtime system –a research OpenMP runtime system– is
a scheme to modify the cutoff dynamically based on profiling data collected early in the
program’s execution. This, however, cannot be done without any overhead at all, plus the
scheme needs to be extended to find all interesting situations for cutoff.

Muddukrishna et al. [104] provided a comprehensive study of task-based OpenMP programs
included in the Barcelona OpenMP Tasks Suite (BOTS) benchmark suite. Their concentra-
tion has been on performance profiling of tasks in OpenMP programs, which was missing in
the well-known threads-based profilers such as the Intel VTune Amplifier and Vampir [105].
The most relevant part of their work is the use of techniques that help choosing an appro-
priate cutoff to increase performance. Similar to our previous publication [28], this work
significantly contributes to directing programmers’ attention to the importance of tasks.

XKaapi [106] is a data-flow programming model, which is compared with Intel OpenMP
and Cilk Plus on the Xeon Phi as well as a conventional Intel Xeon platform [98]. The
authors compared the overhead of the runtime systems for fine-grained tasks, and similar
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to our previous work [29] and others mentioned above concluded that the OpenMP runtime
system performs poorly if a very large number of small tasks are created. Then main focus
of their work, similar to that of Wool-A –a work stealing library– [99] was to minimise the
overhead of task creation and scheduling.

Jin et al. [47] have proposed a hybrid approach for programming high performance com-
puting systems by combining OpenMP and MPI. The motivation behind this work has to
be found in the hybrid nature of the petascale and exascale systems themselves, where they
consist of distributed memory clusters [107] of shared memory systems. They have studied
the multi-zone NAS Parallel Benchmarks (NPB-MZ) [108] [109], and two full applications,
OVERFLOW [110], which is a general-purpose Navier-Stokes Computational Fluid Dy-
namics (CFD) solver, and AKIE [111], which is turbine machinery application used to study
three-dimensional flow instability around rotor blades. They have also introduced a method
to provide hints (data locality pragmas) to the OpenMP compiler and runtime system in order
to exploit data locality on complex systems with hierarchical memory subsystems.

Researchers in [112] [113] have shown success in writing SPMD programs using OpenMP
for solving large scale real world problems. The idea is to use the MPI programming style
with the use of thread ids and explicit data management. However, such techniques are
against the benefits of using OpenMP in the first place, such as high level abstraction and
ease of programming. In [112], the authors have demonstrated a high performance CFD flow
solver by adapting distributed programming techniques, such as explicit domain decomposi-
tion and memory management to a shared memory environment.

Authors of [113] have compared the performance of MPI with three OpenMP programming
styles for a subset of the NAS benchmarks on two shared memory machines. In 2003, task-
ing was not available in OpenMP, therefore, their three approaches were naive, improved,
and optimised versions of the loop-level parallelism. They have also presented a path to
translate from MPI to an SMPD-style programming with OpenMP. They argue that it is not
always obvious that the performance of the loop-level OpenMP programs are better than
the MPI implementations on shared memory platforms, especially for the naive OpenMP
implementations which lack parallel loop-nest optimisations [114], such as blocking.

Krpic et al. [115] compared the performance per watt ratio –known as the Green HPC re-
search [116]– of OpenMP versus MPI for a common HPC benchmark, matrix multiplication,
on shared memory multicore platforms. They discuss that recently, the power consumption
has been a major issue in high performance computing, while many programming techniques
are oblivious to it. They concluded the performance and more importantly the performance
per watt of the MPI approach is better than OpenMP on three different platforms. However,
the maximum number of processes/threads used for the comparisons has never been more
than 8.
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Saule and Catalyurek [117] have compared OpenMP, Cilk Plus, and TBB on the Intel Xeon
Phi. They have focused on the scalability of the approaches for single-program graph algo-
rithms. We have added GPRM to the comparison and have also targeted multiprogramming
situations.

Callisto [118] is a user-mode shared library for co-scheduling multiple parallel runtime sys-
tems. Although there is no need to modify the high-level applications or the OS, it has to
be linked with the Callisto-enabled versions of the runtime systems. The current version
does not support OpenMP tasks. Furthermore, the authors have used pairs of benchmarks
on a 2-socket machine. It needs more investigation to find out whether Callisto can be still
effective if more benchmarks are run together, or if one moves from a socket-based machine
to a modern architecture such as MIC.

Emani et al. [119] used predictive modelling techniques for OpenMP programs to determine
an optimal mapping of a program in the presence of external workload. Dynamic runtime in-
formation is combined with the compile-time knowledge of the program to decide about the
best adaptive mapping of programs to execution resources. Their purpose is to maximise the
performance of a target program with minimum impact of the performance of the workloads.

Varisteas et al. [120] have proposed an adaptive space-sharing scheduler for the Barrelfish
operating system to overcome the resource contention between multiple applications running
simultaneously in a multiprogrammed system.

Bhadauria and McKee [121] have developed real-time scheduling techniques to improve per-
formance and energy efficiency in multiprogramming environments. Their schedulers are
applied to co-schedule PARSEC programs that complement each other regarding shared re-
source requirements. These resource-aware co-schedulers, known as the HOLISYN (which
implement both space- and time-sharing), were able to reduce contention and perform better
than other co-schedulers on an 8-core CMP.

In our previous work [23], a thread mapping method based on the system’s load information
is developed for OpenMP programs. Performance of multiprogram workloads in Linux can
be improved by sharing the load information and using it for thread placement. However, for
this method to be effective, the optimal number of threads for each single program has to be
known to the programmer. Most of time, though, the programs are run with the maximum
number of threads, with the expectation of achieving the desired performance, and that is the
case we target in this dissertation.
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2.6 Summary

In this chapter, we focused on a design methodology for parallel programming as the basis of
our work. Foster [32] divides a parallel programming design methodology into four different
phases (PCAM): Partitioning, Communication, Agglomeration, and Mapping, which can be
considered concurrently. Partitioning could be data-centric, or computation-centric where
tasks become important. The second phase is to determine the type of communication be-
tween the generated tasks and how to coordinate their execution. Agglomeration is the main
focus of this work. In this phase, cost and performance considerations of the previous steps
are taken into account. For example, in this phase one should decide about the granularity of
the tasks in order to reduce the overhead. Therefore, this step is all about efficient execution
of the tasks on the target platform. Mapping to the cores (or processors) is the last step,
and can be considered as both assigning the tasks to cores (where to run) and specifying the
order of their execution (when to run). The mapping techniques can be static or dynamic at
runtime, e.g. load balancing techniques.

We then reviewed the parallel programming paradigms and some of the existing parallel
programming models and techniques. Different approaches focus on different issues, such
as adding support for heterogeneous systems, simplifying writing of parallel programs, or
facilitating parallelisation of complex patterns. It is important to understand the latest trends
and techniques, and use them in the design of new models.

Starting from task scheduling techniques, we reviewed some of the related work. We dis-
cussed the importance of task-based parallel programming and considered various studies on
performance optimisation, both of which will be the focus of the next chapters.
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Chapter 3

Hardware Platforms

Parallel architectures extend the concept of conventional computing architecture with a com-
munication architecture. In other words, a parallel computer is composed of processing ele-
ments that cooperate and communicate in order to solve a problem fast [122].

Contemporary applications have increased the trend of utilising a large number of processing
cores in order to meet their performance goals. Most of these applications need single-chip
implementations to satisfy their size and power consumption requirements. Multicore and
manycore processors have emerged as promising architectures to benefit from increasing
transistor numbers.

The main purpose of this chapter is to give a solid overview of parallel architectures used
in this study. Our main targets are single-chip systems. With the growing IC technology,
the delay of wires becomes significant in comparison with the gate delays, and thus the
cost of communication is much more expensive than the cost of computation. Nonetheless,
compared to off-chip, on-chip communication is considerably cheaper [12]. The cost consid-
eration as well as size and power consumption requirements are the driving forces towards
single-chip implementations.

In this chapter, we first review a number of fundamental topics regarding the parallel ar-
chitectures. Afterwards, we provide a brief introduction to some parallel machines without
covering them in exhaustive detail, and later, we introduce the Tilera TILEPro64 and the
Intel Xeon Phi.

3.1 Flynn’s Taxonomy

A coarse way to classify parallel systems is by looking at their control flow and data man-
agement. Flynn’s taxonomy [123] classifies parallel computers based on the number of their
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parallel instruction(control) and data streams 1 into four categories:

1. Single-Instruction stream, Single-Data stream (SISD): In this architecture there is
one processing element (PE) with access to a single program and data storage. It means
in each step, an instruction and its corresponding data are loaded and the instruction is
executed. The result is stored back in the data storage. It is the conventional sequential
Von Neumann model, known as the scalar processor.

2. Multiple-Instruction stream, Single-Data stream (MISD): This model has multiple
PEs, each of which with its own private program memory, but there is only one access
to a single global data memory. In each step, each PE loads an instruction from its
program memory and the same data from the global data memory. The instructions
will be executed in parallel using the same data as operand.

3. Single-Instruction stream, Multiple-Data stream (SIMD): There is a control pro-
cessor which fetches and dispatches the instructions. In each step, each PE gets the
same instruction form the control processor and loads separate data from (shared or
distributed) data memory through a private access. This model includes most array
processors and is perfect for applications that have significant amount of data paral-
lelism.

4. Multiple-Instruction stream, Multiple-Data stream (MIMD): Each PE has a sepa-
rate instruction and data access to a (shared or distributed) program and data memory.
In every step, each PE performs separate instruction on separate data. Unlike SIMD
that PEs work synchronously with each other, here they operate asynchronously. Mul-
ticore processors are examples of MIMD computers. Although, they might have SIMD
components as well, e.g. the Intel Xeon Phi.

(a) Single Program, Multiple Data (SPMD): With the advent of multiprocessing
processors, a multiprogramming context has been added to Flynn’s taxonomy.
From the programming perspective, MIMD can be further divided into two sub-
categories: SPMD and MPMD2. In SPMD [125], multiple processors execute the
same program on different data (at independent points) at the same time. While
SIMD requires vector processing units, SPMD tasks can run on general-purpose
processors.

(b) Multiple Program, Multiple Data (MPMD): In this variant of the original
Flynn’s taxonomy, multiple processors simultaneously run multiple independent
programs. SPMD is suited for the problems that lend themselves to task (func-
tional) decomposition, rather than domain decomposition [124].

1Flynn defined stream as a sequence of items (instruction or data) as executed or operated on by a processor
2SPMD and MPMD are sometimes classified as parallel programming models [124]
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There is another important class of parallel machines, which is often referred to as SIMT
(Single Instruction, Multiple Threads) by GPU vendors [126]. In contrast to SIMD, SIMT
applies one instruction to multiple threads, not just multiple data lanes [127]. Although,
GPUs were initially designed and used to handle graphics, they are currently a major part
of scientific computations. As the number of CPU cores are growing, GPUs and many-
core CPUs are converging more. Intel Xeon Phi for example, has powerful Vector Process-
ing Units and enables high peak performance for floating point operations. On the other
side, Nvidia’s Kepler GK110 introduced dynamic parallelism, where GPUs can generate
new work for themselves [128].

The variety of parallel programming models that manycore processors support is one of their
advantages over GPUs. Our focus remains on the manycore processors for the rest of this
dissertation.

3.2 Memory Organisation

In terms of memory organisation, MIMD, which is the preferred model for general-purpose
computing, can be considered from two aspects: the physical memory and the programmer’s
view of the memory.

From the physical perspective, computers with shared memory are often called multiproces-
sors, and computers with distributed memory are called multicomputers. A hybrid model
can be distinguished as well, which is a virtually shared memory on top of a physically
distributed memory.

From the programmer’s view, memory organisation can be classified into shared address
space and distributed address space. It is possible to provide the programmer with a shared
address space, even when the physical memory is distributed.

3.2.1 Distributed Memory

Distributed memory machines consist of a number of processing elements (nodes) and an
interconnection network which is capable of transferring data between these nodes. Each
node has its own processor, local memory, and sometimes I/O elements. Since data in local
memory is private, if a node needs data from the local memory of other nodes, message

passing has to be performed through the interconnection network.
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3.2.2 Shared Memory

Communication in shared memory machines is performed by writing to and reading from
shared variables. The global memory usually consists of physically separate modules pro-
viding a global address space accessible for all processors. An important issue is to avoid
concurrent access to the shared variable, as it would result in race conditions. Ensuring that
every processor has fast access to the shared memory is not always easy, and as the number
of processors grows in a shared memory machine, it becomes harder. Symmetric Multipro-
cessors (SMPs) are special form of shared memory machines. In SMPs, access time from
any processor to any memory location is uniform [129]. SMPs usually have small number
of processors connected via standard bus which also provides access to the global memory.
SMP processors mostly come with no private memory, instead, each processor has a private
cache subsystem. Since the central bus provides a constant bandwidth shared by all proces-
sors, this architecture is not really scalable. As the number of processing elements grows,
more access collisions would happen and cause longer effective memory access time. It
can be reduced by the use of caches and proper cache coherence protocols. Cache coherent
means if one processor updates a location in global memory, all the other processors know
about the update. In SMPs, this is accomplished at hardware level. Parallel programs in
SMPs are usually associated with threads, which can share data with others via the common
address space. Because of the uniform memory latency for all processors, bus-based SMP
machines are a class of Uniform Memory Access (UMA) machines.

In some architecture, the access time in not uniform, i.e. the access time to data inside the
local memory of the processor is faster than the access time to data in a remote memory.
These machines are called Non-Uniform Memory Access (NUMA).

3.2.3 Memory Access Time Reduction

Important improvements in performance have come from the processor cycle time reduc-
tion. Also, the capacity of DRAM chips (main memory) has been increased. But memory
access time has not been improved like processor cycle time. This growing gap, highlights
the importance of a memory organisation with suitable access time in order to get better
performance.

Local Caches

Caches are fast and small memory between processors and main memory, used to eliminate
expensive main memory access for frequently accessed data. Since it is costly to have large
fast memory, several levels of caches are implemented, starting from fast and small level 1
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(L1) caches over multiple levels (L2, L3) to slow but large main memory. In SMP computers,
shared data may be replicated in different caches in order to reduce corresponding access
latencies, but any read access should return the last updated value of the data. Thus, a
coherent view becomes significantly important, and a suitable cache coherence protocol must
be used to resolve the cache coherence problem [129] [130] 3.

3.3 Design Variants of Multicore Machines

From a high-level perspective, three types of architectures as well as some hybrid ones can
be distinguished [11]. These are hierarchical design, pipelined design, and network-based
design. In a hierarchical design, some cores share the same caches. Caches are in a tree
structure with larger ones near the root. The root also has the connection to external memory.
The hierarchical design is typically used for SMP systems. Intel Quad-Core Xeon and Quad-
Core AMD Opteron are also examples of standard desktop processors used a hierarchical
design.

In the pipelined design, like conventional pipelines, there are some stages. The arriving data
is processed successively by different cores in pipelined fashion. Since each core executes
specific processing stages on each part of data, this architecture is called pipelined. Network
processors and graphic processors have stages to be applied on data stream, makes them
ideal to apply this architecture. Xelerator X11 network processor is an example of pipelined
architecture with 800 processing cores arranged in a linear pipeline.

Probably the most interesting design of multicore machines is the network-based design. In
this approach, processing cores and their local caches (or memories) are connected via an
interconnection network. Examples of these multicore processors are Tilera Tile Proces-
sors [131] and Intel Teraflop processor [132]. The Teraflop architecture realises an 80-core
prototype with a 2D mesh interconnection network. It is intended to reach more than 1Ter-
aflops execution rate in less than 100W power consumption. TILEPro64 4 also uses a 2D
mesh of tiles, but has 64 processing tiles. It has six independent networks to isolate the traffic
and has 2 modes of communication which will be discussed in the next section.

Providing an efficient interconnection network is one of the most important challenges for
integrating more and more processing cores into a single die [133]. Is has to be scalable
and capable to provide enough bandwidth for communication between cores. Generally, the
performance and power efficiency of on-chip systems is constrained by their interconnec-
tion [12]. Since synchronisation over large distances is unmanageable, traditional bus-based

3The problem of providing a coherent view of the memory system
4Although there are some other products from Tilera corporation referred to as Tile Processors, for the rest

of this document, the terms TILEPro64 and Tile Processor are used interchangeably
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interconnect causes a bottleneck. Also, fixed point-to-point interconnect cannot be the solu-
tion, because as the number of cores becomes bigger, the number of links needed increases
exponentially. Network-on-Chip (NoC) has emerged as a promising solution to overcome
communication challenges between IP (Intellectual Property) cores [14]. It is based on the
GALS 5 concept which means the chip is made up of locally synchronous islands that com-
municate asynchronously. In contrast to fixed point-to-point interconnection, the connectiv-
ity in NoC solution is flexible.

Recently, Tilera corporation is acquired by EZchip. The new multi/manycore processor prod-
uct for EZchip is called TILE-Mx which provides up to 100 ARM Cortex-A53 64-bit cores.
As most of the researchers agree [134] that power will be limiting the future of High Per-
formance Computing (HPC), integrating the most power-efficient ARMv8 processors into a
single chip could be of interest to many.

In this chapter, we describe two modern manycore architectures used for our experiments.
Some important features of both platforms will be covered. At the end of this chapter, we
compare the two manycores using GPRM programming models. However, the focus is not
yet on the implementation details of GPRM program itself, but on the difference between
the two platforms.

3.4 Tilera TILEPro64

The Tilera TILEPro64 Tile Processor [1] is composed of 64 tiles, interconnected via multi-
ple 8×8 mesh networks (see Figure 3.1). Each tile contains a 32-bit integer processor with a
three-way VLIW architecture6, which allows to execute up to 3 operations per cycle. It pro-
vides distributed cache-coherent shared memory by default. It has four memory controllers
and 16GB of DDR memory, but in order to use the global address space shared among all
tiles, addressing is limited to 32-bit, i.e. 4GB. It has per-core L1 data caches of 8KB, L1
instruction caches of 16KB, and L2 caches of 64KB. The union of all L2 caches across the
chip comprises the distributed L3 cache. The operating frequency of the cores is 866MHz.
Out of 64 tiles, one is used for the PCI communication, and the other 63 tiles are available.
TILEPro64 has neither a Vector Processing Unit (VPU), nor a Floating Point Unit (FPU).

The asymmetry in the physical distances between cores results in a design called Non-
Uniform Cache Architecture (NUCA), in which a home core (tile) is associated with each
memory address, and the access latency to the home core depends on the physical on-die
location of the requesting core [135] [88].

5Globally Asynchronous Locally Synchronous
6In a VLIW architecture, multiple instructions could be executed at the same time (ILP).
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Figure 3.1: Tilera TILEPro64 Architecture (picture borrowed from [1])

The TILEPro64 targets a wide range of compute-intensive applications, such as digital mul-
timedia, wireless infrastructure and advanced networking.

3.4.1 TILEPro64 Architecture

TILEPro64 [131] defines a globally shared, flat 36-bit physical address space and a 32-bit
virtual address space. The global address space allows for instructions and data sharing be-
tween processes and threads. There is a large difference between the DRAM access time and
the speed of the cores, which makes the cache organisation a crucial part of this architecture.
Tilera’s cache organisation –called Dynamic Distributed Cache (DDC)– is flexible and soft-
ware configurable. Its aim is to provide a hardware-managed, cache-coherent approach to
shared memory. DDC allows a page of the shared memory to be homed on a single tile or
hashed across a set of tiles. Other tiles can cache this page remotely.

Each physical memory address in the TILEPro64 is associated with a home tile. Cache
coherent view of the memory which is key in shared memory programming models is served
through the home tile. A hardware coherency mechanism is also used to guarantee cache
coherence among the tiles. Therefore, it is possible to cache read-write regions of memory
in the cache of the tile running the code (local cache). The copy of each cache line can be
requested from its home tile. If another tile writes new data to the cache line, the home tile
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is responsible to invalidate all copies, and other tiles have to refetch the newer version. This
behaviour makes DDC a dynamic cache organisation. Caching the data by the home tile

itself is called L3 cache, because the home tile can be thought of as a higher level beyond
the L2 cache. In other words, this concept can be thought of as having a virtual L3 cache on
top of the actual local L2 caches. If an L2 miss occurs, the request will be first sent to home

tile rather than directly to the DDR memory. Thus, the distributed L3 cache comprises the
union of all L2 caches.

Another feature of DDC, called hash for home, is the capability of distributing the home

cache of memory regions between different tiles at a cache-line granularity. As a result, the
potential for hot spots is reduced, and the request traffic will be distributed across the whole
chip.

The homing mechanism is basically intended to provide cache coherence, though it can also
improve the performance by reducing the read instruction latencies. There are three different
classes of homing in the Tile Processor system: I) Local homing, II) Remote homing, III)
Hash for home. The local homing strategy homes the entire memory page on the same tile
that is accessing the memory. Therefore, on an L2 miss, a request is sent directly to DDR
memory. With the remote homing, a different tile than the one accessing the memory is used
to home the entire memory page. Therefore, on an L2 miss, a request is first sent to the
remote home tile’s cache (which can be called the L3 cache). The hash for home strategy
as described above is a new feature of DDC, which is very similar to remote homing. The
only difference is that instead of mapping an entire memory page to a single home tile, it is
hashed across different tiles at a cache-line granularity.

The Tilera’s version of Symmetric Multiprocessing (SMP) Linux, called Tile Linux, which
is based on the standard open-source Linux version 2.6.26, by default sets the home cache
for a given page to be hash for home. This can be changed by the ucache hash boot option.

3.4.2 TILEPro64 Performance Considerations

The performance of parallel applications on manycores cannot be estimated only based on
their time complexity. The memory architecture plays an important role. Moreover, as the
number of cores grows, memory contention becomes increasingly significant. We have
shown in [22] that how the performance of a regular array-based computation can be im-
proved by the use of the localisation technique. The idea is to make sure that the sequential
memory accesses are cached in the local cache and accessed by the local thread (the thread
tied to the core). The main reason behind our study was to demonstrate that the hash for

home policy at the cache line granularity is too fine-grained for parallel array computations
with lots of sequential memory accesses. The reason is that with this policy, the sequen-
tial parts of an array are homed on different tiles, and have different access latencies. A
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comprehensive discussion is provided in [93].

Although, our localisation technique can be effectively implemented by GPRM, we leave it
as a future work, and for the purposes of this work, we use the default hashing policy of the
TILEPro64. Also in general, hash for home is the preferred option for most of the parallel
applications running on the Tilera chip, as it aims to reduce the potential for bottlenecks.

In [22], we have also investigated the effect of other possible options provided by the Tilera
hypervisor. The hypervisor configuration file (.hvc) used for this study is as follows [136]:

1 o p t i o n s s t r i p e m e m o r y = d e f a u l t
2 o p t i o n s d e f a u l t s h a r e d =0 ,0
3 d e v i c e srom / 0 srom
4 d e v i c e p c i e / 0 p c i e
5 d e d i c a t e d 7 ,7
6 c l i e n t vml inux
7 a r g s $XARGS

Listing 3.1: Hypervisor Configuration File for the TILEPro64

Memory pages can be allocated either through a specific memory controller or in striping
mode, where each page is striped across all memory controllers in 8KB chunks. With mem-
ory striping, Linux will boot up believing it has a single memory controller that is four times
larger than any of the actual physical memory controllers. The effect of memory striping
is considerable when caching is turned off across the system. However, when caching is
enabled, it is mostly transparent to the user.

The default memory striping policy is used, and the last core in the mesh (7,7) is dedicated
to the PCI communication between the device and host. Therefore, 63 cores can be used to
run the user code.

The most important conclusion of our work was that the native GNU/Linux thread schedul-
ing is not as efficient as expected. By static mapping of threads to cores, high-cost thread
migrations do not occur multiple times during the execution time. The result of this work
helped us consider a static thread to core mapping inside our framework, and instead focus
on the higher level scheduling of tasks on threads.

3.5 Intel Xeon Phi

The Intel Xeon Phi coprocessor 5110P used in this study is an SMP (Symmetric Multiproces-
sor) on-a-chip which is connected to a host Xeon processor via a PCI Express bus interface.
The Intel Many Integrated Core (MIC) architecture used by the Intel Xeon Phi coprocessors
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Figure 3.2: Intel Xeon Phi Architecture (picture borrowed from [2])

gives developers the advantage of using standard, existing programming tools and meth-
ods. Our Xeon Phi comprises 60 cores (240 logical cores) connected by a bidirectional ring
interconnect (see Figure 3.2).

If an application is scalable on the Xeon processors, can make use of vector units, and is able
to utilise more memory bandwidth than available with the Xeon processors, then it could be
a potential target for the Xeon Phi [2].

3.5.1 Xeon Phi Architecture

The Xeon Phi coprocessor provides four hardware threads sharing the same physical core
and its cache subsystem in order to hide the latency inherent in in-order execution. As a
result, the use of at least two threads per core is almost always beneficial [2]. The Xeon Phi
has eight memory controllers supporting 2 GDDR5 memory channels each. The clock speed
of the cores is 1.053GHz. Each core has an associated 512KB L2 cache. Data and instruction
L1 caches of 32KB are also integrated on each core. Another important feature of the Xeon
Phi is that each core includes a SIMD 512-bit wide VPU (Vector Processing Unit). The VPU
can be used to process 16 single-precision or 8 double-precision elements per clock cycle.

3.5.2 Xeon Phi Performance Considerations

Providing four hardware threads (logical cores) sharing the same physical core is known
as multithreading in the Xeon Phi. We use the term multithreading [2] here to describe
the difference with hyper-threading on the Xeon processors. Throughout this dissertation,
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however, multithreading refers to software thread parallelism.

The use of multithreading as a part of the Xeon Phi architecture is crucial to hide latencies of
its in-order microarchitecture. Hyper-threading on the Xeon processors, on the other hand,
is designed to feed a dynamic execution engine, and depending on the application can be
fully ignored without having negative impact of performance. The hardware multithreading
on the Xeon Phi should not be ignored similarly.

Generally, the floating-points and memory capabilities the hardware threads offer cannot be
achieved with a single thread per physical core. On the other hand, it is also important to note
that saturation could happen with even two hardware threads, and as we will see in the fol-
lowing chapters, different applications implemented by different parallelisation approaches
experience varying levels of saturation.

It is beneficial to parametrise the number of cores as well as the number of hardware threads
per core for applications targeting future manycore architectures.

3.6 Summary

This chapter covered a background on parallel architectures. We started the discussion with
the Flynn’s taxonomy and continued with a section on memory organisation. We then shortly
reviewed a number of multicore machines. We also discussed the architecture of two many-
core systems, the TILEPro64 and the Intel Xeon Phi in more detail.

With the increasing number of cores, new programming challenges arise. Understanding the
core architectural concepts of a given parallel platform is key to writing correct and efficient
parallel programs, regardless of the programming model used. Improving the data locality
in manycore architectures is an important factor for achieving high performance. Although
there is a lot of fine-grained architecture-specific control that every new platform offer to
its users, but in general, to benefit from these features, existing codes have to be changed
significantly. Considering such details (e.g. the effect of distributed caches) in the design of
runtime systems could help the programmers notably.

It is also important to bear in mind that task and thread scheduling decisions can impose a
significant overhead as the number of cores grows. The trade-off is thus to maximise the
performance and data locality, while keeping the runtime overhead low. This will be the
basis of our discussions in the next chapters.
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Chapter 4

Task-based Parallel Models for
Shared Memory Programming

In a general-purpose system, applications residing in the system compete for shared re-
sources. Thread and task scheduling in such a multithreaded multiprogramming environment
is a significant challenge.

After an introduction to parallel programming models and the concept of task parallelism in
the background chapter (Ch. 2), in this chapter we would like to investigate performance
characteristics of three popular task-based parallel programming models on a modern many-
core system, the Intel Xeon Phi. The main three task-based models that are supported by
icpc (Intel’s C/C++ Compiler) are Intel OpenMP, Intel Cilk Plus, and Intel TBB.

We have used three benchmarks with different features which exercise different aspects of
the system performance. Moreover, a multiprogramming scenario is used to compare the
behaviours of these models when all three applications reside in the system.

Furthermore, at the end of this chapter we continue the discussion about multiprogramming
using examples from our research work on OpenMP applications running on the TILEPro64.

In summary, this chapters reviews our work on other approaches and presents the lessons
learnt that helped us design, tune, and improve the GPRM runtime system from its beginning
to the present.

4.1 Three Popular Task-based Parallel Models

First, the three chosen models for shared memory programming on the Intel Xeon Phi are
described in more detail.
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4.1.1 OpenMP

We have introduced OpenMP as the de-facto standard for shared memory programming.
OpenMP provides a set of compiler directives, tools, and environment variables which can
simplify parallel application development for shared memory architectures with multiple
cores. However, the application developers need to be aware of the OpenMP memory model,
which provides private and shared data [19]. A notable feature of OpenMP is that it is
under active development, and new features are proposed frequently in order to make it
more flexible and adaptable to new architectures. One recent example is the support for task
dependence since the release of OpenMP 4.0.

Writing of multithreaded programs can become quite complex, without defining certain
rules. OpenMP attempts to ease the process by supporting the fork-join model [137]. We
have to be clear about the fork-join term, as it can be applied at different level and can imply
different meanings. For example, Chapman [19] uses this concept for threads in the earlier
versions of OpenMP (before OpenMP 3.0 1) as follows: the starting part of the program is
executed by a single thread; whenever, a parallel construct encounters, a team of threads
is created (fork); members of the team execute the code collaboratively, and at the end of the
construct 2, all team members except the master thread terminate (join). The concept of fork-
join is used in [126] as a parallel control pattern, where the control flow forks into multiple
parallel flows that will join later. In this context –as well as throughout this dissertation–, the
focus is on the dynamic task creation and execution in newer versions of OpenMP, which also
follow the fork-join pattern using task and task-wait constructs. It is also important to
note that still parallelism happens only in a parallel region.

The Intel OpenMP runtime library (as opposed to the GNU implementation) allocates a task
list per thread for every OpenMP team. Whenever a thread creates a task that cannot not be
executed immediately, that task is placed into the thread’s deque (double-ended queue). A
random stealing strategy balances the load [138].

4.1.2 Cilk Plus

Cilk Plus has evolved from Cilk [139], and is an extension to C/C++ with a few additional
keywords and an array section notation. It provides very simple but powerful ways of spec-
ifying parallelism, as it is integrated into the compiler. It features a fork-join pattern to sup-
port irregular patterns and nesting. Cilk Plus provides the cilk spawn and cilk sync

keywords to spawn and synchronise tasks; cilk for loop is a parallel replacement for

1OpenMP is said to be thread-based before adding the concept of tasks, where all threads have access to the
shared memory and worksharing directives (single, for, section, etc.) are used to distribute the work
between them [3].

2The region enclosed by a parallel construct is called a parallel region.
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sequential loops in C/C++. Cilk Plus has a syntactic extension to express fork-join: instead
of calling a function, by using cilk spawn it spawns the function, which means the caller
can continue its execution without waiting for the callee to return (fork); cilk sync, waits
for all spawned calls in the current function to join.

The tasks are executed within a work-stealing framework. Every worker thread has deque
of tasks. The worker treats its deque as a stack, by pushing and popping tasks at the back of
it. Thieves steal from the front of deques [45]. In the Cilk Plus work-stealing framework,
thieves steal continuations, meaning that the spawned task is immediately started by the
spawning thread, and the continuation is left available for stealing. The Cilk Plus scheduling
policy provides load balancing close to the optimal [117]. The Intel implementation of Cilk
Plus ensures that by running a program on one processor, the same order of operations as the
equivalent sequential program is produced [126].

4.1.3 Threading Building Blocks (TBB)

Intel Threading Building Blocks (TBB) is another well-known approach for expressing par-
allelism [43]. TBB is an object-oriented C++ template library that contains data structures
and algorithms to be used in parallel programs.

Parallelism can be expressed in terms of tasks, represented as instances of the task class,
or concurrent container classes, which allow the access of multiple threads to items of a
container.

TBB supports both regular and irregular parallelism, and has direct support for a various
parallel patterns, such as task graphs, map, pipelines, etc. TBB abstracts the low-level thread
interface. However, conversion of legacy code to TBB requires restructuring certain parts of
the program to fit the TBB templates.

TBB uses a library for supporting the fork-join pattern. Similar to Cilk Plus, a common
thread pool is shared by all tasks and load balancing is achieved by work-stealing. Each
worker thread in TBB has a deque of tasks. Newly spawned tasks are put at the back of the
deque, and each worker thread takes the tasks from the back of its deque. If there is no task
in the local deque, the worker steals tasks from the front of the victims’ deques [140]. But
in TBB, thieves steal children, meaning that the worker thread spawns a new task and leaves
it. It executes the continuation, for example if it is executing a loop, it proceeds to the next
iteration and spawns more tasks afterwards, leaves them for stealing, likewise. Furthermore,
if it picks a task to run, it would be the last spawned one, as it is the one recently pushed at
the back of its deque.
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4.2 Comparison on the Xeon Phi: Uniprogramming

Workloads

We use three benchmarks, which we refer to as our “Base Benchmarks” in this study. They
are used to show that apparently equivalent parallel programming models have different
behaviours on modern systems, even for naive algorithms. They are intentionally simple to
make it possible to reason about the observed differences between the performance of the
selected models.

We compare the speedup results not only for varying number of threads, but also for varying
cutoff values. The concept of cutoff has been introduced already 3. It is worth mentioning
that both GCC and ICC control the creation of tasks for OpenMP programs, but as shown
in [104], such limitations are not enough for achieving good performance. For example GCC
4.9 cuts off task creation if the number of tasks exceeds 64 × number of threads, or ICC
avoids task creation if the task queues are full.

4.2.1 Experimental Setup

All the benchmarks are implemented as C++ programs, and all speedup ratios are computed
against the running time of the sequential code implemented in C++. We first compare the
results for each single program.

The benchmarks executed natively on the Xeon Phi. For that purpose, the executables are
copied to the Xeon Phi, and we connect to it from the host machine using ssh. The Intel
compiler icpc (ICC) 14.0.2 is used with the -O2 -mmic -no-offload flags for
compiling the benchmarks for native execution on the Xeon Phi. The OpenMP programs
should be compiled with the -openmp flag. The TBB programs need the -ltbb flag.

For all approaches some shared libraries must be copied to the Xeon Phi. For the OpenMP
applications, the libiomp5.so library is required. The libcilkrts.so.5 is needed
for Cilk Plus applications and the libtbb.so.2 library is required for the TBB pro-
grams. The path to these libraries should be set before the execution, for example: export
LD LIBRARY PATH=./:$LD LIBRARY PATH.

3Although the cutoff value is sometimes equal to the total number of tasks reside in the system, in this
dissertation we consider it as the maximum number of ready-to-run tasks that can exist at any point of time in
the system
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4.2.2 Parallel Fibonacci Benchmark: Fibonacci

We consider a parallel Fibonacci benchmark as the first testcase. The Fibonacci benchmark
(calculating the Fibonacci numbers fib(i) = fib(i−2)+fib(i−1) by concurrent recursion)
has traditionally been used as a basic example of parallel computing. Although it is not an
efficient way of computing Fibonacci numbers, the simple recursive pattern can easily be
parallelised and is a good example of creating unbalanced tasks, resulting in load imbalance.
In order to achieve desirable performance, a suitable cutoff value for the recursion is crucial.
Otherwise, too many fine-grained tasks would impose an unacceptable overhead to the sys-
tem. The cutoff limits the tree depth in the recursive algorithm, which results in generating
2tree depth tasks.

Figure 4.1 shows all the results taken from running this benchmark with the three program-
ming models. Figure 4.1(a) shows the speedup chart for the integer number 47 with 2048
unbalanced tasks at the last level of the Fibonacci heap. Cilk Plus and TBB show similar re-
sults. Increasing the number of threads causes visible performance degradation for OpenMP.
Setting KMP AFFINITY=balanced results in a negligible improvement of the OpenMP
performance.

Figure 4.1(b) shows the importance of a proper cutoff on the performance of this unbal-
anced problem. Having more tasks (as long as they are not too fine-grained) gives enough
opportunities for load balancing.

Total CPU Time

For the applications developed for the Intel architectures, Intel VTune Amplifier [141] is
considered to be the de-facto performance analyser tool. However, we have to figure out
what performance metrics can best describe the differences [142].

This is a lower-is-better metric that shows the total CPU times consumed in the system from
the start until the accomplishment of the job(s). This metric and the detailed breakdown of
CPU times are obtained using Intel VTune Amplifier XE 2013 performance analyser [143].
Figures 4.1(d) to 4.1(f) are screenshots taken from the VTune Amplifier when running Fib
47 with cutoff 2048 natively on the Xeon Phi. The x-axis shows the logical cores of the Xeon
Phi (240 cores), and the y-axis is the CPU time for each core 4.

For the Fibonacci benchmark, OpenMP consumes the most CPU time, and its performance
is bad, the worst amongst the three approaches.

4It should be noted that for all experiments, results from the benchmark’s kernel are considered in the
figures (a) and (b), while in the other results taken from the VTune Amplifier, all information from the start
of the application, including its initial phase and the CPU time consumed by the shared libraries is taken into
account.
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Figure 4.1: Parallel Fibonacci benchmark for the integer number 47.
The best performance can be obtained by using Cilk Plus or TBB.
Choosing a proper cutoff value is key to good performance. If there are enough tasks in the
system, the load balancing techniques become effective and yield better speedup.
A detailed breakdown of overall CPU time for the case with 240 threads and cutoff value
2048 is illustrated for each approach in the charts (d) to (f). TBB consumes less CPU time in
total while providing good performance, and Cilk Plus has the best performance. The y-axis
on the (d) to (f) charts is the time per logical core, from 0 to the maximum number specified
in seconds.
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4.2.3 Parallel Merge Sort Benchmark: MergeSort

Sorting algorithms have attracted a great attention, due to their simple concept but complex
optimisation. They are basic blocks of many applications, such as databases, data mining ap-
plications, and computer graphics [93]. Furthermore, they are memory-bound, which makes
them suitable candidates for investigating the effect of memory organisation on performance.
Although based on their time complexity, most of them do not scale linearly with the number
of threads, they can still be parallelised easily and effectively.

Merge sort is an efficient divide-and-conquer algorithm and its parallel version is a great
example of parallel reduction. The average complexity of its serial version is O(nlogn).

This benchmark sorts an array of 80 million integers using a merge sort algorithm. The ith

element of the array is initialised with the number i∗((i%2)+2). The cutoff value determines
the point after which the operation should be performed sequentially. For example, cutoff
2048 means that chunks of 1/2048 of the 80M array should be sorted sequentially, in parallel,
and afterwards the results will be merged two by two, in parallel to produce the final sorted
array.

As shown in Fig. 4.2(a) with larger numbers of threads, there is either no noticeable change
(in the case of TBB), or a slowdown (in the case of OpenMP and Cilk Plus). Using thread
affinity for OpenMP in this case does not make an appreciable difference.

Figures 4.2(c) to 4.2(f) are again based on the results obtained by the VTune Amplifier when
running the benchmark with 240 threads and cutoff 2048. Although the TBB performance
is not the best, the Total CPU Time it consumes is significantly less than the other two
approaches. This is due to its more light-weight runtime library. Since all merges in a
branch of the task tree can run on the same core as their children, there would be no need
to have balanced load for good performance. In other words, the unbalanced distribution in
Fig. 4.2(f) does not imply a poor behaviour of the TBB runtime library.

4.2.4 Parallel Matrix Multiplication Benchmark: MatMul

This benchmark performs a naive matrix multiplication by a triple nested loop with ikj loop
ordering for caching benefits on square matrices of N×N double-precision floating point
numbers. This is a completely data parallel problem which fits very well to OpenMP and
its for worksharing construct. There is a concept similar to the cutoff in the loop par-
allelism context to control chunking. It specifies the size of chunk for each thread in a
data parallel worksharing scenario. If the cutoff value is assumed as the number of chunks,
the chunk (grain) size can be specified for the OpenMP for as follows: #pragma omp

for schedule(dynamic, N/cutoff). The dynamic keyword can be replaced by
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Figure 4.2: Parallel MergeSort benchmark for an array of 80 million integers.
This benchmark does not scale well. The best performance, however, can be obtained by
using OpenMP or Cilk Plus.
For this memory-intensive benchmark, cutoff values greater than 64 are enough to lead to
good performance with as many threads as the number of cores.
TBB consumes significantly less Total CPU Time. With small number of threads, OpenMP
and Cilk Plus yield better performance, but finally (with 240 threads) OpenMP and TBB
provide slightly better performance.
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static as well. Grain size in the Cilk Plus is similarly specified via a pragma: #pragma
cilk grainsize = N/cutoff. Intel TBB has a template function for this purpose,
namely parallel for, which can be called with simple partitioner() to control
the grain size.

Scheduling Considerations

Before going into details of the results, we would like to focus on some technical considera-
tions:

In order to achieve automatic vectorization on the Xeon Phi, the Intel TBB and OpenMP
codes have to be compiled with the -ansi-alias flag to resolve the compiler’s confusion
about the vector dependence.

The schedule clause used with OpenMP for specifies how iterations of the associated
loops are divided (statically/dynamically) into contiguous chunks, and how these chunks are
distributed amongst threads of the team. In order to have a better understanding of the re-
lations between the cutoff value (number of the chunks), number of threads, and the thread
affinity on the Xeon Phi, consider the following example. Suppose that for the MatMul
benchmark, the OpenMP for construct with static schedule is used, which means that iter-
ations are divided statically between the execution threads in a round-robin fashion:

#pragma omp for schedule(static, N/cutoff).

Runtime of the case(a) on the Xeon Phi is ≈3× better than that of the case(b).

• omp set num threads(32), cutoff=32, KMP AFFINITY=balanced

The threads will be spread across 32 physical cores. With the balanced affinity, they
have to be distributed as evenly as possible across the chip, which is one thread per
physical core. As a result, every chunk will be run on a separate physical core.

• omp set num threads(240), cutoff=32, KMP AFFINITY=balanced

The threads will be spread across all 60 physical cores. But the work will be distributed
between 8 physical cores, which are the first 32 hardware threads. The reason is that
with 240 threads, there will be one thread per logical core, and with cutoff 32, every
thread with the thread id from 0 to 31 gets a chunk of size N/32.

With these considerations, we are ready to run the MatMul benchmark and compare the
programming models in a data parallel scenario. The results can be found in Fig 4.3.
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Figure 4.3: Parallel MatMul benchmark on a 4096×4096 matrix of double numbers.
The best results can be obtained by using OpenMP approaches.
For the cutoff values greater than 256, OpenMP with dynamic scheduling has the best scaling
amongst all.
Again the Total CPU Time of TBB is the least amongst all. There is an evident distinction
between the distribution of CPU times in the charts (d) and (e) that shows how OpenMP load
balancing, when using dynamic scheduling leads to better performance.
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4.2.5 Overhead of the Runtime Libraries

One way to reason about the differences between these parallel programming models is to
compare the amount of the Total CPU Time consumed by their runtime libraries. We have
therefore summarised the results as the percentage of time spent on the shared libraries in
each case.

Table 4.1: Percentage of the Total CPU Time consumed by the runtime libraries

Benchmark OpenMP
(libiomp5.so)

Cilk Plus
(libcilkrts.so.5)

TBB
(libtbb.so.2)

Fibonacci 50% 16% 5%
MergeSort 78% 81% 3%
MatMul 22% (Dynamic)

20% (Static)
6% 1%

Table 4.1 gives a better understanding of where the CPU times have been consumed. For
instance, in this case 5, for the OpenMP runtime library, the wasted CPU time generally falls
into two categories: 6 I) A master thread is executing a serial region, and the slave threads
are spinning. II) A thread has finished a parallel region, and is spinning in the barrier waiting
for all other threads to reach that synchronisation point.

Although sometimes in solo execution of the programs, these extra CPU cycles have negli-
gible influence on the running time (wall time), we show in Sect. 4.4 how they would affect
other programs under multiprogrammed execution.

4.3 Comparison on the Xeon Phi: Multiprogramming

Workloads

Applications are shifting towards increased parallelism. Improving the performance of mul-
tiple parallel applications running together on the same machine is equally important as
improving the performance of a stand-alone application. Thread and task scheduling in such
a dynamic environment is a significant challenge, and scheduling algorithms designed for
uniprogramming environments are no longer efficient. The problem lies in the assumption
that a dedicated set of execution resources are fully available to the program, which is not
always the case [144]. Therefore, in the presence of an external workload, such algorithms

5The default policy for the OpenMP idle threads depends on the implementation, but in most of the imple-
mentations going to sleep after a short period of spinning is the default policy.

6In general, there might exist other synchronisation overheads, e.g. waiting to acquire a lock or access to a
critical section.
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may lead to a significant drop in performance.

We explore how Intel OpenMP, Intel Cilk Plus, and Intel TBB react to a multiprogramming
situation on the Xeon Phi. Based on the overhead of the runtime libraries for single program
execution (Section 4.2.5), we predict that TBB would perform better than the other two.

4.4 Multiprogramming Benchmark

In this section, we consider a multiprogramming scenario to see how the Intel’s parallel
models behave in a multiprogramming environment. Generally, scheduling policies can be
evaluated based on system-oriented or user-oriented criteria [145]. A system-oriented metric
is based on the system’s perspective and quantifies how effectively and efficiently the system
utilises the resources, while the focus of a user-oriented metric is on the behaviour of the
system from user’s perceptive, e.g. how fast a single program is executed. An example of
system-oriented metrics is throughput, which is the number of programs completed per unit
of time. Turnaround time is an example of user-oriented metrics, which is the time between
submitting a job and its completion. It is used in this section for the comparison of the
models in multiprogramming situations.

The three benchmarks have the same input sizes as the uniprogramming cases in Sect. 4.2
with the cutoff value 2048 and the default number of threads 240 (the same as the number of
logical cores in the Xeon Phi). We do not start all of them at the same time. Rather, we want
the parallel phases to start almost simultaneously, such that all of the applications’ threads
compete for the resources. For that purpose, the MergeSort benchmark enters the system
first. Two seconds later the MatMul benchmark enters the system, and half a second after
that, the Fib benchmark starts 7.

Based on the results obtained from single programs, we expect TBB to perform best because
it has the least Total CPU Time in all three benchmarks. It might not affect the runtime
of a single program significantly, but when there are multiple programs competing for the
resources, the wasted CPU time can play an important role. In other words, CPU time wasted
by each program can influence the performance of other programs reside in the system [146].

The results are shown and discussed in Fig. 4.4

7The sequential phase of the MergeSort benchmark with the input size 80 million is around 2 seconds, and
the initial phase of the MatMul benchmark with the input size 4096×4096 is about half a second.
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Figure 4.4: A multiprogramming scenario with the three benchmarks
This is what happens when the three benchmarks compete for the resources: (a) shows that
the best turnaround times are obtained with TBB. The hardware event, number of Instruc-
tions Executed, sampled by the VTune Amplifier in (b), implies a significant difference be-
tween TBB and the other two competitors. Results from the Total CPU Time in chart (c) is
similar to those in chart (b) and they both show why TBB performs better than OpenMP and
Cilk Plus. A detailed breakdown of overall CPU time in the (d) to (f) charts illustrates how
OpenMP consumes more CPU time in total, and therefore has the worst performance.
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4.5 Information Sharing and Multiprogramming

As we discussed in this chapter, multiprogramming on manycores is challenging. We have
shown that even though OpenMP has a competitive performance with TBB for single pro-
grams on the Xeon Phi, the performance difference for a multiprogram workload is huge.
Improving the performance of OpenMP and exploring the effect of different factors in this
case are beyond the scope of this study. Rather, we would like to show an example of one
our previous work 8 on the TILEPro64 to highlight the importance of information sharing in
a multiprogrammed system.

Sasaki et al. [82] developed a co-scheduling scheme for multiprogramming environments,
based on dynamically prediction of the applications’ scalability. They also highlighted the
fundamental problem that the performance of some applications without linear scalability
tend to decrease drastically when more number of cores are allocated to them. Limiting the
number of threads is a way to overcome this issue. Therefore, for an application with smaller
number of threads than the number of cores, it becomes important to determine where to map
those threads. In this section, we review our previous work on multiprogramming to explain
how we addressed this issue by sharing global information about the current CPU load of
the tiles before mapping the threads to them.

4.5.1 Thread Mapping Strategies

We consider four different mapping options for running OpenMP-based benchmarks on the
TILEPro64. Except from the first one (decision by the OS), every thread decides about its
mapping itself. It first finds a suitable core, maps itself to it and starts doing some work or
goes to sleep. In the OpenMP code, it happens after the parallel keyword, which is the point
where the thread creation happens.

First, let’s explain some details about the idle threads in a GNU implementation of OpenMP:
if OMP WAIT POLICY is undefined (similar to our test cases), threads wait actively for a
short period before waiting passively without consuming CPU power. In the GNU Offloading
and Multi Processing Runtime Library (libgomp), this period can be set by the use of
COMP SPINCOUNT. If undefined (similar to our test cases), 300,000 spins of the busy-wait
loop will be set [147].

Now we are ready to go into the details of the mapping techniques for programs running on
the TILEPro64.

8This section covers some of my PhD work which was not directly related to GPRM, but helped me in
understanding multiprogramming issues and further developing of an “information sharing” mechanism in
GPRM
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1. Linux Scheduler:

The first option is to leave any scheduling decision to the native Linux scheduler. The
Tilera’s version of SMP Linux, called Tile Linux is based on the standard open-source
Linux version 2.6.26. The default scheduling strategy in Linux is a priority-based
dynamic scheduling that allows for thread migration to idle cores in order to balance
the run-queues.

Having a single run-queue for all processors in a Symmetric Multiprocessing (SMP)
system, and using a single run-queue lock were some of the drawbacks of the Linux
2.4 scheduler. Linux 2.6 implemented a priority-based scheduler known as the O(1)
scheduler, which means the time needed to select the appropriate process and map it to
a processor is constant. One run-queue data structure per each processor keeps track
of all runnable tasks assigned to that processor.

At each processor, the scheduler picks a task from the highest priority queue. If there
are multiple tasks in that queue, they are scheduled in a Round-Robin manner. There
is also a mechanism to move tasks from the queues of one processor to those of an-
other. This is done periodically by checking whether the cpu load is imbalanced.
In the Linux terminology, cpu load is the average of the current load and the old
load. The current load is the number of active tasks in the CPU’s run-queue multiplied
by SCHED LOAD SCALE, which is used to increase the resolution of the load [148].
What we will refer to as load in this section is the amount of time spent in each pro-
cessor doing some useful work.

2. Static Mapping:

In the static mapping, OpenMP threads are pinned to the processing cores based on
their thread ids in an ordered fashion. The decision is taken at compile time, which
would cause an obvious disadvantage: It cannot tune itself with multiprogramming,
since every program follows the same rule, and if the number of threads are less than
the number of cores, then some cores get no threads at all. It might be discussed
why at the first place, the number of threads in each program should be less than
the number of cores. As mentioned earlier, the answer to this question can be found
in the applications which do not have linear speedup, and after a certain number of
threads reach their saturation phase. One example is the Sort program in the Barcelona
OpenMP Tasks Suite (BOTS) [149]. Generally, the scalability of some programs tend
to saturate at some points, and their performance is degraded by adding more cores
[82]. Some programming models such as OpenMP suffer more from this situation,
while, as we will show, others such as our own parallel model, GPRM can handle
it better. Therefore, the techniques we describe here are more useful for OpenMP
programs. However, the result of this work revealed the importance on information
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sharing between the programs and was the motivation behind the implementation of
the Global Sharing feature in GPRM.

3. Basic Lowest Load (BLL):

The Lowest Load mapping technique is presented as two different methods. The first
one, assumes the term load as an equivalent to a thread. Therefore, if one OpenMP
thread is mapped to a core, the core’s load becomes 1. We call this method Basic

Lowest Load (BLL). It fills out the cores of the system in a Round-Robin fashion. This
technique is not aware of what is going on inside the system. There are many situations
in which some idle cores are ignored, e.x. a short program finishes its execution on
them, but the mapper does not use them, because it only points to the next core in its
list.

4. Extended Lowest Load (XLL):

The Extended Lowest Load (XLL) gets the cores’ information from the /proc/stat file
in Linux. The amount of time each core has done different types of work is specified
with a number of time units. The time units are expressed in USER HZ or Jiffies,
which are typically hundredths of a second. The number of Jiffies in user mode is
selected as load. In this technique, every OpenMP thread scans the current loads of
the cores. It then searches for a core with the least change from its old load value. The
thread maps itself to that core and starts working. In other words, the actual target of
this policy is the least busy core. Except from its dynamic awareness of the system,
another difference with BLL becomes highlighted when a thread is created but goes
instantly to the sleeping mode. XLL automatically finds the sleeping threads since they
do not produce any load, and hence more threads can be assigned to the corresponding
cores, while BLL only counts the number of pinned threads to the core, no matter if
they are sleeping or doing some work. The algorithm for XLL methodology is shown
in Algorithm 1.

The proposed methodology requires a globally shared data structure that keeps track
of the system’s cores. This data structure can be implemented in a runtime system as
in our work, or can be embedded in the Linux kernel. It is worth mentioning that this
methodology is portable across similar multicore/manycore platforms.
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Algorithm 1 The XLL Methodology
1: procedure FINDBESTTARGET

2: GetTheLock();
3: for each int i in Cores do
4: Scan(CurrentLoad[i]); %Scans from the /proc/stat file

5: Cores[i].change = CurrentLoad[i] - Cores[i].load + Cores[i].pinned;
6: Cores[i].load = CurrentLoad[i] + 10; %Creates a better resolution

7: end for
8: for each int i in Cores do
9: if Cores[i].change <Cores[BestTarget].change then

10: BestTarget = i; %Finds the least busy core

11: end if
12: end for
13: SetAffinity(BestTarget);
14: Cores[BestTarget].pinned++; %Increments the number of pinned threads

15: ReleaseTheLock();
16: end procedure

4.5.2 Selected OpenMP Benchmarks for the TILEPro64

We show how different thread mapping strategies can affect the performance of four bench-
marks from the Barcelona OpenMP Tasks Suite (BOTS) [149], selected for their different
characteristics. The mapping techniques are low-overhead, and can be combined with dif-
ferent cut-off strategies and applied on either tied or untied tasks.

It is important to note that the applications which do not scale very well are more challenging
for parallel computing. Embarrassingly parallel algorithms are easy to parallelise since the
tasks are completely (or almost) independent. They can easily run on different processing
cores without the need to share data or exchange any information with each other. We have
used a benchmark that scales approximately linearly (NQueens), one that does not scale
well when the number of threads grows (Strassen), and two others that reach their saturation
phases (Sort and Health). The input sets are chosen in such a way that the turnaround times
of the programs range from a few seconds to a few tens of seconds. The aim is to show that
the overhead of the proposed mapping technique is negligible, even for programs with small
turnaround times.

The target platform is the TILEPro64, which runs Tile Linux that is based on the standard
open-source Linux version 2.6.26. The C compiler used is the one provided in the Multicore
Development Environment (MDE) 3.0 from Tilera Corporation, which is called Tile-cc and
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is based on the GCC 4.4.3. The only change made to the BOTS 1.1.2 configuration file is the
name of the compiler.

1. Sort (untied): Sorts a random permutation of n 32-bit numbers with a fast parallel
sorting variation of the ordinary merge sort. First, it divides an array of elements in two
halves, sorting each half recursively, and then merging the sorted halves with a parallel
divide-and-conquer method rather than the conventional serial merge. Tasks are used
for each split and merge. When the array is too small, a serial quick sort is used to
increase the task granularity. We have used the default cut-off values (2048) when
sorting an array of 50M integers. To avoid the overhead of quick sort, an insertion sort
is used for small arrays of 20 elements.

2. Health (manual-tied): This program simulates the Columbian Health Care System.
Each element in its multilevel lists represents a village with a list of potential patients
and one hospital. The status of a patient in the hospital could be waiting, in assessment,
in treatment, or waiting for reallocation. Each village is assigned to one task. The
probabilities of getting sick, needing a convalescence treatment, or being reallocated
to an upper level hospital are considered for the patients. At each time-step, all patients
are simulated according to these probabilities. To avoid indeterminism in different
levels of the simulation, one seed is used for each village. Therefore, all probabilities
computed by a single task are identical across different executions and are independent
of all other tasks. three different input sizes are available in the benchmark suite. We
have used them in different scenarios. However, the performance scalability of the
single program is presented using the medium-size input.

3. Strassen (tied): The Strassen algorithm employs a hierarchical decomposition of a
matrix for multiplication of large dense matrices. Decomposition is performed by
dividing each dimension of the matrix into two parts of equal size. For each decompo-
sition a task is created. A matrix size of 2048 × 2048 is used for the purposes of this
experiment.

4. NQueens (manual-untied): The NQueens benchmark computes all solutions of the n-
queens problem, whose aim is to find a placement for n queens on an n×n chessboard
such that none of the queens attack any other. It uses a backtracking search algorithm
with pruning. A task is created for each step of the solution,and it has an almost linear
speed-up.
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4.5.3 Results of Multiprogramming using Information Sharing

For multiprogram workloads, we have considered three different scenarios to show how the
XLL mapper can result in better performance. The error bars on the first two figures (4.5
and 4.6) show how deterministic the results are, while in the third figure (4.7) the error bars
illustrate the minimum and maximum running time amongst the 10 identical programs.

First, we have to show why BLL, which is a simple Round-Robin mapping algorithm is
inefficient. For this purpose, we have considered three Health programs, each of which with
32 threads (this is based on the best performance achieved for uniprogramming [23]). Two
programs have large inputs and one has a small input. The programs enter the system with
the interval of 6 seconds. We have previously discussed why Static mapper cannot handle
multiprogramming scenarios. The inefficiency of the BLL is also evident from Figure 4.5.

The first scenario clearly shows that the XLL is the winning policy. The scenario is designed
in such a way that the program with the small input data set finishes before the second large
program enters the system. In the case of BLL, the threads of the first large program are
mapped to the first 32 cores of the system. The threads of the small program are mapped
to the last 31 cores plus the first core (there are 63 cores to use). Then the small program
finishes and the second large program enters the system, but the BLL cannot use the recently
freed cores. Instead, based on the Round-Robin algorithm, the threads of the second large
program are mapped to the cores 2 to 33, while most of these cores (except one of them) are
already busy serving the first large program.
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Figure 4.5: The first scenario: The inefficiency of the BLL

The second scenario is to run all four programs selected from the BOTS at the same time.
Although they start at the same time, their thread creation time is different. This is due to the
fact their initialisation phases and memory allocation times are different. Recall that thread
creation happens whenever the execution reaches the parallel keyword in the OpenMP code.
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According to their uniprogramming performance in [23], the Sort program (50M integers) is
limited to 16 threads, the Health program (Medium input) is limited to 32 threads, and both
Strassen (2048× 2048) and NQueens (15× 15) are run with 63 threads. The result is shown
in Figure 4.6.

Once again, the XLL results in better performance. The turnaround times for all 4 programs
are smaller when the XLL policy is applied.
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Figure 4.7: The third scenario: Running 10 identical instances of the Sort program

The third scenario gives a better insight on how the XLL mapper outperforms the Linux
scheduler when the system is busy. For this scenario, we have used 10 identical instances of
the Sort program arriving the system one after the other with the interval of 1 second. The
result is depicted in Figure 4.7.

Figure 4.7 shows that the results with both policies are significantly better when each Sort
program uses 16 threads rather than 63. It again verifies that increasing the number of threads
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does not necessarily result in better performance. It is also evident how much our novel
XLL mapping technique can outperform the native Linux scheduler in a multiprogramming
environment.

4.6 Summary

We compared some of the performance aspects (in particular speedup, CPU balance, and the
Total CPU Time) of three well-known parallel programming approaches, Intel OpenMP, Intel
Cilk Plus and Intel TBB, on the Xeon Phi coprocessor. For that purpose, we used three differ-
ent parallel benchmarks, Fibonacci, Merge Sort and Matrix Multiplication. Each benchmark
has distinct characteristics which highlight some pros and cons of the studied approaches
in different uniprogramming scenarios. Our multiprogramming scenario on the Xeon Phi
was to run all three benchmarks together on the system and observe how the programming
models react to this situation.

Based on the results obtained from the uniprogramming scenarios, particularly the Total CPU
Time, we predicted that the Intel TBB approach would be more suited to a multiprogramming
environment, and our experiment confirmed this. This is just the beginning, and these are our
preliminary results. What we learned from these experiments is that keeping the overhead
of runtime systems as low as possible in a general-purpose system is crucial, due to its
direct impact on multiprogramming performance. The performance results also bold the
importance of finding the optimal number of threads, as sometimes increasing the number
of threads might lead to performance drop. In the next chapters, we address these problems
by designing a new parallel execution model. In GPRM, a big overhead of task scheduling
is shifted to the compile time. Moreover, instead of giving attention to both (number of)
threads and tasks, the focus is only on the computational tasks.

In addition, since the way Linux deals with multithreaded multiprogramming is sub-optimal,
we conclude that there is a need to share additional information between the applications
present in the system in order to get better performance. The preliminary experiments on
OpenMP applications running on the TILEPro64 were promising. We conclude that in-
formation sharing techniques, similar to the technique used in the Extended Lowest Load
(XLL) strategy can improve the turnaround times in a multiprogrammed system. This led us
to develop this idea inside the GPRM runtime system, denoted by GPRM Global Sharing.
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Chapter 5

GPRM: The Glasgow Parallel
Reduction Machine

McCool et al. [126] emphasis that none of the most well-known programming languages
used today were inherently designed for parallel programming. They also list three desired
features for the parallel programming models that intend to enable parallelism: I) Perfor-
mance, II) Productivity and III) Portability.

It should be possible to predict good performance, tune it, and scale it to larger systems. Pro-
ductivity is not only about expressiveness and composability, but also about maintainability.
Supporting a range of targets and operating systems is another desirable property, known as
portability.

The Glasgow Parallel Reduction Machine (GPRM) [26] has its origin in Gannet, a system
for designing NoC-based SoCs [150] [151]. Gannet was originally designed as a distributed
reconfigurable SoC architecture based on the “processing core as a service” paradigm, i.e. a
network of services offered by software or hardware cores. The Gannet SoC performs tasks
by executing functional task description programs on the Gannet machine. The Gannet sys-
tem was based on message passing without shared memory support and the Gannet codebase
was intended for a static system with different tasks at each node.

The main contribution of this work is to change the existing Gannet framework [150] to work
on shared memory environments. This is mainly achieved by sending data pointers (rather
than the data itself) between nodes. Gannet was a static system with different tasks at each
node. I had to change the task distribution mechanism such that any task can run on any core.
A major contribution is adding an efficient stealing mechanism that matches the execution
model of the new framework. Adding support for loop-level parallelism as well as designing
a high level coordination language -GPC- are other contributions. Moreover, new APIs,
such as parallel loops and parallel lists as well as a new information sharing mechanism have
been developed. None of these steps could be finalised without measuring their impact on



63

performance. Therefore, an incremental iterative approach is used for the development of
the framework’s components.

GPRM 1 borrows some fundamental concepts such as parallel reduction and intermediate
functional representation from Gannet, but has a completely different focus and purpose. The
implementation of tiles and their internal states in GPRM has been changed to provide a low-
overhead task stealing mechanism for shared memory architectures with per-core caches.
GPRM provides a task-based approach to manycore programming by structuring programs
into task code, written as C++ classes, and communication code, written in GPC, a restricted
subset of C++. The communication language (GPC) describes how the tasks interact using
a functional language semantics with parallel evaluation, but with a C++ syntactic veneer.
What this means is that it is possible to compile task code and GPC communication code
with a C++ compiler and get correct functionality, but without the parallelism.

We use a partial evaluator to transform a GPC code with the specified number of tasks (as its
static data) into an Intermediate Representation (IR), called GPIR. GPIR (the task description

code) is based on S-expressions that first appeared in the Lisp programming language [152],
e.g. (S1 (S2 10) 20) represents a task S1 taking two arguments, the first argument is the
task S2 which takes as argument the numeric constant 10, and the second argument is the
numeric constant 20. GPIR is further compiled into lists of bytecodes, which the GPRM
virtual machine (runtime system) executes with concurrent evaluation of function arguments.
In other words, the GPRM virtual machine is a coarse-grained parallel reduction machine
where the methods provided by the task code constitute the instructions.

The aim of GPRM is to abstract away all the details of threads, such that the users do not
need to decide even about the number of them. This is an important issue, as finding the
optimal number of threads has always been the most important concern. We contend that
by efficient scheduling of tasks, the number of tasks should be the only important factor af-
fecting performance, because the tasks are the actual computations, and the threads are only
their substrates. The reason why GPRM is the most suitable model to verify our hypothesis
is that it is completely task-centric. There is no extra overhead of thread migration, and the
user deals only with tasks. GPRM task scheduling combines compile-time (source to in-
termediate representation) and runtime (stealing) techniques to provide better performance.
In other words, compile-time decisions form the initial distribution of tasks and the runtime
system adjusts dynamically. As a result, some threads can be asleep during the execution,
which means that the number of active threads are tuned automatically.

Probably, one similarity between GPRM and MPI is that they both implement a message
passing environment. However, apart from the fact that the current version of GPRM only
supports shared memory architectures and basically only sends pointers, the difference from

1https://www.github.com/wimvanderbauwhede/gprm
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the programming perspective is that the users do not deal with the messages in GPRM.
Reference packets are generated and dispatched, based on the information obtained from the
bytecode. Once the processing results become ready, the callee sends back the results to the
caller.

5.1 GPRM Architecture

At the start of the execution, GPRM creates a pool of POSIX threads equal in size to the
number of available cores (or hardware threads) in the underlying hardware. Each thread
runs a tile, which consists of a task manager (reduction engine) and a task kernel (Fig. 5.1).
The task kernel is typically a self-contained entity offering a specific functionality to the
system, and on its own is not aware of the rest of the system. The task kernel has run-to-
completion semantics. The corresponding task manager provides an interface between the
kernel and other tiles in the system.

Since threads in GPRM correspond to execution resources, for each processing core there is
a thread with its own task manager. The GPRM system is conceptually built as a network
of communicating sequential tiles that exchange packets to request computations and deliver
results. In other words, the combined operations of all reduction engines (task managers) in
all threads results in the parallel reduction of the entire program.

Figure 5.1: GPRM Architecture: Task Kernel (TK), Task Manager or Reduction Engine
(RE) and FIFOs

At first glance, the GPRM model may seem static and intolerant to runtime changes. How-
ever as stated, we discuss how it can efficiently balance the load at runtime and thrive in
dynamic environments. For load balancing, compile-time information about the task depen-
dencies is combined with an efficient task-stealing mechanism. Moreover, by keeping track
of the applications that reside simultaneously in the system, GPRM improves the perfor-
mance of those applications markedly.



5.2. GPC: The GPRM Front-End Language 65

5.2 GPC: The GPRM Front-End Language

The language features will be discussed more in detail for the benchmarks that are actually
using them in the following chapters. Also, the details of compiling a GPC source code to
the Intermediate Representation (IR) source code is not the focus of this work. However, in
this section we will express them concisely.

Glasgow Parallel C (GPC) is a subset of C++ in which statements are evaluated in parallel
by default. The aim of GPC is to abstract the threading details away from programmers
and to provide a consistent development framework for GPRM using C++. A GPC code is
structured as classes in the GPRM namespace and tasks are defined as member functions of
such classes.

5.2.1 GPC Language Features

GPC introduces a few keywords which do not exist in the C++ standard: the seq and
par block qualifiers and the par for construct that helps parallelise a loop. The gprm
unroll pragma results in compile-time evaluation of the for loop it precedes. In C++, the
for loop typically has a variable which is updated in every iteration. A GPC for loop after
a gprm unroll pragma allows this, but in a restricted manner which disallows dependen-
cies between different loop iterations and requires the loop boundaries to be constant.

The seq and par qualifiers are placed before a block of code to denote whether the block
should be executed sequentially or in parallel. By default, all statements are evaluated in
parallel, so the par keyword is optional.

1 GPRM : : K e rn e l : : Worker wkr ;
2

3 void GPRM : : ExampleTask : : doWork ( . . . . ) {
4 #pragma gprm u n r o l l
5 f o r ( i n t i =0 ; i<NT1 ; i +=1) {
6 wkr . doSomething ( . . . ) ;
7 }
8 #pragma gprm u n r o l l
9 f o r ( i n t i =0 ; i<NT2 ; i +=1) {

10 wkr . doSometh ingEl se ( . . . ) ;
11 }
12 }

Listing 5.1: A simple GPC program

A notable property of GPC is that it has serial semantics. That is, without the seq and par
keywords, the same results will be generated when the GPC code is compiled with a C++
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compatible compiler. GPC code compiled this way will run serially and not in parallel.

Listing 5.1 shows a very simple GPC program to illustrate the concepts. The C++ class
GPRM::Kernel::Worker has two methods which are each called in for loops with different
bounds. The result is that by calling the doWork() function member, NT1 doSomething

tasks and NT2 doSomethingElse tasks will be automatically run in parallel.

5.2.2 GPC Compiler

The GPC compiler performs multiple passes and ultimately produces an intermediate rep-
resentation source file if the compilation is successful. These stages are discussed in [153]:
Parsing, Type Checking, Optimisation, and Code Generation. Parsing and Code Generation
stages are straightforward. We briefly discuss the other two stages:

Type Checking

The type checking stage involves checking that all identifiers present in expressions have
been predefined and enforcing the single assignment rule. Each expression’s type is evalu-
ated to verify that it has the correct type with regards to the context it is in.

Optimisations

During the final stages of compilation, the compiler performs optimisations on the GPC Ab-
stract Syntax Tree (AST) before converting it to intermediate representation source code.
Sparse Conditional Constant Propagation [154] optimisations are applied to evaluate expres-
sions and eliminate branches. However, to perform these optimisations, the compiler needs
to have a representation of the code in Single Static Assignment [155] form (SSA).

SSA requires that every variable is assigned exactly once and is defined before being used.
At this point in compilation, the type checker has already checked that these conditions are
enforced, so the compiler already contains a representation of the code in SSA form.

Furthermore, the compiler can eliminate every branch and generate an efficient intermediate
representation which can be run on the GPRM runtime system.

5.3 GPRM Runtime System

As stated, GPC is compiled to lists of bytecodes representing the expressions to be reduced
(i.e., S-expressions), which the GPRM runtime system executes with concurrent evaluation
of function arguments (i.e., it is a parallel reduction machine). In the next section (Sect. 5.4),
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we describe this flow under the name of “GPRM Model of Parallel Execution”.

GPRM is completely task-centric. There is no extra overhead of thread migration, and the
user deals only with tasks. GPRM task scheduling combines compile-time (source to inter-
mediate representation) and runtime (task stealing) techniques to provide better performance;
consequently, some threads can be asleep during the execution.

Before going to sleep, threads can steal tasks from each other when they become idle after
finishing their jobs. This can balance the load if there are enough tasks in the pending queues.
We will talk about the GPRM task stealing in Section 5.5.

Multiple GPRM runtime systems can adapt themselves to a multiprogramming environment.
This will be covered in Section 5.6.

For the rest of this section, we first present the collaboration diagram for the major C++
classes used in the implementation of the GPRM runtime system, and then describe the C++
implementation for the core part of the runtime system for executing tasks: the Tile.

5.3.1 Implementation of the Runtime System

GPRM runtime system is implemented in C++. Although more and more support for C++11
has been gradually added to the whole framework, the current system is fully compatible
with the C++98.

The collaboration diagram for the SBA::Runtime class, generated by Doxygen [156] is
shown in Fig. 5.2.

The Runtime class has a System class as a member. In a multithreaded environment, the
Runtime::run() member function calls System::run th() (run threaded), which
in turn calls GatewayTile::run th(), creates as many Tiles as the number of logical
cores in the underlying hardware, and then calls Tile::run th() member functions.

In the Tile::run th() member function, a pthread is created, and a start routine
named run tile loop(void*) is called. Inside this start routine, the Tile::run()
member function is called. In this member function, the tile waits for packets to arrive on its
Transceiver::RX Packet Fifo. The class RX Packet Fifo has a member called
wait for packets() for this purpose, which uses the pthread cond wait() in the
background.

On receipt of a packet, the tile sets its Tile::status to true and a nested loop begins.
The inner loop calls the TaskManager::run() with argument 0, which means that the
tile is in the normal execution mode. After returning from that member function, if the
TaskManager::kernel status is “busy”, then the TaskKernel::run() will be
called to execute the actual computation. After that, or if the kernel status is not “busy”,
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the Transceiver::run() will be called, whose job is to transmit packets to other tiles.
This is the end of the inner loop. In order to continue the loop, the Tile::status, which
is the inner loop’s condition variable should be true. In order for it to be true one of these
three conditions should be met: if the TaskManager::status is true, or if either of the
Transceiver::TX Packet Fifo or the Transceiver::RX Packet Fifo con-
tains a packet 2.

Once the inner loop finishes, meaning that the Tile::status is no more equal to true, if
task stealing is enabled (STEAL macro is defined), which is the case by default, the stealing

mode begins by calling the TaskManager::run() with argument 1. Since the tile has
finished its pre-assigned work, this is a one-time chance to look for more jobs from the ready
queues of the other tiles. Same steps are repeated and the same three conditions will be ORed
at the end of the outer loop. If as a result of stealing, any of the those conditions becomes
true, the whole loop starts over in the normal execution mode.

5.4 GPRM Model of Parallel Execution

Although this section and the following sections 5.5 and 5.6 describe the GPRM runtime
system more in detail, we have separated them to highlight the important specifications of
the runtime system. In this section, we cover the whole framework from writing a GPC
code to the detailed explanation of task execution. The aim is to demonstrate how the whole
GPRM works as a system.

The fundamental difference between GPRM and the competitive task-based models, such as
OpenMP and TBB is that GPRM performs partial evaluation of programs with the numbers
of tasks held constant. As a consequence, most of the techniques used in the GPRM runtime
system, e.g. the stealing mechanism, are rather different from what readers might have in
mind, and therefore need more explanation. In the fork-join model, at a fork point, new serial
control flows are branched from an existing serial control flow. At a join point, these control
flows can be (possibly selectively) synchronised and merged.

GPRM, on the other hand, analyses all the C++ classes and methods used in the GPC pro-
gram at compile-time, and maps them to numeric constants. These constants are used in a
wrapper function to match the operation from the GPIR code with the actual method call to
be executed. This task-specific generated code is combined with the generic GPRM Run-
time Library (RTL) and the code for the task classes. The build process is summarised in
Fig. 5.3(a). Unlike the fork-join models, GPRM has no keywords for task creation or syn-

2A point to consider is that for the transmitter fifo TX Packet Fifo no lock is needed, as it is only
accessed by the tile itself, but since all other tiles can send data to the receiver fifo RX Packet Fifo, a
locking mechanism is required to access it, which has been implemented inside its member functions.
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Figure 5.2: Collaboration diagram for SBA::Runtime
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chronisation, as all the functions in the GPC code are evaluated in parallel, unless otherwise
stated (i.e. if a seq pragma is used).

When launching GPRM, a pool of POSIX threads (typically equal to the number of available
cores) is created before the execution of the actual program starts. The tasks are initially
assigned to the threads, based on the indices provided by the GPC compiler into the GPIR
code (the indices of the tasks in Fig. 5.3(c)). Because of the restrictions imposed on the GPC
language, its abstract syntax is that of a functional language, and hence the indices can be
automatically generated based on the dependencies in the call tree; tasks that depend on one
another cannot run in parallel and therefore can have similar indices (can be mapped onto
the same cores). The parallel execution is achieved by parallel evaluation of the bytecode, as
follows:

• Computations are triggered by the arrival of a reference packet, a packet which con-
tains a reference to a task, i.e. a piece of bytecode representing an S-expression, e.g.
the first reference packet for the example in Fig. 5.3(b) will be a reference to the
built-in task seq, which sequences the operations.

– Each argument in this S-expression is either a reference or a constant, e.g. both
arguments of the task t1 in Fig. 5.3(b) are constants and both arguments of the
task t3 are references.

– References are sent out to other tiles for computation; values are stored. 4 ref-
erence packets are shown in Fig. 5.3(c) (curved arrows). As another example, in
Fig. 5.3(d), the task with address 1500 sends a reference through the tile’s TX
FIFO to another tile.

– The leaf subtasks of the computational tree have either no arguments or constant
values as arguments, so no references need to be sent.

• Once all arguments have been evaluated, the reduction engine passes the evaluated ar-
guments of the S-expression to the task kernel which performs the actual computation.
This is shown as a part of the tile structure in Fig. 5.3(d) with the Call and Return

arrows.

• The result of the computation is returned to the caller, i.e. the sender of the reference
packet. The result of the computation from the task kernel in Fig. 5.3(d) (the tile
structure) is sent to the caller through the tile’s TX FIFO.

There are other components in the tile structure in Fig. 5.3(d) that need to be explained. Each
tile receives packets from others in its task manager’s RX FIFO. On the receipt of a reference

packet, its corresponding task record is created. The newly created task record is stored in a
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Figure 5.3: (a) Users write GPC and Task codes. Task scheduling is handled by GPRM.
(b) Sample GPC code and the C++ header file for the Task code.
(c) Task dependencies for the example code in (b), and the allocation of the tasks on tiles. 4
reference packets requesting computations are shown.
(d) Internal structure of tiles. If all the arguments of a task in the TCB table become ready, it
will be pushed into the Ready Queue. Otherwise, references will be sent to the others.
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random-access table called Task Control Block (TCB) 3, which stores information about the
tasks, particularly the number of their absent arguments. If the number of absent arguments
is non-zero, references will be sent to other tiles in order to request computations, otherwise,
as soon as all arguments of a task become ready, it will be pushed into the ready queue

for computation. Therefore two cases would result in sending a packet to the other tiles: i) a
reference packet from a task with absent arguments requesting computations, ii) a data packet
containing the pointer to the result of the computation to the caller tile. Therefore, scheduling
in our system, similar to other reduction machines (although it has coarser granularity at task
level, rather than instruction level) is based on the need for data; this is known as the demand-
driven model [157].

5.4.1 Communication Messages

In order to show how the information about the tasks are used by the GPRM runtime system,
and also how the communication between the tiles is carried out, consider a user-defined task
called foo 4. A micro-program intends to compute foo(31) + foo(45).

The generated task description code (GPIR) is shown in Fig. 5.4 as Test.td. A configuration
file (Test.yml) will also be generated, which specifies the base thread index for each task 5

as well as the class and methods they are defined in. This information will be converted into
constants in the final bytecode.

There is also an index for each task in the GPIR code, the task index. That index is the result
of the compiler magic. If the program is a series of peer tasks, task index starts from 0 and is
increased one by one for generated tasks (So, normally the indices for the foo tasks in this
example should be 0 and 1, instead of 2000 and 4017); if the program is a tree of tasks, the
task indices for the parents are equal to the index of one of their children, and so on.

Therefore, in order to calculate on which thread a task should be run, the task index will be
added to the base thread index. This means that the add (+) task should be run on thread id
89, the first foo task on thread id 2002, and the second foo task on thread id 4019. These
numbers are highlighted in the GPRM packets in Fig. 5.4, as they are the addresses the
packets use for routing.

Other important fields that are highlighted in Fig. 5.4, are the type of the packets. There
are three code packets, which specify the information about the tasks themselves and their
arguments, and there is a reference packet that triggers the computation. It can be observed
that the add task has 2 arguments, which are references to other computations, but each foo

3TCB is called “subtask list” in the previous GPRM papers.
4add (+) is a built-in task with minimum overhead.
5Actually, in the current version of GPRM, all internal control tasks start from base thread index 1, and the

base thread index for all other tasks starts from 2. Therefore, number 89 in the example is imaginary.
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task has a constant number as its argument, which means that its data is ready.

Figure 5.4: GPRM packets at the start of the sample program

The two important features of the GPRM runtime system of specific interest to this work are
Task Stealing and Global Sharing. These features can be enabled via command-line switches
when compiling the GPRM runtime system. It that sense they can be considered as runtime
support features. We discuss them in the following sections 5.5 and 5.6.

5.5 GPRM Task Stealing

The term “stealing” is conventionally used for Work-Stealing inside the fork-join models.
The techniques are different from what we call Task Stealing in GPRM. In GPRM parlance,
Task Stealing is the process of stealing tasks from the ready tasks queues of other threads. If
enabled, it allows threads to steal tasks from each other when they become idle after finishing
their jobs. This can balance the load if there are enough tasks in the ready queues. We denote
GPRM with stealing enabled as GPRM-Steal (or GPRM-S).

5.5.1 Comparison of the Stealing Strategies

At first sight, the stealing mechanism may seem quite similar to the classical work stealing
approaches [139] [75] [144], but there are fundamental differences, due to the nature of
our parallel programming model. In a fork-join model, when control flow forks, the master



5.5. GPRM Task Stealing 74

thread executes one branch and the other branch can be stolen by other threads (thieves).
Multiple branches can be generated as the program is executed. This classical approach
needs double-ended queues (deques), such that the workers work at the back of their own
deques, while thieves can steal from the front of the others’ deques. Steal child (used by
TBB) –the newly created child becomes available to the thieves– and steal continuation (used
by Cilk Plus) –the continuation of the function that spawned new task becomes available to
the thieves– are two variations of the conventional work-stealing approach [126].

In GPRM, C++ methods used in the GPC code are compiled into tasks. At compile-time,
the compiler specifies the initial mapping between tasks and threads (even if the creation of
a task is conditional, its initial host thread is specified). The parent tasks in the GPRM model
are not the same as the parents in the Directed Acyclic Graph (DAG) as shown in Fig. 5.3(c):
rather, the parent tasks are the ones that request computations from their children, hence will
depend on their children, e.g. in the DAG in Fig. 5.3(c), t3 is the parent of the t2 tasks,
following the order of the function calls: B.t3(B.t2(x), B.t2(y));.

1 void f ( i n t i ) {
2 i f ( i ==0) s l e e p ( 2 ) ;
3 e l s e s l e e p ( 1 ) ;
4 }
5 . . .
6 /∗ C i l k P lus ∗ /
7 f o r ( i n t i =0 ; i < N; ++ i )
8 c i l k s p a w n f ( i ) ;
9 c i l k s y n c ;

10

11 /∗ GPRM ∗ /
12 #pragma gprm u n r o l l
13 f o r ( i n t i =0 ; i < N; ++ i )
14 f ( i ) ;

Listing 5.2: Micro-benchmark to illustrate the differences between the stealing techniques

With this background information, it is more clear what we mean by task stealing. Our
stealing mechanism is about stealing the individual tasks, rather than the whole branch. In
the conventional work-stealing approaches, the stolen branch would create more tasks during
the execution of the program, and they would be executed by the thief (unless other workers
become free and steal from that thief). The GPRM-specific task stealing mechanism is useful
because all the tasks are initially allocated to threads (tiles). The stealing mechanism only
tunes the initial allocation set by the compiler. Therefore, assuming that all the tasks are
exactly the same and the number of them is a multiple of the number of the processing cores
in the system, most probably no stealing occurs. In order to illustrate the differences between
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the stealing techniques in details, consider the program in Listing 5.2 written in Cilk Plus and
GPRM. Rewriting it with other approaches is straightforward.

1. Suppose we have only 3 threads in the system and N = 4. For the first case, assume
that calling the function f(i) with different is results in the same runtime:

• In the steal continuation technique shown in Fig. 5.5(a), th0 (thread0) sets i=0,
spawns f(0), and immediately start executing f(0), leaving the continuation
of the loop available for stealing. th1 –as an example– steals the continuation,
updates i, and executes f(1). th2 could be the next thief that steals the further
continuation and executes f(2). Theoretically, th0 finishes its work before the
other threads, hence executes the next iteration and f(3). the last iteration can
be stolen by th1. Therefore, 3 steals6 can be considered for this simple case.

• For the steal child technique shown in Fig. 5.5(b), th0 executes all iterations of
the loop, spawns all f(i)s, and leaves them available to steal. However, since
newly spawned tasks are put at the back of the deque and each worker thread
takes the tasks from the back of its own deque (like TBB), therefore after all
iterations, th0 executes f(3). f(2) can be stolen by th1. There are also 3
steals in this case.

• Since the GPC compiler unrolls the task creation loop and assigns the tasks to
the worker threads, f(0) to f(2) will be assigned to th0 to th2, and f(2)
will be assigned to th0. Theoretically, no stealing occurs, because if all threads
finish their work at the same time, th0 would execute its next assigned task
before others enter their stealing phase and steal it.

2. For the second case, consider the definition of f() in Listing 5.2, where executing
f(0) takes more time:

• The number of steals for the steal continuation becomes 4, as th1 and th2 can
steal more continuations before th0 finishes its first job.

• The number of steals can remain 3 for the steal child technique. th1 steals the
first child and th2 the second. Assuming that th2 has started executing f(1)
an epsilon before th0 reaches f(3), f(2) becomes available for th2 (note
that th1 is still busy executing f(0)).

• In the GPRM-Steal technique in Fig. 5.5(f), assuming that th1 has started its
work an epsilon before th2, it can steal f(3) from the ready queue of the busy
thread (tile), th0.

6We use the noun “steal” (OED “the act of stealing”) rather than “theft”
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Figure 5.5: (a) Steal Continuation (used by Cilk Plus), balanced load: 3 steals
(b) Steal Child (used by TBB), balanced load: 3 steals
(c) GPRM with stealing enabled, balanced load : 0 steals
(d) Steal Continuation, imbalanced load: 4 steals
(e) Steal Child, imbalanced load: 3 steals
(f) GPRM-Steal, imbalanced load: 1 steal
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Figure 5.5 shows that what we mean by task stealing is actually the minimum number of
steals required to balance the load. Even for tiny micro-benchmarks, the techniques as well
as the number of steals are quite different.

5.5.2 Implementation of Task Stealing in GPRM

As described above, inside GPRM every thread runs a tile with its own task manager.
Each task manager consists of multiple queues for different purposes, such as exchanging
packets (RX fifo and TX fifo) or storing results. As stated, one of these queues is the
ready fifo. All tiles are initially in the non-stealing state, which means their task man-
agers take tasks from their own ready fifo. If STEAL is enabled, then after running the
last task in its ready fifo, the task manager searches for jobs in the ready fifos of
other tiles (excluding the control tile). The tile remains in the stealing state and repeats this
task-stealing process, unless there is no more job to steal after probing all ready fifos of
all tiles once. Then it goes to the sleeping state, and waits for a reference packet to wake it
up and start a new computation. This mechanism is shown in List. 5.3.

1 Task TaskManager : : t a s k S t e a l ( ) {
2 f o r ( i n t j = t i l e A d d r ; j < t i l e A d d r +NTILES ; ++ j ) {
3 i n t i =( j % NTILES ) + 1 ; / / no s t e a l i n g from t i l e 0
4 T i l e& v i c t i m = ∗ ( sys tem . t i l e s [ i ] ) ;
5 i f ( v i c t i m . TaskManager . r e a d y f i f o . s i z e ( ) != 0 ) {
6 Task s t o l e n = v i c t i m . TaskManager . lockReadyQ ( 1 ) ;
7 / / 1 means a t h i e f i s l o c k i n g
8 i f ( s t o l e n != EMPTY) { / / EMPTY i s an i n t number f o r n u l l t a s k s
9 . . . / / r e g i s t e r s i t t o t h e TCB o f t h e t h i e f

10 re turn s t o l e n ;
11 }
12 }
13 } / / e l s e , l oop c o n t i n u e s
14 re turn EMPTY;
15 }

Listing 5.3: Task Stealing inside the task manager

The stolen task shown in List. 5.3 can be null (EMPTY), because we do not lock the queues
only to check whether their sizes are greater than 0. This way, we do not interrupt the routine
operations of other tiles. However, inside the member function called lockReadyQ(), we
check if the size is still greater than 0 (or the owner has processed all of its tasks already). If
the size of the ready queue is 0, the loop continues in order to find another victim.

The member function lockReadyQ() used in both Lists. 5.3 and 5.4 is responsible for
locking the ready fifo and returning the top element, if any. As shown in the code, it
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gets an argument which specifies whether a thief has locked the FIFO or not. As a result,
we can define different actions for the owners and thieves inside this member function. For
instance, for research purposes, it is possible to define conditions for task stealing. We can
set rules for thieves to steal only from the queues with larger sizes than X . However, for the
experiments in this study we did not set any rules.

1 void TaskManager : : c o r e C o n t r o l ( bool i s s t e a l s t a t e ) {
2 / / i s s t e a l s t a t e comes from t h e T i l e c l a s s
3 # i f d e f STEAL
4 i f ( i s s t e a l s t a t e ) {
5 Task s t o l e n t a s k = t a s k S t e a l ( ) ; / / d e f i n e d e a r l i e r
6 i f ( s t o l e n t a s k != EMPTY) {
7 c u r r e n t t a s k = s t o l e n t a s k ;
8 s t a t u s = r e a d y ; / / t h e s t a t u s o f t h e t a s k manager
9 }

10 }
11 e l s e i f ( s t a t u s == i d l e ) {
12 Task n e x t = lockReadyQ ( 0 ) ; / / 0 means t h e owner t i l e i s l o c k i n g
13 i f ( n e x t != EMPTY) {
14 c u r r e n t t a s k = n e x t ;
15 s t a t u s = r e a d y ;
16 }
17 }
18 # e l s e / / STEAL i s d i s a b l e d
19 i f ( s t a t u s == i d l e and r e a d y f i f o . s i z e ( ) > 0) {
20 c u r r e n t t a s k = r e a d y f i f o . f r o n t ( ) ;
21 r e a d y f i f o . p o p F r o n t ( ) ;
22 s t a t u s = r e a d y ;
23 }
24 # e n d i f
25 . . .
26 }

Listing 5.4: Core Control inside the task manager

Another member function of the class TaskManager is called coreControl, which is
the centre for main operations inside the task manager. As shown in List. 5.4, a macro called
STEAL is defined to ensure that if task stealing is disabled, no one locks the ready fifo.
This way, we can measure the real overhead of stealing, compared to when tiles only take
tasks from their own queues. Three cases are shown in this function:

1. If STEAL is defined, the tile is either in its stealing state or not. If it is, taskSteal()
will be called, and if successful the status will be set to ready for processing.

2. The second case is when STEAL is defined, and the tile is in the non-stealing state. If
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the task manager is idle, it will lock its own ready fifo and take a task to process.

3. The third case is when the STEAL macro is not defined, and no stealing occurs in the
system. Therefore, if the status is idle and the ready fifo is not empty, its top
element will be processed. There is no need to lock the ready fifos, as every tile
only uses its own queue in this case.

5.6 GPRM Global Sharing

The Global Sharing feature in GPRM is intended to be used in dynamic environments, where
multiple parallel workloads compete for the resources. The proposed method uses a globally
shared data structure that keeps track of thread mapping information. This data structure can
be implemented in a runtime system as in our work, or could be embedded in the OS kernel.

Every instance of GPRM (every application) maps this shared data structure to its own mem-
ory space, and uses it to share information with others. The information we share, although
quite minimal, is crucial to achieve good performance. In GPRM, all sequential tasks run on
a specific tile. Generally, sequential tasks are those responsible for initialisation, or the ones
that have to run alone after a synchronisation point. In either case, they cannot be stolen,
because they are the only ready-to-run tasks existing in the system, and except the tile they
are attached to, all other tiles are in the sleeping state.

In order to avoid running the sequential parts of different workloads on the same core, the
corresponding tileAddr is shared between all GPRM applications present in the system.
Therefore, every newly arrived GPRM application maps its threads to cores such that its
“sequential tile” 7 is pinned to the first available position that is not devoted to sequential
tiles of other applications. All other threads of that application will be arranged in order. On
the Xeon Phi, where four logical cores form one physical core, the target candidate will be
the next physical core.

Although more information could be shared between concurrently present applications, it
is important to keep the overhead low. Moreover, even if other information such as the
number of active/asleep threads is shared, there is no clue as to whether they would remain
the same or not. Thus, such information would have to be shared frequently. We will show
that with the small amount of information that we share currently, a noticeable performance
improvement can be obtained. Whether or not sharing more information results in better
performance remains to be investigated.

7The “sequential tile” is responsible for the sequential tasks, but also contributes to the parallel execution,
whenever required.
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5.7 GPRM Productivity

With increasing complexity of parallel computing, it is crucial to consider high productivity
as a key part of the new programming models. It is common to perform field experiments
targeting programmers in order to measure productivity [158]. However, since GPRM is still
a research framework, we did not have the chance to use similar techniques to measure its
productivity. However, we briefly discuss some of its pros and cons compared to OpenMP.

Most of the task-based programming models provide the programmer with some keywords
to express parallelism in an imperative language such as C/C++. Pure functional languages
on the other hand, have no side effects and allow for safe execution of parallel computations,
but compared to mainstream languages such as C++ and Java, none of them have found
widespread adoption. Even if a manycore programming language would find wide adoption,
it would in the short term obviously be impossible to rewrite the vast amount of single-core
legacy code libraries, nor would it be productive.

Using a new model such as GPRM for parallel programming might seem difficult, even
though its core is just a library-based extension to C++. At the first glance, an approach like
OpenMP is a better option in regards to high productivity and ease of programming. OpenMP
and most of similar approaches attempt to add parallelism to the existing sequential codes,
while GPC code in GPRM considers parallelism inherently, and the sequential parts of the
code should be marked as sequential.

The fact that one can create new tasks dynamically using a fork-join model like in OpenMP
is a very useful feature. It provides more flexibility, but at the same time requires more
attention (e.g. to avoid uncontrolled recursive task creation). Moreover, joining tasks and
placing barriers at correct locations is not as simple as forking them.

We believe that both OpenMP and GPRM have their own complications. Writing OpenMP
code is not easy for a newbie. The only straightforward part of parallelisation in OpenMP
is the use of parallel loops. In other cases, users would experience difficulties in writing or
understanding the OpenMP code. They also need to learn new concepts, such as the variable

capture, i.e. by default local variables are captured by value (firstprivate) and global
variables by reference (shared).

It is also not easy for a user with no parallel programming experience to write a C++ code
with parallel functional semantics in GPC. But in GPRM, data is inherently local to func-
tions, which are GPRM tasks. This helps to reduce the time spent debugging. GPRM facili-
tates modular design, which is key to improve productivity [159].

We will see that for parallel loops, using OpenMP is much easier than GPRM. In the current
version of GPRM, par for constructs should be wrapped by a task. As an option, users
can use OpenMP parallel loops inside a GPRM code. However, performance-wise, using
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GPRM parallel loops is preferred.

All in all, GPRM has been designed with the highest possible productivity in mind. Param-
eter tuning is very time-consuming; therefore we will see that it is easier to achieve good
performance with GPRM, because there is no need to tune the number of threads.

5.8 Summary

We introduced GPRM, a parallel programming framework for future manycore processors.
The aim of GPRM is to achieve high performance by proper assignment of tasks to threads
at compile-time and efficient task stealing at runtime, with less user effort (increased produc-
tivity) compared to the state-of-the-art approaches. It is also worth mentioning that in terms
of portability, cross compiling and running GPRM on the two hardware platforms was as
simple as just changing the C++ compiler in the build system. GPRM is supported on most
UNIX-based systems.

We believe that a good rule of thumb is to focus on the number of tasks, rather than the
number of threads. To convey this message “pay more attention to tasks rather than threads”,
we have designed GPRM, which implements tasks using a C++-compatible functional task
composition language. The GPRM runtime automatically deploys tasks on threads running
on each processing core. Performance optimization becomes a simple matter of choosing a
proper cutoff value for the number of tasks.

In this chapter, we have also shown how the PCAM design methodology [32] can be ap-
plied to solve parallel problems in the GPRM model. The Partitioning phase is where the
programmer thinks about the design of the tasks, by considering a C++ function or an it-
eration of a loop as a GPRM task. Communication is defined in the GPC code and relates
the tasks to each other. Agglomeration is accomplished by defining the number of tasks. It
is also referred to as the cutoff value in our parlance. Finally, the Mapping is performed
at compile-time using a task description file. Since threads are pinned to cores, mapping
of tasks to threads is equivalent to the mapping of tasks to cores. A low-overhead efficient
stealing mechanism is applied to balance the tasks at runtime. Also, the exact order of task
execution is determined in a demand-driven fashion.
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Chapter 6

Comparison of GPRM with Popular
Parallel Programming Models

In this chapter, we add GPRM to the comparison between the parallel programming models.
Our main objective is to investigate pros and cons of GPRM in comparison with the state-
of-the-art models. Moreover, we include the TILEPro64 to compare GPRM with OpenMP
more in detail. We have looked into the details of the benchmarks to understand the reasons
behind the performance differences and to propose techniques for further improvement.

6.1 Uniprogramming Workloads

We illustrate the results of running the same “Base Benchmarks” as those in Section 4.2 on
both the TILEPro64 and the Xeon Phi. Two GPRM approaches are added to the comparison:
I) GPRM with no stealing at all and II) GPRM with stealing enabled, referred to as GPRM-

Steal or GPRM-S. GPRM is only compared against OpenMP on the TILEPro64, but the
results are shown in the same charts as the Xeon Phi results. This helps to compare the two
platforms as well.

Threads and tasks are two completely different concepts. However, in a pure task-based
model such as GPRM, parallelisation is only controlled by tasks. Setting the cutoff value
less than the number of cores is fairly similar to having a smaller number of threads, because
in this situation, tasks are assigned to a fraction of threads and the remaining threads are
asleep and will remain so to the end of program. Larger cutoff values lead to the creation of
more fine-grained tasks. Suppose that we want to parallelise a simple loop on N elements.
In OpenMP, using 100 threads simply means that each thread gets N/100 of the workload
(the simplest case with static scheduling). In GPRM for every program, the number of tasks
should be specified. For a loop, each chunk corresponds to a task, therefore 100 tasks (i.e.
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cutoff=100) on the Xeon Phi for instance, means that each thread gets N/100 of the workload.
If we choose a cutoff=480, since there are 240 threads on the Xeon Phi, each thread gets 2
tasks.

Therefore, like before, two different comparisons are shown for every benchmark. The first
comparison shows the speedup for varying numbers of threads. For GPRM, considering its
thread pool and the above explanation, we only show the results with the default number of
threads (as many as the number of cores), which is 63 on the TILEPro64 and 240 on the
Xeon Phi.

The second comparison illustrates the speedup with the default number of threads and vary-
ing cutoffs. Choosing a small cutoff can restrict parallelism, but choosing a very large cutoff
can saturate the system with a massive number of fine-grained tasks. The decision often
depends on the input data set [149]. Usually, the cutoff value can be controlled by the user
code. Leaving the decision to the runtime system has been proposed as an alternative in
Adaptive Task Cutoff (ATC) [101], which is to aggregate tasks by not creating some of the
user specified tasks and instead executing them sequentially.

6.1.1 Experimental Setup

All the benchmarks are implemented as C++ programs, and all speedup ratios are computed
against the running time of the sequential code implemented in C++ (which means they are
directly proportional to the absolute running times). We repeat all the experiments 20 times
and use the average results.

On the TILEPro64 all 63 available cores are used. The Tilera’s compiler, which is based on
GCC 4.4.3 is called tile-g++ and is provided by MDE 3.0 from the Tilera Corporation.
It The compiler flag -O2 is specified. The TILEPro64 runs Tile Linux which is based on the
standard open-source Linux version 2.6.36. The Intel compiler icpc (ICC) 14.0.2 is
used with -O2 -mmic -no-offload flags for compiling the programs for native execu-
tion on the Xeon Phi. Unlike the competitive approaches, for the GPRM framework there is
no shared library to be copied to the Xeon Phi.

6.1.2 Fibonacci Benchmark

We have already discussed the Fibonacci benchmark in Section 4.2. The code snippet in
Listing 6.1 shows the differences between GPRM and other models (e.g. OpenMP) in terms
of task creation. We assume that CUTOFF is a constant (e.g. 2048). In order to start the
computation, one can call fib(n,1) from the main().
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1 i n t s e q F i b ( i n t n )
2 {
3 i n t x , y ;
4 i f ( n < 2) re turn n ;
5 x = f i b s e q ( n − 1) ;
6 y = f i b s e q ( n − 2) ;
7 re turn x + y ;
8 }
9

10 /∗ OpenMP ∗ /
11 i n t f i b ( i n t n , i n t c ) {
12 i n t x , y ;
13 i f ( n<2) re turn n ;
14 i f ( c < CUTOFF ) {
15 #pragma omp t a s k u n t i e d s h a r e d ( x )
16 x = f i b ( n − 1 , c ∗ 2) ;
17

18 #pragma omp t a s k u n t i e d s h a r e d ( y )
19 y = f i b ( n − 2 , c ∗ 2) ;
20

21 #pragma omp t a s k w a i t
22 } e l s e {
23 x = s e q F i b ( n − 1) ;
24 y = s e q F i b ( n − 2) ;
25 }
26 re turn x + y ;
27 }
28

29 /∗ GPRM ∗ /
30 i n t f i b ( i n t n , i n t c ) {
31 GPRM : : K e rn e l : : F i b o n a c c i F ib ;
32 i f ( c < CUTOFF) {
33 /∗ Add i s a b u i l t −i n t a s k i n GPRM f o r a r i t h m e t i c a d d i t i o n ∗ /
34 re turn Add ( f i b ( n − 1 , c ∗ 2) , f i b ( n − 2 , c ∗ 2) ) ;
35 } e l s e {
36 /∗ SeqFib ( ) member−f u n c t i o n i s imp lemen ted t h e same as seq F i b ( ) ∗ /
37 re turn Fib . SeqFib ( n ) ;
38 }
39 }

Listing 6.1: Task creation in OpenMP and GPRM for the Fibonacci benchmark

Figure 6.1 shows all the results taken from running this benchmark with different pro-
gramming models on the TILEPro64 and the Xeon Phi. Figure 6.1(a) shows the speedup
chart for fib(47) with 2048 unbalanced tasks at the last level of the Fibonacci heap. In-
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creasing the number of threads causes visible performance degradation for OpenMP. Set-
ting KMP AFFINITY=balanced results in a negligible improvement of the OpenMP perfor-
mance. Cilk Plus and TBB show similar results. Cilk Plus can reach near the GPRM-Steal’s
performance with 128 threads, but there is no clue for the programmer on how to determine
this number before running the experiment. GPRM-Steal has the best performance amongst
all on the both platforms.
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Figure 6.1: Parallel Fibonacci benchmark for the integer number 47.

GPRM speedup of 49× on the TILEPro64 can be increased upto 98× on the Xeon Phi. Look-
ing at Fig. 6.1(b), however, reveals that the best running time is obtained on the TILEPro64,



6.1. Uniprogramming Workloads 86

which implies that the serial runtime on the Xeon Phi is much slower than on the TILEPro64
for this benchmark.

We have increased the number of threads for OpenMP on the TILEPro64 to show the effect
of oversubscription [160] as well.
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Figure 6.2: Parallel Fibonacci benchmark for the integer number 47.

Figures 6.2(a) and 6.2(b) show that choosing a proper cutoff is key to good performance.
It is due to the fact that the tasks are unbalanced, and creating more tasks can result in a
more even distribution of them. As we can see, it is easier to predict the proper number
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of tasks, rather than finding a good combination of the number of threads and tasks in the
system. It seems that because of the frequent thread migrations on the TILEPro64, thread
scheduling with OpenMP has more overhead and GPRM outperforms OpenMP significantly
on that system. GPRM-Steal improves the performance even more.

We re-emphasise that the benefits of using a proper task cutoff are not only limited to GPRM.
The OpenMP speedup of only 1.1× for Fib 47 with 240 threads on the Xeon Phi –similar to
the maximum speedup for Fib 38 in [98]– can be improved up to 75× by limiting the number
of tasks.
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Figure 6.3: Parallel Fibonacci benchmark for the integer number 47.

Performance Metrics

The Clockticks per Instructions Retired (CPI) event ratio, also known as Cycles per Instruc-

tions, which is a lower-is-better metric, is one of the basic performance metrics for hardware
event-based sampling collection.

Total CPU Time is another lower better metric that shows the total CPU times consumed
for running an application1. Both of these metrics for the Xeon Phi platform are obtained

1Note the log scale on the y-axis of the (f) charts.
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using Intel VTune Amplifier XE 2013 performance analyser [141]. Intel TBB and both
of the GPRM approaches have a better CPI Rate, while having a considerably better Total
CPU Time compared to the other approaches. One reason is that in a model like GPRM,
threads go to sleep immediately after finishing their jobs, while e.g. in the Intel OpenMP,
they spin-wait for 200ms before going to sleep [161]. Although sometimes in solo execution
of the programs, these extra CPU cycles (and generally the overhead of the runtime libraries)
have negligible influence on the running time (wall time), they affect other programs under
multiprogrammed execution considerably [146] [162].

Figures 6.3(c) to 6.3(g) are screenshots taken from the VTune Amplifier when running Fib
47 with cutoff 2048 natively on the Xeon Phi. The x-axis shows the logical cores of the Xeon
Phi (240 cores), and the y-axis is the CPU time, from 0 to the maximum number specified in
seconds2. The effect of GPRM task stealing is evident by comparing Figs. 6.3(f) and 6.3(g)

Power Consumption

It might be argued that the performance achieved by Cilk Plus with smaller numbers of
threads is close to GPRM-Steal with 240 threads, meaning that similar performance can be
achieved with half the number of threads, which would be beneficial for power/energy con-
sumption reasons. Using the minimum number of cores to achieve the desired performance
can be very important.

This would be a valid criticism if GPRM threads were making the cores busy by spin-waiting,
which is not the case. Instead, the GPRM threads go to sleep if they have no work to do,
and hence do not consume CPU time. In order to corroborate this claim, we measured the
average power consumption of the best result achieved by each model; all measurements fall
in the range of 130-135 Watt.

6.1.3 MergeSort Benchmark

In the Fibonacci benchmark, the parent tasks3 were lightweight integer additions. But for the
MergeSort benchmark, the parent tasks are heavyweight merge operations. Moreover, the
children tasks at the leaves –the chunks that need to be sorted sequentially– are almost equal
in size. These features make this benchmark distinct from the previous one.

2For all experiments, results from the benchmark’s kernel are considered in the figures (a) to (d), while in
the other results taken from the VTune Amplifier, all information from the start of the application, including its
initial phase and the CPU time consumed by the shared libraries is taken into account.

3See the GPRM definition of parent tasks in Section 5.5.1
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Figure 6.4: Parallel MergeSort benchmark for an array of 80 million integers.

As shown in the Fig. 6.4(a), this memory-intensive benchmark does not scale well, as has
already been recognised by other authors [3] [94]. However, the larger caches of the Xeon
Phi, compared to those of the TILEPro64, can result in better runtime performance. The
GPRM approaches have significantly better performance with the default number of threads.
On the Xeon Phi, both OpenMP and Cilk Plus perform well with smaller numbers of threads,
but their performance drops as the number of threads increases. For the OpenMP and Cilk
Plus approaches, more than 75% of the CPU cycles are consumed by their runtime libraries
[24]. Using the balanced thread affinity for OpenMP has no noticeable effect.
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Figure 6.5: Parallel MergeSort benchmark for an array of 80 million integers.

Since the child tasks are almost equal in size, cutoff values greater than 64 are enough to
reach near-maximal performance with 240 threads, as shown in Fig. 6.4(b). Larger cutoffs,
though, do not cause a notable slow down (as long as one does not create a massive number
of tasks). Since the amount of work carried out for each task is fairly equal, there is no
noticeable difference between the GPRM and GPRM-Steal approaches. It is evident from
the speedup charts how regular task-based applications similar to this reduction example are
well suited to the GPRM model.
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Figure 6.6: Parallel MergeSort benchmark for an array of 80 million integers.

1 /∗ TBB ∗ /
2 c l a s s S o r t : p u b l i c t a s k {
3 p u b l i c :
4 i n t ∗ A; i n t ∗ tmp ; i n t s i z e ; i n t c u t o f f ;
5 S o r t ( i n t ∗ A , i n t ∗ tmp , i n t s i z e , i n t c u t o f f ) :
6 A( A ) , tmp ( tmp ) , s i z e ( s i z e ) , c u t o f f ( c u t o f f ) {}
7 t a s k ∗ e x e c u t e ( ) {
8 i f ( c u t o f f ==1) {
9 S e q S o r t (A, tmp , s i z e ) ;

10 } e l s e {
11 S o r t& a = ∗new ( a l l o c a t e c h i l d ( ) ) S o r t (A, tmpA , h a l f , c u t o f f / 2 ) ;
12 S o r t& b = ∗new ( a l l o c a t e c h i l d ( ) ) S o r t (B , tmpB , s i z e−h a l f , c u t o f f / 2 ) ;
13 s e t r e f c o u n t ( 3 ) ; spawn ( a ) ; s p a w n a n d w a i t f o r a l l ( b ) ;
14 Merge& c = ∗new ( a l l o c a t e c h i l d ( ) ) Merge (A, B , tmp , s i z e ) ;
15 s e t r e f c o u n t ( 2 ) ; s p a w n a n d w a i t f o r a l l ( c ) ;
16 }
17 re turn NULL;}
18 } ;

Listing 6.2: Task creation in TBB for the MergeSort benchmark
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1 / / The o t h e r t h r e e approaches use t h e f u n c t i o n S o r t
2 void S o r t ( i n t ∗ A, i n t ∗ tmp , i n t s i z e , i n t c u t o f f ) {
3 i n t h a l f = s i z e / 2 ;
4 i n t ∗ tmpA = tmp ;
5 i n t ∗ B = A + h a l f ;
6 i n t ∗ tmpB = tmpA + h a l f ;
7

8 /∗ OpenMP ∗ /
9 i f ( c u t o f f ==1) {

10 S e q S o r t (A, tmp , s i z e ) ;
11 } e l s e {
12 #pragma omp t a s k
13 S o r t (A, tmpA , h a l f , c u t o f f / 2 ) ;
14 #pragma omp t a s k
15 S o r t (B , tmpB , s i z e−h a l f , c u t o f f / 2 ) ;
16 #pragma omp t a s k w a i t
17 #pragma omp t a s k
18 Merge (A, B , tmp , s i z e ) ;
19 #pragma omp t a s k w a i t
20 }
21

22 /∗ C i l k P lus ∗ /
23 i f ( c u t o f f ==1) {
24 S e q S o r t (A, tmp , s i z e ) ;
25 } e l s e {
26 C i l k s p a w n S o r t (A, tmpA , h a l f , c u t o f f / 2 ) ;
27 C i l k s p a w n S o r t (B , tmpB , s i z e−h a l f , c u t o f f / 2 ) ;
28 C i l k s y n c ;
29 C i l k s p a w n Merge (A, B , tmp , s i z e ) ;
30 C i l k s y n c ;
31 }
32

33 /∗ GPRM ∗ /
34 GPRM : : K e rn e l : : MergeSor t MS;
35 i f ( c u t o f f ==1) {
36 MS. S e q S o r t (A, tmp , s i z e ) ;
37 } e l s e {
38 MS. Merge (A, B , tmp , s i z e ,
39 S o r t (2∗ i , A, tmpA , h a l f , c u t o f f / 2 ) ,
40 S o r t (2∗ i +1 , B , tmpB , s i z e−h a l f , c u t o f f / 2 ) ) ;
41 }
42 }

Listing 6.3: Task creation in OpenMP, Cilk and GPRM for the MergeSort benchmark

For this benchmark there is a significant difference between the CPI Rate and Total CPU
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Time of TBB and GPRM on one side and OpenMP and Cilk Plus on the other side (Fig. 6.6).
But these figures do not imply a poor behaviour of the TBB and GPRM runtime systems.
Since all merges in a branch of the task tree can run on the same core, one should not expect
to see a balanced distribution, and the balanced look in the cases of Cilk Plus and OpenMP,
as discussed in Section 4.2.5, is mostly because of the wasted CPU time by their runtime
libraries [24].

In order to show how to specify parallelism in each model, the related snippets of the source
codes are listed in Listings 6.2 and 6.3. In TBB, class task is the base class for tasks.
Therefore, in order to define the Sort task, we need to derive from task. For the other
three approaches, we can define a simple Sort function and call it recursively.

6.1.4 MatMul Benchmark

GPRM uses its par cont for (partial continuous for) worksharing construct, which is
a task-based approach to this problem, and distributes the chunks based on their indices
amongst the working threads. If the cutoff value is assumed as the number of tasks in GPRM,
the chunk size will be N/cutoff. The implementation of the parallel loops in GPRM will be
described in Chapter 7.

1 /∗ OpenMP ∗ /
2 #pragma omp f o r s c h e d u l e ( dynamic , N/ c u t o f f )
3

4 /∗ C i l k P lus ∗ /
5 #pragma c i l k g r a i n s i z e = N/ c u t o f f
6

7 /∗ TBB ∗ /
8 p a r a l l e l f o r ( b l o c k e d r a n g e<s i z e t >(0 , N, N/ c u t o f f ) , Body ( a , b , c ) ,

s i m p l e p a r t i t i o n e r ( ) ) ;
9

10 /∗ GPRM ∗ /
11 p a r c o n t f o r ( 0 , N, ind , c u t o f f , t h i s , &Foo : : b a r ) ;

Listing 6.4: Defining the number of chunks (or the chunk size) in different implementations
of the MatMul benchmark

The TILEPro64 is a 32-bit architecture without any FPU (Floating Point Unit). There are
no vector registers or instructions on this architecture (instead it uses a 32-bit three-way
issue scalar VLIW engine), and the size of caches are smaller than those of the Xeon Phi.
Therefore, we should expect a huge difference in the performance in this case. In order to
achieve automatic vectorization on the Xeon Phi, the Intel TBB and OpenMP codes have to
be compiled with the -ansi-alias flag.
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The schedule clause used with OpenMP for specifies how iterations of the associated
loops are divided (statically or dynamically) into contiguous chunks, and how these chunks
are distributed amongst threads of the team. For the MatMul benchmark, we have included
both of these OpenMP approaches in the comparison. It is important to note that the dynamic
scheduling on the Xeon Phi with cutoff 2048 can improve the performance of OpenMP from
43× for the default case (with no schedule clause) to 52×. After these considerations, we
are ready to run the MatMul benchmark and compare the platforms as well as the program-
ming models in a data parallel scenario. It is worth noting that with both GPRM approaches
we have observed a superlinear speedup on the TILEPro64.
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Figure 6.7: Parallel MatMul benchmark on a 4096×4096 matrix of double numbers.
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Figure 6.7(a) shows that Intel OpenMP with dynamic scheduling has the best scaling amongst
all on the Xeon Phi, and both GPRM approaches scale better than TBB and Cilk Plus. On
the TILEPro64, the GPRM approaches with the superlinear speedup have better scaling than
OpenMP. However, as illustrated in Fig. 6.7(b), there is an enormous difference between the
running time on the TILEPro64 and the Xeon Phi4. The Xeon Phi is a vector processing
machine and can distinguish itself from the TILEPro64 in scenarios like this.
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Figure 6.8: Parallel MatMul benchmark on a 4096×4096 matrix of double numbers.

4Note the log scale on the y-axis of Fig. 6.7(b). The best result on the Xeon Phi is approximately 106×
faster than on the TILEPro64.
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Here, all the tasks are the same, having fairly the same size. To be precise about the results
in Fig. 6.8(a), consider that we have 63 threads for GPRM on the TILEPro64 (as many
as the number of available cores), but 64 threads for OpenMP. If we wanted to get better
results for smaller cutoffs, we had to choose cutoff 63 for GPRM but in order to keep up
with the previous experiments, we have used powers of two. 64 threads of OpenMP are time
sliced over 63 cores, which results in a good speedup for cutoff 64. However, in the case
of GPRM, every thread gets 1 chunk, except one of them which gets 2 chunks. That is why
we see a big difference for cutoff 64 between the approaches on the TILEPro64. Instead
of choosing better cutoffs for this case (63,126,...), we have increased the cutoff value, and
thus creating more tasks has balanced the load distribution. The same reasoning applies to
the Xeon Phi. Firstly, 4096 is not a factor of 240 (number of threads). Moreover, cutoff 256
(making 256 tasks) makes 16 cores busier than the others. Although we could choose cutoff
240 to improve the performance, for consistency with other experiments, we have limited
ourselves to powers of two. By increasing the cutoff, there will be more tasks and a better
distribution, hence better speedup.
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Figure 6.9: Parallel MatMul benchmark on a 4096×4096 matrix of double numbers.
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The results of this benchmark on the Xeon Phi raises the question of what causes the high
CPI Rate for GPRM and Intel TBB while they run sometimes faster or at least as fast as other
implementations? The answer is to be found in the number of executed instructions. When
we look at the hardware event INSTRUCTIONS EXECUTED sampled by the VTune Ampli-
fier, then the higher CPI Rate does not necessarily mean degraded performance. Although
the CPI Rate is higher for the TBB, GPRM, and GPRM-Steal approaches, the number of
INSTRUCTIONS EXECUTED is notably smaller compared to Cilk Plus and OpenMP. For
instance, this number in the Cilk Plus approach is almost 2× bigger than that of GPRM.

In the charts in Figures 6.9(c) and 6.9(d), there is an evident distinction between the distribu-
tion of CPU times that shows how OpenMP load balancing, when using dynamic scheduling
leads to better performance. For a very detailed comparison, other hardware events should be
taken into account as well, but we can already reason about the performance only by looking
at these few fields.

6.1.5 Detailed Comparison for the MatMul benchmark

In most cases, GPRM 5 was the winning model. However, on the Xeon Phi, the OpenMP
implementation of the MatMul benchmark scales up better than the GPRM implementation.
We decided to explore this further and therefore, in this subsection we aim to figure out why
GPRM could not reach the top performance achieved by OpenMP in this case.

Thread Mapping (Affinity)

Although it is not obvious to decide about the optimal number of threads for the OpenMP
case, we can reason about the performance of GPRM. As stated earlier, similar to [163], we
have decided to evenly distribute the threads on the Xeon Phi cores. Our default strategy was
to fill two hardware threads from the first to the last physical core, and fill the remaining two
hardware threads afterwards.

Obviously, with 240 threads, all the logical cores will be filled, but mapping strategies will
ultimately specify which tasks to be run on which cores. The reason is that with pre-assigned
tasks to threads in GPRM, the location of a thread will become location where its tasks will
be executed on (unless they got stolen at runtime). In some cases, an alternative mapping
strategy could improve the performance, e.g. a compact approach for filling the logical cores
(see Figure 6.10(b)). Finding such cases is not always straightforward. A good solution
depends on tasks’communication pattern, whether or not data chunks can fit in an L2 cache,
shared by logical cores in a physical core, and so on. For matrix multiplication, since chunks

5For the rest of this thesis, by GPRM we mean GPRM with task stealing enabled.
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for consecutive threads (according to thread ID) are contiguous, compact affinity might be
beneficial in many cases, as every 4 consecutive threads can share an L2 cache. However,
changing the mapping strategy can be pointless if the chunks could not fit in the caches,
because either the input set is large or the cutoff value is small.

GPRM offers a command-line switch to choose between these mapping strategies. By choos-
ing a compact affinity for the MatMul benchmark on 4096× 4096 matrices, GPRM reaches
the top performance achieved by OpenMP in Fig. 6.7(a). Our point is that choosing between
a couple of mapping strategy (as in GPRM) in order to get the best performance is much
easier than finding an optimal number of threads (as in OpenMP).

(a) Balanced affinity (b) Compact affinity

Figure 6.10: Two thread mapping strategies for the Xeon Phi

Relative Performance for Matrix Multiplication

We extend the MatMul benchmark (which is defined for 4096 × 4096 double matrices) to
other square matrices with varying types and sizes of data. Integer, float, and double square
matrices with sizes varying from 512 to 4096 are tested. Since matrix multiplication oper-
ations on the TILEPro64 are not as fast as on the Xeon Phi, we only include the results for
8096× 8096 matrices on the Xeon Phi.

Heat maps are used in Fig. 6.11 to show OpenMP runtime over GPRM runtime ratio with
as many threads as the number of cores for both cases. In almost all cases, GPRM outper-
forms OpenMP. Therefore, even for the matrix multiplication benchmark, GPRM with the
default balanced affinity can be considered a better approach. Whenever needed though, an
alternative mapping strategy could be utilised.

As illustrated in 6.11, for small matrices, hence tiny tasks, GNU OpenMP on the TILEPro64
has very poor performance, compared to GPRM. Intel OpenMP on the Xeon Phi does not
suffer from the same issue; however, there are still some cases that its performance is half of
the performance of its counterpart, GPRM. These differences for such a simple benchmark
are significant, showing how well our pure task-based approach fit into manycore architec-
tures.
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(a) TILEPro64, Integers (b) Xeon Phi, Integers

(c) TILEPro64, Floats (d) Xeon Phi, Floats

(e) TILEPro64, Doubles (f) Xeon Phi, Doubles

Figure 6.11: Detailed comparison for the MatMul: (OpenMP runtime) / (GPRM runtime)

6.1.6 Choosing a Proper Cutoff

Focusing on GPRM, there are some general rules that can be applied for finding a good
cutoff. For example, if the problem is too small, one should consider creating tasks less
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than the number of cores to limit the cost of task creation and communication overhead. If
the problem is regular, one might consider creating as many tasks as the number of cores
in the system to provide the threads with equal workloads. If the tasks are unequal (as in
the Fibonacci benchmark), then creating a larger number of tasks and enabling the stealing
mechanism can help the runtime system balance the load. If there are children and parent
tasks (as in the MergeSort benchmark), GPRM will automatically run the parents on the
same core (thread) as one of their children. In such cases, the programmer is only concerned
about the number of child tasks. If the number of tasks is not divisible by the number of
cores, then creating more tasks along with enabling the stealing mechanism would be useful.

6.2 Multiprogramming Workloads

In this section, we consider two multiprogramming scenarios for our three base benchmarks
to see how the programming models behave in multiprogramming environments. The metric
used for the comparison is the user-oriented metric Turnaround Time.

6.2.1 Case 1: Multiple Instances of a Single Program

In order to show the effect of Global Sharing between different GPRM applications, consider
5 MergeSort applications entering the system with an interval of 1 second. Again, an array
of 80M integers with the cutoff 2048 and the default number of threads (240) is considered.

The results are illustrated in Fig. 6.12. The stacked representation is used firstly to illustrate
the difference between the kernel times (only the parallel parts) of the applications, e.g. in the
OpenMP case, the difference between the best and worst kernel time is around 11.2 seconds,
while for the “GPRM-Steal with Global Sharing”, the difference is less than 2 seconds.

The second use of the stacked representation is to show all other consumed time in the system
at the top of the stacked column chart. This includes the time before job submission (interval)
as well as the time spent on initialisations (sequential time). It is evident that for OpenMP
or GPRM approaches without Global Sharing, this time is larger, which is an indicator of
the amount of overlap between the sequential parts of the applications. It can be seen in Fig.
6.12(h) how the bottleneck is removed with the help of Global Sharing.

Beside the Total CPU Time, the hardware event Instructions Executed, estimated by multi-
plying sample count by 10M events per sample (obtained by the VTune Amplifier in Fig.
6.12(b)) can be used as another metric for comparison. Based on (|(V 1 − V 2)|/((V 1 +

V 2)/2))∗100 formula, for the sum of the turnaround times, the difference between “GPRM-
Steal with Global Sharing” and TBB as the second best result is around 20%6.

6The submission of a job is the start of its initialisation
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Stacked time for 5 MergeSort applications, 1 sec interval

(a) Stacked Time

Approach Total CPU Time(s) Inst. Executed
OpenMP 8.7K 21.2K × 10M
Cilk Plus 8.8K 16.0K × 10M
TBB 1.1K 4.6K × 10M
GPRM 0.9K 3.8K × 10M
GPRM-S 0.9K 3.9K × 10M
GPRM-S, Share 0.8K 3.8K × 10M

(b) Performance Summary

(c) OpenMP (d) Cilk Plus

(e) TBB (f) GPRM

(g) GPRM-Steal (h) GPRM-Steal with Global Sharing

Figure 6.12: Case1: A Multiprogramming case with 5 MergeSort applications with 1 sec
interval.
The stacked column chart shows the mean time for each application’s kernel, followed by
the remaining time spent from the start of the first application to the end of the last one.
GPRM-Steal with Global Sharing has the best performance; Cilk Plus has the worst.
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(a) Turnaround times

Approach Total CPU Time(s) Inst. Executed
OpenMP 3.2K 8.5K × 10M
Cilk Plus 2.9K 7.5K × 10M
TBB 1.2K 4.3K × 10M
GPRM 1.1K 4.1K × 10M
GPRM-S 1.1K 4.1K × 10M
GPRM-S, Share 1.2K 4.2K × 10M

(b) Performance Summary

(c) OpenMP (d) Cilk Plus

(e) TBB (f) GPRM

(g) GPRM-Steal (h) GPRM-Steal with Global Sharing

Figure 6.13: Case2: A multiprogramming scenario with all the three benchmarks.
The best turnaround times are obtained with “GPRM-Steal with Global Sharing”. It im-
proves the performance of GPRM by stealing tasks locally inside each application and shar-
ing information globally across multiple applications. OpenMP has the worst performance.
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6.2.2 Case 2: Single Instances of Multiple Programs

For this case, we extend the experiment in Section 4.3, by adding the GPRM approaches to
the comparison. The three base benchmarks have the same input sizes as the single-program
cases with the cutoff value 2048 and the default number of threads 240. We do not start all
of them at the same time. Rather, we want the parallel phases to start almost simultaneously,
such that the threads of all applications compete for the resources. For that purpose, the
MergeSort benchmark enters the system first. Two seconds later the MatMul benchmark
enters the system, and half a second after that, the Fib benchmark starts7. The results are
shown and discussed in Fig. 6.13. For the sum of the turnaround times, the difference
between “GPRM-Steal with Global Sharing” and TBB as the second best result is about
17%.

Although the Total CPU Time is a key performance metric, it cannot be used solely to inter-
pret the results. A sequential program can have the same value for the Total CPU Time as
a parallel program. Therefore, it is also important to find out how evenly the tasks are dis-
tributed across the system. As we have observed in the multiprogramming cases, compared
to other GPRM approaches, the efficiency of the “GPRM-Steal with Global Sharing” comes
from its better load balancing. However, the wasted CPU cycles by the runtime libraries, as
for OpenMP and Cilk Plus, which can have a significant impact on the results can be detected
by Total CPU Time and Instructions Executed.

6.3 Summary

We have used our “Base Benchmarks”: Fibonacci, MergeSort and MatMul again and added
GPRM to the performance comparison of the parallel models discussed in Chapter 4. The
same benchmarks have also been used to compare GPRM and OpenMP on the TILEPro64.

We have presented a detailed analysis of GPRM’s performance. We have also demonstrated
the advantages of our task-based parallel programming model over the existing well-known
parallel approaches. Traditionally, attention has focused on finding the optimal number of
threads in order to achieve desirable performance. In the thread-speedup charts, we used the
default number of threads for GPRM and presented its performance with only two points
for no-stealing and stealing modes. Performance optimisation in GPRM is a simple matter
of choosing a proper cutoff value. In other words, GPRM combines an intuitive task-based
approach with excellent performance, without the need to tune the number of threads.

On the TILEPro64, GPRM outperforms OpenMP in all cases. GPRM also achieves top

7The sequential phase of the MergeSort benchmark with the input size 80M is around 2 seconds, and the
initial phase of the MatMul benchmark with the input size 4096×4096 is about half a second.
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performance for 2 out of the 3 uniprogramming test cases on the Xeon Phi, without any
tuning. Further investigation on the only case on the Xeon Phi where GPRM was not the
best model, matrix multiplication (MatMul), revealed new results: for different integer, float
and double matrices GPRM significantly outperforms OpenMP on the TILEPro64, specially
for small matrices. On the Xeon Phi, GPRM is again the winning approach in most of
the cases. In other cases (such as the one used in the default MatMul configuration), after
changing GPRM’s thread mapping policy via a command-line switch, it was able to reach
the top performance achieved by the optimal number of OpenMP threads.

For multiprogramming on a general-purpose parallel system, we propose the use of GPRM
which implements a scheme called “Steal Locally, Share Globally”. The idea is to steal tasks
locally (from within the same application) only if the initial task assignment is not optimal,
and to share the least amount of information about the system’s load globally (between dif-
ferent applications). We have shown that our strategy is highly competitive against other
approaches, namely OpenMP, Cilk Plus and TBB for all testbenches, and achieves the top
performance on the Intel Xeon Phi with 17% to 20% difference with TBB as the second best
approach.
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Chapter 7

Parallel Lower-Upper Factorisation of
Sparse Matrices

OpenMP enjoys wide support from its community and continues to evolve. This makes
it a challenging competitor for every new programming model, including GPRM. In this
chapter we highlight some of the drawbacks in the OpenMP tasking approach, and propose
an alternative solution based on the GPRM programming framework.

We compare the performance of GPRM with that of OpenMP in 2 different scenarios: first
a matrix multiplication benchmark1 which has structured parallelism, and second, a linear
algebra problem which fits very well into less structured task-based parallelism.

Lower-Upper factorisation of sparse matrices is a fundamental linear algebra problem. Due
to the sparseness of the matrix, conventional worksharing solutions do not result in good
performance, since a lot of load imbalance exists. As a well-known testcase, we have used
the SparseLU benchmark from the the Barcelona OpenMP Tasks Suite (BOTS) [149].

For the purposes of this chapter, we will show how OpenMP fails to operate as expected for a
large number of fine-grained tasks, while GPRM copes with such a situation naturally (more
in Section 7.2). Furthermore, we will introduce a hybrid worksharing-tasking approach to
avoid creating too many tasks (more in Section 7.3).

7.1 GPRM Parallel Loops

So far, we have only used GPRM parallel loops without discussing them. In this section, we
will describe them more in detail.

1In this chapter, the matrix multiplication is used to show the effect of creating small tasks (short computa-
tions) on the performance of the runtime systems
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GPRM is a purely task-based parallel framework. As discussed in Chapter 5, one can create
CUTOFF2 tasks in GPRM, each of which with their own indices. These indices can be then
used by a worksharing construct to specify which elements of the loop belongs to which
thread. Normally, when the tasks are fairly equal, the best result can be obtained by choosing
the cutoff value as the same as the number of threads in GPRM, which is itself as the same
as the number of cores. Although in Section 7.3 tasks are not equal, as a solution one can
use the GPRM parallel loops to balance the load amongst threads. This solution, as will be
shown, works very well when medium size or large sparse matrices are used.

We have created a number of useful parallel loop constructs for use in GPRM. These work-
sharing constructs corresponds to the for worksharing construct in OpenMP, in the sense
that they are used to distribute different parts of a work among different threads. However,
there is a big difference in how they perform the operation. In OpenMP, the user marks a
loop as an OpenMP for with a desirable scheduling strategy, and the OpenMP runtime de-
cides which threads should run which part of the loop; in GPRM, multiple instances of the
same task –normally as many as the cutoff value– are generated, each with a different index
(similar to the global id in OpenCL). Each of these tasks calls the parallel loop passing in
their own index to specify which parts of the work should be performed by their host thread.

Figure 7.1: Partitioning a nested m(3 × 3) or a single m(9) loop amongst n(4) threads.
a) Step size of 1, as in the par for and par nested for, b) Continuous, as in the
par cont for

The par for construct is essentially a sequential loop used for parallelisation of a single
loop. It distributes the work in a Round-Robin fashion to the threads. It can also be referred to
as a partial for, as it is actually a sequential loop that executes only a part of the original loop.
A par nested for treats a nested loop as a single loop and follows the same pattern to
distribute the work. Alternatively, the Continuous method gives every thread an m/n chunk,
and the remainder m%n is distributed one-by-one to the foremost threads. These methods
are shown in Fig 7.1. The need to parallelise nested loops arises often, e.g. in situations
where there are variable size loops such as the SparseLU benchmark in Section 7.3.

The par for and par nested for loops in GPRM are implemented using C++ tem-
plates and member-function pointers. The implementation of these worksharing constructs
are given in Listing 7.1 and 7.2. They will be our worksharing constructs by default. The
parallel loops with Continuous partitioning have similar implementations. We denote them
as partial continuous loops: par cont for.

2CUTOFF is a constant which defines the number of tasks that can be run simultaneously in the system.
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1 template<typename T c l a s s , typename Param1>
2 i n t p a r f o r ( i n t s t a r t , i n t s i z e , i n t ind , i n t CUTOFF, T c l a s s ∗ TC , i n t (

T c l a s s : : ∗ w o r k f u n c t i o n ) ( i n t , i n t , i n t , Param1 ) , Param1 p1 ) {
3 i n t t u r n =0;
4 f o r ( i n t i = s t a r t ; i < s i z e ; ) {
5 i f ( t u r n % CUTOFF == i n d ) {
6 (TC−>∗w o r k f u n c t i o n ( i , s t a r t , s i z e , p1 ) ;
7 i = i + CUTOFF ;
8 }
9 e l s e {

10 i ++;
11 t u r n ++;
12 }
13 }
14 re turn 0 ;
15 }

Listing 7.1: Implementation of the par for

1 t empla te <typename T c l a s s , typename Param1>
2 i n t p a r n e s t e d f o r ( i n t s t a r t 1 , i n t s i z e 1 , i n t s t a r t 2 , i n t s i z e 2 , i n t

ind , i n t CUTOFF, T c l a s s ∗ TC , i n t ( T c l a s s : : ∗ w o r k f u n c t i o n ) ( i n t , i n t ,
i n t , i n t , i n t , i n t , Param1 ) , Param1 p1 ) {

3 i n t t u r n =0;
4 f o r ( i n t i = s t a r t 1 ; i < s i z e 1 ; i ++) {
5 f o r ( i n t j = s t a r t 2 ; j < s i z e 2 ; ) {
6 i f ( ( t u r n >= 0) && ( t u r n % CUTOFF == i n d ) ) {
7 (TC−>∗w o r k f u n c t i o n ) ( i , j , s t a r t 1 , s i z e 1 , s t a r t 2 , s i z e 2 , p1 ) ;
8 j = j + CUTOFF ;
9 i f ( j >= s i z e 2 ) t u r n = s i z e 2 − j + i n d ;

10 }
11 e l s e {
12 j ++;
13 t u r n ++;
14 }
15 }
16 }
17 re turn 0 ;
18 }

Listing 7.2: Implementation of the par nested for

As we will see in the next sections, since the GPRM par nested for is implemented
with minimum overhead, it is a significantly useful worksharing construct, .
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7.2 Matrix Multiplication Micro-benchmark

In this section, we use a naive matrix multiplication algorithm with a triple nested loop as
a micro-benchmark to compare OpenMP and GPRM in terms of the overhead of executing
simple tasks on the TILEPro64 and find out which cases are problematic. However, for the
SparseLU benchmark itself, we consider both platforms. The code is given at Listing 7.3.

As our aim is to use this micro-benchmark to identify the most important barriers on the way,
we change the interpretation of the problem to performing multiple jobs. Suppose that the
product of an m × n matrix A and an n × p matrix B is the m × p matrix C. We want to
parallelise the first loop of the triple nested loop, which loops on m, therefore m becomes
the number of jobs for this problem. The size of each job is identified by the sizes of the
next two loops in the triple nested loop, i.e. p ∗ n. We have chosen n = p to make the
problem more regular. We end up with matrices with the following specification: A : m×n,
B : n × n, and C : m × n. Due to the poor data locality of this algorithm, one should not
expect to see a linear speedup.

1 f o r ( i n t i = 0 ; i < m; i ++){
2 f o r ( i n t j = 0 ; j< p ; j ++){
3 f o r ( i n t k = 0 ; k <n ; k ++){
4 C[ i ∗p+ j ] += A[ i ∗n+k ] ∗ B[ k∗p+ j ] ;
5 }
6 }
7 }

Listing 7.3: Matrix Multiplication Micro-benchmark

Four approaches are selected for the comparison: I) The OpenMP for worksharing con-
struct, II) The OpenMP for with dynamic schedule and chunk size of 1, III) The OpenMP
Tasks, and IV) The GPRM par for construct.

Figure 7.2 shows the speedup for different job sizes over the sequential C++ baseline. GPRM
outperforms OpenMP in all cases but especially for the small job case (even then, the job
size is still not small enough to show the real overhead of having fine-grained tasks in
OpenMP). To our best understanding, the performance difference is due to the overhead
of thread scheduling on the TILEPro64, which is more visible in the small job cases with
short execution times.

In order to investigate the effect of task granularity on the behaviour of the OpenMP per-
formance, we decrease the size of the tasks even more. We also looked at the influence
of the cutoff value on the performance. Since the behaviours of the OpenMP worksharing
constructs were fairly similar, only the default omp for is used for the next experiment.
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Figure 7.2: Matrix Multiplication: GPRM par for vs. different OpenMP approaches on
the TILEPro64
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To improve the behaviour of the tasking approach, we added a cutoff value for the tasks,
such that only m/cutoff tasks were created. This is similar to sequencing multiple tasks. Fig
7.3 compares the speedup of a tuned version of the OpenMP task-based model with the other
alternatives. We believe that the regularity of GPRM in assigning tasks to its lower thread
management overhead make it the winner approach.

1 f o r ( i n t i = 0 ; i < (m/ c u t o f f ) ; i ++){
2 #pragma omp t a s k f i r s t p r i v a t e ( i )
3 f o r ( i n t t = 0 ; t < c u t o f f ; t ++) {
4 f o r ( i n t j = 0 ; j < p ; j ++){ / / p=n
5 f o r ( i n t k = 0 ; k < n ; k ++){
6 C [ ( i ∗ c u t o f f + t ) ∗p+ j ] += A[ ( i ∗ c u t o f f + t ) ∗n+k ] ∗ B[ k∗p+ j ] ;
7 }
8 }
9 }

10 }

Listing 7.4: Matrix Multiplication micro-benchmark with a cutoff value for OpenMP tasks
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Figure 7.3: Speedup measurement for fine-grained jobs, Number of the jobs: 200,000

Figure 7.3 shows that the poor behaviour of fine-grained tasks can be remedied to a consid-
erable extent by using a proper cutoff value. The OpenMP approaches gradually becomes
better when the size of the job is increased. We have chosen the first two cases to show
the effect of using a cutoff in more detail, because these cases show degraded performance
compared to the sequential implementation if no cutoff is used at all.

Figure 7.4 shows that a good choice of the cutoff value gives the speedup of 38.6× against
the case with no cutoff and 7.8× against the sequential version, for the job size of 50 × 50
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Figure 7.4: Speedup improvement by using a cutoff value for the fine-grained OpenMP tasks.
Number of the jobs: 200,000. Size of the jobs: 50×50 - 100×100

with 63 threads. The speedup for the job size of 100 × 100 is also improved by 10.8×
compared to the case with no cutoff and 8.2× compared to the sequential runtime.

7.3 Sparse LU Factorisation

The SparseLU benchmark from the BOTS suite [149], which computes an LU factorisation
of sparse matrices is a proper example of matrix operations with load imbalance. In the pro-
posed OpenMP solution [3], a task is created for each non-empty block. The main SparseLU
code from [3] (omitting the details of the OpenMP task-based programming, such as dealing
with shared and private variables) is copied in Fig 7.5. The number of tasks and the granu-
larity of them depend on the number of non-empty blocks and the size of each block, hence
a cutoff value cannot be defined inside the user-written OpenMP code. As has also been dis-
cussed in [3], using OpenMP tasks results in better performance compared to using the for
worksharing construct with dynamic scheduling. Therefore, we use the tasking approach for
the comparison.

The GPC code for the SparseLU benchmark implementation can be found in Listing 7.5.
The gprm unroll pragma results in parallel evaluation of the for loop it precedes. By
default, expressions in the GPC code are evaluated in parallel. The seq pragma forces
sequential evaluation of the block it precedes. We have defined different phases of the algo-
rithm as different types of tasks in GPRM.

It is worth mentioning that we have not changed the initialisation phase of generating sparse
matrices in the BOTS benchmark suite. Base on the default configuration, the matrices
become sparser as the number of blocks increases. For example, in the case of 50×50 blocks,
the matrices are 85% sparse, while for the cases with 100×100 blocks, the matrices become
89% sparse.
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Figure 7.5: the main code of the SparseLU benchmark, without revealing the OpenMP pro-
gramming details, borrowed from [3]

To obtain a fair distribution of the matrix elements amongst different threads –bearing in
mind the sparseness of the matrix– we have used a par nested for, because the numbers
of iterations are not fixed in this problem.

The loops become smaller as kk grows, which means that using a par for would, after a
few iterations when outer iters> cutoff, lead to starvation of some of the threads. By using
a par nested for the threads can get some work as long as the outer iters∗inner iters>

cutoff. Therefore, in order to implement the fwd, bdiv, and bmod tasks, one can use the
GPRM APIs for the parallel loops, as shown in Listing 7.6.

Figure 7.6 shows a sparse matrix of 4000×4000 divided into blocks of varying size. It is
again clear that with larger numbers of blocks in each dimension which results in smaller
block sizes, the OpenMP performance drops drastically. GPRM can deal with tiny 8×8
blocks 6.2× better than the best result obtained by OpenMP.
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1 GPRM : : K e rn e l : : SpLU sp ;
2

3 void f w d b d i v t a s k s ( i n t kk , f l o a t ∗∗ A, c o n s t i n t CUTOFF) {
4 #pragma gprm u n r o l l
5 f o r ( i n t n = 1 ; n < (CUTOFF / 2 ) ; n ++) {
6 sp . f w d t ( kk , A, n−1, CUTOFF / 2 ) ; / / fwd t a s k
7 sp . b d i v t ( kk , A, n−1, CUTOFF / 2 ) ; / / b d i v t a s k
8 }
9 }

10

11 void bmod ta sks ( i n t kk , f l o a t ∗∗ A, c o n s t i n t CUTOFF) {
12 #pragma gprm u n r o l l
13 f o r ( i n t n = 1 ; n < CUTOFF ; n ++) {
14 sp . bmod t ( kk , A, n−1, CUTOFF) ; / / bmod t a s k
15 }
16 }
17

18 void GPRM : : s p l u T a s k : : ComputeLU ( ) {
19 #pragma gprm seq
20 { /∗ GPRM e v a l u a t e s i n p a r a l l e l u n l e s s o t h e r w i s e s t a t e d ∗ /
21 f l o a t ∗∗ A = i n i t t a s k ( ) ;
22 f o r ( i n t kk =0; kk<NB; i ++) { / / NB: # B l o c k s
23 #pragma gprm seq
24 {
25 l u 0 t a s k ( kk , A) ;
26 f w d b d i v t a s k s ( kk , A, 63)
27 bmod ta sks ( kk , A, 63)
28 }
29 }
30 }
31 re turn ; }

Listing 7.5: SparseLU code in GPRM, Cutoff: 63

Table 7.1 reveals that the best results for the OpenMP approach is not obtained with the de-
fault setting, which is as many threads as the number of cores. Besides the large difference
in execution times when the block size becomes less than 20×20, there is a significant per-
formance degradation if the number of threads is set to the default value of 63. For example,
the execution time becomes 12.25× worse than the best time for the last case. However, it
is clear that GPRM reaches its best execution time without the need to tune the number of
threads –here, the number of threads and the cutoff value are the same for GPRM. This is
due to the fact that instead of creating very small tasks, GPRM offers an efficient way of
distributing the work amongst threads.
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1 i n t SpLU : : f w d t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t c u t o f f )
2 { re turn p a r f o r ( kk +1 , NB, ind , c u t o f f , t h i s , &SpLU : : fwd work , A) ;}
3

4 i n t SpLU : : b d i v t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t c u t o f f )
5 { re turn p a r f o r ( kk +1 , NB, ind , c u t o f f , t h i s , &SpLU : : bdiv work , A) ;}
6

7 i n t SpLU : : bmod t ( i n t kk , f l o a t ∗∗ A, i n t ind , i n t c u t o f f )
8 { re turn p a r n e s t e d f o r ( kk +1 , NB, kk +1 , NB, ind , c u t o f f , t h i s , &SpLU : :

bmod work , A) ;}
9

10 /∗ The fwd work f u n c t i o n here i s t h e same as fwd i n t h e c i t e d paper ∗ /
11 i n t SpLU : : fwd work ( i n t j j , i n t kk , i n t NB, f l o a t ∗∗ A) {
12 i f (A[ ( kk−1)∗NB+ j j ] != NULL)
13 fwd (A[ ( kk−1)∗NB+kk−1] , A[ ( kk−1)∗NB+ j j ] ) ;
14 re turn 0 ;
15 }

Listing 7.6: Implementation of the member functions of the SparseLU class. Work functions
can also be defined similar to the phases in [3]
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Table 7.1: Number of threads for the best results obtained by GPRM and OpenMP for the
sparse matrices of size 4000 with variable block sizes on the TILEPro64

Number of Blocks 50 100 200 400 500
No of threads for OMP tasks 64 63 32 16 8
No of threads for GPRM 63 63 63 63 63
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7.4 Results on the TILEPro64

After discussing the implementation details and conducting a preliminary comparison, we
conclude that the OpenMP performance comes close to that of GPRM when the number
of blocks are smaller, hence the tasks are larger. Therefore, in order to have a meaningful
comparison on the TILEPro64, we have chosen a matrix of 2500 elements and compared the
performance results for the 50×50 and 100×25 configurations (no blocks×block size).
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Figure 7.7: SparseLU Factorisation: GPRM vs. OpenMP on the TILEPro64

The speedup charts for the SparseLU benchmark have been shown in Fig 7.7. Since GPRM
uses the default number of threads, in order to generate the speedup chart, one should change
the number of tasks using the cutoff value. For this purpose, we have increased the cutoff
value from 16 to 128 to show how regular our approach is, in the sense that it gets its best
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performance with the factors of the number of cores. This is not surprising for this algorithm,
since the problem has been partitioned amongst threads regularly, and therefore they can
exploit the underlying architecture more efficiently.

Since the solution proposed using OpenMP tasks is different from ours, we simply increased
the number of threads in that case (the number of tasks depends on the input set). Increasing
the number of threads beyond the number of cores shows the effect of oversubscription.

7.4.1 OpenMP Performance Bottlenecks

We have identified a number of performance bottlenecks when programming with OpenMP.
The first is the thread migration overhead. This overhead can often be removed by stati-
cally mapping (pinning) the OpenMP threads to the execution cores. Using static thread
mapping (pinning) in a platform with per-core caches could be very useful, particularly for
load balanced data parallel problems, in which the portion of the work to be done by each
thread is fairly equal, and therefore CPU time and local caches can be effectively utilised.
Our study [23] shows that for such a platform, static thread mapping is often a good practice
in single-program environments, but for multiprogramming environments, in which differ-
ent programs compete for the resources, it is not always efficient. We refer the readers
to [22, 23, 164] for detailed discussions on thread mapping for OpenMP programs.

Another barrier is to find a proper cutoff point to avoid creating overly fine-grained tasks.
Programmers have to be very careful about the granularity of the tasks, otherwise the results
may be totally unexpected. It has also been observed that there is no guarantee that running
an OpenMP program with the default number of threads will result in the best performance.

7.4.2 Comparison of the OpenMP and GPRM Solutions

For the SparseLU problem, although creating OpenMP tasks for non-empty blocks is a smart
solution, it is not working very well for all matrices. The first reason is that a single thread
explores the whole matrix and creates relatively small tasks for non-empty blocks, while in
the proposed solution implemented in GPRM, multiple threads look into their portions of
the work in parallel. The difference in performance can be noticeable especially in the bmod

phase with a nested loop. As also reported in [165], combining the OpenMP for workshar-
ing construct with tasks, as implemented in sparselu for in the BOTS benchmark suite,
is not a viable approach with OpenMP 3.0.

Secondly, in GPRM, every thread has specific work based on the program’s task descrip-
tion file. If needed, runtime decisions will be applied to improve the performance, while
OpenMP creates the tasks dynamically and all decisions are taken dynamically at runtime,
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which makes its task management less efficient when the number of tasks becomes larger.
Moreover, the overhead of task management becomes significant when the tasks become
more fine-grained, as made clear by the Matrix Multiplication micro-benchmark.

In GPRM, using a par nested for construct in order to partition the matrix in a non-
continuous manner results in a good load balance. Furthermore, our hybrid worksharing-
tasking technique is pretty much straightforward. There is no pressure on the programmer to
worry about private and shared variables, in contrast to OpenMP.

7.5 Results on the Xeon Phi
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Figure 7.8: SparseLU Factorisation: GPRM vs. OpenMP on the Xeon Phi

We have increased the matrix size on the Xeon Phi to better reflect the differences between
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the two models on a system with more (logical) cores than the TILEPro64. A matrix of size
10000 is used for this purpose and we measure the speedup for 200×50 and 400×25 cases.

The results in Figure 7.8 are consistent with those in Figure 7.7 in the sense that OpenMP
performs poorly when the number of blocks increases. However, it could outperform GPRM
when the block size becomes larger, as in the 200×50 case (1.3×). This is not surprising, be-
cause the solution we have proposed in GPRM targets sparser matrices with larger numbers
of blocks (and smaller block sizes), and is intended to avoid creating very fine-grained tasks.
In other cases, the OpenMP solution proposed in [3] is expected to perform well. As we
discussed earlier though, even for the 50×50 case on the TILEPro64, GPRM outperforms
OpenMP.

7.6 Summary

In this chapter, we have used a solution implemented in GPRM to distribute small jobs across
different threads, without the need to create a task for each of the jobs.

As the main focus of this chapter, we deploy our model to solve a fundamental linear algebra
problem, Lower-Upper factorisation of sparse matrices. We first used a matrix multipli-
cation micro-benchmark to highlight the differences between GPRM and OpenMP on the
TILEPro64. For the small jobs, GPRM outperformed OpenMP by 2.8× to 11×. For the
medium-sized jobs, the speedup improvement ranged from 1.5× to 3.3×. As the jobs get
larger the difference became less significant. For the large jobs, the speedup ranged from
1.3× to 2.2×.

We have then used the SparseLU benchmark from the BOTS benchmark suite as a real-world
example, and compared the results obtained from our model to those of the OpenMP tasking
approach.

We used a sparse matrix of 4000×4000 divided into blocks of varying size on the TILEPro64.
We demonstrated that for the larger numbers of blocks, i.e. smaller block sizes, the difference
is considerable. The main advantage of GPRM is that it does not need to be tuned in terms of
the number of threads. By contrast, tuning is crucial for OpenMP, otherwise for fine-grained
tasks a huge drop in performance is inevitable.

We then compared the scalability of the two models on both the TILEPro64 and the Xeon
Phi. In the case of GPRM, the number of threads is fixed and the speedup charts are generated
by varying the cutoff value, while for the OpenMP approach, the number of tasks depends on
the input set, therefore the speedup charts are generated by changing the number of threads.
Since the solutions and the varying parameters are different, we have shown the results for
each model separately, but we can compare the best results obtained by each.
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On the TILEPro64, GPRM scaled 2× better than the best result obtained using OpenMP for
both the 50×50 and 100×100 cases. For the default setting (with 63 threads), the speedup
improvements were respectively 2.1× and 4.9×.

On the Xeon Phi, for the 200×50 case, OpenMP performed 1.3× better than GPRM, while
for the 400×25 The best result for GPRM was 1.2× better than the best result obtained by
OpenMP (with 80 threads) and 1.5× better than the default setting (with 240 threads).

We proposed a solution for LU factorisation of sparse matrices, using GPRM parallel con-
structs, such as its par nested for. We showed that such a solution can provide superior
performance compared to the task-based OpenMP solution when targeting sparse matrices
with larger numbers of blocks and smaller block sizes.
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Chapter 8

Parallel Image Convolution

Image convolution is widely used for sharpening, blurring and edge detection. In this chapter
we review two common algorithms for convolving a 2D image by a separable kernel (filter).
We choose the algorithm with better sequential runtime as the baseline for parallelisation.
We then compare the parallel performance of the optimised code using OpenMP and GPRM
implementations on the both platforms.

We also measure the effects of optimisation techniques (i.e. loop unrolling and SIMD vec-
torisation) for both algorithms on the Xeon Phi and demonstrate how these optimisations
affect sequential and parallel performance.

Apart from comparing the code complexity as well as the performance of OpenMP and
GPRM, we investigate the impact of a parallelisation technique, task agglomeration in GPRM.

We have considered a Gaussian separable 5×5 kernel for the purposes of this study. We refer
to two implementations of the convolution algorithm as single-pass and two-pass algorithms
(implementations). The single-pass algorithm is the general algorithm used for convolution,
having a nested loop over the kernel, therefore comprised of four loops to compute the con-
volution. The two-pass algorithm is specific to separable kernels, and uses a horizontal 1D
convolution pass followed by a vertical 1D convolution pass to convolve the image.

In this chapter, we have considered a range of images from 1152×1152 to 8748×8748.
There will be 3 planes per image and the benchmark will be run for 1000 times in order to
measure a precise running time on both platforms. Therefore, the time for each image should
be considered as RunningTime/1000.

8.1 Image Convolution Algorithms

Throughput computing applications demand for fast response time while dealing with a large
amount of data. Image convolution is one of such throughput computing applications. Con-
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volution of an image by a matrix of real numbers can be used to sharpen or smooth an image,
depending on the matrix used. If A is an image and K is a convolution matrix, then B, the
convolved image is calculated as:

By,x =
∑
i

∑
j

Ay+i,x+jKi,j (8.1)

If k is a convolution vector, then the corresponding matrix K is such that Ki,j = kikj

A separable convolution kernel is a vector of real numbers that can be decomposed into
horizontal and vertical projections and hence can be applied independently to the rows and
columns of the spatial domain to provide filtering [166]. It is a specialisation of the more
general convolution, but is algorithmically more efficient to implement.

The convolution algorithm, borrowed from the EU funded Clothes Perception and Manip-
ulation (CloPeMa) project [30] –whose aim is to develop a cloth folding robot using real
time stereo vision– only works at the central part of the image that is in sight of multiple
cameras, and what happens at the far edges are ignored. Therefore, we can safely ignore the
complications at the edges and start the convolution from the pixel for which the kernel can
access the required neighbours, i.e. pixel (2,2).

For all tests, separable kernels of width 5 are used. The algorithm uses 3 colour planes and
is heavily memory-fetch bound.

8.1.1 Single-pass and Two-pass Algorithms

In order to solve the 2D convolution problem, the simplest approach is to loop over all the
image pixels and all the kernel elements in one go. This algorithm is referred as the single-
pass algorithm in this study. It uses 4 nested loops, the 2 outer loops on the rows and columns
and the image and the 2 inner loops on the rows and columns of the kernel. For a 5×5 kernel,
according to Eq. 8.1, it needs 25 multiply-accumulate operations for each pixel.

An alternative comes into play when a separable kernel is used: the two-pass algorithm. As
stated, a separable kernel can be decomposed into horizontal and vertical projections and
hence can be applied independently to the rows and columns of the spatial domain. For a
5×5 kernel, it reduces the number of multiplications per pixel to 10.

From the algorithmic point of view, the two-pass convolution algorithm should always be the
preferred one if the kernel is separable. It has O(n) time complexity, while the complexity
of single-pass algorithm is O(n2), where n is the kernel width.
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8.2 Results on the TILEPro64

Since the TILEPro64 does not have any FPUs or VPUs, we defer the discussion about the
optimisation techniques to the next section where we cover the results on the Xeon Phi. For
the purposes of this section, we choose the algorithm with better sequential running time, the
two-pass algorithm, as the baseline for the speedup comparisons.

On the TILEPro64, for the range of images we have chosen, the default number of threads
provides the best average-case performance for both programming models. Therefore, all
the speedup results on this platforms are obtained with 63 threads over the running time for
the sequential two-pass algorithm.
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Figure 8.1: The speedup results on the TILEPro64, R×C

It can be observed from Figure 8.1 that for the smaller images GPRM outperforms OpenMP
significantly. Also in general, the speedup results are improved by increasing the size of the
images.

It is possible to inspect the difference between OpenMP and GPRM more in detail. Since
GPRM creates tasks and assigns them (initially) to threads at compile time, we can create
empty tasks and therefore measure the overhead of distributing the tasks across different
threads and the parallel reduction. In other words, it is possible to measure the overhead of
communication between tiles in GPRM.

As a solution to mitigate the GPRM overhead, we have used task agglomeration: combining
tasks into larger tasks to improve performance [32]. We therefore consider images with the
width of 3 times the width of the original images, meaning that each row includes information
for all 3 colour planes. This way, we include the 3 colour planes into the parallelisation.
Using this technique, the size of tasks in GPRM becomes tripled and the overhead becomes
approximately one third. This also improved the OpenMP performance in all cases except
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for the largest image. The speedup results for this case, which we call 3R×C is shown in
Fig. 8.2.
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Figure 8.2: The speedup results on the TILEPro64, 3R×C

8.3 Results on the Xeon Phi

We aim to explore a number of optimisation and parallelisation techniques for enhancing the
performance of 2D image convolution on the Xeon Phi.

In [30], we have identified that the peak performance for the two-pass algorithm occurs at
100 OpenMP threads. Our initial experiments with GPRM has verified that considering the
range of images from 1152×1152 to 8748×8748, 100 could be our magic number for both
OpenMP (optimal number of threads) and GPRM (optimal number of tasks) models. It is
worth stating that because the convolution time for each image is too short, the communica-
tion overhead becomes significant, and using all of the available resources in the Xeon Phi is
not advantageous.

8.3.1 From Naive to Parallelised Optimised Code

We have implicitly mentioned the two-pass algorithm as an optimisation for the single-pass
algorithm. We discuss in this section and section 8.3.5 that one should be careful about par-
allel performance prediction based on the sequential runtime of algorithms. For the purposes
of this section we have chosen the largest 3 images of our 6 image test cases.

There is a number of other optimisations at different levels that could be considered for image
convolution. Nevertheless, we do not consider our final optimised code as a Ninja code,
i.e. the best optimised solution. The optimisations listed here can be achieved with a little
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programming effort. The resulting optimised code, by definition should have performance
comparable to a Ninja implementation, with a little effort of algorithmically improving the
naive code (i.e. the compiler-generated code), or by using the latest compiler technology for
parallelisation and vectorisation [167]. It has also been reported that the difference between
a sequential optimised (similar to our single-pass optimised code) and a sequential Ninja
implementation for a 2D convolution algorithm on the Xeon Phi is around 1% [168].

Another point to make is that in this study, we are also concerned about parallelisation
techniques. An optimised sequential algorithm that utilises the vector units efficiently is
important as the baseline for parallelisation, and that is why we will apply the following
optimisations, but the other aspect of this study is to identify the pros and cons of parallel
programming models in parallelising the optimised code.

Here, we consider the single-pass algorithm with 4 nested loops as the naive code. It is
important to note that since this algorithm convolves image array A to B, at the end of the
algorithm we copy back B to A to have the original image convolved. To make sure that the
naive code does not utilise automatic vectorisation, the code should be compiled with the
-no-vec flag (although, the Intel compiler failed to auto-vectorise our naive code).

Opt-1: Single-pass, Unrolled The first optimisation is loop unrolling. An average
(among the 3 images) benefit of 2.5× can be obtained by hand unrolling the nested loop over
kernel into 25 multiplications. At this stage we change the statement in Eq. 8.2 inside the
kernel nested loop into 25 additions in the form of Eq. 8.3.

B[pId][i][j]+ = A[pId][i+ kx− 2][j + ky − 2] ∗K[kx][ky]; (8.2)

B[pId][i][j] = A[pId][i− 2][j − 2] ∗K[0][0]+

A[pId][i− 2][j − 1] ∗K[0][1] + ...+

A[pId][i][j] ∗K[2][2] + ...+

A[pId][i+ 2][j + 2] ∗K[4][4];

(8.3)

Opt-2: Single-pass, Unrolled, Vectorised After unrolling the kernel loops, only 2
out of 4 initial loops remain. Utilising the compiler technology, we can enforce inner loop
vectorisation using #pragma simd, which if memory alias or dependence analysis fails,
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gives hint to the compiler that the loop is safe to be vectorised 1. Vectorisation after unrolling
gave us an average speedup of 22× over the baseline.

Opt-3: Two-pass, Unrolled The third optimisation is an algorithmic change due to
the fact that the kernel is separable, hence instead of 25 multiplication for each pixel (as a
result of a 5×5 kernel nested loop), we can use a horizontal 1D convolution followed by a
1D vertical convolution. Therefore, the number of multiplications for each pixel becomes
5 + 5 = 10. This optimisation is first combined with loop unrolling. Each of the two loops
to be unrolled in this case (one in the horizontal pass and the other in the vertical pass) has
the size of 5. An average speedup of 5.5× over the baseline can be obtained at this stage.

Opt-4: Two-pass, Unrolled, Vectorised Repeating the second optimisation on the
inner loops of the two-pass algorithm (i.e. those over the image columns), we can now get
an average of 47.1× performance gain over the baseline, and we have just optimised the
sequential code so far.

Par-1: Single-pass, Unrolled, 100 OpenMP Threads OpenMP provides the sim-
plest way of parallelising the outer loop of the single-pass algorithm. We obtained an average
of 191.1× speedup over the baseline.

Par-2: Single-pass, Unrolled, Vectorised, 100 OpenMP Threads On top of the
previous optimisation, similar to “Opt-2”, we have enforced vectorisation on the inner loops
over the image columns (for both convolution computation and the copy-back operation).
Apart form that, the outer loops over the image rows are parallelised using #pragma omp

parallel for. An average performance gain of 1268.8× over the baseline has been
achieved.

Par-3: Two-pass, Unrolled, 100 OpenMP Threads Parallelised version of the two-
pass algorithm provides an average of 393.7× speedup over the baseline. This is almost
2.1× the speedup of the competitive algorithm in “Par-1”.

Par-4: Two-pass, Unrolled, Vectorised, 100 OpenMP Threads The best paral-
lelised vectorised approach has the average speedup of 1611.7×. This is only 1.3× the
speedup of the competitive algorithm in “Par-2”. This shows that the single-pass algorithm
can benefit more from vectorisation when parallelised. This is an important finding and we

1This always requires extra care, as enforcing SIMD vectorisation while there is vector dependence results
in incorrect results
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will see in section 8.3.5 that it helps another version of the single-pass algorithm (without
copy-back) to outperform the two-pass algorithm with 100 threads.

The speedup results for all the stages from naive to a parallelised optimised code are illus-
trated in Figure 8.3.
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Figure 8.3: From Naive to Parallelised Optimised code on the Xeon Phi

Baseline: single-pass algorithm with copy-back to source
Opt-0: Naive, Single-pass, No-vec
Opt-1: Single-pass, Unrolled, No-vec
Opt-2: Single-pass, Unrolled, SIMD
Opt-3: Two-pass, Unrolled, No-vec
Opt-4: Two-pass, Unrolled, SIMD
Par-1 : Single-pass, Unrolled, No-vec, 100 omp threads
Par-2 : Single-pass, Unrolled, SIMD, 100 omp threads
Par-3 : Two-pass, Unrolled, No-vec, 100 omp threads
Par-4 : Two-pass, Unrolled, SIMD, 100 omp threads

8.3.2 OpenMP Implementation Details

An OpenMP implementation of the image convolution algorithm is shown in List. 8.1.

This code corresponds to the last stage of the optimisations, “Par-4”, as it implements the
two-pass algorithm with a horizontal pass followed by a vertical pass; the kernel loop is
unrolled, #pragma simd is used to enforce SIMD vectorisation, and the outer loop is
parallelised.
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It is worth stating that #pragma omp parallel for has an implicit barrier at the end.

1 /∗ 2D c o n v o l u t i o n on each p l a n e ∗ /
2 void twoPassConv ( f l o a t ∗∗∗A, f l o a t ∗∗∗B , f l o a t ∗k , i n t p l a n e I d , i n t

rows , i n t c o l s ) {
3 / / h o r i z o n t a l pas s
4 #pragma omp p a r a l l e l f o r
5 f o r ( i n t i =2 ; i<rows−2; i ++) {
6 #pragma simd
7 f o r ( i n t j =2 ; j<c o l s −2; j ++) {
8 B[ p l a n e I d ] [ i ] [ j ] =
9 A[ p l a n e I d ] [ i ] [ j −2] ∗ k [ 0 ] +

10 A[ p l a n e I d ] [ i ] [ j −1] ∗ k [ 1 ] +
11 A[ p l a n e I d ] [ i ] [ j ] ∗ k [ 2 ] +
12 A[ p l a n e I d ] [ i ] [ j +1] ∗ k [ 3 ] +
13 A[ p l a n e I d ] [ i ] [ j +2] ∗ k [ 4 ] ;
14 }
15 }
16 / / v e r t i c a l pas s
17 #pragma omp p a r a l l e l f o r
18 f o r ( i n t i =2 ; i<rows−2; i ++) {
19 #pragma simd
20 f o r ( i n t j =2 ; j<c o l s −2; j ++) {
21 A[ p l a n e I d ] [ i ] [ j ] =
22 B[ p l a n e I d ] [ i −2][ j ] ∗ k [ 0 ] +
23 B[ p l a n e I d ] [ i −1][ j ] ∗ k [ 1 ] +
24 B[ p l a n e I d ] [ i ] [ j ] ∗ k [ 2 ] +
25 B[ p l a n e I d ] [ i + 1 ] [ j ] ∗ k [ 3 ] +
26 B[ p l a n e I d ] [ i + 2 ] [ j ] ∗ k [ 4 ] ;
27 }
28 }
29 re turn ;}
30

31 /∗ c a l l s twoPassConv on each p l a n e ∗ /
32 void conv ( f l o a t ∗∗∗A, f l o a t ∗∗∗B , f l o a t ∗ ker , pimage a ) {
33 #pragma n o v e c t o r
34 f o r ( i n t p l a n e I d = 0 ; p l a n e I d< a . p l a n e s ; p l a n e I d ++) {
35 twoPassConv (A, B , ker , p l a n e I d , a . rows , a . c o l s ) ;
36 }
37 re turn ;}

Listing 8.1: Two-pass Image Convolution Algorithm, OpenMP
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8.3.3 GPRM Implementation Details

The GPRM implementation of the two-pass algorithm defines the two phases of the algo-
rithm as two different types of tasks. Since all the tasks defined in the GPC code will be
executed in parallel, a seq pragma is required to run the two phases sequentially, as shown
in Listing 8.3.

1 # i n c l u d e ”Conv . h ”
2

3 void Conv : : h o r i z P a s s ( ind , CUTOFF, . . . ) {
4 p a r c o n t f o r ( 2 , rows−2, ind , CUTOFF, t h i s , &Conv : : h o r i z P a s s I n n e r L o o p ,

. . . ) ;
5 }
6

7 void Conv : : v e r t P a s s ( ind , CUTOFF, . . . ) {
8 p a r c o n t f o r ( 2 , rows−2, ind , CUTOFF, t h i s , &Conv : : v e r t P a s s I n n e r L o o p ,

. . . ) ;
9 }

Listing 8.2: Two-pass Image Convolution Algorithm, GPRM Task Code

1 # i n c l u d e ”GPRM/ Task / ConvTask . h ”
2

3 void h o r i z o n t a l T a s k s ( c o n s t i n t CUTOFF, . . . ) {
4 #pragma gprm u n r o l l
5 f o r ( i n t i n d =0; i n d < CUTOFF ; i n d ++) {
6 h o r i z P a s s ( ind , CUTOFF, . . . ) ; }
7 }
8

9 void v e r t i c a l T a s k s ( ( c o n s t i n t CUTOFF, . . . ) {
10 #pragma gprm u n r o l l
11 f o r ( i n t i n d =0; i n d < CUTOFF ; i n d ++) {
12 v e r t P a s s ( ind , CUTOFF, . . . ) ; }
13 }
14

15 void GPRM : : ConvTask : : twoPassConv ( . . . ) {
16 #pragma gprm seq
17 {
18 h o r i z o n t a l T a s k s ( 1 0 0 , . . . ) ;
19 v e r t i c a l T a s k s ( 1 0 0 , . . . ) ;
20 }
21 }

Listing 8.3: Two-pass Image Convolution Algorithm, GPC Code
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We specify the number of tasks using a #pragma gprm unroll followed by a for loop
of size CUTOFF. Each phase uses a partial continuous for, par cont for [29], in order to
parallelise the outer loop over rows (as shown in Listing 8.2), and a #pragma simd 2 to
help the compiler vectorise the inner loop over columns. As stated in the previous chapters,
par cont for is a sequential for loop that works as follows:

In GPRM, multiple instances of the same task are generated (specified by CUTOFF in the
List. 8.2), each with a different index (similar to the global id in OpenCL). Each of these
tasks calls par cont for passing their own index to specify which parts of the work
should be performed by their host thread.

8.3.4 Parallel Performance of the Two-pass Algorithm

The focus of this section is on the parallel performance of the OpenMP and GPRM imple-
mentations of the two-pass algorithm.

We start by disabling the vectorisation in the Xeon Phi. The results for the parallelised non-
vectorised cases are compared with the vectorised ones in Table 8.1. In order to disable
vectorisation for OpenMP and GPRM, the code should be compiled with the -no-vec flag.

Table 8.1: Vectorisation effect on the parallel performance (ms) of the two-pass algorithm
Image Size OpenMP no-vec GPRM no-vec OpenMP SIMD GPRM SIMD

1152x1152 3.9 27.2 0.8 (4.9×) 26.1 (1.0×)
1728x1728 8.5 32.8 2.0 (4.2×) 26.6 (1.2×)
2592x2592 16.7 40.5 4.1 (4.1×) 27.8 (1.5×)
3888x3888 39.9 60.4 8.8 (4.5×) 32.5 (1.9×)
5832x5832 86.7 105.8 19.6 (4.4×) 36.8 (2.9×)
8748x8748 195.4 216.9 59.2 (3.3×) 60.1 (3.6×)

The average speedup obtained through vectorisation for the OpenMP code is about 4.2×.
It is important to note that this speedup for the sequential code was almost twice as much
(8.6×). Therefore, the reported performance gain is specific to the case with 100 threads and
should not be generalised.

It is worth noting that the speedup due to vectorisation in GPRM is much less pronounced,
mostly due to the higher overhead of the GPRM runtime for smaller images.

Figure 8.4 shows the speedup of the two-pass algorithm against its optimised sequential
implementation (i.e. version “Opt-4”). So far, the algorithm is parallelised over each plane
of size R×C, hence R×C in Fig.8.4. This means for 3 colour planes, the parallelised code

2Unlike OpenMP, in this case the use of #pragma simd for the innermost loop in the GPRM implemen-
tation is optional
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will be executed 3 times sequentially 3.
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Figure 8.4: Speedup of the Vectorised Two-pass Algorithm, R×C

Similar to the previous section, it is possible to inspect the difference between OpenMP and
GPRM more in detail and measure the overhead of communication between tiles in GPRM.
If we deduct this overhead from the running time, we can measure the time spent on the actual
computation inside the framework. The GPRM-compute time shown in Table 8.2 is gained
by deducting the constant communication overhead of 25.5ms from the total execution time.

Table 8.2: Running time (ms) per image for the two-pass algorithm
Image Size OpenMP GPRM-total GPRM-compute

1152x1152 0.8 26.1 0.6
1728x1728 2.0 26.6 1.1
2592x2592 4.1 27.8 2.3
3888x3888 8.8 32.5 7.0
5832x5832 19.6 36.8 11.3
8748x8748 59.2 60.1 34.6

As a solution to mitigate the GPRM overhead, we have used task agglomeration and consid-
ered images with the width of 3 times the width of the original images, meaning that each
row includes information for all 3 colour planes. Using this technique, the size of tasks in
GPRM becomes tripled and the overhead becomes one third (8.5ms per image). The speedup
results for this case, which we call 3R×C is shown in Fig. 8.5. As expected, this technique
does not have similar significant impact on the OpenMP performance on the Xeon Phi.

Since the convolution benchmark runs much faster on the Xeon Phi, the small overhead of
the GPRM framework becomes significant. Task agglomeration can reduce this overhead
and provide a notable performance improvement. However, except for the largest image,

3Actually it is 3000 times, considering that we run the code 1000 times
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Figure 8.5: Speedup of the Vectorised Two-pass Algorithm, 3R×C

OpenMP has better performance.

8.3.5 Reconsidering the Single-pass Algorithm

In order to compare the single-pass and two-pass algorithms, it is important to note that the
two-pass algorithm uses an auxiliary array to store the result of the first pass. In the second
pass, it uses the auxiliary array as the source and the original image as the destination, thus
at the end of the algorithm, the original image will be replaced by the convolved one. It is
convenient that the input and output images can use the same array, but it comes at a price:
two assignment operations rather than one for every pixel. In order to have a fair comparison,
we expected the same from the single-pass algorithm, i.e. overwriting the original image.
This means that although the single-pass algorithm can produce the result on an output image
by assigning new values for all the pixels only once, it now needs to copy the convolved
values back to the original image.

This copy-back operation constitutes a considerable extra overhead and sometimes is not
needed, e.g. when working with the Xeon Phi as a co-processor. Suppose one runs some
complex code on the Xeon CPU and offloads the computation of the convolution to the Xeon
Phi, e.g. the typical model for an OpenCL program. In that model, there will be host-
to-device and device-to-host copy cost. If one copies an image array A to the Xeon Phi,
convolves it into an array B and copies that back to the host, there is of course no need to
copy on the data back to the original array on the device itself. Consequently, we have also
tested the single-pass code without the ultimate “copy back to the original image” operation.
We have measured the results again only for the three larger images.

After unrolling the kernel loop(s), for both non-vectorised and vectorised approaches, the
results were as expected, i.e. the Two-pass algorithm had much better performance than the
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Single-pass algorithm (1.6× to 1.9×).
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Figure 8.6: From Naive to Parallelised Optimised code on the Xeon Phi

Baseline: single-pass algorithm without copy-back to source
Opt-0: Naive, Single-pass, No-vec
Opt-1: Single-pass, Unrolled, No-vec
Opt-2: Single-pass, Unrolled, SIMD
Opt-3: Two-pass, Unrolled, No-vec
Opt-4: Two-pass, Unrolled, SIMD
Par-1 : Single-pass, Unrolled, No-vec, 100 omp threads
Par-2 : Single-pass, Unrolled, SIMD, 100 omp threads
Par-3 : Two-pass, Unrolled, No-vec, 100 omp threads
Par-4 : Two-pass, Unrolled, SIMD, 100 omp threads
Par-5 : Single-pass, Unrolled, No-vec, 100 GPRM tasks, 3R×C
Par-6 : Single-pass, Unrolled, SIMD, 100 GPRM tasks, 3R×C

It is worth mentioning that in some cases, e.g. for 3888×3888 images, the performance of
the optimised single-pass algorithm with OpenMP could be improved by up to 15% (10% in
average for the largest three images) by tuning the number of threads, e.g. with 120 threads,
but since we decided to run experiments with 100 threads or tasks and we do not intend to
compare multiple configurations together, we stick to this number.

Figure 8.6 shows that although the average sequential performance of the optimised two-pass
code is 1.6× better than the average sequential performance of the optimised single-pass
code (without copy-back), the average parallel performance of the optimised single-pass
code (using OpenMP) is 1.2× better than that of the optimised two-pass code. The reason
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can also be extracted from Fig. 8.6: better utilisation of the vector units by the parallel
single-pass code (9.4× its parallel non-vectorised version) compared to the parallel two-pass
code (4.1× its parallel non-vectorised version).

Since GPRM had shown a good performance for the largest array when we included par-
allelisation over planes into the tasks (the 3R×C case), its results has been added to Fig.
8.6. As expected, it produced the best result for the 8748×8748 image, using the optimised
single-pass algorithm with no copy-back. Its speedup over the baseline naive code is 1850×
with 100 tasks.

As the best result amongst all, we have been able to get up to 1970× (for the 5832×5832
image) speedup over the sequential naive implementation of the algorithm, by only utilis-
ing the compiler technology, few algorithmic changes, and parallelisation (using OpenMP).
Also, 2160× speedup over the baseline has been observed with 120 OpenMP threads for
5832×5832 matrices with single-pass, no-copy approach.

8.4 Related Work

A similar 5×5 spatial kernel (filter) has been the focus of a number of research papers [168]
[167] [30] [169].

Petersen et al. [168] ported a subset of C benchmarks to Haskell and measured their per-
formance on parallel machines, including the Xeon Phi. Considering three classes of naive,
optimised, and Ninja C implementations [167], our implementation of the image convolution
algorithm is classified as the optimised code, utilising loop unrolling and SIMD vectorisa-
tion.

The reported Ninja gap for the Intel Labs Haskell Research Compiler (HRC) for 8192×8192
images on the Xeon Phi using the single-pass algorithm is 3.7× (for 57 threads) [168]. The
authors have disabled multithreading on the Xeon Phi, which is essentially different from
hyper-threading on the Xeon processors [2].

We explored this further in [30] and figured out that the peak performance can be achieved
with 100 threads. We have also reported that the performance gap between the Vector Pascal
[30] and an optimised OpenMP implementations of the two-pass algorithm with 100 threads
is almost 6.4×.

Authors in [167] also focused on the optimisation techniques for parallel applications, using
both advancements in compiler technology and algorithmic techniques to bring down the
Ninja performance gap for throughput computing benchmarks, one of which is the single-
pass implementation of the convolution algorithm.
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Tian et al. [169] focused on efficient utilisation of the SIMD vector units on the Xeon Phi
and proposed a number of effective techniques to improve the performance of parallel pro-
grams, including a single-pass image convolution. They have reported a speedup of 2000×
using their vectorisation techniques along with parallelisation. We observed a speedup of
about 1970× (2160× with 120 OpenMP threads) without using any particular vectorisation
technique. However, we have also highlighted the importance of the Xeon Phi vector units,
specially their impact on parallel performance.

8.5 Summary

In this chapter, we applied GPRM and OpenMP to solve a 2D image convolution prob-
lem over a test set of 6 square images, ranging from 1152×1152 to 8748×8748 on both
TILEPro64 and Xeon Phi.

For a separable convolution kernel, two different algorithms can be considered: Single-pass,
which requires only a single assignment instead of two, but needs an additional copy if the
result is required in the original array, and Two-pass, which requires fewer computations and
returns the result in the original array.

We used the two-pass algorithm as the baseline on the TILEPro64. GPRM outperformed
OpenMP on this platform in all cases. In terms of productivity, GPRM naturally fits algo-
rithms with task (functional) decomposition. It has its own complications though when it
comes to domain decomposition, as it requires restructuring certain parts of the program to
fit the GPRM structure.

We have explored a number of optimisation and parallelisation techniques on the Xeon Phi
which helped us achieve a speedup near 2000× over the baseline, but none of these tech-
niques requires a major rewrite of the original code. The optimisation techniques include
loop unrolling, vectorisation, and an algorithmic from single-pass to two-pass or vice versa.

After creating optimised versions of both algorithms on the Xeon Phi, we found that the
choice between these algorithm depends on which version of the single-pass algorithm is
required: if the result has to be copied back to the original image, then the two-pass al-
gorithm is always better. Otherwise, the single-pass algorithm can provide better parallel
performance, even though its sequential performance is still worse. This is due to the fact
that the single-pass algorithm can benefit more from vectorisation when parallelised.

Task agglomeration is also used as a parallelisation technique to improve the performance
of GPRM on both platforms. The GPRM model has a fixed overhead (tens of milliseconds
for hundreds of tasks) due to task creation and communication. Using images with the width
of 3× the width of the original images (such that each row contains the information of all 3
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colour planes), we reduced the overhead to approximately one third.

In terms of performance on the Xeon Phi, OpenMP is the winning model, except for very
large images where GPRM shows better performance after using task agglomeration.

Although we observed an unexpected behaviour of GPRM on the Xeon Phi, we were able
to reason about its overhead and decrease it to some extent. Because of the modular design
of GPRM, measuring such an overhead is straightforward. For example, in this case, we
measured a fixed overhead of 8.5ms for running the benchmark with 200 empty tasks on
the Xeon Phi (after agglomeration). It is obvious that this overhead would be dominant
for a benchmark that takes couple of milliseconds to run. However, if the tasks are large
enough to be worth evaluating in parallel, the same scheduling strategy would result in better
performance than OpenMP, as observed in the case of the largest image.
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Chapter 9

Parallel Linked List Processing

In this chapter, we continue to highlight the differences between GPRM and the most com-
monly used parallel programming approach, OpenMP.

OpenMP is a very successful parallel programming API, but efficient parallel traversal of
a list (of possibly unknown size) of items linked by pointers is a challenging task: solving
the problem with OpenMP worksharing constructs requires either transforming the list into
an array for the traversal (e.g. by using the OpenMP for), or for all threads to traverse
each of the elements and compete to execute them (e.g. by using the OpenMP single).
Both techniques are inefficient. OpenMP 3.0 allows to addresses the problem using pointer
chasing by a master thread and creating a task for each element of the list. These tasks can
be processed by any thread in the team.

In this chapter, we propose a more efficient cutoff-based linked list traversal. We compare
the performance of this technique in both GPRM and OpenMP implementations with the
conventional OpenMP implementation, which we call Task-Per-Element (TPE).

Pointer chasing or list traversal are the names that have been used for this problem [170]
[171]. The problem is defined in [170] as traversing a linked list computing a sequence
of Fibonacci numbers at each node. As another example, we consider traversing a linked
list and sorting a small array of integer numbers (up to a thousand numbers) at each node
by a Quicksort algorithm. It is worth mentioning that we use already sorted arrays, which
increases the time complexity of the Quicksort algorithm to O(n2) [172].

Massaioli et al. [173] have investigated the performance of up to 32 OpenMP threads for
processing dynamic lists managed by pointers in a simulator of financial markets. They have
concluded that if the overhead is not dominant, meaning that the unit of work is not too
small, using omp single nowait directive appears to be suitable. Also in [170], the
performance of the TPE method has been evaluated on a multicore CPU. In this chapter,
however, we focus on the challenges arising in manycore systems such as the TILEPro64
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with 63 available hardware cores or the Intel Xeon Phi with 240 logical cores. We will
demonstrate that when the tasks are tiny and/or the lists are large, the overhead of the TPE
method becomes significant.

As always, all the benchmarks are implemented as C++ programs, and all speedup ratios are
computed against the running time of the sequential code implemented in C++. The compiler
flags and system setup are as described in Section 6.1.1.

9.1 An Efficient Linked List Processing Technique

The agglomeration methods and their role to reduce the overhead of task creation are dis-
cussed [83] and [24]. We use this concept again to propose an efficient parallel pointer
chasing technique.

To traverse a list (of unknown size) similar to the problem discussed in [3], we propose to
limit the number of tasks to a cutoff value. Assuming there are CUTOFF chunks of work,
the chunk with id k, gets the head of list, goes k steps further to its starting point, processes
the element, and then goes CUTOFF steps further to process its next element. It continues
to jump CUTOFF steps until the end of the list. The implementation of the TPE processing
(creating one task per element) of linked lists as well as the implementations of the proposed
method in both OpenMP and GPRM is shown in Listing. 9.1.

The GPRM implementation of the par list is similar to a single-threaded version of the
OpenMP code (i.e. without pragmas). Wherever the size of the list is known, a GPRM
par cont listwith a similar implementation to a par cont for [29] can also be used.

In order to visualise how the tasks are assigned to the threads, consider a scenario with 3
threads (specified with 3 different colours in Fig. 9.1) and a linked list of 10 elements.
However, suppose that the number of elements are not known, therefore we cannot partition
the list into continuous chunks.

(a) TPE, A possible assignment of 10 tasks to the threads

(b) OpenMP with cutoff 4, A possible assignment of 4 tasks to the threads

(c) GPRM with cutoff 4, The initial assignment of 4 tasks to threads

Figure 9.1: Task-to-thread assignment in different implementations
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1 /∗ TPE ( Task−Per−Element ) ∗ /
2 #pragma omp p a r a l l e l
3 {
4 #pragma omp s i n g l e
5 {
6 p = m y l i s t−>b e g i n ( ) ;
7 whi le ( p != m y l i s t−>end ( ) ) {
8 #pragma omp t a s k
9 {

10 p r o c e s s ( p ) ;
11 }
12 p ++;
13 } / / o f w h i l e
14 } / / o f s i n g l e
15 }
16 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
17 /∗ OpenMP i m p l e m e n t a t i o n o f t h e method w i t h c u t o f f ∗ /
18 #pragma omp p a r a l l e l p r i v a t e ( p ) / / p must be p r i v a t e
19 {
20 #pragma omp s i n g l e
21 {
22 p = m y l i s t−>b e g i n ( ) ;
23 f o r ( i n t i =0 ; i < CUTOFF ; i ++) {
24 p r o c e s s ( p ) ;
25 #pragma omp t a s k / / t i e d
26 {
27 whi le ( p != m y l i s t−>end ( ) ) {
28 i n t j =0 ;
29 whi le ( j < CUTOFF && p != m y l i s t−>end ( ) ) {
30 j ++; p ++;}
31 i f ( p != m y l i s t−>end ( ) ) {
32 p r o c e s s ( p ) ;}
33 } / / o f w h i l e
34 } / / o f t a s k
35 p ++;}
36 } / / o f s i n g l e
37 }
38 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
39 /∗ GPRM i m p l e m e n t a t i o n o f t h e method w i t h c u t o f f ∗ /
40 #pragma gprm u n r o l l
41 f o r ( i n t i =0 ; i < CUTOFF ; i ++) {
42 p a r l i s t ( i , CUTOFF, &MyProcess : : p r o c e s s , m y l i s t ) ;}

Listing 9.1: TPE vs. cutoff-based linked list processing

For this problem, the GPRM task-to-thread assignment is not fixed at compile time, because
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we might not know the number of list elements, and therefore we need to chase the pointers.
Nevertheless, we are able to determine that if the list has 10 elements, the GPRM runtime
system will assign the tasks to the available 3 threads in the same way as shown in 9.1(c).
However, there is no guarantee that the threads execute all of their pre-assigned tasks. For
instance, in this scenario, thread C (colour black) executing task 3 (composed of 2 elements)
could finish its job faster than thread A (colour red) executing task 1 (composed of 3 ele-
ments). Task 4 will be still on the ready task queue of thread A. Therefore, thread C can steal
task 4 and start executing it.

9.2 Experiments

As stated earlier, the problem we are targeting is defined as traversing a linked list sorting a
small array of integers at each node. The purpose is to parallelise this problem on a manycore
system.

We have considered two types of workloads: Balanced and Unbalanced, described in Listing.
9.2. Two different array sizes to sort are chosen: 63 (or 240) and 1000. 63 (or 240) is used to
create a completely unbalanced workload on 63 (or 240) cores using the formula in Listing.
9.2. By using *p % N as the size of array to be sorted at each node, where *p is the linked
list node ID, different nodes gets different arrays to sort. On the Xeon Phi for example, the
maximum difference with the balanced workload can be seen for the initial configuration
with NTH=240 and CUTOFF=240. In this case, th1 gets all arrays with size 1 to sort,
while th239 gets all arrays with size 239. Obviously, by changing the cutoff value to other
numbers, the pattern changes, but still different elements of the list have different array sizes
to sort (240 different sizes).

1 /∗ Balanced Workload ∗ /
2 / / N i s t h e s i z e o f t h e a r r a y
3 f o r ( i n t i =0 ; i < N; i ++) {
4 A−>p u s h b a c k ( i ) ;}
5 q u i c k S o r t (∗A, 0 , N) ;
6 /∗ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗ /
7 /∗ Unbalanced Workload ∗ /
8 / / p i s t h e p o i n t e r t o t h e L−L node ID , t h u s ∗p i s a un i qu e i n t e g e r
9 f o r ( i n t i =0 ; i < ∗p % N; i ++) {

10 A−>p u s h b a c k ( i ) ;}
11 q u i c k S o r t (∗A, 0 , ∗p % N) ;

Listing 9.2: Creation of balanced and unbalanced workloads.

For both balanced and unbalanced workloads, the exact amount of work to be accomplished
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by each thread depends on the size of the list, and the cutoff value. Therefore, the balanced
workload does not necessarily mean that all threads get exactly the same work, but at least
the amount of work to do at each node is the same. For the cutt-off based implementations,
instead of finding the optimal cutoff value that has the minimal overhead that leads to a fair
distribution of work, we focus on the efficiency of runtime load balancing in GPRM versus
OpenMP using different cutoffs.

9.3 Results on the TILEPro64

We first compare the three approaches. For that purpose, we have used the cutoff values 63,
and a large power of 2 number (2048) to allow for better distribution of tasks as well as more
opportunities for task stealing. Workloads are defined as balanced or unbalanced arrays of
size 63 or 1000.

9.3.1 Comparing all Implementations

The results of comparing the three approaches on the TILEPro64 are shown in Fig. 9.2.
Except from the balanced case with the arrays of size 1000, in all other cases, TPE (Task-Per-
Element) performs poorly, and for the arrays of size 63 it even shows a slowdown over the
sequential code. It is true that lists with such small arrays cannot be parallelised efficiently,
but at least the cutoff-based approaches can provide a speedup of up to 4×. For the three
smallest lists with the arrays of size 1000, the cutoff-based GPRM solution outperforms the
similar OpenMP implementation significantly.

9.3.2 Comparing the Effect of Cutoff in OpenMP v.s. GPRM

For the next round of comparison, we compare the cutoff-based implementations in GPRM
versus OpenMP. For that purpose, we use a medium-sized list to skip the poor performance
of the OpenMP version for small lists.

A detailed explanation of what happens inside GPRM is discussed in subsection 9.4.2, where
the results on the Xeon Phi are discussed.

It can be observed from the charts in Figure 9.3 that for the linked list of size 200K on the
TILEPro64, GPRM has better performance compared to the cutoff-based OpenMP approach
in all cases.
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Figure 9.2: Speedup charts on the TILEPro64, cutoffs: 63, 2048
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Figure 9.3: TILEPro64: cutoff-based implementations of OpenMP v.s. GPRM, LL: 200K
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9.3.3 Performance of the Cutoff-based Method in OpenMP v.s.
GPRM

For a detailed comparison between GPRM ad OpenMP, we consider heat maps where the
value for each cell is calculated as (OpenMP runtime / GPRM runtime). This way,
we compare the cutoff-based implementations for all lists and all cutoff values.

For the arrays of 63 elements, the difference becomes larger when the cutoff value increases.
For the arrays of size 1000, the difference is notable for smaller lists. In both cases, heat
maps for the balanced and unbalanced cases have similar patterns.

(a) 63 Balanced - OMP/GPRM (b) 1000 Balanced - OMP/GPRM

(c) 63 Unbalanced - OMP/GPRM (d) 1000 unbalanced - OMP/GPRM

Figure 9.4: Performance comparison of the OpenMP and GPRM implementations of the
cutoff-based method on the TILEPro64

9.4 Results on the Xeon Phi

For the cutoff-based OpenMP and GPRM implementations, we have used the cutoff 240,
and also the cutoff 2048 to allow for better distribution of tasks as well as more opportunities
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for task stealing. Although the bests results are not necessarily obtained with these cutoff
values (as shown in Fig. 9.6), we aim to show that they are sufficient to outperform the TPE
approach for both balanced (with cutoff 240) and unbalanced (with cutoff 2048) workloads.

9.4.1 Comparing all Implementations

The reason why the Task-Per-Element (TPE) approach is inefficient is once again evident
from Fig. 9.5. It shows that for small tasks (of size 240), its best performance is about 65%
of the peak for balanced workload and about 25% of the peak for the unbalanced one. For
the larger tasks (of size 1000) and the linked list sizes greater than 100K, its performance is
comparable with the cutoff-based GPRM implementation.

The cutoff-based OpenMP approach has shown unexpected behaviours when the list itself is
small. In all cases, the performance for the 50K and 100K lists with cutoff 2048 is poor.

9.4.2 Comparing the Effect of Cutoff in OpenMP v.s. GPRM

Figure 9.6 shows that in all cases, GPRM has a better performance. Below is what happens
in the background when using the GPRM approach:

For the balanced workloads, we expect to see the best performance with cutoff 240. Cutoff
256 changes the fair distribution, as 16 threads have to handle the chunks 240 to 256. As the
cutoff number becomes larger, more tasks will be created and hence the load can be balanced
more efficiently, helping the runtime system to reach near the performance of of the initial
case (with cutoff 240).

For the unbalanced workloads, we need to distinguish between the 240 and 1000 cases. In
the case of 240, initially the workload is completely unbalanced with no chance of stealing.
As the cutoff becomes larger, more opportunities for load balancing become available. Ap-
parently the cutoff of 2048 in this case results in very fine-grained tasks, and imposes a small
overhead to the system. As 1000 different array sizes are distributed between only 240 differ-
ent workers, this situation is different from 240 and the workload is not as imbalanced as we
expect. In order to have a similar situation, we have tested the same experiment with a value
of 960 (which is a multiple of 240). Therefore, for the cutoff 240, thread k receives arrays
with sizes k, k+240, k+480, and k+720, and the load is again unbalanced. In that case,
the cutoff of 2048 has a visible performance improvement over the cutoff of 240 (10-15%) 1.

1We have intentionally not used the number 960 for the large arrays to show that our results are independent
of the regular distribution of tasks on threads
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Figure 9.5: Speedup charts on the Xeon Phi, cutoffs: 240, 2048
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9.4.3 Performance of the Cutoff-based Method in OpenMP v.s.
GPRM

It can be observed that a large cutoff for small lists in the OpenMP implementation results
in poor performance. It is true that the range of optimal cutoff values depends on the task
granularity and the input data set [149], but at least for different cases of both balanced/un-
balanced workloads here and for cutoff values up to 2048, we did not see a drastic slowdown
with GPRM, as opposed to what we observed with OpenMP.

For the three smallest lists, GPRM outperforms OpenMP in almost all cases.

(a) 240 Balanced - OMP/GPRM (b) 1000 Balanced - OMP/GPRM

(c) 240 Unbalanced - OMP/GPRM (d) 1000 unbalanced - OMP/GPRM

Figure 9.7: Performance comparison of the OpenMP and GPRM implementations of the
cutoff-based method on the Xeon Phi

One reason why the same implementation in OpenMP does not have consistent performance
is that in OpenMP the tasks are not pre-assigned to threads, while in GPRM they are as-
signed to threads almost evenly at compile-time. Another reason is the differences between
the stealing mechanisms, which themselves come from the differences between the parallel
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execution models.

It is worth mentioning that we have also measured the speedup results for the balanced
workloads against the sequential runtime on an E5-2620 (2.00GHz) Xeon processor. The
best speedup results for the 240 and 1000 balanced cases using 12 threads (one per logical
core) were 6.4× and 5.8× respectively. The parallel performance for these cases could only
be improved up to 7.7× and 7.2× using the Xeon Phi (over the sequential runtime on the
E5-2620 Xeon system).

9.5 Comparison of the TILEPro64 and the Xeon Phi

We have used the GPRM implementation of the linked list processing algorithm to compare
the two platforms. Not only has GPRM the best results amongst the three implementations,
but its performance is stable and more predictable. Therefore, it is fair to compare the plat-
forms using GPRM. For that purpose, we have used the ratio of the Xeon Phi runtime over
the TILEPro64 runtime for the workload size of 1000 in Table 9.1. The sequential runtime
on the TILEPro64 is much better than that on the Xeon Phi 2. It is important to recall that the
Xeon Phi is not intended to target single-threaded scalar code, 32-bit data. The instruction
pipelines have in-order superscalar architecture and are designed as two-cycle fully pipelined
units. Therefore a hardware thread that is scheduled consecutively will stall in decode for
one cycle, and as a result, single-threaded code could only achieve a maximum of 50% core
utilisation [2].

Nevertheless, the parallel implementation scales better on the Xeon Phi and as can be ob-
served from Table 9.1, the performance of the Xeon Phi for the parallel implementation
comes close to that of the TILEPro64 (and for larger lists it even becomes better). It is im-
portant to note that the number of threads in this comparison is 240 for the Xeon Phi, and
63 for the TILEPro64. However, since the numbers of physical cores are close enough, we
believe that this is a fair comparison.

Considering that the Xeon Phi has 240 cores, cutoff 512 is a too small for the stealing mech-
anism to be effective (almost 2 tasks on each logical core); hence for this case, the perfor-
mance on the TILEPro64 is expected to be better. But all in all, although the sequential time
and the speedup for different input sets are different, the best performance we can get for this
benchmark from these platforms is almost similar.

21.6× for the sequential timing is a big difference. For example, for the balanced Linked List of 8M
elements, 46520s on the Xeon Phi versus 28460s on the TILEPro64 means the difference of almost 5 hours.
The performance difference for the same list after parallelisation with cutoff 2048 becomes 20 seconds.
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Table 9.1: Performance comparison using GPRM: (XeonPhi runtime / TILEPro64 runtime)
Cutoff value 50K 100K 200K 2M 4M 8M
Sequential (1) 1.63 1.63 1.63 1.63 1.63 1.63
512 1.12 1.10 1.10 1.13 1.19 1.20

Balanced workload (1000) 1024 1.13 1.14 1.15 1.10 1.13 1.09
2048 1.07 1.06 1.06 1.05 1.02 1.03
Sequential (1) 1.61 1.61 1.61 1.61 1.61 1.61
512 1.12 1.10 1.07 1.06 1.06 1.05

Unbalanced workload (1000) 1024 1.10 1.07 1.06 1.04 1.03 1.03
2048 1.02 1.00 0.99 0.96 0.96 0.96

9.6 Summary

We have proposed an efficient cutoff-based parallel linked list traversal method and demon-
strated its advantages over the conventional implementation using OpenMP tasks, which we
call Task-Per-Element (TPE).

Furthermore, we have shown that our task-based parallel programming model, GPRM, makes
it easier to traverse the elements of a linked list in parallel (even if the size of the list changes
at runtime). The cutoff-based implementation in GPRM results in superior performance
compared to both of the OpenMP implementations (TPE and cutoff-based) in almost all
cases, but most dramatically in the case of smaller lists.

The performance of the cutoff-based method in GPRM demonstrates that using a par list

construct which controls the number of tasks and determines the initial task to thread map-
ping, combined with a low-overhead load balancing technique can lead to efficient parallel
linked list processing on manycore processors.

At the end of this chapter, we compared the GPRM results on the TILEPro64 with those
on the Xeon Phi. Such a comparison showed that huge differences between the sequential
timing on the TILEPro64 and the Xeon Phi can be completely removed for the parallel
implementations, because of the higher parallelisation opportunities offered by the Xeon Phi
and utilised by GPRM.
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Chapter 10

Conclusion and Future Work

Use of parallel platforms is growing in every computing domain. In this thesis, we dis-
cussed that clock frequency and voltage scaling, complexity of superscalars, power and heat
management as well as wire delays are some of the most important reasons behind the shift
towards multicore and manycore processors. The “Free Lunch” is over and it is time for
software developers to think parallel and learn how to utilise the potential of such architec-
tures. We therefore reviewed some of the most popular models, APIs, and runtime libraries
for programming manycore processors. We posit that task-based parallel programming with
a higher level of abstraction as compared to thread-based programming is key to high per-
formance.

For the purposes of this study, we considered the Tilera TILEPro64 and the Intel Xeon Phi
platforms with 64 and 60 physical cores on a single chip, respectively. The TILEPro64
is designed to support a wide range of compute-intensive applications such as advanced
networking applications. The Xeon Phi on the other hand, is a coprocessor that is designed to
enhance the performance of the Xeon processors. The suitable applications are those which
scale well on the Xeon processors and can utilise vector units and memory bandwidth of
the Xeon Phi. The two manycore platforms have similarities such as the number of physical
cores, per-core caches, and close clock frequencies, which make them interesting to compare.
Compared to the TILEPro64, the Xeon Phi has 8× larger L2 caches, 4-way multithreading,
vector units and floating point units. The TILEPro64 on the other hand, supports L3 caches,
has a three-way VLIW architecture, but does not have any VPU or FPU, and we presented
that for applications that can make use of such units, the Xeon Phi could be significantly
faster, for instance about 100× for a naive float matrix multiplication benchmark.

We introduced our novel task-based model for programming shared-memory manycore pro-
cessors, called the Glasgow Parallel Reduction Machine (GPRM). GPRM model is well
suited to parallel evaluation, but the tasks should be coarse-grained enough to be worth eval-
uating in parallel. We also discussed that controlling the granularity of tasks is one of the
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key matters for all task-based parallel programming models and is not specific to GPRM.

10.1 Conclusion

Modern parallel systems can provide outstanding performance, but programming them is far
from easy. The main contribution of this thesis is the design and development of GPRM as a
task-based parallel programming approach, which targets both regular and irregular parallel
problems. GPRM fits naturally to the systems with per-core caches, which consequently
makes it very promising for manycore processors. Our objective is to provide a low-overhead
solution which can be efficient in both uniprogramming and multiprogramming situations on
a manycore processor.

Without a precise cost model, the programmer cannot determine the optimal number of
threads for a parallel application. The ideal situation for the programmer is to only have
to express parallelism, relying on the runtime system to achieve the expected speedup with
the default number of threads (as many as the number of cores). We have shown that GPRM
delivers this ideal in almost all cases, and where it does not, it comes very close.

The PCAM design methodology, consisting of the Partitioning, Communication, Agglomer-
ation, and Mapping phases was described in the Background chapter. We then showed how
the PCAM methodology can be applied in the design of GPRM programs. In the partition-
ing phase, one writes GPRM task codes to define task units. In the next step, the GPRM
programmer defines the communication pattern between the tasks in a GPC code. When
writing the GPC code, one is also responsible for deciding a proper cutoff value to control
the number of created tasks. We have provided some general rules for finding a good cutoff
for GPRM programs at the end of Section 6.1, e.g. if the number of tasks is not divisible by
the number of cores, a larger cutoff could be of help in balancing the load. The final phase of
mapping is performed by the GPC compiler and tuned by the GPRM scheduler at runtime.

As task-based parallel programming is becoming increasingly popular for programming
manycore processors, we started our experiments by comparing OpenMP, Cilk Plus, and
TBB together on the Xeon Phi, and highlighting the importance of proper cutoff values. We
also illustrated that the overhead of runtime systems could hurt the performance of multipro-
gram workloads quite significantly. In addition, We showed that sharing mapping informa-
tion between OpenMP applications in a multiprogramming environment (on the TILEPro64)
could improve the turnaround time.

Using three simple benchmarks, Fibonacci, MergeSort, and MatMul, GPRM showed supe-
rior performance compared to Cilk Plus and TBB on the Xeon Phi for both uniprogramming
and multiprogramming. We have observed in our experiments that, for example, OpenMP
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performs well for single programs, but does not offer the best performance for multipro-
gram workloads. GPRM, on the other hand, combines compile-time information about tasks
(through partial evaluation) with an efficient task stealing strategy and a very low-overhead
sharing mechanism between different programs in order to achieve high performance. We
call this scheme Steal Locally, Share Globally. Based on this scheme, within each applica-
tion, a low-overhead task stealing mechanism based upon the GPRM model of execution is
deployed. GPRM threads steal from each other only if their initial task assignment is sub-
optimal and load imbalance exists. Additionally, there exists a globally shared data structure
to keep track of the thread-to-core mapping information. Every GPRM instance maps this
globally shared data structure to its own memory space and uses it to share the mapping
information with other GPRM applications, if any. Steal Locally, Share Globally scheme’s
operations take place behind the scenes and are invisible to the programmer. However, both
task stealing and global sharing features can be disabled via command-line switches, if need
be.

As the most widely used standard for shared-memory programming, OpenMP was chosen
as the main competitor of GPRM on the two platforms. For the Fibonacci and MergeSort
benchmarks, GPRM outperformed OpenMP notably on both platforms. For the MatMul
benchmark, only on the Xeon Phi, OpenMP could outperform GPRM. Considering the 4-
way multithreading on the Xeon Phi, however, we found that just by choosing a different
thread mapping approach, GPRM (still with the default number of threads) can reach the
top performance achieved by the optimal number of OpenMP threads. Furthermore, by
extending this benchmark to different integer, float, and double matrices, we observed that
in most of the cases, GPRM outperforms OpenMP. The difference was up to 11× on the
TILEPro64 and up to 2× on the Xeon Phi. In the multiprogramming experiments, GPRM
offered significant improvement over OpenMP.

We continued our detailed comparison with OpenMP using more complex benchmarks: LU
factorisation of Sparse Matrices, Image Convolution, and Linked List Processing. Apart
from performance comparison, we also focused on GPRM ways of solving these problems,
by considering GPRM’s execution model as well as its special parallel constructs and APIs.

We concluded that our proposed solution for solving the “LU factorisation of Sparse Matri-
ces” problem is suitable for larger numbers of blocks and smaller block sizes. For the “Image
Convolution” benchmark, we highlighted the overhead of task creation and distribution in
GPRM for very small tasks. But, we also discussed that using task agglomeration, GPRM
can outperform OpenMP for 2D convolution of large images. With the use of “Linked List
Processing” benchmark, we showed how linked list processing in GPRM can be easy and
efficient. With the help of its par list construct, GPRM can determine the task to thread
mapping at compile time and only tune it at runtime.
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Throughout the whole thesis, we emphasised the importance of tasks and showed how con-
trolling the granularity and number of them is key to performance. As a result of this study,
we encourage the users to avoid saturating the systems with a massive number of fine-grained
tasks. Conversely, we would like to stress that the desired performance is achievable by fo-
cusing more on the size/number of tasks.

We described the implementation details of the GPRM framework, tested it with some basic
examples, and measured its performance for both regular and irregular parallel benchmarks.
There are several more complicated parallel patterns that could be used to compare GPRM
with other parallel programming approaches. However, based on the evidence demonstrated,
we conclude that GPRM is a flexible programming model that could enhance both perfor-
mance and productivity on manycore processors. We have identified some of its weaknesses
and proposed a number of solutions in order to improve its performance. Additionally, noth-
ing stops users from combining GPRM with another model, such as OpenMP whenever
needed. In terms of productivity, GPRM’s modular structure is of great help for writing
complex parallel programs. The fact that a GPC code offers native parallelism is another
reason why GPRM could improve productivity. We have also shown that performance tun-
ing in GPRM (due to its high abstraction level) is a matter of dealing with only tasks, and
not threads.

We end this dissertation by outlining directions for future work. Our suggestions are based
upon the evidence and information gathered during this study. Therefore, the next section
can be considered as a complementary section for our final conclusion.

10.2 Future Work

In this section, based on the lessons learnt from the design and implementation of GPRM,
we aim to provide suggestions for future improvement and extension.

A very useful part of the future work would be to reduce the overhead of the GPRM run-
time system, as a large portion of its code was never written for low overhead, rather for
flexibility. In order to make GPRM a successful and comprehensive general-purpose parallel
framework, still a lot of work lies ahead of us. There is room for improvement in multiple
areas:

10.2.1 Support for other Computing Models

A pleasant feature of GPRM is that it can be integrated into any C++ code and be combined
with other parallel programming models. This helps to offload only some parts of computa-
tion to GPRM, whenever needed. Also since GPRM is based on a pool of POSIX threads,
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it is compatible with approaches like OpenMP. If GPRM threads have no work to do, they
simply go to sleep and threads of the other model can be used for parallelisation. Although
we have tested GPRM and OpenMP together in some sample benchmarks, achieving high
performance for such combinations remains for future work.

The current version of GPRM can be extended to support distributed computing. The only
difference should be in sending messages. Instead of passing the pointers around, the system
should copy the whole data, if the access request comes from another node. For intra-node
communication, still the pointers should be used.

Parallel to this work, other researchers in our group are working on a data-parallel version of
the GPRM, for use on GPUs and, eventually, FPGAs. In this way, we aim to create a unified
programming framework for heterogeneous manycore systems.

10.2.2 Task Scheduling

The current runtime system is oblivious to the NUMA effect. The techniques used in other
parallel programming approaches regarding the NUMA effect can be embedded into the
GPRM runtime system. For instance, a locality-aware task scheduling technique is proposed
in [174].

Giving priority to tasks can be added as a feature to the GPRM framework. SMPSs [175]
uses the highpriority clause to indicate that a task has high priority and if there is
no data dependency, it must be executed before tasks without high priority. Using similar
notation could help the GPRM runtime system to prioritise the tasks.

The next two suggestions are regarding the stealing mechanism. In the current scheme, tasks
are stolen from the Ready Queues. This could be expanded to support stealing from the
Request Queues. This way, instead of a single task, a branch of computation will be stolen.
However, since GPC compiler does its best to make sure that tasks are evenly distributed,
this could only be useful for specific parallel patterns.

A better change to the task stealing mechanism could be stealing multiple tasks at once
(instead of just one) until the Ready Queues become equal in size.

10.2.3 Oversubscription

In GPRM, oversubscription comes with low overhead, because once the threads are pinned to
the processing cores, no further scheduling is performed on them. Two different approaches
can be considered here:
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Manager/Worker

In this situation, one thread can work as the manager, performing the responsibilities of the
task manager, and the other one becomes responsible for the task kernel jobs. The overhead
of thread switching in this case should be investigated. But it is important to recall that in the
current version of GPRM, since tasks are non-preemptive, no decisions can be made about
the newly arrived tasks until the execution of the current task finishes.

Therefore, when a task blocks on I/O, the whole tile becomes useless, and this could be a flaw
in the current system. Although, it can be argued that when the number of cores increases,
the tasks become smaller, hence the potential latency associated with them has less impact
on overall performance.

Peers

In an alternative approach for solving the above problem, there can be multiple threads on
each tile with equivalent access to the task queues. The scheduling of such threads as well as
their access to the shared data structures should be managed by the GPRM runtime system.
However, in this case the threads do not have pre-defined jobs. The runtime system should
be able to switch between them if one blocks for more than a certain threshold.

A hybrid approach could also be considered, where one thread is the manager and others are
workers. If a worker thread blocks on a long-running task, another worker thread should be
able to execute other tasks. The manager thread would still be responsible for incoming and
outgoing messages.
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