
UNIVERSIDAD DE CANTABRIA
PROGRAMA DE DOCTORADO EN CIENCIA Y TECNOLOGÍA

TESIS DOCTORAL

 OPTIMIZACIÓN DEL RENDIMIENTO Y LA
EFICIENCIA ENERGÉTICA EN SISTEMAS

MASIVAMENTE PARALELOS

PHD THESIS

OPTIMIZING PERFORMANCE AND ENERGY
EFFICIENCY IN MASSIVELY PARALLEL SYSTEMS

Raúl Nozal González

Dirigida por José Luis Bosque Orero

Escuela de Doctorado de la Universidad de Cantabria

Santander 2021

UNIVERSIDAD DE CANTABRIA

Tesis Doctoral

Optimización del Rendimiento y la Eficiencia
Energética en Sistemas Masivamente Paralelos

PhD Thesis

Optimizing Performance and Energy
Efficiency in Massively Parallel Systems

Raúl Nozal

Dirigido por José Luis Bosque

Grupo de Arquitectura y Tecnología de Computadores

Departamento de Ingeniería Informática y Electrónica

Noviembre de 2021

A la Familia,
a los seres queridos,

a las cosas buenas de la vida,
a los humanos comprensivos y de buen corazón,

a la gente trabajadora, humilde y honrada, a los que se esfuerzan,
a los que viven con pasión y curiosidad, especialmente a los que desean aprender,

y definitivamente, a los solidarios que luchan por construir un mundo mejor, más justo y sostenible.

Für meine Familie,

Für meine Lieben,

Für die guten Dinge im Leben,

Für die verständnisvollen und gutherzigen Menschen,

Für die f eißigen und ehrlichen Menschen,

Für jene, die nach mehr streben,

Für jene die leidenschaf lich und neugierig sind, besonders für jene, mit dem Verlangen zu lernen,

Und vor allem für jene, die solidarisch sind und für eine bessere, gerechtere und nachhaltige Welt kämpfen.

l

t

为
我
的
家
庭
︐

为
我
的
情
⼈
︐

为
好
的
东
⻄
⽣
活
里
︐

为
⼯
⼈
们
︐
谦
逊
的
⼈
们
︐
为
这
些
努
⼒
天
天
向
上
︐
为
这
些
要
学
习
︐

致
那
些
团
结
的
⼈
们
为
建
设
更
美
好
︐
更
公
平
和
更
可
持
续
的
世
界
⽽
奋
⽃
的
⼈
们
︒

Семье,

Любимым людям,

Хорошим вещам в жизни,

Понимающим людям с добрым сердцем,

Людям-труженикам, скромным и честным тем, кто не сдается,

Тем, кто живет со страстью и любопытством и особенно тем, кто хочет учиться,

И, определенно,тем солидарным, кто борется за построение лучшего мира, более справедливого и устойчивого.

لأهل ا إلى
لاحبة ا إلى

الحياة في الجميلة لأشياء ا إلى
الطيبة القلوب أصحاب الرحماء إلى
الشرفاء المتواضعين المجتهدين إلى

التعلم في والرغبة المعرفة شغف يعيشون الذين إلى
واستدامة لًا عد أكثر أفضل عالم لبناء كفاحهم في المتضامنون

To my Family,

to my loved ones,

to the good things in life,

to understanding and kind-hearted humans,

to hard-working, humble and honest people, to those who strive,

to those who live with passion and curiosity, especially those with the desire to learn,

and def nitely, to those with principles of solidarity who f ght to build a better, fairer and sustainable world.ii

AGRADECIMIENTOS

Acknowledgements

Tras casi cinco años de esfuerzo, se da por cerrada otra etapa de mi vida. Bien es cierto que
me hubiera gustado realizar una tesis doctoral como las de antes, pues me siento afín a ese
espíritu de contribución vital, como proyecto de vida y con la consecución de un aporte que
de verdad suponga un antes y un después. Ahora bien, también es cierto que si no me po-
nen límites, no quiero imaginar la de décadas y sacrificios que supondría. No obstante, la he
tratado de elaborar con la mejor voluntad posible, fruto de ingentes esfuerzos y dedicación.
A pesar de sentir que podía haber dado mucho más, mis condiciones materiales me han
permitido compaginar la investigación con la docencia, parte de mis grandes vocaciones,
pero sin perder el contacto con la perspectiva industrial y la aplicabilidad de cada contribu-
ción científica, el amplio abanico de aficiones, disciplinas y curiosidades por explorar, y en
ocasiones, algo de vida social y personal. Este largo viaje ha estado acompañado de muchas
grandes personas. He aquí mi reconocimiento y agradecimiento a todas ellas, a pesar de de-
jarme otras tantas, fruto de las intensas jornadas que han ido machacando mi organismo.
Espero que me disculpen.

★ A Jose Luis. Mi tutor, consejero y director. Por acogerme, desgajar nuevos frentes, sal-
tar conmigo a las trincheras y darme manga ancha, nunca limitando mis elecciones.
Por entenderme y tener cerca de ti a alguien tan incandescente, obsesivo y que se des-
envuelve entre montañas de ansiedad. Las cosas buenas de mí, tanto como persona, así
como docente e investigador, las dejo a tu discreción ;). Hice muy bien escogiéndote
para esta travesía doctoral y periodo de mi vida. Gracias.

❧ A María, piedra angular de mi futura Familia. Nuevo bastión y matriz engendradora.
Proyectaremos nuevas generaciones y plasmaremos nuestras propias bases para tratar
de hacer de este un mundo mejor. Tú has llevado el peso de esta tesis, me has ayudado,
animado y comprendido. Soportas la carga y presión de mis altas jornadas y malas
rachas, me has cuidado y mimado, empatizando con mi estrés e incertidumbre. Sin
tu apoyo esto habría sido muchísimo más duro, triste, desesperante y vacío. Gracias.

❧ A mis progenitores y educadores, Don Luis Angel y Doña Julia, padre y madre. La Fa-
milia generadora y base de mi ser, origen de mi carácter y muchos de mis principios.
Tanto de mis preocupaciones y ansiedad, como de mi alegría, curiosidad y capacidad
de sacrificio. Habéis proporcionado un entorno propicio para desarrollarse, recono-
ciendo el aprendizaje y el esfuerzo como algunos de los pilares de nuestro hogar.
Gracias a los dos.

(Madre, te toca ir en segunda posición, pues llevas ventaja tras dedicarte hace 8 años el
software de reconocimiento de árboles y plantas que tanto me llevó)

iii

▸ A los compañeros de investigación y gente de la academia, sobre todo a las personas de
Arquitectura y Tecnología de Computadores, compartiendo seminarios, docencia y
congresos, pero también entretenidas celebraciones, vermuts y cenas; y especialmen-
te a Mon y Esteban, por su compañía y asesoramiento. Me arrepiento de no haber
podido ir más a las clases de Mon en su día, pues con los años, cuanto más horas de
clase doy a mis alumnos, más voy relacionando los contenidos con anécdotas propias,
tanto de academia como de industria, recordándome más a su forma de impartir cla-
se. Por cierto, Enrique, por si nunca te lo he dicho, una pena no haberte tenido como
profesor, seguro que me hubieses gustado. A Rafa, Fernando, Chus y Carmen, segu-
ro que si hubiese dado todas las asignaturas relacionadas con computadores con mi
nivel actual de madurez y aprendizaje, las disfrutaría aún más. También a mis com-
pañeros de trinchera, con los que fui compartiendo despacho y progresiva amistad,
ahora ya todos liberados: Pablo, Borja, Iván y Mariano. Los paseos, bromas, charlas,
discusiones y cervezas siguen cayendo, y espero que así continúen. También a Cristó-
bal, por compartir enseñanzas y técnicas. Me siento orgulloso de que seas uno de mis
primeros evangelizados al Óxido.

▸ Al resto de compañeros de docencia y entorno universitario, especialmente a Javi (Gu-
tiérrez), Jose Ángel (Herrero), Pablo (Abad), Amparo y Alex. A los colegas del grupo
de Arquitectura de Computadores de Zaragoza, porque se hace muy fácil colaborar
con vosotros y porque allí me sentí como en mi tierruca, salvo por el frío, el viento
y la aridez. Gracias, Darío, Rubén, María y Angélica. Saltando a tierra de campos y
compartiendo múltiples congresos, a Arturo, por el buen trato y su jocosa persona-
lidad. Hablando de cachondeo, a los albaceteños del grupo de ATC con los que he
compartido varias salidas nocturnas y muy buen rollo, además de maravillosos des-
cubrimientos culinarios, como el queso al romero. A Francisco, Pedro, Jesús y Paco.

▹ A mis amigos más duraderos e importantes. Fran, es todo un placer compartir tantas
experiencias, formas de ser y afinidades, tanto en lo personal como en lo profesional.
El río, los cafés y cervezas, los periodos de trinchera y las palizas; muchos buenos y
duros momentos. Jou, más de media vida juntos, y esto parece que continúa igual de
bien, compartiendo hasta nuevos gustos. Debería aprender de ti a ser más sereno y
aislar los «problemas» para mejorar en salud. Tienes un gran poder.
Espero que nuestra amistad continúe por siempre. Gracias.

▹ Jaled, como representante de los nuevos amigos. Un gran descubrimiento y una bellí-
sima persona. Poco más de tres años de amistad, y como si llevásemos desde siempre.
Que suerte tuve al conocerte. Gracias por soportar mis consultas de electrónica y sis-
temas, pero es que eres mi Ingeniero Electrónico favorito. Echo de menos nuestras
largas conversaciones en la intemperie, así que habrá que retomarlas algún día. Gra-
cias.

iv

▲ A mi familia ampliada, tanto las abuelas, como tíos y primos. Es un placer estar con
vosotros, sintiéndome siempre tranquilo y alegre. Especial mención a Javi y Jose Án-
gel, carpintero y marinero, ambos lobos, uno de tierra y otro de mar. Gracias.

▲ Por supuesto, a mi tío salmantino, Don Miguel. Creo que no conozco a una perso-
na tan peculiar. Eres una persona muy inteligente, pero destacaría tu experiencia de
vida, tu cocina y tu vino. Si hubiese sido hijo tuyo, probablemente hubiese tenido ca-
rácter de superviviente, astuto y ratero, en el buen sentido del término. Valoro cómo
de consecuente eres con tu pensamiento. Gracias.

♢ A los amigos del viernes, Borja, Chapi, Ksenia y Jessy. Me habéis ayudado mucho
desconectando periódicamente, siempre bien acompañado, tanto por vosotros, como
por buenos costillares y valencianos. Gracias.

♢ A los amigos del pueblo, los de siempre. Yonny, Héctor, Toci, Miguel, Guio y Juako,
sois grandes y (generalmente :P) humildes personas, y me siento agradecido de estar
junto a vosotros. Pocas cosas me gustan tanto como estar metiéndonos juntos unas
buenas nachadas y hamburguesas del Marcos un viernes, y unas pizzas tradicionales
en el Medieval el sábado. Eso sí, luego pasa factura, pero en buena compañía. Gracias
a todos.

♢ A amigos fruto de aquel paso por Topografía, especialmente a Salva e Iñaki. Salva,
un verdadero placer debatir y discutir (incluso con pólvora por medio), tu compa-
ñía y amistad siempre es bienvenida. Además, es un placer pasear por Burgos de tu
lado. Iñaki, probablemente la persona más bonachona de esta lista, y compitiendo en
tranquilidad con Jou. Como echo de menos nuestros tiempos de café y apuesta bien
rodeados. Gracias a los dos.

♦ A las nuevas amistades, como mis leoneses Yony y Jessy. Sois unas personas encan-
tadoras, y he disfrutado mucho de nuestras conversaciones y compañía. Espero que
sigamos manteniendo esta relación tan buena y compartiendo futuras barbacoas y
experiencias gastronómicas. Gracias.

△ A los colegas de la carrera con los que todavía se mantiene la llama viva. Especial
mención a Gracy y Aída, así como a David. A ver si seguimos viajando y compartiendo
gustos. Va siendo hora de probar el airsoft. Mencionando los estudios y el deporte, una
mención para mi colega Aitziber, la diseña-madora, Aitziber. Gracias.

△ A las amistades por retomar. Pablo («Punto»), disfrutaba de tu compañía, y todavía
recuerdo la efervescencia cuando hubo el debate funcionariado-autónomos. Aportas
mucho y hace varios años que no nos vemos, por lo que ya es hora. Gracias.

★ A los amigos internacionales, ya con una trayectoria de casi una década. Peter, aho-
ra padre redneck, muchas gracias por compartir tan buenos momentos. Gracias por
aguantar mis duros periodos de escritura de papers en mitad de nuestras vacaciones.
Anhelo nuestras rutas y cervezas acompañados de un buen Haxe. Gracias.

v

★ A las antiguas amistades, ahora retomadas. Es un placer poder volver a estar con vo-
sotros y conseguir aislarme de mi rutina tan intensa. A Mario, un cabra loca que sigue
siendo tan buena persona como siempre. A Borja y Manu, porque a pesar de ser unos
tipos duros y repartir a diestro y siniestro (algunos se merecen un cachete, lo reco-
nozco), tenéis coco y profundidad de ideas. Es un placer compartir análisis y debatir.
Creo que ya es tradición una celebración anual con un buen chuletón en Ucieda. Un
placer. Gracias.

★ A los colegas del gimnasio, y en especial a Javi, mi entrenador y amigo, por soportar
mis burradas durante los primeros 3 años. Esos bombardeos con HardBass siempre
se recordarán, y si no me he destrozado más el cuerpo es porque vino la pandemia
mundial. Echo de menos nuestros pucheros de cocido y carajillos de anís en la Vega
de Pas. Gracias por hacer del gimnasio mi segundo hogar.

✦ A aquellas amistades que trascienden oficios y relaciones. Susana, disfruto muchísi-
mo de nuestro tiempo juntos, pateadas e intercambio de pensamientos. Tienes todavía
mucho que enseñarme. Me apasionaba cómo dabas historia en bachiller, y me sigue
apasionando cómo la cuentas hoy día. Espero pronto poder sacar algo de tiempo para
aprender de arte. Gema, mi enfermera favorita y grande conversadora. Espero que po-
damos retomar algún día aquellas conversaciones profundas, pues eran inspiradoras.
Gracias a las dos.

✦ A los compañeros y amigos del Club de lectura, en especial a Óscar y Chopi. Me com-
place poder compartir esos periodos juntos, aislándonos del resto de vicisitudes. Os-
car, eres de los tíos más majos que conozco, y ha sido una agradable sorpresa oír tus
reflexiones. Chopi, qué ganas de poder volver a juntarnos para nuestro domingo de
comilona. Señor de oficios y principios, sin olvidar su naturaleza. Echo de menos
nuestros trotes y conversaciones. El tío más agradable de todo Ramales. Gracias a
todos.

✧ A todas las amistades de Ucrania, pues hicisteis una maravilla el tiempo que pasé allí.
A mis amigos rusos y ucranianos, en especial a Sergiy (Gogol :P), que parece que nues-
tros caminos están destinados a cruzarse en diferentes localizaciones, compartiendo
muy buenos momentos (y techo); pero por supuesto también a Alexander (Kyriy),
Anastasiia (Kasprova), Alina (Kucheriavenko), Marianna (Kovalova), Vadim (Popov),
Ramil (Nabiev), Kamil (Tokmakov), Yevgeniya (Kovalenko) y Anastasiia (Shamaki-
na). Gracias a todos.

vi

✧ A mis compañeros de estancia en el HLRS. A Jose Gracia, el jefe y compañero de
trabajo que siempre quise tener. Un gusto compartir filosofía y «banquetes». A Tho-
mas (Kloss), Joseph (Schuchart), Christoph (Niethammer), Venkata (Ayyalasomaya-
jula), Kingshuk (Halder), Fabian (Dembski), Denis (Altmann), Soheil (Soltani), Ale-
xey (Cheptsov), Ayse (Bagbaba) y Dmitry (Khabi). Siempre que pueda seguiré en-
viando sorpresitas culinarias. Ya sabemos que los sobados, las quesadas y el jamón
apasionan tanto a nacionales como extranjeros. Gracias a todos.

⏣ A Alexandros (Andreou), Stathis (Dimitrios), Georgios (S. Bousdras), Kleovoulos
(Kalaitzidis) y Anna (Molinet), por nuestra afinidad, visitas, juergas y tertulias, tanto
en Italia como Barcelona. Hicimos muy buenas migas, y la verdad es que nunca hubie-
ra imaginado sentirme tan bien entre griegos, cretenses y chipriotas. He aquí nuestros
lazos como orgullosos mediterráneos. Por supuesto, sin olvidar a Xavi (Salazar), ahora
ya padre y comunicador. Gracias a todos.

⏣ A Pilar (Alesón), de la EDUC, por ayudarme tanto y no protestar ante tanta pregunta,
correo y llamada. Hemos conseguido paralelizar al máximo el proceso, todo un reto.
Periodos muy estresantes, por los que te compensaré.

⏣ A Fernando, el profesional del servicio de reprografía. Has soportado todo tipo de
preguntas y detalles, aguantando a una persona tan obsesiva como yo, incluso con los
detalles más «ridículos». Este documento no podría salir tan bien si no es por tu labor
al otro lado del mostrador. Gracias.

○ A la gente del campo y del campo, con los que comparto formas de vida y aficiones.
Gracias a todos.

○ De todos los lugares de travesía durante la tesis, a aquellos que he podido explorar y
disfrutar, mostrándome la grandeza del hombre y la naturaleza, ayudándome a valo-
rar más bondades de la vida. A Salamanca, Córdoba, Toledo, Segovia, Burgos, Mérida,
los Alcornocales, Barbate, Cádiz, Madrid, Barcelona, Las Navas, Herrera de Pisuerga,
los Valles Pasiegos, y sobre todo, Ramales de la Victoria. Al Palatinado, especialmente
sus colinas y castillos, desde Speyer hasta Eußerthal pasando por Göcklinguen y Lan-
dau in der Pfälz. A Baviera y Austria, sobre todo los Alpes y Königssee. A Ucrania,
especialmente a Lviv. A Irlanda, en su totalidad, pero particularmente a Dublín y el
Munster, tanto Clare-Galway (Moher) como Cork.

Gracias a todos.

vii

ABSTRACT

In recent years, with the emergence of a diversity of computational devices and architec-
tures, it is becoming possible to tackle an interesting variety of problems. The constant quest
to improve the performance and energy efficiency of computational platforms has embraced
the concept of heterogeneous systems, offering solutions never seen before. The present and
coming decades of computing cannot be understood without these types of massively par-
allel systems.

With the emergence of new specialized devices, a world of possibilities is opening up, al-
lowing the combination of HPC devices, such as multi-core CPUs powered by integrated
graphics processors, FPGAs, discrete GPUs, DSPs and even specialized accelerators for ma-
chine learning inference, graph analysis and visual processing, termed xPU devices. This
heterogeneity is being observed in more and more places, ranging from adding specialized
units to the execution cores within GPU architectures, to building SoCs with independent
accelerator units along with general-purpose processors on the same die. All these solu-
tions have in common their excellent cost-performance ratio and energy efficiency, which
allow the acceleration of a wide range of massively data-parallel applications, such as deep
learning, big data analysis, sound processing, video streaming, image processing or financial
applications, among others.

However, hardware heterogeneity complicates the development of efficient and portable
software, especially when specialized components from various suppliers are used, since
many require their own programming languages. Languages and frameworks converge in
programming models seeking to be progressively more expressive and abstract. OpenCL
emerged as an open standard programming model for writing portable programs across
heterogeneous platforms. However, it has a very low level of abstraction and leaves to pro-
grammers the complex tasks of problem partitioning and data transferral between the CPU
and devices. Nevertheless, it continues to be the de facto open standard, and new manu-
facturers continue to offer OpenCL drivers for their devices.

Moreover, market trends and industrial applications indicate a strong predominance of
languages such as C++ that call for higher level alternatives to OpenCL. For instance, SYCL is
a cross-platform abstraction layer that originally builds on top of OpenCL, enabling the host
and kernel code to be contained in the same source file . In this context, solutions such as
oneAPI and the DPC++ compiler have emerged, offering a set of domain-specific modules
and C++ support for programming heterogeneous systems, although initially limited to Intel
architectures.

All these systems are based on the host-device programming model, thereby offloading
computational regions to the system accelerator and leaving the CPU for management tasks.
In more sophisticated cases, task-based offloading is carried out, where each device executes
an independent function, but having to be orchestrated and managed by the developer along
with a capable runtime. On the other hand, the co-execution technique allows all devices,
including the CPU, to operate on the same problem, consuming less time and energy to

ix

solve it. Again, the problem is that the programmer must take care of all the host and device
management, penalizing maintainability and increasing engineering efforts.

In order to exploit co-execution, it must be easy to use, regardless of the number and
type of the devices in the system. Moreover, the code must be portable, avoiding having to
transform it in order to operate with other devices and systems. The programmer has to
be abstracted from the underlying architecture and the optimal working strategies for each
device or manufacturer, as well as the partitioning of the workload among the devices. This
is definitely a complex task and needs to be done in the best possible manner, adapting to
the behavior of the problem and the heterogeneous conditions of the system, in order to
guarantee the best performance portability.

This dissertation offers different contributions to improve the performance and energy
efficiency of these massively parallel systems, making proposals that address generally con-
flicting aspects, such as usability improvements and increased abstraction with performance,
energy efficiency and optimization. Two proposals for runtime systems with radically dif-
ferent approaches are conceptualized, designed and evaluated.

The first, EngineCL, presented in Chapter 3, is an OpenCL-based runtime and API that
facilitates very high-level operations, greatly improving programmability, while ensuring
maximum portability and compatibility between heterogeneous systems, reducing all the
management that a programmer must do. In addition, it provides a extensible pluggable
scheduler system that enhances the performance of all kinds of problems in nodes with de-
vices of all types and manufacturers.

Chapter 4 describes two major extensions performed to EngineCL that enhance its capa-
bilities, revealing the versatility of its design. The first improves the runtime and one of its
load balancing algorithms to facilitate time-constrained executions, one of the most coun-
terproductive scenarios for these programming paradigms and accelerators. The second
one allows EngineCL to efficiently execute problems for which OpenCL technology is not
appropriate, as part of a real scientific software used for molecular dynamics simulations.
It is extended to support hybrid programming models, exploiting the system resources effi-
ciently while preserving the rest of the runtime functionalities.

Finally, Chapter 5 presents the second runtime proposal, CoexecutorRuntime, that takes
on a different perspective. It focuses on providing oneAPI technology with co-execution
support, enabling and optimizing the use of dynamic strategies to ensure efficient adapt-
ability to irregular problems. Although it incorporates a number of extensions that bring
programmer closer to the domain of the problem, its design principles allow extensibility
while offering a oneAPI/SYCL-compatible API.

These contributions facilitate programmability, reduce integration efforts and achieve ef-
ficient exploitation of heterogeneous systems. In short, these multi-objective proposals help
to extract the maximum performance and energy efficiency out of current and future mas-
sively parallel systems.

x

RESUMEN
Spanish extended abstract

La computación heterogénea es un término que ha ido cogiendo relevancia en los últimos
años, impregnando tanto congresos académicos como eventos industriales, por no decir un
sinfín de aplicaciones y usos con implicaciones tanto en software como en hardware. Este
término, acotado al campo de aplicación de esta tesis, se refiere a la ejecución de aplicaciones
en una plataforma de cómputo compuesta por dispositivos de procesamiento con diferentes
arquitecturas, siendo esta diversidad lo que proporciona un gran potencial, aunque a la vez
incrementa la complejidad del sistema y su programación.

Con la aparición de nuevos dispositivos especializados, se abre un mundo de posibili-
dades tanto en la computación de altas prestaciones (HPC) como en soportes embebidos
y computadores domésticos. La combinación de dispositivos no para de crecer, incluyen-
do CPUs complementadas por procesadores gráficos integrados, FPGAs, GPUs discretas,
DSPs e incluso dispositivos XPU, especializados en inferencia de aprendizaje automático
(TPUs), reconocimiento de patrones (APs), y aceleradores de procesamiento visual (VPUs).
Esta heterogeneidad se observa cada vez en más lugares, desde la incorporación de unidades
especializadas a los núcleos de ejecución dentro de las arquitecturas, hasta la fabricación de
SoCs con unidades aceleradoras independientes y procesadores de propósito general en el
mismo chip, ofreciendo soluciones muy versátiles.

Desde el punto de vista hardware, es algo claramente beneficioso, pues cada dispositivo
de cómputo es más adecuado para diferentes tipos de aplicaciones. Esta eficiencia puede ser
tanto en términos de rendimiento, como en menor consumo energético y su consecuente
implicación en la reducción de costes. Estas características tan buenas de eficiencia, costes y
versatilidad son necesarias en la era del big data, la inteligencia artificial, y las simulaciones
científicas en clusters con grandes consumos energéticos. En definitiva, en el camino a la
computación exascale. De esta forma, siendo capaces de utilizar esta heterogeneidad y ha-
ciendo que cada dispositivo especializado contribuya en pos de una labor más ambiciosa, se
facilitará alcanzar los beneficios esperados, sobrepasando las limitaciones actuales.

Por otro lado, desde la perspectiva software, es donde se encuentran los mayores retos para
explotar al máximo las ventajas de este tipo de computación. La programación se complica
radicalmente, alejandose de la computación tradicional homogénea. Para aprovechar los
sistemas es determinante conocer los tipos de dispositivos de cómputo, su arquitectura y
su modelo de programación. El código y los propios algoritmos se ven afectados por estas
características, complicando la portabilidad y pudiendo aparecer nuevos cuellos de botella
antes no presentes. Las vicisitudes son diversas, yendo desde las sobrecargas en la gestión
de los dispositivos y la comunicación entre diferentes unidades de cómputo, pasando por
la transferencia de datos entre memorias y sus patrones de acceso, hasta las optimizaciones
arquitecturales y problemas de compatibilidad tecnológica.

Estos problemas de portabilidad software se acucian especialmente al utilizar componen-
tes especializados de varios fabricantes, ya que muchos requieren sus propios modelos de

xi

programación. OpenCL surgió como un lenguaje de programación estándar abierto para
escribir programas portables en plataformas heterogéneas. Sin embargo, tiene un nivel de
abstracción muy bajo y deja en manos de los programadores la partición y transferencia de
datos y resultados entre la CPU y los dispositivos. Además, el soporte por parte de los dis-
tintos proveedores ha sido variable tanto en compatibilidad como en rendimiento. Aun así,
sigue siendo el estándar abierto de facto, y los fabricantes siguen incorporando controlado-
res de OpenCL en plataformas innovadoras.

Además, las tendencias del mercado y las aplicaciones industriales indican un fuerte pre-
dominio de lenguajes como C++, favoreciendo alternativas de mayor nivel de abstracción.
Por ejemplo, SYCL es una capa de abstracción multiplataforma que originalmente se cons-
truye sobre OpenCL, permitiendo que el código a ejecutar en el host (CPU) y en el disposi-
tivo estén contenidos en el mismo archivo fuente, gestionando las dependencias en un grafo
de tareas. En este contexto, han surgido soluciones como Intel oneAPI y la implementación
DPC++ de SYCL, que ofrecen un conjunto de módulos específicos de dominio y soporte
C++/SYCL para la programación de sistemas heterogéneos, siendo adaptado cada vez más
por distintos fabricantes.

Sin embargo, todos estos sistemas se basan en el modelo de programación host-device,
favoreciendo la descarga de regiones computacionales (kernels) al acelerador del sistema,
dejando la CPU para las tareas de gestión. En casos más sofisticados, se lleva a cabo una
descarga basada en tareas, en la que cada dispositivo computa una función independiente,
pero que debe ser orquestada y gestionada por el desarrollador junto con un runtime que
posibilite dicho modo de ejecución. Por otro lado, la técnica de co-ejecución permite que
todos los dispositivos, incluida la CPU, operen sobre el mismo problema para aprovechar
el uso de los recursos del sistema, consumiendo menos tiempo y energía para resolverlo.
El problema es que el programador tiene que encargarse de toda la gestión manualmente,
penalizando la mantenibilidad y aumentando los esfuerzos de ingeniería.

Para explotar la co-ejecución, debe ser fácil de usar, independientemente del número y
tipo de dispositivos del sistema. Además, el código debe ser portable, evitando tener que
transformarlo para operar con otros dispositivos y sistemas. El programador debe abstraerse
de la arquitectura subyacente y de las estrategias de utilización óptimas de cada dispositivo
o fabricante, así como de las decisiones de partición del problema y de asignación de la
carga de trabajo entre los dispositivos, logrando una planificación y un equilibrio de carga
eficientes. Se trata, sin duda, de una tarea compleja que debe realizarse de la mejor manera
posible, adaptándose al comportamiento del problema y a la heterogeneidad del sistema,
para garantizar la mejor portabilidad del rendimiento.

Esta tesis presenta un conjunto de contribuciones enfocadas a posibilitar y optimizar la
co-ejecución en sistemas heterogéneos, todo ello aliviando al programador en la toma de de-
cisiones y fomentando una alta usabilidad. Se conceptualizan runtimes que abstraen los sis-
temas subyacentes, orquestan todas las operaciones con los dispositivos existentes y facilitan
la portabilidad de rendimiento. Además, se incorporan, evalúan y optimizan las estrategias

xii

de planificación, así como los algoritmos de balanceo de carga para poder explotar eficien-
temente los problemas a resolver. El enfoque de las propuestas es siempre multi-objetivo,
tratando de exprimir el máximo rendimiento y eficiencia energética, así como mejorando la
usabilidad. El propósito no es otro que aprovechar todos los dispositivos de cómputo dispo-
nibles para resolver las tareas de forma cooperativa. Las experimentaciones y validaciones
efectuadas a lo largo de la tesis se han realizado siempre sobre máquinas reales. Además, du-
rante la conceptualización, depuración e implementación de las propuestas se han utilizado
otros sistemas y plataformas no presentes explícitamente en este documento. Sin embargo,
han servido para verificar las implementaciones, ofrecer más evaluaciones en otras arqui-
tecturas, ampliar la compatibilidad entre fabricantes, optimizar funcionalidades e incluso
ampliar el análisis de resultados al detallar validaciones concretas de este documento. Aun
así, el mayor aporte ha venido dado tanto por las máquinas del grupo de investigación de
Arquitectura y Tecnología de Computadores (ATC) de la Universidad de Cantabria, como el
Centro de investigación internacional para la Computación de Alto Rendimiento (HLRS) de
Stuttgart, en Alemania. Adicionalmente, fruto de la estancia de investigación en el centro
HLRS se ha podido contar tanto con el soporte científico y técnico, como con el simulador
de dinámica molecular ls1-MarDyn, posibilitando una de las contribuciones propuestas.

En primer lugar, se propone EngineCL como runtime flexible y portable para sistemas he-
terogéneos. Es ideado, diseñado e implementado con dos principios en mente, la usabilidad
y el rendimiento. Se nutre de todo el potencial de OpenCL, obteniendo una alta compatibi-
lidad, pero mejorando su aplicabilidad al fomentar técnicas que potencian su rendimiento.
El motor ha sido ideado para explotar de forma sencilla todos los dispositivos y arquitectu-
ras diversas que existan en un nodo heterogéneo. Su arquitectura y principios de diseño han
sido conceptualizados y optimizados con el objetivo de facilitar la programabilidad y mante-
nibilidad de los programas. Se ofrece una API simplificada sobre el framework de OpenCL,
facilitando su uso y explotación, teniendo en cuenta las características comunes de ejecu-
ción de programas HPC y con necesidades de aceleración. Además, el runtime es modular y
extensible, incluyendo también un sistema de plugins para planificadores altamente optimi-
zado para reducir los overheads de gestión. Para demostrar la efectividad de EngineCL, se ha
validado tanto bajo criterios de mantenibilidad como de rendimiento y eficiencia energéti-
ca, utilizando múltiples tipos de dispositivos y arquitecturas. Los resultados experimentales
muestran una sobrecarga prácticamente despreciable junto con una alta usabilidad com-
parado con OpenCL, además de ofrecer un rendimiento muy cercano al máximo teórico,
aprovechando eficientemente el sistema heterogéneo.

La segunda contribución extiende e integra el runtime EngineCL en dos escenarios di-
ferentes, incluyendo una aplicación real. Se muestra la versatilidad del runtime diseñado, y
cómo se adapta a situaciones para las que no fue ideado inicialmente. Por un lado, EngineCL
ha sido extendido y optimizado para adaptarse a servidores de servicios y nodos de tipo com-
modity donde las ejecuciones están limitadas por tiempo. Estas peticiones de cómputo tie-
nen generalmente una duración de pocos segundos, además de ofrecer modos de actuación

xiii

contraproducentes para los runtimes pesados y donde los drivers tienen elevados periodos
de inicialización. El modelo host-device suele sufrir penalizaciones ante este tipo de escena-
rios, por lo que en esta propuesta se detallan las optimizaciones realizadas sobre el motor
para hacer frente a estas situaciones. Además, se realizan optimizaciones algorítmicas para
mejorar la eficiencia al explotar las distintas arquitecturas presentes en el nodo. Por otro
lado, se realiza una integración que combina distintos modelos de programación, realizan-
do una co-ejecución híbrida y extendiendo los núcleos de ejecución del runtime, explotando
una aplicación real utilizada en el centro de investigación HLRS. Los problemas de dinámi-
ca molecular del simulador sufren una fuerte penalización al utilizar OpenCL, invalidando
toda posibilidad de mejorar el rendimiento al utilizar los distintos dispositivos del nodo, li-
mitándose a un modelo host-device de descarga a aceleradores. Por este motivo, se extiende
EngineCL para dar soporte a formas híbridas de co-ejecución que permiten explotar los pro-
blemas apropiadamente. La propuesta consigue mantener consistencia con la API ideada, a
la vez que se dota de mayor funcionalidad a los tipos de ejecución soportados, aumentando
la versatilidad del runtime. Gracias a esta propuesta es posible combinar múltiples tipos de
ejecución, manteniendo el soporte al resto de funcionalidades del runtime, incluidos los al-
goritmos de planificación. Asimismo, ahora se le proporcionan al programador mecanismos
para poder establecer diferentes tipos y orígenes de kernels de lanzamiento, incluso de for-
ma dinámica en tiempo de ejecución. Esta propuesta facilita el camino para poder integrar
otras tecnologías y modelos de programación, como por ejemplo CUDA, código máquina
de aceleradores u otros modelos especializados. En ambas propuestas se consigue mejorar el
rendimiento y la eficiencia energética tras la integración producida sin penalizar el diseño y
API original, posibilitando la ejecución de problemas de menor duración en el primer caso,
y ampliando su versatilidad a la vez que se explota eficientemente la CPU del sistema junto
con los nuevos aceleradores en la segunda integración.

La tercera contribución es la creación del CoexecutorRuntime para la computación he-
terogénea basada en estándares modernos. Se facilita la co-ejecución de sistemas heterogé-
neos con soporte a la tecnología oneAPI, por lo que la API proporcionada es de alto nivel,
compatible con C++ y SYCL. La propuesta proporciona un diseño cercano al dominio del
problema, combinando la facilidad en la gestión con las características proporcionadas por
oneAPI. Se sube el nivel de abstracción, enmascarando la gestión de los dispositivos, los
datos y la planificación, pero se mantienen los principios de un único código fuente y la ver-
satilidad de C++ en la definición de las operaciones y su arquitectura. Las principales hitos
de este motor son su facilidad de modificación y la adecuación a mecanismos dinámicos de
planificación, previamente inexistentes. La limitación de oneAPI respecto a la co-ejecución
ha sido superada gracias a la incorporación de una arquitectura asíncrona multi-hilo que ex-
plota la ejecución simultánea de dispositivos, beneficiándose del potencial de las estrategias
dinámicas e implementando diversos algoritmos de balanceo de carga. Además, cualquier
programador de C++/SYCL puede incorporar nuevas características sin depender de otras
tecnologías, por ser una arquitectura desacoplada y sin dependencias, facilitando su integra-

xiv

ción en todo tipo de herramientas y softwares. El motor se beneficia de nuevas arquitecturas
hardware sin necesidad de realizar cambios, siempre que se proporcione un driver compa-
tible. Por otro lado, el motor ha sido diseñado a medida que oneAPI evolucionaba y se libe-
raba, por lo que su arquitectura ha sido ideada pensando en la adaptabilidad a los cambios.
Por este motivo, las extensiones de oneAPI han sido incorporadas, extendiendo la API para
que el programador pueda explotar dichas funcionalidades. Además, la propuesta realiza
una exploración y validación del comportamiento en diversas arquitecturas, tanto commo-
dity como HPC, resaltando el rendimiento y la eficiencia energética conseguida, sobre todo
al utilizar la memoria unificada entre CPU y GPU, así como los algoritmos de planificación
adaptativos.

Aunque esta tesis haya obtenido unas propuestas claras con resultados tangibles tanto en
términos de programabilidad como rendimiento y eficiencia energética, el camino explora-
torio continúa. El problema es ambicioso y solo hace falta observar cómo se lleva décadas
proponiendo soluciones arquitecturales, modelos de programación, lenguajes de explota-
ción paralela, frameworks de abstracción y runtimes de ejecución, perfilando potenciales
soluciones, nutriéndose unas propuestas de otras, convergiendo y construyendo soluciones
cada vez mejores. Aun así, se destacan tres grandes frentes de actuación a partir de esta
tesis. En primer lugar, hay múltiples líneas futuras de relativas a los runtimes y modelos
de programación, pues la diversidad es enorme. Es importante explorar nuevas propuestas
y extensiones, tanto de runtimes previos como tecnologías nuevas, introduciendo aquellas
más relevantes con el objetivo de construir soluciones integrales lo más versátiles posibles.
Lo que a priori parece una limitación en poco tiempo se convierte en un nuevo framework
de cómputo heterogéneo aplicable a muchas arquitecturas. Sin la suficiente eclosión y com-
binación de posibilidades no se genera tracción y adopción, proporcionando innovaciones
nunca vistas. Los modelos híbridos de programación son la antesala a nuevos lenguajes y a
la incorporación de funcionalidades en motores existentes. Por ejemplo, considerando los
dos motores ideados, se podría diseñar y explotar una solución combinada entre ambas pro-
puestas, con lo mejor de cada una de ellas: la compatibilidad y usabilidad proporcionada por
EngineCL junto con la flexibilidad y fácil adaptabilidad de CoexecutorRuntime. Por otro
lado, la segunda vertiente se centraría en el diseño de algoritmos de planificación, especial-
mente diseñados para explotar las diferencias arquitecturales de los tipos de dispositivos.
Estos algoritmos de balanceo de carga no están desacoplados de las implementaciones, por
lo que es importante elaborar propuestas considerando sus runtimes y tecnologías de ejecu-
ción desde la propia concepción, empíricamente validadas y no siendo consideradas como
algoritmos puramente teóricos. Por último, un campo de aplicación futuro de gran impac-
to estudiaría aprovechar las propuestas construidas amplificando su ámbito de aplicación,
elevando el potencial de aprovechamiento al ser extendidas para clusters heterogéneos. La
integración entre modelos de programación híbridos y extensión de núcleos de ejecución
da un primer paso en esta dirección, salvo que se encuentra acotada a un solo nodo. El mo-
tor debería extenderse para posibilitar replicarse entre nodos, aumentando las capacidades

xv

de comunicación y distribución de la carga, a la vez que se explotan patrones de cómpu-
to híbridos con tecnologías bien asentadas, como MPI. Esta solución podría ser abordada
considerando todas las tecnologías y lenguajes como partes internas, con el objetivo de es-
tablecer nuevos patrones y optimizar su uso, descargando al programador de las decisiones
complejas. Además, podrían considerarse algoritmos de planificación a dos niveles, los que
reparten el trabajo entre nodos, e intra-nodos, los que lo hacen dentro del nodo, cada uno
atendiendo a consideraciones distintas para exprimir al máximo el conjunto de nodos.

Finalmente, teniendo en cuenta que la computación heterogénea ha venido a quedarse,
convirtiéndose en la norma y no en la excepción, es importante considerarla prioritaria y
ofrecer soluciones que permitan exprimir todo el potencial que ofrece. Esta búsqueda cons-
tante por mejorar el rendimiento y la eficiencia energética está ofreciendo soluciones nunca
vistas gracias a estos sistemas masivamente paralelos. El futuro de la computación no puede
entenderse sin ellos, pero es necesario ofrecer soluciones integrales de alta usabilidad, efi-
cientes, con posibilidad de extensión y portables entre todo tipo de dispositivos y sistemas.

Palabras clave

Computación heterogénea Co-ejecución HPC

Programación paralela Portabilidad del rendimiento Aceleradores

Runtimes Usabilidad Mantenibilidad Balanceo de carga Planificación

OpenCL Intel oneAPI SYCL C++ Diseño API

Arquitectura software Lenguajes de programación Paradigmas de programación

xvi

Contents

❦ Agradecimientos . iii
(Acknowledgements)

♦ Abstract . ix
♢ Resumen . xi

(Spanish extended abstract)

☰ Contents . xvii
⋮ List of Figures . xxi
⋮ List of Tables . xxv
⋮ List of Equations .xxvii
⋮ List of Code Listings . xxix

CHAPTER 1 INTRODUCTION 1
♦ Abstract . 3
1.1 Heterogeneous Systems . 5
1.2 Programming Models & Languages . 8
1.3 Co-execution . 11
1.4 Abstraction & Load balancing . 14
1.5 Hypothesis . 17
1.6 Major dissertation contributions . 18
1.7 Methodology . 20

1.7.1 Platforms & Devices . 20
1.7.2 Benchmarks . 22
1.7.3 Metrics . 24
1.7.4 Tools . 26

1.8 Document structure . 28

CHAPTER 2 BACKGROUND& RELATEDWORK 31
♦ Abstract . 33
2.1 Technologies & Programming languages . 35

2.1.1 Overview . 35
2.1.2 OpenCL . 40

xvii

2.1.2.1 Platform model . 41
2.1.2.2 Execution model . 42
2.1.2.3 Programming model . 43
2.1.2.4 Compilation model . 44
2.1.2.5 Memory model . 45

2.1.3 Intel oneAPI . 46
2.1.3.1 Platform model . 47
2.1.3.2 Execution model . 47
2.1.3.3 Memory model . 47
2.1.3.4 Kernel programming model . 48

2.2 Load Balancing Algorithms . 48
2.2.1 Static algorithm . 49
2.2.2 Dynamic algorithm . 50
2.2.3 HGuided algorithm . 51

2.3 RelatedWork . 52
2.3.1 Programming models . 52
2.3.2 Abstraction . 54
2.3.3 Load balancing . 54

CHAPTER 3 ENGINECL 57
♦ Abstract . 59
3.1 Motivation . 61
3.2 Overview of EngineCL . 63
3.3 EngineCL . 64

3.3.1 Principles of design . 64
3.3.2 Architecture . 66
3.3.3 OpenCL Abstractions . 69
3.3.4 Schedulers . 72

3.4 API Design . 75
3.4.1 Case 1: Using only one device . 76
3.4.2 Case 2: Using several devices . 77

3.5 Methodology . 79
3.6 Validation . 81

3.6.1 Usability . 82
3.6.2 Overhead of EngineCL . 84
3.6.3 Load Balancing . 86
3.6.4 Performance . 87
3.6.5 Energy . 91

3.7 Conclusions . 92

xviii

CHAPTER 4 ENGINECL INTEGRATIONS 95
♦ Abstract . 97
4.1 Integration I: time-constrained scenarios 99

4.1.1 Motivation . 99
4.1.2 Optimizations . 101

4.1.2.1 Execution & Platform models . 101
4.1.2.2 Memory model . 103
4.1.2.3 Algorithmic optimizations . 105

4.1.3 Methodology . 106
4.1.4 Results . 106

4.1.4.1 Performance Results . 107
4.1.4.2 Optimizations Evaluation . 108

4.1.5 Conclusions . 112
4.2 Integration II: hybrid programming models 115

4.2.1 Motivation . 115
4.2.2 Overview . 117
4.2.3 Optimizations . 118

4.2.3.1 Architecture . 119
4.2.3.2 Execution model . 120
4.2.3.3 Memory model . 123

4.2.4 API Design . 124
4.2.5 Methodology . 125
4.2.6 Validation . 126
4.2.7 Conclusions . 129

4.3 Discussion . 131

CHAPTER 5 COEXECUTOR RUNTIME 133
♦ Abstract . 135
5.1 Motivation . 137
5.2 Coexecutor Runtime . 139

5.2.1 Synchronous static co-execution . 140
5.2.2 Asynchronous dynamic co-execution . 141

5.2.2.1 Execution model . 142
5.2.2.2 Memory model . 143
5.2.2.3 Runtimes interaction . 144

5.2.3 Load balancing algorithms . 144
5.3 API Design . 146
5.4 Methodology . 150
5.5 Validation . 151

xix

5.5.1 Performance . 151
5.5.2 Scalability . 155
5.5.3 Energy . 156
5.5.4 NBody Benchmark . 158

5.6 Conclusions . 160

CHAPTER 6 CONCLUSIONS & FUTUREWORK 163
♦ Abstract . 165
6.1 Conclusions . 167
6.2 Future Work . 170

PUBLICATIONS AND CONTRIBUTIONS 177

BIBLIOGRAPHY 181
⋮ List of top citations . 215

Appendix 217
 §     License . 217
  #   Keywords . 217
♣ Funding Acknowledgements . 218
♜ Biography . 219

xx

List of Figures

1-1 Xilinx Zinq Ultrascale+ MPSoC composed of 4 types of architectures: CPU,
GPU, RPU and FPGA. 8

1-2 Host-device programming model applied on the Zinq Ultrascale+ MPSoC
and its 4 devices. 10

1-3 Traditional under-utilized heterogeneous system composed of an Intel chip
with integrated GPU, with discrete FPGA and GPU connected via PCIe. . . 12

1-4 Power consumption of an HPC heterogeneous system with 4 devices when
co-execution is not enabled or when devices are idle. 13

1-5 Static co-execution for regular and irregular programs. 15

2-1 Platform model of OpenCL showing a system with two compute devices. . . 42
2-2 Execution model showcasing an OpenCL context managing two compute

devices (CPU and GPU) and a set of OpenCL primitives to interact with. . . 43
2-3 Memory model mapping of OpenCL regions to AMD GPU regions (RDNA

& GCN architectures). 46
2-4 Package distribution in real executions for irregular and regular problems

using the Static, Dynamic and HGuided load balancing algorithms. 49

3-1 Technology encapsulation that isolates its interaction with the scheduling
mechanisms. 65

3-2 EngineCL building blocks: tiers, contexts and modules (main are highlighted). 67
3-3 Relations and Design Patterns of the main modules to provide encapsulation

and extensibility. 68
3-4 Overview of the portability and migration of a generic OpenCL program to

EngineCL. 71
3-5 Introspection utils showing the package distribution for every load balanc-

ing algorithm in a regular program. 74
3-6 Introspection utils representing visually the package distribution in terms

of the output computed by Mandelbrot. 74
3-7 Scalability of EngineCL compared with OpenCL for each device in the system. 84
3-8 Worst overheads found per device and benchmark. 85
3-9 Balancing of the system per benchmark and scheduling configuration. . . . 86

xxi

3-10 Speedups for every scheduler compared with the fastest device (GPU). . . . 88
3-11 Efficiency for every scheduler compared with the fastest device (GPU). . . . 89
3-12 Work size distribution per device, benchmark and scheduler. 89
3-13 Binomial timings before the computation phase. 90
3-14 Energy Efficiency compared with GPU in Batel (more is better). 92

4-1 Diagram of theRuntimemodule showing the optimization in the device dis-
covery and configuration blocks thanks to the parallelization of the initial
execution stages, using two platforms and three devices as an example. . . . 103

4-2 Memory model optimizations encapsulated as OpenCL strategies. 104
4-3 Speedups for every scheduler and program compared with a single GPU. . . 107
4-4 Efficiency for every scheduler and program compared with a single GPU. . . 107
4-5 Balance for every scheduler compared with a single GPU. 108
4-6 HGuided scheduler performance: 𝑚 multiplier (minimum package size)

and 𝑘 constant parameter combination. 109
4-7 HGuided Opt execution time per problem size when launching the binary

and only the region of interest (transfer and compute). 111
4-8 CPU computation times for classical and ls1-MarDyn kernels, using

OpenCL and OpenMP technologies for a set of problem sizes. 116
4-9 EngineCL contexts and main modules, highlighting those affected by the

optimizations. 119
4-10 Kernel source code compilation process (above) and initialization during

the EngineCL execution phase (below). 121
4-11 Technology encapsulation in relation to the scheduling mechanisms with

the hybrid co-execution model. 122
4-12 Hybrid memory model optimizations providing new classes and interfaces

as an abstraction of the EngineCL Buffer. 123
4-13 Scalability when launching the computation in a single device. 127
4-14 Speedups when co-executing compared with ls1-MarDyn technology

(CPU-icc). 127
4-15 Energy efficiency when co-executing compared with ls1-MarDyn technol-

ogy (CPU-icc). 129

5-1 Coexecutor Runtime considering an example of CPU-GPU dynamic co-
execution. 142

5-2 Example of interaction with the DAG from oneAPI’s perspective while run-
ning a dynamic approach with two queues. 144

5-3 Commander’s loop where the scheduling strategy is performed to coordi-
nate the behaviors of the Coexecution Units. 145

xxii

5-4 Balancing efficiency for a set of benchmarks when doing CPU-GPU co-
execution in Desktop and DevCloud nodes. 153

5-5 Speedups for a set of benchmarks when doing CPU-GPU co-execution in
Desktop and DevCloud nodes. 153

5-6 Efficiency for a set of benchmarks when doing CPU-GPU co-execution in
Desktop and DevCloud nodes. 153

5-7 Scalability for CPU, GPU and CPU-GPU coexecution using the Coexecutor
runtime with its HGuided scheduling policy and USM memory model for
Desktop and DevCloud nodes. 156

5-8 Energy consumption by cores, GPU and the other units of the package with
the DRAM consumption for Desktop node. 157

5-9 Energy Efficiency compared with GPU for Desktop node (more is better). . 157
5-10 NBody speedups when using single-device dynamic policies for a set of in-

creasing problem sizes. Baselines are single CPU or GPU execution per
memory model. 159

xxiii

List of Tables

1-1 Heterogeneous systems, platforms and devices. 21
1-2 Selected benchmarks and their variety of properties. 23

3-1 Comparison of usability metrics for a set of programs implemented in
OpenCL C++ and EngineCL Tier-1+Tier-2 APIs (left) and their average ra-
tios for Tier-1, Tier-1+Tier-2 and OpenCL (right). 83

5-1 Memory usage and execution ranges for the benchmarks used to validate
Coexecutor Runtime. 151

xxv

List of Equations

1-1 Speedup (𝑆) . 25
1-2 Maximum speedup (𝑆𝑚𝑎𝑥) . 25
1-3 Heterogeneous efficiency (𝐸𝑓𝑓) . 25
1-4 Balancing efficiency (𝐵𝐸𝑓𝑓) . 26
1-5 Energy-Delay Product (𝐸𝐷𝑃) . 26
2-1 Work-group distribution for the Static algorithm. 50
2-1 Dynamic load balancing distribution (algorithm). 50
2-2 Package size per device for the HGuided algorithm. 51
3-1 Usability improvement per metric of EngineCL over OpenCL (𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜) . . 80
3-2 Overhead of EngineCL compared with OpenCL (𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑) 80
3-3 Energy-Delay Product improvement of EngineCL over the GPU (𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜) . . . 81
4-1 Package size per device for the HGuided Optimized algorithm. 105
4-2 Energy-Delay Product improvement of EngineCL with hybrid co-execution

over the CPU-icc optimized version (𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜) 126
5-1 Energy-Delay Product improvement of Coexecutor Runtime with co-execution

over oneAPI with GPU (𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜) . 151

xxvii

List of Code Listings

1 EngineCL computing Binomial Options benchmark using the GPU while sup-
porting the CPU as a fallback at runtime. 77

2 EngineCL computing NBody benchmark using a runtime-decided load balancing
approach to exploit CPU, GPU and Intel Xeon Phi. 78

3 EngineCL API with hybrid co-execution mode for LennardJones computation. . . 125
4 Coexecutor Runtime computing SAXPY with a dynamic algorithm using simul-

taneously CPU and GPU. 147
5 SAXPY program definition using the CommanderKernel interface provided by Co-

executor Runtime to implement the kernel behavior as an independent unit. . . . 148
6 Coexecutor Runtime using the CPU and GPU simultaneously to compute the

SAXPY kernel definition. This example shows the exploitation of the extended
computation mode to enhance the flexibility of the runtime. 149

xxix

Introduction 1
CHAPTER

Introduction

Decades go by and computational performance demands continue to grow, regard-
less of the type of device, including those with smaller form factors and energy efficient
needs. Over the years, the industrial response has been driven by increasing processor
power, usually by raising the clock frequency and adding many more transistors. How-
ever, being aware of the physical limits that processors are reaching, it has become nec-
essary to achieve such quotas of computational demand and energy efficiency through
the adoption of heterogeneous computing. The ubiquity and variety of machines and
systems composed of processors of various kinds, gives a unique specialization to solv-
ing specific tasks with maximum performance and low energy consumption. As a re-
sult, in recent years the variety of devices and accelerators present in systems has been
increasing,

However, heterogeneous computing offers multiple challenges that transcend vari-
ous areas of knowledge, from software engineering to computer architecture, affecting
both academia and industry. Academia, due to the feasibility of establishing portable
solutions applicable in industry, as well as the existing technological variety and the
complexity of hardware architectures. Industry, because of the difficulty of incorporat-
ing academic proposals into maintainable and usable products, as well as the enormous
efforts to produce reliable, integrable, compatible and efficient solutions with multiple
manufacturers of accelerators.

This chapter highlights the relevance of heterogeneous computing and introduces

the challenges it poses, as well as the approach of this dissertation to optimize perfor-

mance and energy efficiency in these massively parallel systems.

Chapter contents

♦ Abstract . 3

1.1 Heterogeneous Systems . 5

1.2 Programming Models & Languages . 8

1.3 Co-execution . 11

1.4 Abstraction & Load balancing . 14

1.5 Hypothesis . 17

1.6 Major dissertation contributions . 18

1.7 Methodology . 20

1.8 Document structure . 28

1.1 Heterogeneous Systems

1.1 Heterogeneous Systems

To understand the importance of heterogeneous systems it is necessary to establish a bit
of context and what has made them so important. Moore’s law, a prediction made more
than 50 years ago, has been in force until relatively recently [1]. This prediction stated that
the number of transistors on a chip doubled every 18 months. The more transistors, the
more functionality and, in general, the higher the performance. In most cases, a software
developer received, without much effort, an increase in performance thanks to the work of
the computer architects. Technology improved, and clock frequencies increased, producing
faster and faster processors.

However, a little over a decade ago, everything began to grind to a halt. The Dennard scal-
ing condition, which had worked so well since 1974, ended [2]. This stated that the voltage
and current should be proportional to the linear dimensions of the transistors, i.e., as the
transistor size was reduced, increasing the speed and reducing the current and voltage, the
power remained virtually constant. However, over the years, both the leakage current and
the voltage threshold for performing switches have become difficult to reduce any further,
causing the power density to increase with the number of transistors.

There were many strategies to improve single-thread execution and to add more features
to processors, including pipelining, speculative execution and superscalar techniques [3–8].
When all these strategies reached their limits, architects resorted to the drastic approach of
increasing the number of cores per chip, generally at a lower frequency. By using simpler
cores at lower frequencies, power dissipation and energy consumption were reduced. This
led to all kinds of strategies, including the creation of logical cores and the exploitation of
simultaneous multithreading (SMT), leading to multicore systems [9, 10]. With these pro-
cessors now ubiquitous, single-threaded programs are no longer an energy- and resource-
efficient option, albeit at the cost of complicating the work of software developers [11].

Despite the fact that there may be other types of heterogeneity that affect common pro-
cessors, they are generally implicit for the programmer. Regardless of the performance levels
of the operating system, the memory hierarchy or even the possibility of having cores with
different capacities and computational powers (ARM big.LITTLE, Intel Alder Lake), they
are usually programmed under the same sequential programming model [12–15]. Each
thread or process is executed by each core in an apparently sequential manner, even if inter-
nally there is some parallelism between instructions. However, with the emergence of new
types of computing devices and completely different architectures, this is no longer possi-
ble. Simultaneously to the previous developments, the market and users demanded to be
able to process huge amounts of data, transforming the field of high performance computing
(HPC). There was a shift from the predominance of HPC focused on large applications and
parallel algorithms to massive data computing. It is then when programmers and the HPC
community realized how powerful graphics cards (GPUs) are for data processing.

5

1 Introduction

GPUs, originally dedicated to graphics and multimedia computing, have become part
of the most widely used accelerator in heterogeneous computing. They were adapted to
general purpose computing (GPGPU), and used for a myriad of applications, from train-
ing and inference in machine learning, through scientific and generalist applications, to be-
ing exploited in industry and service cloud servers [16–22]. They boast efficiencies orders
of magnitude better than traditional processors, mainly due to the adoption of a different
paradigm, the single-instruction multiple-threads (SIMT) model. Although CPUs have vec-
tor units, they fall far short of the power offered by GPUs, being able to perform thousands
of operations simultaneously on large data sets. It is important to note that both Nvidia and
AMD were promoting GPGPU computing, but Nvidia’s CUDA, which emerged more than
a decade ago, drove mainstream adoption of accelerators. Indeed, the impact of Nvidia has
been so compelling that it is still used globally today, even though having some limitations.
This coins the term heterogeneous system as it is understood today, consisting of a CPU
and an accelerator, often termed device. An accelerator is an independent entity connected
by network, bus or even assembled on the same chip. Nowadays there are devices of many
kinds GPUs, MICs, FGPAs, DSPs and even TPUs. Depending on the vendor and type of
accelerator, it varies the internal architecture. For instance, GPUs, are generally composed
of compute units, each of which has multiple processing elements (ALUs and SIMD units),
scheduling hundreds of thousands of threads to compute regions (kernels). However, they
need to be managed by a CPU, usually called the host. This forces the adoption of a dif-
ferent programming model, as will be seen later. Nevertheless, this popularity led to the
incorporation of many types of accelerators.

A second group of heterogeneous devices are many integrated core (MIC) coproces-
sors such as the Intel Xeon Phi, often classified as many-core accelerators together with
GPUs [23–25]. These accelerators are characterized by including many single cores, so that
they take on the advantages of traditional multicore programming, but with alternative ar-
chitectures and interconnections, in some cases resembling GPU designs. MIC coproces-
sor are usually aimed at the HPC and server markets, therefore their cores use vector units
of greater capabilities than mainstream processors. Although they are heterogeneous de-
vices, this proposal has tried to favor all the existing knowledge about traditional proces-
sors, from the implication of the memory hierarchy to the microarchitecture itself, including
the programming paradigms. Although coprocessors like the Intel Xeon Phi are no longer
available on the market, all the work done by both Intel and the scientific community on
this type of systems has been useful [26–32]. Moreover, these efforts have served to eval-
uate and optimize technologies that are currently used in Xeon processors with dozens of
cores. Nevertheless, other vector engine processors are being developed, such as the NEC
SX-Aurora TSUBASA, used in supercomputers [33–36], as well as custom hardware designs
and SoCs [37–42]. Therefore, these accelerators are relevant architectures that continue to
be leveraged in HPC.

6

1.1 Heterogeneous Systems

Further developments of the heterogeneous system concept was extended beyond GPUs
and many-core coprocessors, incorporating field-programmable gate arrays (FPGAs), which
are a major leap in the heterogeneous computing paradigm [43–48]. To understand their rise
and use, it is necessary to understand the problems of application-specific integrated circuits
(ASICs) [49–53]. Their power efficiency and performance can be very good, but their design
and fabrication is expensive, very complex and inflexible, with slow iteration and debugging
periods, limiting general-purpose computing to what the chip is specifically designed for.
For this reason, FPGAs offer a great deal of versatility in terms of their possibilities, placing
their application in an intermediate position between the recommended uses of a CPU and
a GPU. These devices are a circuit that can be configured by a programmer to implement a
specific program or function, achieving a fairly precise determinism in the final reconfigured
characteristics, both in performance and power consumption. These devices provide great
flexibility to the system, although they require a lot of time to synthesize and build the circuit
configuration bitstream.

There are more types of heterogeneous devices. For example, automata processors (AP)
have recently appeared as specialized pattern recognition nodes, highly recommended for
data analysis, pattern matching, graph structure analysis and even statistical processes [54–
56]. Although generally implemented in FPGAs, their core has been expressly designed to
be efficient in processing regular expressions. Digital signal processors (DSPs) also have their
place in the heterogeneous world, becoming very powerful when applied to specific niches
such as analog, audio and video signal processing [57–59]. They are capable of applying
multiple mathematical equations on sampled signal streams. Their energy efficiency but
limited applicability makes them good coprocessors, often embedded on-chip. This is also
the case with tensor or neural processing units (TPUs or NPUs), being specific to support
artificial intelligence applications, accelerating neural networks in machine learning [60–
66]. Some systems-on-chip (SoCs) such as the Qualcomm Snapdragon 845 or the Amlogic
A311D include specific units for inference or augmented reality, although they can also be
found as external attachable units. Examples are the Coral USB Accelerator or the Intel
Neural Compute Stick, among other visual processing units (VPUs) [37, 67–71].

As a result of all this effervescence, heterogeneous systems have all kinds of devices and ac-
celerators specialized in computing certain types of workloads. For this reason, it is increas-
ingly common to find systems composed of multiple accelerators, even with different types
of architectures, achieving outstanding levels of performance and energy efficiency. Exam-
ples range from HPC systems with the Nvidia DGX-1/2, having 8/16 GPUs and currently
used in supercomputers1,2 to embedded SoCs for low-power edge computing platforms with
CPU, GPU and NPU, among others [61, 62, 71–75]. For instance, considering a multi-device
multi-processor system-on-chip (MPSoC), the Xilinx Zynq Ultrascale+ is composed of APU

1https://www.top500.org/lists/green500/2021/06/
2https://www.top500.org/lists/top500/2021/06/

7

https://www.top500.org/lists/green500/2021/06/
https://www.top500.org/lists/top500/2021/06/

1 Introduction

cores, Real-Time processing units, an ARM GPU and even a FPGA in the same chip, as it is
depicted in Figure 1-1 [76–79]. Not to mention the proliferation of configurations that are
emerging as a result of such diversity, with heterogeneous systems increasingly common in
both embedded IoT and commodity nodes, as well as HPC and cloud services servers [80].
Ultimately, these type of solutions faces the challenge of exa-scale computing, improving
FLOPs-per-watt and per-monetary cost ratios [81–85]. However, the questions to be asked
are how these systems can be programmed comfortably or whether a code can be ported to
a specific accelerator achieving its best efficiency.

In short, heterogeneous systems are here to stay [86], but this should come as no surprise,
since heterogeneous computing has been with us, in various fields and in a more or less
explicit way, for a few years now. As has been seen, many types of devices and architectures
are available, and new ones will appear in the future, so the emergence of even quantum
computing units (QCUs) should come as no surprise [87–89].

Programmable Logic

Processing System

Application Processing Unit Real-Time Processing Unit

Graphic Processing Unit

ARM Mali 400 MP
Geometry

Processor

Memory and I/O Interface On-chip memory

Storage and Signal

Processing

General Purpose IO

&

High Speed

Connectivity

Video Codec LUT, Register

DSP Memory

APU Core 4

ARM Cortex...

NEON

FPU

APU Core 3

ARM Cortex...

NEON

FPU

APU Core 2

ARM Cortex...

NEON

FPU

APU Core 1

ARM Cortex

A53

NEON

FPU

RPU Core 1

ARM Cortex R5 VFPU

RPU Core 2

ARM Cortex R5 VFPURPU Core 1RPU Core 1

ARM Cortex R5 VFPUARM Cortex R5 VFPU

Figure 1-1: Xilinx ZinqUltrascale+MPSoC composed of 4 types of architectures: CPU, GPU, RPU and FPGA.

1.2 ProgrammingModels & Languages

One of the fundamental aspects that determine the success of a hardware design is its pro-
grammability. It does not matter the speed or energy efficiency of a machine if it is not easy
to program and implement the business logic or scientific application. There is no such thing
as a perfect programming language, because the needs and applications are so varied, even
more so if the variety of existing hardware devices is included. Moreover, if this were the

8

1.2 ProgrammingModels & Languages

case, academic and industrial proposals would not continue to be generated, both for APIs
and complete languages, as well as abstractions and facilitating frameworks.

In general, a programming language has to allow programmers to achieve the expected
functional and non-functional requirements. It must have tools that give the programmer
access to libraries of highly optimized functions to incorporate in their programs avoiding
the need to reinvent the wheel. In addition, a great success is to enable the exploitation of
lower level functions, obtaining a greater control over the machines, but without hindering
productivity. Another fundamental aspect is the possibility of porting code, so that previ-
ous work can be reused in different architectures or devices. Since heterogeneous computing
focuses on improving performance and specialization, such portability does not necessarily
translate into performance portability [90–93], that is, a piece of code will execute success-
fully on another device, but may not achieve the best performance. Hence, it is also advisable
to provide mechanisms to take advantage of the characteristics of other systems where such
code will be executed. Finally, since heterogeneity is complicated, the programming lan-
guage should present a point of view as homogeneous as possible, so that there is a clear
decoupling between the code and underlying architecture.

In short, a programmer must be able to think at a high level, allowing to translate the
problem domain and reduce the time-to-market, but must also be able to act on the low-
level details, in order to achieve maximum efficiency [23, 94, 95]. The best strategy is still to
provide options, either language improvements or new creations, so that programmers have
enough choice. As with technology stacks and generalist programming languages, despite
the specialized application niches, there are always some more versatile ones that end up
being used widely, spreading to many domains. However, effervescence and variety are key
to evolution, as some are nourished by others in ideas, expressiveness and potential for use.

The paradigm used in heterogeneous systems is the so-called host-device programming
model, since the processor (host) offloads computational regions or functions, sometimes
called kernels, to an accelerator (device) [24, 95]. They are independent entities connected
by network, bus or even assembled on the same chip, but they need the management of a
CPU to be used. Generally, the work is sent through a system driver that acts as a bridge
of operations. The de facto language for heterogeneous programming using the host-device
paradigm is Open Computing Language (OpenCL)3, already established after a decade [96,
97]. Figure 1-2 depicts this programming model showing an abstraction on top of the MP-
SoC presented in Figure 1-1 of previous Section 1.1. The host acts as an orchestrator of the
system, managing the devices and its internal compute units through offloading operations,
as it will be explained in detail in Chapter 2. The main drawback of this model is that the
programmer is in charge of performing all device management and initialization, transfer-
ring problem data between separate memory spaces, manually partitioning and offloading
compute regions, and collecting results. Other solutions have appeared over the years trying

3https://www.khronos.org/opencl/

9

https://www.khronos.org/opencl/

1 Introduction

to raise the level of abstraction over OpenCL, such as SYCL4 or oneAPI [98]. However, they
all fall under the host-device model with all the drawbacks mentioned above, although to a
different degree and with other peculiarities, such as, for example, less initial compatibility
and portability.

HOST

MemoryCPU

Device: CPU [ARM A53]

APU 1 APU 2 APU 3 APU 4

Device: FPGA [XILINX]

Programmable Logic:
DSPs, ALMs, MBs

Device: RT-PU [ARM R5]

RPU 1 RPU 2

Device: GPU [ARM MALI]

CU 1 CU 2 CU 3 CU 4

operationsoffloading

Optional
Host & Device

Figure 1-2: Host-device programming model applied on the Zinq Ultrascale+ MPSoC and its 4 devices.

One of the main problems with the host-device model is its initialization times, generally
resulting in fixed execution costs. This, in combination with delays when offloading kernels
to accelerators, is prohibitive for some situations. This is a serious problem, as many sys-
tems have devices that are not being leveraged. There are a multitude of applications that
could benefit from optimizing execution for problems that require a total computation time
of very few seconds, from embedded and commodity devices specialized in facial recogni-
tion, to medical analytics processors and sensors, to service servers and cloud provider plat-
forms [99–110]. All these systems are of great relevance, since they affect emerging fields,
from the Internet of Things (IoT) [111–113], through all kinds of web servers and cloud in-
frastructures, nourishing the technological base of fast serverless frameworks and lambda
services [114, 115]. These types of scenarios are generally referred to as time-constrained.

Furthermore, there are situations in which a technology does not behave properly, either
because of the programming model itself, the hardware architecture or the type of applica-
tion. To face these problems, it is important to explore new ways to achieve efficient exe-
cution, even going as far as using other parallel programming paradigms. For example, al-
lowing other technologies to be used when executing such applications, either by migrating
kernels to devices or by including new accelerators and runtimes. This is another complex
scenario that needs to be provided with versatile solutions that can perform technological
combinations, since there are languages or paradigms that are better suited to certain situa-
tions or architectures. This is a problem found in specialized applications highly optimized
through parallelism and vectorization. Even focused on hardware architectures such as Intel

4https://www.khronos.org/sycl/

10

https://www.khronos.org/sycl/

1.3 Co-execution

Xeon and Intel Xeon Phi, finding cases in molecular dynamics simulators, among which is
ls1-MarDyn [116–121]. When these systems are equipped with mixtures of programming
languages and paradigms, as well as computational technologies, they are often referred to
as hybrid programming models.

In addition to these issues, when more accelerators are incorporated into a heterogeneous
system, the software does not scale, making it necessary to perform all these operations for
each device in the system. The big drawback is that the programmer must take into account
the adaptation of the code when porting it to other systems or when modifying the types of
devices or their properties. This operation is tedious and hardly portable, making it difficult
to use all devices properly. This orchestration of resources makes it difficult to take proper
advantage of the features offered by the accelerators, and in many cases, energy is wasted in
the process, either because there are idle devices or because the porting of code did not meet
the needs of another architecture.

Although there are several programming languages and frameworks that have been
adapted to use accelerators, they generally have a number of drawbacks. Among the most
prominent, CUDA is the most widely used language for GPGPUs, but it has always been
tightly coupled to Nvidia GPUs. OpenACC and OpenMP are proposals that raise the ab-
straction level via offloading directives. However, they compromise their flexibility, and do
not always have support for new accelerators. The diversity is very large, and new proposals
are constantly emerging, as Chapter 2 will show. However, to date, OpenCL continues to be
the de facto standard with the best support for all types of accelerators.

Summing up, OpenCL provides many mechanisms that meet the above premises, but the
programmer still has a tremendous responsibility when programming these systems. In ad-
dition, a conventional use in this paradigm is based on per-device tasking, offloading kernels
to specific accelerators. This is an appropriate strategy when tasks require a high degree of
specialization atomically exploitable by a specific accelerator. This is especially addressable
when the dependencies between them are minimal, decoupled by the programmer, as well
as when the knowledge of device availability and execution flow duration is available. How-
ever, when these conditions are not present, in many other occasions, it is an inappropriate
solution, so co-execution techniques are promoted.

1.3 Co-execution

Co-execution is the parallel programming strategy whereby several processing units join
their computational resources to simultaneously solve the same kernel [122–124]. In other
words, the different devices of the heterogeneous system compute the same problem at the
same time. To do this, each device needs to receive a portion of the complete problem,
which is necessarily handled by the host system and its CPU. The programmers must keep
track of the regions transferred and how each kernel acts on its data. Additionally, they are

11

1 Introduction

also responsible for collecting the partial results computed by each device and joining them
together to form the complete result of the computation.

One of the advantages of co-execution is that accelerators are generally good at exploit-
ing the data parallelism inherent in the computational regions offloaded to these types of
devices, especially when they can take advantage of multiple vector units and massive par-
allelism. This technique is able to extract the full potential of the system, in terms of per-
formance and energy efficiency, since all accelerators contribute in solving the problem, in-
cluding the CPU [93, 125–130]. In the host-device programming paradigm, it often happens
that the main processor is used as the manager, acting as a global orchestrator fully involved
in the selection, partitioning and allocation of data, as well as the collection of results. How-
ever, the CPU continues to consume power, not contributing to the computation, and in
many occasions standing by to send and receive requests with the devices. This situation is
becoming increasingly relevant, not only in types of devices used in a system, but also re-
garding the increasing number of CPU cores, wasting computational power. For example,
there are already AMD Epyc and Intel Xeon Platinum processors with up to 64 cores, and
the trend is raising [131–135].

Figure 1-3 shows an example of an HPC heterogeneous system following a traditional of-
fload host-device programming model, where co-execution has not yet been enabled. The
architecture of the heterogeneous system is shown on the left, consisting of an Intel i7 7700
with an integrated HD 630 Graphics to which two coprocessors, an Nvidia Titan X GPU and

GPU-optimized
kernels

GPU iGPU

Runtime API &
code for GPU

Runtime API &
code for iGPU

CPU as HOST

System component usage efficiency

Traditional offloading strategy

M
ax

M
in

Lo
w

H
ig

h

GPU
iGPU

CPUMEM BUS FPGA

HPC Heterogeneous System

iMEM

Management &
program code

PCIe bus

LLC

Subslice

VRAM

L1

L2

Core

L3L1

L2

Core

GTI

L1 L2

... Local M.

System DRAM

E
U

E
U

...

Subslice

E
U

E
U

... ...

EDRAM

Chipset [INTEL i7 7700 + HD 630]

SODIMM DDR4 MP MP...

Discrete FPGA
[ALTERA Stratix V]

Discrete GPU
[NVIDIA TITAN X]

Integrated GPU
[HD 630]

CPU
[i7 7700]

iMEM

MEM

iMEM iMEM

BUS

Task 1 Task 2

Figure 1-3: Traditional under-utilized heterogeneous system composed of an Intel chip with integrated
GPU, with discrete FPGA and GPU connected via PCIe.

12

1.3 Co-execution

an Altera Stratix V FPGA have been attached. This type of nodes with mixed configurations
is becoming more and more common, not only due to the upgradeability or the availability
of reusable devices and inventory, but also because of the advantages in the execution of spe-
cific problems [48, 125, 128, 136–148]. A traditional programming scheme is represented
in the upper right-hand side, whose implementation is complex due to the existing diversity
and where programmers often choose to perform task-based offloads. It requires abundant
management logic, code associated with the program to be computed, as well as specific
software regions for each device. Moreover, in this case, the programmer chooses kernels
optimized for GPUs to improve their occupancy, offloading to the discrete and integrated
GPUs, each with an independent task. The efficiency of exploitation of each component of
the heterogeneous system is shown on the bottom right, ranging from total under-utilization
(minimum, in white) to effective exploitation (maximum, in black). As can be seen, devices
such as the FPGA or the CPU are not exploited, while others such as the integrated GPU,
or the PCIe communication buses and memory still have room for improvement in their
utilization. Furthermore, even if all devices were being utilized through task-based paral-
lelism, this representation would still be valid for a specific moment of the execution, since
the devices may present stalls and idle periods, waiting to receive data or a notification after
a previous dependent task has finished. The system is not leveraged, consuming power by
devices in idle (FPGA), not computing part of the problem (CPU, static power) or not opti-
mized for architectural variations (integrated GPU). Without co-execution and a portable,
cross-platform compatible language, energy efficiency and performance are being lost.

These losses are measurable, as can be seen in Figure 1-4. The above HPC system is ana-
lyzed by considering two scenarios with respect to energy consumption. Both graphs show
the devices on the abscissa axis and the consumption in watts on the ordinate axis. On the

Matrix Multiplication
Power Consumption when offloading to a single device

Wasted power in connected but unused devices
Power Consumption when idle

Device
Host (CPU + RAM)

Power consumption

Device Computing

CPU GPU FPGA

0

20

40

60

80

100

120

140

160

iGPU

P
ow

er
 C

on
su

m
pt

io
n

(W
)

Device

CPU GPU FPGA

Device idle
Power consumption

0

5

10

15

20

iGPUP
ow

er
 C

on
su

m
pt

io
n

(W
)

Figure 1-4: Power consumption of an HPC heterogeneous system with 4 devices when co-execution is
not enabled or when devices are idle.

13

1 Introduction

left, the power consumption is calculated when a single device is being offloaded to compute
the matrix multiplication. In this case the offloading is performed to a single accelerator, a
typical strategy to avoid increasing the implementation and optimization efforts. For each
case, the PCIe-connected accelerators that are not used in the computation are being re-
moved from the node. Results show how the host is still consuming (CPU + RAM), up to
37W without contributing, reaching cases where the CPU consumes as much as the FPGA,
who is computing the whole problem. On the other hand, the right graph shows the power
consumption of each device without doing anything, just for being connected and idle. Not
to mention this presents a configurable heterogeneous system, but those nodes fixed by form
factor or with acceleration units directly on chip cannot be unplugged.

For this reason, it is important that all devices in the heterogeneous system contribute as
much as possible, in order to speed up problems and reduce energy consumption. In gen-
eral, co-execution is beneficial to a programmer, as it is a more convenient method to apply
to existing problems. Since it focuses on the partitioning of data per device, the programmer
does not have to study complex dependencies and can exploit the accelerators in a natural
fashion. On the other hand, in task-based parallelism execution, the scheduler has to trans-
form a problem into multiple tasks of different granularity, trace the dependencies between
them and manage the execution of each one on each device, with the drawback of having
tasks (and devices) waiting for others.

However, task-based heterogeneous programming is a problem generally addressed and
supported by programming languages, frameworks and even other runtimes, while co-
execution is a problem that has so far been implemented manually by programmers [149–
151]. The problem with these technologies is that to express heterogeneous co-execution
it has to be implemented in terms of task parallelism. This introduces problems in the dis-
tribution of data between devices, complicates the transformation and mapping between
programming models, and varies the way of scheduling such tasks. Furthermore, it may
even introduce overheads, since tasks are usually treated as encapsulated entities to guaran-
tee their scheduling based on input and output dependencies.

In short, co-execution provides advantages when using accelerators in heterogeneous sys-
tems, enabling data parallelism and facilitating the effort of the programmer with respect to
the problem domain. However, the work to achieve this strategy has to be minimal on the
part of a programmer, to facilitate its adoption, and is usually determined by two aspects,
the abstraction of the heterogeneous system and the workload balancing.

1.4 Abstraction & Load balancing

The abstraction of the heterogeneous system tries to reduce the managing and operating of
the different devices of the node. Efforts in achieving co-execution are also driven by and
closely linked to the work done in achieving good accelerator management, masking the

14

1.4 Abstraction & Load balancing

system orchestration from the programmer. It is important that this abstraction layer hides
the details of the underlying architecture, offering a simplified and uniform facade for the
different devices. This point is key, as it also allows a programmer to operate with the devices
independently of the system where the application is executed, enhancing portability.

Moreover, a system that encapsulates the necessary device operations, from initializa-
tion and configuration through data management and manual download of computational
kernels, facilitates both independence and optimization of operations between accelerators.
Leveraging strategies can be exploited both across device types, such as coarse-grained tasks
for FPGAs and range-based tasks for GPUs, and across manufacturers, such as performing
memory optimizations when building buffers on AMD graphics cards [102, 125, 128, 152–
154]. System abstraction facilitates these types of operations, freeing the programmer and
favoring both usability and portability between devices, architectures, manufacturers and
systems.

The other fundamental aspect of co-execution is workload balancing, the purpose of
which is to distribute the computational problem appropriately among all the devices that
make up the system [122–124, 155–157]. The objective is to obtain the appropriate propor-
tion of work for each device contributing to the job, so that they all have a similar execution
time, generally finishing simultaneously. A correct distribution technique and scheduling
algorithm is the way to minimize the waiting times of the devices, so that they are always
sending, computing or receiving data. Derived from this objective is the need to overlap
computation and communication, using as many transmission channels as are available and
making the devices always compute while preparing (or receiving) the next data to be com-
puted, maximizing global parallelism.

Two important concepts that influence load balancing arise from here. On the one hand,
the types of problems to be computed, being regular or irregular. Regular problems are those
in which the execution time is determined only by the size of the data to be computed on

O
nl

y
C

P
U

O
nl

y
G

P
U

Regular program (Gauss) Irregular program

Compute complexity
nearly constant

Compute complexity
varies per regionD

ev
ic

es
C

oe
xe

cu
tio

n
C

P
U

 +
 G

P
U

2s

G
P

U

5s

C
P

U

2s

G
P

U

5s

C
P

U

3.5s

1.2s

C
P

U

high imbalance

G
P

U

1.5s

1.4s

C
P

U
G

P
U

low imbalance

Time to compute Time to compute

(Mandelbrot)

Figure 1-5: Static co-execution for regular and irregular programs.

15

1 Introduction

each device [129]. The programmer needs to estimate offline how much workload to allo-
cate to each device so that all finish at the same time, thus obtaining a balanced execution.
This is depicted in the left part of Figure 1-5, when computing the Gaussian kernel (see
Section 1.7.2 for more details about the kernels) with two devices, CPU and GPU. In this
case, the kernel execution time is 5 seconds on the CPU and 2 seconds on the GPU, which
means that the GPU has 2.5x the performance of the CPU. Each device takes about the same
amount of time to compute each pixel, regardless of color or intensity, so it is a regular prob-
lem. Therefore, assigning the work to devices proportionally to their computing capabilities,
a balanced distribution is obtained and the execution time is reduced to approximately 1.5
seconds.

However, irregular applications, where the processing time of a data set depends not only
on its size, but also on the nature of the data, cause a challenging task. Thus, different por-
tions of data of the same size can generate different response times. This is shown in the
right part of Figure 1-5, which presents the execution of a Mandelbrot fractal computation
in two devices. Each device varies the time to compute each pixel, due to the computational
region of the mandelbrot function, with the darkest and reddest areas being the most com-
putationally intensive data regions. Performing the same static balancing as in the regular
case, it has coincided that the most computationally heavy regions have been executed by
the CPU (slower device). This results in a significant imbalance, with the CPU taking 3.5
seconds while the GPU took only 1.2 seconds. This situation can only be addressed with
dynamic balancing algorithms that allocate portions of work to the devices on demand [158,
159].

On the other hand, the heterogeneity of the devices themselves makes them more appro-
priate for different types of tasks, determining their granularity, recommended durations
and the types of operations in which they excel. The capabilities of accelerators as well as
their architectures determine the size of the minimum (and maximum) working blocks they
are comfortable with, beyond which they suffer penalties. For example, a GPU needs up to
hundreds of thousands of threads to obtain a full occupancy of its resources, so small job
sizes will underutilize such a powerful device [160–163]. However, giving a modest work-
load to a CPU could saturate it, slowing down the overall execution time and even affecting
the rest of the system. For this reason, load balancing and its decisions are complex, and it is
necessary to tailor these partitioning decisions taking into account both the type of hardware
and the amount and type of load to be allocated. For this reason it is necessary for the pro-
grammer to free himself from this type of decisions, since they complicate the programming
and the slightest failure can mean absolute penalties in the final execution.

16

1.5 Hypothesis

1.5 Hypothesis

Considering all of the above, this dissertation evaluates the following hypothesis:

Thedesign and implementation of runtime systems that allow co-execution is the best way to
leverage the full computational capacity of heterogeneous systems, while providing a sufficient
level of abstraction for a programmer to use it properly. The approach to provide maximum
performance, scalability and energy efficiency will come through the design of efficient and
extensible runtime architectures, as well as the implementation of scheduling algorithms that
maximize device utilization in the face of any type of application and heterogeneous system.

To achieve this, four cross-cutting issues need to be addressed: performance portability,
technology compatibility, system abstraction and load balancing.

◼ Performance portability: providing mechanisms to execute as efficiently as possible in
each type of architecture, relieving the programmer of the complications of devices
and their operating modes, in a transparent manner.

◼ Technology compatibility: offering operating alternatives, easily adapting to new
trends, without being tied to a single technology and allowing compatibility between
programming models, exploiting each device in the most convenient manner.

◼ System abstraction: encapsulating technological and architectural complexities, pro-
viding a convenient, maintainable and extensible API and management system.

◼ Load balancing : offering efficient and diverse scheduling algorithms to exploit all
types of problems, being extensible and optimized as an integral part of the runtime
architecture.

To validate the effectiveness in overcoming these issues, they will be designed with differ-
ent usability perspectives, evaluating programming models, software architectures, schedul-
ing algorithms and emerging technologies for heterogeneous computing. The ultimate goal
is to facilitate programmability and compatibility to exploit efficiently co-execution in all
types of heterogeneous HPC and commodity systems.

17

1 Introduction

1.6 Major dissertation contributions

The most remarkable contributions of this thesis to study the optimization of performance
and energy efficiency in massively parallel systems are listed below. Each of them is pre-
sented in depth in the different chapters of the document.

◼ Proposing EngineCL as a flexible and portable heterogeneous runtime system. Its
main aim is to reconcile usability and performance. Therefore, it integrates perfor-
mance enhancing techniques and abstractions that allow to effortlessly combine the
computing capabilities of several devices. Management overheads are reduced by im-
plementing a highly optimized scheduler, which is customizable through hook func-
tions. It is built on top of OpenCL with a modular architecture that is easily extend-
able. From OpenCL it takes advantage of much of its potential, like the high device
compatibility. To promote maintainability of applications, it presents an easy-to-use
API designed to integrate well in many scenarios, from desktop applications to HPC.
A thorough evaluation of EngineCL is presented including performance, energy effi-
ciency, scalability, portability and maintainability.

◼ Extending and optimizing EngineCL for time-constrained scenarios. There are com-
puting request-response based computing services where the response time is lim-
ited, generally to a few seconds. The host-device model usually suffers penalties in
such scenarios, as they rely on counterproductive performance modes for heavy run-
times and where drivers have long initialization times. So this proposal details the
runtime and algorithmic optimizations performed on EngineCL to allow it to cope
with these situations. The multi-threaded software architecture has been enhanced to
adapt to different devices and architectures commonly found in commodity servers
today. This extension confirms the versatility of EngineCL as it was easily adapted to
situations for which it was not initially conceived.

◼ Enhancing EngineCL to extend execution types and exploit hybrid co-execution al-
lowing the integration with the ls1-MarDyn simulator from HLRS. The ls1-MarDyn
molecular dynamics simulator suffer a strong penalty when using OpenCL, which
makes negligible the performance increase of combining different devices. For this
reason, EngineCL is extended to support hybrid forms of co-execution that allow ex-
ecuting these problems efficiently. The new extension is able to maintain consistency
at the API, while providing more functionality to the supported execution types, in-
creasing the versatility of the runtime. For instance, it is possible to combine acceler-
ation technologies and programming models such as OpenMP, while supporting the
rest of the runtime functionality, including scheduling algorithms. In addition, the
programmer is now provided with mechanisms to supply different types of execution

18

1.6 Major dissertation contributions

sources and kernels, even dynamically at runtime. This proposal simplifies the inte-
gration with other technologies and programming models, such as CUDA, machine
code of accelerators or other specialized programming models.

◼ Proposing Coexecutor Runtime as a modern C++ co-execution runtime. If EngineCL
relies on lower level technologies, like OpenCL, which is common in the scientific
world, Coexecutor Runtime is aimed at C++ programmers using oneAPI, more preva-
lent in industry. It is a runtime that facilitates co-execution in heterogeneous systems
supporting Intel oneAPI technology. It maintains the principle of single source code
and leverages the versatility of C++ in the definition of operations. Its decoupled ar-
chitecture allows any C++/SYCL programmer to incorporate new features without the
need for other technologies or dependencies, facilitating its integration in all types of
software. The runtime hides behind an abstraction layer cumbersome tasks, like the
management of devices, data and scheduling. Through its asynchronous concurrent
execution architecture it overcomes the limitation of oneAPI regarding co-execution.
Like EngineCL, it includes various load balancing algorithms. However, Coexecutor
Runtime goes further in harnessing dynamic scheduling mechanisms, yielding high
efficiencies. The runtime can leverage new hardware architectures without the need to
make changes, as long as a compatible driver is provided. Furthermore, the proposal
explores the behavior in different architectures, both commodity and HPC, highlight-
ing the performance and energy efficiency achieved by using the latest oneAPI exten-
sions and adaptive scheduling algorithms.

19

1 Introduction

1.7 Methodology

The proposals explained in this dissertation have been validated using the methodology pro-
posed in this section. The results presented throughout the document are based on exper-
imental data obtained from executions in real systems. This methodology section is com-
mon to all chapters, detailing the heterogeneous machines and devices used, the bench-
marks evaluated, the metrics analyzed and tools used. Those chapters where variations in
the methodology have been applied, extension of the benchmarked applications or pecu-
liarities of the validation, will expand the methodology of their respective sections with the
details particular to their experiments.

1.7.1 Platforms & Devices

The chapters of this dissertation present different heterogeneous nodes and devices used for
the experiments, as detailed below. There are 11 different architectures, comprising Intel
and AMD CPUs, Intel and AMD discrete and integrated GPUs, as well as an Intel Xeon Phi
many-core coprocessor. The diversity of machines and devices serves the technological and
validation needs of the runtimes built and techniques developed. For example, oneAPI can
currently only be used on devices of the latest Intel generations, so specific heterogeneous
systems are required.

Each chapter of the thesis refers to the machines used, as well as peculiarities that have
been applied for such experimentations and validations. In any case, the characteristics of
each node are detailed in Table 1-1 and they are summarized below:
Batel and Trainera are heterogeneous systems with identical properties regarding mem-

ory, system and processor. They are composed of two Intel Xeon E5-2620 CPUs with six
cores that can run two threads each at 2.0 GHz and 16 GBs of DDR3 memory. The CPUs
are connected via QPI, which allows OpenCL to detect them as a single device.
Batel has two accelerators, a GPU and a MIC. The discrete GPU is a Nvidia Kepler K20m

with 13 SIMD lanes (or SMs in Nvidia terminology) and 5 GBytes of VRAM. On the other
side, the coprocessor is an Intel Xeon Phi KNC 7120P, with 61 cores and 244 threads. These
are connected to the system using independent PCI 2.0 slots.
Trainera is configured with a modern discrete GPU, an AMD RX5700XT. It is a Navi 10

XT generation, with RDNA 1.0 architecture, exposing 40 compute units at 1905 Mhz and
with 8GB of video memory at 1750 MHz, offering a bandwidth of 448.0 GB/s.
Remo is a machine composed of an AMD A10-7850K APU and Nvidia GeForce GTX 950

GPU. The CPU has 2 cores and 2 threads per core at 3142 Mhz with only two cache levels,
exposing 4 OpenCL compute units. The APU’s on-chip GPU is a GCN 2.0 Kaveri R7 DDR3
with 512 cores at 720 Mhz with 8 compute units. Finally, a discrete Nvidia GPU is attached,
providing 6 compute units, 768 cores at 1240 Mhz and 2 GiB of DDR5.

20

1.7 Methodology

Table 1-1: Heterogeneous systems, platforms and devices.

Batel Trainera Remo Desktop DevCloud

Processor Intel CPU AMDCPU Intel CPU Intel CPU

Model Xeon E5-2620 A10-7850K Core i5-7500 Xeon E-2176G

Architecture Sandy Bridge Kaveri APU Kaby Lake Coffee Lake

Specs 2.0 GHz 3.7 GHz 3.4 GHz 3.7 GHz

CPU 2 (QPI) 1 1 1

Cores 6 4 4 6

#Threads/Core 2 1 1 2

Cache
L3 16M
L2 256K

L1 32K(i) 32K(d)

L2 2M
L1 16K(i) 96K(d)

L3 6M
L2 256K

L1 32K(i) 32K(d)

L3 12M
L2 256K

L1 32K(i) 32K(d)

Compute Units 24 4 4 12

Pref. wg size 128 1 128 128

Drivers
OpenCL 1.2

(Intel Runtime 14.2)
Proprietary

OpenCL 1.2
(mesa, clover)
Open-source

OpenCL 2.0
(oneAPI, ocl)

Mixed

OpenCL 3.0
(oneAPI, ocl)

Mixed

Memory 16 GiB DDR3 8 GiB DDR3 8 GiB DDR4 64 GiB DDR4

System Kernel 3.10
CentOS 7

Custom Kernel 4.19
ArchLinux

Custom Kernel 5.4
Ubuntu 20.04

Kernel 5.4
Ubuntu 20.04

Batel Trainera Remo Desktop DevCloud

Accelerator Nvidia GPU AMDGPU AMD iGPU Intel iGPU Intel iGPU

Type Discrete Discrete Integrated Integrated Integrated

Model K20m RX5700XT Radeon R7 HD Graphics 630 UHD Graphics P630

Architecture Kepler Navi 10
RDNA 1.0

GCN 2.0
Spectre 200 Series

HD Graphics-M
Gen 9.5 GT2 IGP

HD Graphics-W
Gen 9.5 GT2 IGP

Specs

CUDA Cap. 3.5
706 MHz

2496 cores
13 SMs

1605 MHz
2560 cores

40 CUs

720 MHz
512 Shaders

8 CUs

600 MHz
192 cores

24 EUs

1200 MHz
192 cores

24 EUs

Memory
1300 MHz
320-bit bus

5 GiB DDR5

1750 MHz
256-bit bus

8 GiB DDR6

fast bus GPU-DDR3
system shared

6 MiB LLC shared
system shared

12 MiB LLC shared
system shared

Compute Units 13 40 8 24 24

Pref. wg size 32 (Warp) 32 (Wavefront) 64 (Wavefront) 32 (EU threads) 32 (EU threads)

Drivers
OpenCL 1.2
(CUDA 460)
Proprietary

OpenCL 2.1
(amdgpu-pro)

Proprietary

OpenCL 2.0
(amdgpu, catalyst)

Mixed

OpenCL 3.0
(oneAPI, ocl)

Mixed

OpenCL 3.0
(oneAPI, ocl)

Mixed

Accelerator Intel MIC Nvidia GPU

Type Discrete Discrete

Model Xeon Phi 7120P GeForce GTX 950

Architecture Knights Corner KNC Maxwell 2.0 GM 206

Specs

AVX2
1333 MHz
244 threads

61 cores

CUDA Cap. 5.2
1240MHz
768 cores

6 SMs

Memory
1375 MHz
512-bit bus

16 GiB DDR5

1653 MHz
128-bit bus

2 GiB DDR5

Compute Units 240 6

Pref. wg size 128 32 (Warp)

Drivers
OpenCL 1.2

(Intel Runtime 14.2)
Proprietary

OpenCL 1.2
(CUDA 455)
Proprietary

21

1 Introduction

Desktop is a computer with an Intel Core i5-7500 Kaby Lake architecture processor, with
4 cores at 3400 MHz, one thread per core and three cache levels. Kaby Lake’s on-chip GPU
is an Intel HD Graphics 630, a mid-range (GT2) IGP integrated graphics processor, member
of the family of Gen 9.5 GT2 IGP, with 24 execution units running between 350 and 1100
MHz. It is configured to be run at 600 Mhz for stability purposes regarding experimentation.
An LLC cache of 6 MB is shared between CPU and GPU.
DevCloud is an Intel server node with an Intel Xeon E-2176G processor, with 12 logical

cores at 3700 MHz, two threads per physical core and three cache levels. Coffee Lake’s on-
chip GPU is an Intel UHD Graphics P630 with 24 execution units running up to 1200 MHz
and sharing a 12 MiB LLC cache with the CPU. This heterogeneous system is provided by
the Intel DevCloud services, with the machine fully reserved for the experimentations.

Table 1-1 details the heterogeneous systems, platforms and devices used. Considering the
properties, exposed in rows, each node contains a processor and one or two accelerators.

When a property differs between systems that a priori would not have to be different, it
is due to the needs of the devices and the compatibility between their drivers. For example,
each node has a Linux operating system, and it is impossible to change the versions, since
some device would not work. If a Linux kernel has been patched, it is due to the needs of the
driver itself, as it happens in the case of catalyst for Remo or the adaptation of the GPU to be
able to analyze the hardware counters in Desktop. Furthermore, when using open-source or
mixed drivers, it is because this combination offered the best performances (Remo CPU). It
usually means that the driver vendors have neglected them (Remo iGPU) or they are in a
release process still with proprietary dependencies (Desktop and DevCloud).

Considering OpenCL terms and concepts, two properties of interest are listed for each
device, the Compute Units and the preferred work-group size (Pref. wg size). The former
refers to the processing units that may be scheduling and executing in parallel, while the
latter refers to the number of work-items (kernel instantiations) that are recommended for
each of those processing units. Architectural and technological variation can be observed,
such as the evolution from GCN 2.0 to RDNA 1.0 (Remo GPU to Trainera GPU) and the
generalized versatility of CPUs and MICs, associating Compute Units to system threads and
work-items to sets of SIMD (128) vector operations.

1.7.2 Benchmarks

Throughout the document, up to 8 different benchmarks are used. In addition, there is a
real application, explained in Integration II 4.2, as it is only applicable to that extension and
integration aspect. The benchmarks are briefly described in the following lines.

◼ Gaussian creates an output image by calculating the gaussian blur of an input image,
as one of the most common filters and effects found in image and video processing
applications.

22

1.7 Methodology

◼ MatMul calculates the matrix multiplication using matricces with random values.
◼ Binomial, used in finance, is a binomial options pricing model (BOPM) which pro-

vides a generalizable numerical method for the valuation of financial options, using a
discrete-time model (lattice based).

◼ Taylor performs a bi-dimensional Taylor approximation for a set of points.
◼ NBody simulates physics experiments and predicts the individual motions of a group

of objects interacting with each other.
◼ Ray renders an image by modeling the light transport in a provided scene, composed

of objects, walls and lights. The ray tracing technique computes the color values of
each pixel of the image, used wildly in 3D rendering applications and games.

◼ RAP implements a Resource Allocation Problem, where the indirections cannot be
predicted since they are solved at runtime.

◼ Mandelbrot computes a particular instance of a fractal set, displaced over the center
of the produced image.

Since there is a strong validation work throughout the thesis, benchmarks with a remark-
able variety of characteristics have been chosen, as can be seen in Table 1-2. The objective is
to contrast the behavior in different types of situations that can be encountered when using
these technologies in real applications. The benchmarks have been selected on the basis of
three fundamental criteria.

Firstly, the major distinction is the use of two types of problems, regular and irregular,
as it is introduced previously. A regular problem is one in which two work packages of the
same size take similar time to compute for the same device. However, irregular kernels have
a more complex and unpredictable behavior, where it is very important to have dynamic

Table 1-2: Selected benchmarks and their variety of properties.

Property Gaussian MatMul Binomial Taylor NBody Ray Rap Mandelbrot

Local Work Size 128 1,64 255 64 64 128 128 256

Read buffers 2 2 1 3 2 1 2 0

Write buffers 1 1 1 2 2 1 1 1

Kernel args 6 5 5 7 7 11 4 8

Out pattern 1:1 1:1 1:255 1:1 4:1 1:1 1:1 1:1

Local memory ! ! ! !

Barriers ! !

Built-in functions ! ! ! ! ! ! !

Extensions ! ! !

Custom types !

Main data types float
uchar4 float float4 double float

float4
int

float int uchar4
double

Classification regular regular regular regular regular irregular irregular irregular

23

1 Introduction

adaptive algorithms that distribute the workload during execution and adapt to the behavior
of the application, as it will be shown in later chapters.

Secondly, they provide enough variety in terms of development issues, regarding many pa-
rameter types, local and global memory usage, custom structs and types, number of buffers
and arguments, different local work sizes and compute-write patterns. The amount of prop-
erties, computing patterns and use cases are relevant because they provide enough diversity
to compare technologies and runtimes.

Thirdly, trends, both industrial and research, as well as implementations and compatibil-
ities with the technologies used. The selected benchmarks are provided by the accelerator
manufacturers and driver developers themselves, so they are optimized to be used in the
base technologies against which they are evaluated. In this way, the engines, techniques and
solutions provided in this document are using the optimization recommendations, guide-
lines and examples [164–171], offering a fair comparison.

It is important to note that there are two well differentiated technological aspects, the
one based on OpenCL and the one based on oneAPI. For this reason, some properties are
added, modified or discarded because they are not applicable. A notable case of this fact is
the use of specific “local work size”, something specific to OpenCL but not to oneAPI. This
property has been experimented with the CoexecutorRuntime engine, since it offers a way
to force a manual assignment of values in the kernel instantiation. No significant differences
in behavior were found for the problems and platforms studied, so it was decided to simplify
its use and perform an automatic adjustment.

Nevertheless, there are cases where a benchmark is not evaluated with a specific technol-
ogy, such as Binomial in oneAPI. This is due to the features of DPC++ compiler that are
under development and optimization. This work-in-progress implementations of the speci-
fication are not yet properly solved, penalizing the usage of typical OpenCL-like constructs,
such as parallel_for_work_group , sycl::group and parallel_for_work_item , used
in such benchmarks. Therefore, neither the raw oneAPI program nor the exploitation of
CoexecutorRuntime make sense until these issues are resolved in future compiler releases.

1.7.3 Metrics

The main metrics used and referred to throughout the dissertation are detailed here, focus-
ing on the two fundamental aspects, performance and energy consumption. On the other
hand, those chapters that evaluate other specific metrics are detailed in the corresponding
sections, as is the case with all the usability and programmability metrics to validate the
runtime of the Chapter 3.
Performance has been evaluated using the response time of the selected benchmarks.

Measurement includes the time required by the communication between the host and the
devices, comprising device initialization and management, input and output data transfers,

24

1.7 Methodology

as well as the execution time of the co-executed workload itself. The benchmarks are exe-
cuted in two scenarios, the heterogeneous system, taking advantage of all the respective de-
vices listed in Section 1.7.1, and the baseline, that only uses the fastest device of the system.
The baseline device is generally the GPU, but is specified in each experiment. It is cho-
sen to compare against the best possible case, either with OpenCL or oneAPI, performing
a full offload to the fastest device and avoiding any complexity derived from co-execution,
scheduling and its programmability.

Based on these response times, three metrics are analyzed. The first is the speedup (𝑆)
for each benchmark when comparing the baseline and the heterogeneous system response
times. Since the speedup is calculated with respect to the most powerful device, the maxi-
mum achievable speedup using 𝑛 devices will not be 𝑛, as it occurs in homogeneous systems.
Thus, the value will always be less than 𝑛, a fraction depending on the computational power
of each device in the system. Equation 1-1 shows the speedup, considering the response
time of the fastest device and the co-execution when using the devices in the heterogeneous
system.

𝑆 =
𝑇𝑓𝑎𝑠𝑡𝑒𝑠𝑡

𝑇𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
(1-1)

The speedup for each application using a perfectly balanced distribution has also been
used to give an idea of advantage of using the complete system. They were derived from the
response time 𝑇𝑖 of each device as shown in Equation 1-2.

𝑆𝑚𝑎𝑥 = 𝑇𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
𝑛
�
𝑖=1

1
𝑇𝑖

(1-2)

The second metric is the heterogeneous efficiency [172–174], obtained by dividing the ob-
tained speedup by the speedup for the perfectly balanced distribution of the workload, as
shown in Equation 1-3. The obtained value ranges between 0 and 1, giving an idea of the us-
age of the heterogeneous system. Efficiencies close to 1 indicate the best usage of the system
is being made. The measured values do not reach this ideal because of the communication
overheads and host-device interactions.

𝐸𝑓𝑓 =
𝑆𝑟𝑒𝑎𝑙
𝑆𝑚𝑎𝑥

(1-3)

Finally, a third metric that relates to device behavior, utilization and effective performance
is considered. This metric is interesting as it helps to understand the behavior of the load
balancing algorithms and the usage of the devices during the final stages of execution [127].
The balancing efficiency, shown in Equation 1-4, measures the effectiveness of load balancing
regarding the workload distribution towards the end of the execution.

25

1 Introduction

𝐵𝐸𝑓𝑓 =
𝑇𝑓𝑖𝑟𝑠𝑡
𝑇𝑙𝑎𝑠𝑡

(1-4)

Being 𝑇𝑓𝑖𝑟𝑠𝑡 and 𝑇𝑙𝑎𝑠𝑡 the execution time of the device that finish at first and last, respec-
tively. Thus, the optimal is 1.0, meaning both devices finish simultaneously without imbal-
ancing the workload.

Regarding energy, the two cases seen in the performance metrics are also considered.
However, the baseline also considers the power consumption of the processor and the sys-
tem. This is because an accelerator generally cannot run by itself and depends on the CPU,
which acts as a manager. Apart from the total consumed energy, the Energy Delay Product
(EDP) [175, 176] is computed, shown in Equation 1-5, combining performance (𝑇, time)
and energy (𝐸, power consumption) to evaluate the efficiency of the system. The following
section details the tool developed to obtain the energy consumption.

𝐸𝐷𝑃 = 𝑇 ⋅ 𝐸 (1-5)

1.7.4 Tools

Working with heterogeneous systems and especially with technologies such as OpenCL or
oneAPI has made it necessary to perform a number of extra steps not required when using
other more common technologies or devices, such as OpenMP or processors [177]. The
summary table in Section 1.7.1 reflecting the heterogeneous nodes used in this document
already shows a clear variation of operating systems, kernel versions and drivers. This di-
versity and technological complexity require the need to inspect and validate executions on
different architectures, including the study of hardware counters to clarify the most complex
behaviors.

On the one hand, the systems have been adapted to be analyzed by profiling, API tracing
and debugging tools, such as AMD CodeXL [178] and Intel VTune [179]. The developed
runtimes have modules and components that facilitate the inspection and analysis of the
behaviors, as will be detailed in their respective sections. The need to create inspectors
associated with the runtime is due to the fact that existing tools offer very detailed solu-
tions, useful in the evaluation and profiling of specific problems and single executions, as
well as during the elaboration of the software architecture, its main design principles and
optimizations. However, they do not help to analyze the runtime system, its components
and management stages, involving multiple executions and considering common, statisti-
cally relevant phenomena. Existing tools cannot discriminate performance losses due to
runtime management and its multi-threaded architecture, highlight inefficiencies in load

26

1.7 Methodology

balancing or show overheads associated with specific device management drivers, among
others. Therefore, it has been necessary to use tools from the manufacturers during the
conceptualization, construction and evaluation processes, since they offer more detailed in-
formation on their architectures. The most popular tools for debugging and profiling in
OpenCL suffer from inadequate support from the manufacturers, both AMD CodeXL and
Intel VTune. This is mainly due to poor documentation and community support, config-
uration problems and discontinuation of the software, and even technological incompati-
bility and outdated dependencies. For this reason, to this day, it is still impossible to prop-
erly inspect co-execution behavior when involving a CPU (VTune) or both CPU and GPU
(CodeXL), either because the OpenCL support from Intel is focused only on its GPUs, or
AMD only on the most recent generations that are compatible with ROCm tools. There are
other generalist profiling projects and tools that have been gaining relative popularity during
the last years, such as Intercept Layer for OpenCL [180], PTI for GPU [181], CLTracer [182]
or LPGPU2 [183]. The main problem with all these tools, excluding their ongoing devel-
opment, is that they are generally supporting a single vendor or focused on the analysis of
a specific vendor or platform type. For instance, Low-Power Parallel Computing on GPUs
2 (LPGPU2), despite inheriting the CodeXL features, it is closely linked to the analysis of
embedded platforms. In short, all these proposals have drawbacks regarding the analysis of
co-execution, the scheduling system and evaluation considering statistical aspects. Never-
theless, they have been used during the implementation of the runtime systems, especially
CodeXL and VTune.

On the other hand, themeasurement of the power consumed by the system has required
the creation of a specific tool, called Sauna [156, 184], to obtain the power consumed by
each device. The main differences with respect to third-party and vendor tools, associated
with their drivers or devices, is that they provide a top-like operation, offering real-time
measurements of the entire device, not a specific process. They do not provide a configurable
periodic query, they hog system processor threads, and make it difficult to measure energy
simultaneously in the different devices of the node.

Its design is based on a very light software layer, in order to avoid overheads when per-
forming a periodic query. The idea is to monitor multiple devices at the same time, standard-
izing their measurements, since each manufacturer and device has peculiarities to which it
has to adapt. For example, Intel and AMD CPUs can be queried thanks to the Linux ker-
nel module that provides access to the Running Average Power Limit (RAPL) [185] registers,
which provide cumulative power readings. On the other hand, both the Intel Xeon Phi MIC
coprocessor and GPUs from Nvidia and AMD provide instant power measurements. The
many-core Xeon Phi offers a library and querying API using the mpss-micmgmt handler,
communicating with the coprocessor driver. AMD GPUs supported by the ROCm tools
rocm-smi allow querying of their associated devices, while the CUDA driver, together with
theNVIDIAManagement Library (NVML) [186], is used to obtain information about Nvidia

27

1 Introduction

GPUs in the system. In addition, it is enhanced providing support for any device that uses
the sysfs driver, through which the power values of generic devices attached to that Linux
interface can be obtained. In any case, Sauna normalizes the magnitudes and generates con-
sistent results throughout the execution. Finally, it is important to note that it allows to select
the sampling frequency, as each device and application has specific conditions. If high sam-
pling frequencies are used, delays and overheads may be incurred in the execution, while if
they are low, the capture of events and variations in consumption may be lost, generating
inaccurate results. In general, sampling frequencies range, depending on the experiment
and the heterogeneous node, between 50 and 150ms, always trying to balance the overhead
with the accuracy of the results.

1.8 Document structure

Once the Introduction is concluded, the dissertation is structured as follows:
Chapter 2 presents the fundamental concepts to understand the proposal of this thesis, in

addition to providing a review of related work. The background covers the most common
technologies and programming languages used, co-execution algorithms for load balancing
and an overview of runtimes and their principles.

Chapter 3 presents the EngineCL runtime, a fundamental part of the dissertation, and
built on top of the OpenCL technology. This runtime has a multi-purpose objective, com-
bining high usability with high performance. This chapter presents the design principles, the
abstractions built over OpenCL and the architectural system, detailing some of its modules
and components. Since it is an engine that has been devised to be extended as technologies
evolve, internal details regarding the scheduling stages are provided. Finally, an exhaustive
validation on multiple architectures is performed, both in maintainability and performance,
highlighting the ease of use and the negligible overheads with respect to OpenCL.

Chapter 4 shows how EngineCL is extended and integrated for two specific uses, so its po-
tential for adaptability, ease of use and efficiency can be appreciated. The chapter is divided
into two parts, starting with integration for time-constrained systems. EngineCL is opti-
mized to be used in more modest environments, typical of commodity computers, where
executions of short duration are performed. These applications are generally recommended
for CPUs, and not for models such as OpenCL that offload to accelerators. However, En-
gineCL is extended, improving efficiencies, after applying various algorithmic and runtime
strategies. On the other hand, the integration with hybrid technologies to exploit molecular
dynamics problems is presented. The problem arises from a collaboration in an interna-
tional research center, where the ease of porting parts of a molecular dynamics simulator
to OpenCL technology is evaluated. With the advantages of EngineCL related to the ex-
ploitation of heterogeneous systems, and knowing the drawbacks of OpenCL applied to this
simulator, the runtime is extended. The combination of programming models and a ver-

28

1.8 Document structure

satility in the way of executing these problems, preserving co-execution and high usability,
makes it possible to efficiently exploit the kernels of the simulator.

Chapter 5 proposes the CoexecutorRuntime runtime system to exploit co-execution using
the novel oneAPI technology. This chapter details the approach chosen for its conceptual-
ization, much more cohesive with the underlying technology itself. Focused on a high-level
programming model but with all the extensions provided by the oneAPI framework and its
modules. It is a runtime that has evolved as new versions of oneAPI have been released, a
technology in constant development. For this reason, this chapter presents a series of de-
sign decisions different from those seen in Chapter 3, facilitating its adaptability and tuning
to the oneAPI APIs and extensions. In addition, the potential of the dynamic mechanisms
that have been propitiated in the proposed runtime, previously non-existent, is highlighted.
Then, the runtime is validated in commodity and HPC architectures, exposing the benefits
that this approach provide.

Finally, the thesis ends with Chapter 6, where conclusions as well as future lines of work
are presented.

29

Background & RelatedWork 2
CHAPTER

Background & RelatedWork

The emergence of heterogeneous devices and specialized architectures has led to
the development of programming languages for the efficient use of these systems. The
variety of applications and characteristics of the accelerators, leads to the existence of
various applicable programming models. These models end up materializing, over the
years, de facto standards used by all types of manufacturers in heterogeneous comput-
ing. Since computing devices are used to squeeze out maximum efficiency, scheduling
and co-execution algorithms are designed to adapt to the problems and applications to
be solved, as well as to the performance properties of the devices. This complexity, to-
gether with the limitations and density of the programming required to efficiently use
these architectures, leads to the conceptualization and development of runtime sys-
tems to facilitate the work of programmers. This chapter presents the technologies,
programming models and algorithms used in the thesis, as well as exposing the work
related to the research carried out.

Chapter contents

♦ Abstract . 33

2.1 Technologies & Programming languages 35

2.2 Load Balancing Algorithms . 48

2.3 RelatedWork . 52

2.1 Technologies & Programming languages

2.1 Technologies & Programming languages

Solutions to make parallel programming simpler and more suitable for programmers are
often focused on exploiting the various existing programming models that abstract away
from the complexities of parallelism, concurrency and the underlying architectures. Imple-
mentations of such models often reach down to lower layers of utilization and optimization,
making it possible to manipulate different drawbacks that affect efficiency, as discussed in
Chapter 1.

This section provides an overview of parallel programming languages and frameworks for
heterogeneous systems, focusing on the two exploited throughout the dissertation, OpenCL
and oneAPI, explained in more detail.

2.1.1 Overview

There are many variations of languages, new proposals and even combinations of several
existing ones, making it difficult in many occasions to delimit which are the innovations they
introduce due to the real complexity of programming ecosystems. It is an incipient field that
is constantly nourished by ideas, but some programming models and implementations stand
out from the rest, either by versatility, performance or popularity in certain areas. Thus, the
most widely known technologies and languages for programming heterogeneous systems
are the following.
CUDA, Compute Unified Device Architecture1, is a proprietary general purpose com-

puting programming language for graphics cards (GPGPU), created by Nvidia for its de-
vices [24, 187, 188]. Being one of the first and intimately linked to the growth and potential
of the Nvidia GPUs, it is mature and well-supported, being popular worldwide. It offers
low-level and high-level APIs, and its runtime offers a software layer that allows the use
of a virtual set of GPU instructions, being generally exploited from C, C++, Fortran and
Python. This GPGPU approach was one of the first to dispense with shader and texture-
based graphics programming, which is low level and not very portable, facilitating the ex-
ploitation of scientific, engineering and industrial problems [189–197]. CUDA is so useful,
established and important in GPU processing that there are bindings from most general-
ist programming languages. The philosophy is similar to OpenCL, offering a host-device
model of kernel offloading, with comparable execution and memory management princi-
ples, albeit with different terms. Each thread executes the same kernel, but with different
data, so it is based on the SPMD model. The latest versions support unified memory mod-
els, shared memory, multi-GPU support, optimized memory transfer strategies, tensor cores
support, dynamic parallelism and half-precision floating-point operations. Moreover, they
have multiple optimized libraries for bitwise and linear algebra exploitation, graph analysis,

1https://developer.nvidia.com/cuda-zone

35

https://developer.nvidia.com/cuda-zone

2 Background & RelatedWork

FFT calculation, image processing or neural networks, among others. The major limitation
is its adherence to Nvidia technologies, being designed specifically for their GPUs, and not
any type of accelerator and manufacturer.
OpenMP, OpenMultiprocessing2, the API and runtime focused on shared memory ar-

chitectures and used for more than two decades, with great consolidation in all types of en-
vironments, especially HPC [198–200]. Originally focused on the fork-join model, which
manages the parallel execution of a set of threads within a process, sharing the address space.
It has directives, functions and environment variables, typical components of a language
based on pragmas. These components greatly facilitates programmability, easing its inte-
gration as part of other libraries, both native and as wrappers for other languages. Two of
its main advantages are ease of use and incremental parallelization and porting, incorpo-
rating parallel regions gradually, in addition to having support for sequential execution as
fallback compatibility feature. In this way, this framework for parallel programming is not
very intrusive, facilitating the exploitation of these techniques in an optional fashion, wher-
ever there are exploitable resources. As with all languages, new programming modes have
been incorporated over the years, including task-based parallelism, extension of synchro-
nization primitives, support for vector directives or atomic operations, among others. With
respect to heterogeneous computing, it is from OpenMP 4.0 and 4.5 versions onwards where
directives for the support of accelerators are offered [199]. The features offered focus on two
areas, program execution and data management, using constructs such as target , teams
and map , among others. It is gradually gaining more adoption, due to its simplicity and
worldwide use, but there is still work to be done in order to have an adequate support for
the existing heterogeneity [201–210].
OpenACC, Open Accelerators3, is another programming standard specifically focused

on heterogeneous computing, although originally centered on CPU-GPU systems [95, 211].
Like OpenMP, it is based on the annotation of C, C++ or Fortran code through the use
of compiler pragmas and directives, enabling the movement of memory and the launch of
computational code on devices. In fact, members of the OpenACC committee have acted
as members of the OpenMP standard group to join forces and create common specifica-
tions for accelerator support. In addition to having directives for data movement (data ,
declare) or region execution (loop , kernels), it has support for a runtime API, facili-
tating the extension of some functionalities without the need for pragmas. This standard
aims to facilitate the programmability of heterogeneous systems, with a philosophy similar
to OpenMP in terms of degree of abstraction and incremental acceleration [193, 201, 208,
212–215]. However, this abstraction limits the control of the programmer, although some
mechanisms are provided to orchestrate grouped and more complex operations (workers ,
gangs , vectors), with ideas close to the OpenCL standard. On the other hand, some of the

2https://www.openmp.org
3https://www.openacc.org

36

https://www.openmp.org
https://www.openacc.org

2.1 Technologies & Programming languages

complications of this standard are the difficulty of incorporating these specifications in im-
plementations, the limitation in the support of accelerator types and manufacturers, as well
as the experimental degree of some of its contributions in the most well-known compilers,
hindering its popularity and support .
HSA, Heterogeneous System Architecture4, is a cross-vendor initiative to enhance

portability by defining a set of specifications that facilitate data movement and execution
between CPUs and accelerators, such as FPGAs or GPUs [216, 217]. This hardware plat-
form and stack software focuses on enabling processors of different types to work coopera-
tively and efficiently through shared memory, although it was initially conceived for CPU-
GPU work. This proposal defines the management and dispatch protocol for kernels, so
that compilers can map constructs that describe parallelism and behavior. This abstraction
makes it possible for other languages to express themselves in these terms and then provide
abstraction over the kernel code itself. The code is compiled to an intermediate language as
a virtual ISA, called heterogeneous system architecture intermediate language (HSAIL), offer-
ing an abstraction on the types of manufacturers and devices, and allowing the subsequent
optimization and construction of the ISA for each of the devices finally used. One of the
disadvantages is the complexity of offering HSAIL transformations for other devices that do
not support instruction-based executions (GPUs), complicating the mapping to FPGAs and
DSPs [216, 218–222].
TBB, Threading Building Blocks5, now transformed to oneTBB after the importance

acquired by oneAPI, is a C++ template library developed by Intel to exploit parallel pro-
gramming on multi-core processors [223, 224]. It provides a runtime and API with a set
of primitives, operations, algorithm skeletons and data structures optimized for parallelism.
The programmer has to divide problems into tasks, being able to group them, establish de-
pendencies and schedule them for execution [225, 226]. TBB offers load balancing and
work stealing strategies, easing the life of the programmer while trying to take advantage of
all cores. Although it initially had bottlenecks and overheads due to dynamic capabilities, it
is a technology that continues to be used and optimized to this day. One of the advantages
of this template-based technology is the possibility of exploiting high-level strategies, such
as polymorphism, incurring in low overheads. Another is the cohesion with other Intel
technologies focused on other architectures, problem types and libraries, facilitating their
exploitation in a cooperative way, as is observed with oneAPI, oneMKL or oneDNN [23,
227–230]. However, although oneTBB is a proposal in a different direction and with a great
trajectory, it is focused on multi-core exploitation and is closely linked to the manufacturer,
limiting heterogeneous exploitation [231–234].
SYCL6 is a Khronos standard that offers a cross-platform abstraction layer that builds

4https://hsafoundation.com
5https://intel.com/oneTBB
6https://www.khronos.org/sycl/

37

https://hsafoundation.com
https://intel.com/oneTBB
https://www.khronos.org/sycl/

2 Background & RelatedWork

on the concepts, efficiency and portability provided by OpenCL for programming hetero-
geneous platforms [98]. Its philosophy is to use a single-source code to program the het-
erogeneous devices, directly using C++. Simplification and abstraction over heterogeneity
is achieved through the work of the compiler and runtime, although they depend on the
very specific implementations of the standard. In any case, they consolidate a task graph
as the fundamental piece to orchestrate devices and offload kernels. Originally conceived
as an abstraction on OpenCL, over the years it has been maturing and allowing the en-
capsulation of other technologies and systems such as Level Zero [235], vector comput-
ers [236] and Vulkan platforms [237]. Thanks to the efforts and proposals of the different
implementations, it has been possible to make a leap with the latest version of the SYCL
2020 standard, allowing to generalize the original backends model [90, 91]. In addition,
the latest changes have favored extensions to simplify its programmability, apply parallel
reductions, exploit pointers and shared memory, or improve interoperability between tech-
nologies, among others. SYCL has been gaining relevance over time, precisely because of
its proximity to C++, being used in most industrial and scientific applications [92, 238–
241]. For this reason, libraries and compilers have emerged around SYCL, both from indus-
try firms, such as ComputeCpp or oneAPI [237, 242, 243], and community and academia
proposals such as hipSYCL or triSYCL [91, 238]. In fact, this initiative is becoming so im-
portant that the second proposed runtime, presented in Chapter 5, is based on one of the
SYCL implementations.
C++ AMP, Accelerated Massive Parallelism7, is a programming language that extends

C++ and its runtime library to support GPUs [244]. Proposed by Microsoft and with an
original implementation based on DirectX 11, but with integrations in proposals from other
vendors, like a HSA implementation of AMD. It was initially focused on GPGPUs, offering
algorithms based on data parallelism and modifications to the C++ language to address the
limitations of such hardware architectures. It uses C++ lambda functions for kernel code
generation, transferring data implicitly through the use of array_view objects to represent
contiguous memory regions to be used during execution on GPUs. Efforts are focused on
providing the same code for CPU and GPU, checking the feasibility of kernel execution on
the accelerator, supported language features and providing fallbacks for the CPU [245–250].
OmpSs8 is a pragma-based model with design principles similar to OpenMP, but fo-

cused on task-based parallelism [150]. It facilitates the programming of heterogeneous ar-
chitectures using extensions and backends, supporting other programming languages such
as OpenCL or CUDA [251, 252]. The programmer must indicate the tasks and their in-
terrelationships, so that the runtime is able to orchestrate the kernels, their dependencies
and the compute nodes involved. The source code is compiled according to the processing
element of the underlying system, producing different object codes that are scheduled at

7https://docs.microsoft.com/en-us/cpp/parallel/amp/cpp-amp-overview
8https://pm.bsc.es/ompss

38

https://docs.microsoft.com/en-us/cpp/parallel/amp/cpp-amp-overview
https://pm.bsc.es/ompss

2.1 Technologies & Programming languages

runtime [252–256].
Just as Nvidia has always promoted CUDA, AMD has done the same with different initia-

tives, but always in a cross-cutting and continuous way, contributing with OpenCL support.
ROCm9,RadeonOpenCompute, is one of the latest initiatives as part of theirBoltzmann

Initiative and the open computing platform10. It has a modular design that allows any hard-
ware manufacturer to adapt its drivers to the ROCm stack, integrating programming lan-
guages such as OpenCL or HIP [257–260]. Moreover, the ROCm runtime is implemented
on top of a HSA-compliant language-independent runtime [261]. However, this platform
only supports some operating systems, some modern CPUs and a subset of AMD GPUs,
limiting its usefulness for now, although offering performance similar to Nvidia GPUs [262].
AMD worked on other initiatives over the years, being Compute Abstraction Layer (CAL)
and Accelerated Parallel Programming (AMD APP) among the most relevant [263–265].
Some of these frameworks and libraries provide lower level features, while others offer more
abstract interfaces close to C++, but always focused on exploiting the use of their GPUs. Nev-
ertheless, these efforts have offered and improved OpenCL backends to benefit from the
same drivers and optimization techniques.
HC C++, Heterogeneous Compute C++11, is an AMD initiative inspired by C++ AMP,

SYCL and C++17, with a proposed API for heterogeneous computing with C++ [266]. It
makes modifications to the C++ AMP language, providing access to lower-level constructs,
such as the synchronization primitives and custom memory transfers [267, 268]. Their goal
is to take advantage of cutting edge language features and computing characteristics of de-
vices while enabling increased productivity. However, while uses are still being found, such
is the movement between proposals that AMD has ended up favoring these efforts around
OpenCL and HIP. C++ Heterogeneous-Compute Interface for Portability12 (HIP) and
the HC language share the same compilation technology, so many features of the language
exploited in kernels are leveraged from HIP [269]. This proposal has two ways to compile
the code depending on the execution platform, exploiting both Nvidia CUDA and AMD
ROCm. The runtime API and language have been designed to be CUDA-compatible, en-
abling performance on par with that offered by the CUDA platforms while providing addi-
tional low-level features. CUDA is so widely used that this proposal is important to enhance
code portability, including conversions to OpenCL platforms not supported by CUDA or
ROCm [268, 270, 271].

These languages offer different drawbacks for heterogeneous computing and the objec-
tives of this thesis. On the one hand, all those based on pragmas and directives, such as
OpenMP, OpenACC or OmpSs, are relatively easy to port, generate an additional layer of
abstraction with respect to the code. Directive statements are generally simplified domain

9https://github.com/RadeonOpenCompute/ROCm
10https://gpuopen.com https://www.amd.com/en/graphics/servers-solutions-rocm-hpc
11https://github.com/RadeonOpenCompute/hcc/wiki
12https://github.com/ROCm-Developer-Tools/HIP

39

https://github.com/RadeonOpenCompute/ROCm
https://gpuopen.com
https://www.amd.com/en/graphics/servers-solutions-rocm-hpc
https://github.com/RadeonOpenCompute/hcc/wiki
https://github.com/ROCm-Developer-Tools/HIP

2 Background & RelatedWork

specific languages (DSLs), transforming automatically the code to do complex behaviors with
just a few words in a single line. However, the main disadvantage is the limited flexibility,
making development, compilation and evaluation cycles more difficult. These DSLs are lan-
guage and version dependent and cannot offer all the versatility of the language in which
the rest of the code is expressed, so they are often constrained. Additionally, the program-
mer has no way to extend such syntax or provide variations on the structures or behaviors
provided. Hence, programmers that want to make derivations of features present in the stan-
dard, all the functionality should have implemented from scratch, in another technology or
in low-level primitives, if they are exposed at all.

On the other hand, many of these languages are tied to the vendors and the hardware they
manufacture, limiting code portability and real usability. The broader the scope, the more
abstraction is required, and in general the more difficult it is to achieve adequate perfor-
mance. However, in such cases, the proposals will be more useful and applicable to all types
of architectures and applications. When vendor-specific proposals gain interest in the com-
munity, attracting frameworks and other vendors, they end up being incorporated in other
technologies. For instance, this has happened with CUDA through HIP transformations as
well as interoperability backends with SYCL.

There are other languages and frameworks that focus on technologies limited to specific
operating systems (Android, Windows), software stacks (Renderscript, DirectX, JVM) or
even types of problems and their scope (image processing, multi-block structured grids,
sparse linear systems, deep learning) [272–278]. These are proposals of interest for these
limited environments, but not for generalist proposals of maximum applicability.

Finally, it is important to highlight that even proposals such as OpenMP, known world-
wide and supported by most compilers, require years and collaborative efforts by the com-
munity and manufacturers to support certain accelerators and the latest stardard features.
Therefore, to date, OpenCL is still the proposal that offers the greatest compatibility.

Nevertheless, there are many other languages, libraries, frameworks or specifications for
parallel programming in heterogeneous environments, or at least, gradually adapting to
them and incorporating support for different types of accelerators. However, the base tech-
nologies and programming models on which to build the proposals developed during this
thesis have been OpenCL and oneAPI.

2.1.2 OpenCL

Open Computing Language13 (OpenCL) is a parallel programming language and frame-
work for heterogeneous environments on cross-vendor and cross-platform hardware [94,
279]. Khronos Group defined the first specification of this standard in 2008, and since then,
the functionalities have been increased up to the recent OpenCL 3.0, which is slowly start-

13https://www.khronos.org/opencl/

40

https://www.khronos.org/opencl/

2.1 Technologies & Programming languages

ing to be implemented. Recent contributions have included shared virtual memory, nested
parallelism, support for subgroups, extensions for embedded and support for asynchronous
DMA operations, increased debugging information, synchronization events or interoper-
ability with other languages such as Vulkan, among others.

The purpose of this open programming standard has been to model a framework that con-
centrates the features and needs of many types of manufacturers, devices and applications,
providing a language that is acceptable for a wide range of competing needs. Therefore, it
entails an effort to improve programmability and code portability between different hetero-
geneous systems. Roughly put, it consists of an extension to C/C++ that allows programmers
to shift parts of their code to the accelerators, introducing the Host-Device programming
model, already presented in previous Chapter. This API is sufficiently generic to be used in
a wide number of different architectures while being adaptable to each hardware platform,
achieving high performance. It is important to highlight that the fundamental feature of
OpenCL is its adaptability. Using the kernel language as well as the API, a program designed
for one device can run not only on different hardware but also on different types of devices,
as long as an OpenCL driver is provided. Therefore, it can run on a variety of performance
CPUs [94, 233, 280], GPUs [24, 281–283], MIC coprocessors [23, 128, 284], FPGAs [125,
285, 286], DSPs [58, 59, 287] and even accelerators [288].

OpenCL consists of platform, execution, programming, compilation and memory mod-
els, explained below.

2.1.2.1 Platformmodel

The OpenCL architecture consists of a CPU-based host that controls a set of Devices, often
denoted as Compute Devices, as it is depicted in Figure 2-1. Each of these devices is com-
posed of execution units called Compute Units and these, in turn, of Processing Elements,
which are in charge of executing OpenCL kernels. It is precisely the definition of these en-
tities that allows the abstraction provided on the different types of devices, since it is a deci-
sion made by the manufacturers and their drivers. For instance, Compute Units in Nvidia
are Stream Multiprocessors (SMs), Stream Cores or SIMD Engines for AMD GPUs and in
CPUs, they are generally associated to the logical cores of the system.

The platform model is key for the development of applications that have to be portable
between OpenCL-capable systems, even from the same manufacturer or device type. A plat-
form is often thought of as a common interface for a specific OpenCL runtime, implemented
through a driver. For example, in Section 1.7.1 of Chapter 1, the table of heterogeneous sys-
tems shows devices such as Remo that even having AMD CPUs and GPUs, presents two
different platforms because they contain different drivers. This also applies to Desktop and
even in Batel, where the CPU and Xeon Phi share the OpenCL version and its driver, but not
the platforms due to different implementations regarding the hardware interaction. How-
ever, throughout this dissertation there are cases where the same platform encompasses two

41

2 Background & RelatedWork

Host

Compute unit

P
E

P
E

P
E

P
E

Compute unit

P
E

P
E

P
E

P
E

Device 1

Compute unit

P
E

P
E

P
E

P
E

Compute unit

P
E

P
E

P
E

P
E

Compute unit

P
E

P
E

P
E

P
E

Device 0

Compute unit

P
E

P
E

P
E

P
E

Figure 2-1: Platformmodel of OpenCL showing a system with two compute devices.

different devices, favoring the sharing of some OpenCL primitives per manufacturer.
This design allows manufacturers to translate this architectural abstraction to physical

hardware, fostering one of the fundamental aspects of this model, where each compute unit
is functionally independent.

2.1.2.2 Executionmodel

A context is an abstraction on which the operations associated with the devices, both mem-
ory management and execution, are coordinated. It manages all the interaction mechanisms
between host and device, the control of memory objects, programs and kernels to be exe-
cuted on each device. A context can contain different devices and resources that can operate
between them, facilitating data sharing.

A command-queue is a communication mechanism between each device and the host,
generally launching operation requests to a specific device through its respective queue. This
is a requirement, as each request to the queue is implicitly assigned to the device with which
it operates. There are both in-order and out-of-order queues, fetching operation commands
in the order received, or depending on the driver and being rearranged at runtime. However,
in-order queues are the most commonly used, since out-of-order queues are a mechanism
that depends on more interaction from the programmer in terms of OpenCL mechanisms
and primitives (event handling and chaining), as well as requiring support by the OpenCL
implementations involved. Other common operations requested on command queues are
synchronization commands (barriers), event commands and memory transfers.

Generally, events are objects used to specify dependencies between commands or to per-
form queries on OpenCL operations, although custom events can also be created. Asyn-
chronous OpenCL API operations provide support for events that can be used to estab-
lish dependencies for future events, as well as to query driver information or wait for state
changes.

These primitives and objects are depicted in Figure 2-2. It shows an OpenCL runtime

42

2.1 Technologies & Programming languages

OpenCL context

OpenCL program objects Memory objects

Program object

....Kernel
#0

Kernel
#1

Program object

....Kernel
#0

Kernel
#1

Events
Events
Events

Buffers
Buffers
Buffers

Other non
relevant typesOther non
relevant types

OpenCL Device

queueCPU

Host-side command queues

GPU

OpenCL Device

queue

OpenCL

Drivers

O
p

e
n

C
L

 r
u

n
ti

m
e

Figure 2-2: Execution model showcasing an OpenCL context managing two compute devices (CPU and
GPU) and a set of OpenCL primitives to interact with.

with a context in which two compute devices are managed, sending requests to the CPU
and GPU through the command queues (host and device-side). Additionally, other OpenCL
primitives are allocated and used as part of the context, such as events, kernels, as well as
memory and program objects.

2.1.2.3 Programmingmodel

Code using the OpenCL runtime API executes on the CPU, just as in a classical sequential
programming model. However, device code requires more stages to be executed, mainly due
to the abstraction offered by this programming model. The code executed on the devices is
encapsulated in data-parallel, C-like functions, which are known as kernels. Although most
kernels are expressed in a subset of C99, it has language extensions, both vendor-specific or
language defined, built-in functions and even the possibility of being expressed in C++ with
recent versions [94, 289] and proposals [290].

When a kernel is offloaded to a device, OpenCL launches multiple instances of the ker-
nel, each with a different portion of the data, under the Single Instruction Multiple Thread
(SIMT) paradigm. Each instance is called a work-item, being the unit of concurrent execu-
tion in OpenCL C. The programmer can decide how many items are launched by setting a
parameter called global work size. Work-items are launched in teams so they can cooper-
ate and synchronize with each other. OpenCL ensures that the work-items of each team, or
work-group, are launched simultaneously in the same compute unit. However, work-groups
are run concurrently in the compute units, as a device may not have enough resources to
execute them all at once. Work-group size can be defined through the local work size pa-
rameter.

The hierarchical concurrency model implemented by OpenCL ensures scalability in exe-

43

2 Background & RelatedWork

cution, allowing a very large number of work-items to be launched. The programmer must
set the number by specifying an n-dimensional range (NDRange), although there are mech-
anisms for launching coarse-grained parallelism (task). The dimensional space of the work-
items is mapped to the input and output buffers, depending on the dimensions used, and up
to NDRange with a 3-dimensional index space can be used.

A fundamental aspect of operations within a work-group is that internally launched work-
items can be synchronized (barriers) and have access to the shared memory address space.
Since work-group sizes are fixed per dispatch, communication costs do not rise as for larger
dispatches, which is essential to maintain scalability. The actual mapping of work-groups
to hardware components is both architecture and OpenCL implementation dependent. On
the other side, the synchronization between work-items belonging to different work-groups
is undefined. OpenCL devices provide intrinsic functions that allow identifying execution
space elements, such as work items, work groups and other concepts, such as relative indices
and sizes of the n-dimensional execution space.

The goal is to represent it in a fine-grained parallelism. In this way, the OpenCL inter-
face and the low-level language of the kernels allows a mapping to a diverse set of devices.
Conceptually, it is very similar to the parallelism inherent in OpenMP data-parallel loops or
functional language map operations.

2.1.2.4 Compilationmodel

An OpenCL program is a set of OpenCL C kernels, functions and data. OpenCL source code
is compiled using runtime APIs, making it possible to create data structures and primitives
defined by OpenCL. Later, these kernels are assigned with execution arguments and sub-
sequently can be launched for execution through the command queues. This compilation
procedure, although cumbersome, provides the opportunity to optimize OpenCL kernels
for the devices to be exploited, which may be previously unknown. This facet is impor-
tant because it guarantees code portability, since the complete program is compiled in two
stages. On the one hand, the main program using the OpenCL API. On the other hand,
the JIT-compiled kernel code by the OpenCL drivers and the installable client driver (ICD)
loader.

In this manner, independence is provided with the types of devices and manufacturers
involved in the target system, delegating the optimizations and heterogeneous exploitation
through dynamic mechanisms. One of the advantages of this process is that the construction
process can generate both the final binary and intermediate representations, being able to
serialize them as binary objects. In this way, the programmer can also store the compiled
binaries and reuse them in subsequent executions, as a kernel compilation at compile time,
reducing the runtime overhead.

44

2.1 Technologies & Programming languages

2.1.2.5 Memorymodel

The memory spaces of hardware devices in a heterogeneous system have generally been
separated from the host, and although there are cases of shared memory and techniques
to take advantage of these systems, it is not common. For this reason, OpenCL establishes
an abstraction on the memory model, considering separate memory spaces and delegating
to drivers and future extensions the possibilities of exploiting other situations.

OpenCL distinguish two main types of memory, host and device. The first one involves
the available memory for the program, its data structures, OpenCL runtime and primitives.
And on the other side, in a separated address space, the memory allocated in the devices
accessed by the running kernels. Data is moved between the host and the devices using
functions defined by the API, ensuring sufficient memory at both ends. Due to the differ-
entiated memory address space, kernel launches must be preceded by an input data copy
phase, from the main memory to the device memory, and followed by another in the oppo-
site direction for the results. For these operations OpenCL uses the concept of buffers, which
are a host representation of the memory of the devices in a context, being an address that
is valid in the memory of the device. There are functions to create and manage buffers on
devices, enqueing read or write operations on the associated command queues. Moreover,
data transfers can also be blocking or non-blocking, controlling whether the host has to wait
for the transfers to complete or can continue executing. However, these copy phases must be
explicitly instructed by the programmer, which constitutes a tedious and error-prone task.

OpenCL divides device memory into four regions, global, constant, local and private, be-
ing associated within a kernel by keywords and identifying the location of variables or argu-
ments. Since the memory regions are logically disjoint, by definition of the memory model,
the kernel programmer is in charge of allocations and transfers. An example of these re-
gions and their mapping to two GPU architectures is depicted in Figure 2-3. It depicts the
mappings for the AMDRX5700XT RDNA and AMDA10-7850K APUGCN devices, used in
the Trainera and Remo heterogeneous systems presented in Section 1.7.1. Global memory
is visible to all work-items instantiating the kernel, and any memory transferred between
the host and the device first passes through global memory. Constant memory is read-only
data that is modeled within global memory, but is specifically designed for data that has to
be accessed simultaneously by all work-items. Global and constant memory are mapped to
GPU video memory in the GCN architecture. Local memory restricts its use to work-items
in a work-group, and is generally mapped to on-chip memory, providing shorter latencies
and higher bandwidths. This is commonly used as a scratchpad for fast collaboration and
data sharing. It is placed in the local data share region, as part of every vector processor
of the GPU architecture shown. Finally, private memory is that which is reserved by each
work-item, being mainly local variables and arguments of primitive types (nonpointer ar-
guments). Considering each vector processor of the GCN architecture, local memory is

45

2 Background & RelatedWork

Work-group N

Private

Work-
item

Private

Work-
item

Private

Work-
item

Global memory

Kernel

Constant memory

Work-group 1

Local memory

Private

Work-
item

Private

Work-
item

Private

Work-
item

Work-group 0

Local memory

Private

Work-item

Private

Work-item

Private

Work-item

AMD GPU (RDNA Architecture)

DDR6 video memory (8GB)

Compute unit 19

Register file (256KB)

Compute unit 18

Local data share (64KB)

Register file (256KB)

W
o
rk

-g
ro

u
p

 p
ro

c
e
s
s
o
r

9

Register file (256KB)

Compute unit 1

Compute unit 0

Local data share (64KB)

Register file (256KB)

W
o

rk
-g

ro
u

p
 p

ro
c
e
s
s
o
r

0

Vector processor 31

Vector processor 1

Register file (256KB)

Vector processor 0

Local data share (32KB)

Register file (256KB)

AMD GPU (GCN Architecture)

DDR5 video memory (2GB)

Figure 2-3: Memorymodelmapping of OpenCL regions to AMDGPU regions (RDNA&GCN architectures).

mapped to the local data share region, while private memory uses the register file. However,
constant variables of the private memory may be stored in the global video memory.

This abstraction over the memory model provides flexibility, since the mapping of mem-
ory spaces to actual hardware is implementation dependent.

2.1.3 Intel oneAPI

Intel oneAPI14 is based on the SYCL specification, although it provides its own extensions to
accelerate the computation and facilitate the development [98]. The programming language
is called Data Parallel C++ (DPC++), making a leap in abstraction and promoting inter-
operability with host code, compared to the OpenCL language. DPC++ is a community-
driven, standards-based language built on ISO C++ and Khronos SYCL, allowing develop-
ers to reuse code across hardware targets. DPC++ allows the host and the device code as
part of the same compilation unit, feature called single source property, that allows poten-
tial optimizations across the boundary between both codes. Due to this property, DPC++
establishes three types of scope to distinguish between host (application), host-device in-
terface (command group) and device (kernel). OneAPI comprises four models based on
SYCL, each of which is part of the operations that a developer has to perform when using
oneAPI. Since SYCL was originally designed as an abstraction over OpenCL, it inherits most
of the concepts and abstractions highly detailed in the previous, Section 2.1.2. Hence, the
key points applicable in oneAPI with respect to the existing models are exposed below.

14https://intel.com/oneAPI https://www.oneapi.io/

46

https://intel.com/oneAPI
https://www.oneapi.io/

2.1 Technologies & Programming languages

2.1.3.1 Platformmodel

Define a host that manages one or more devices and coordinates the application and com-
mand group scopes. A device can be an accelerator or the CPU itself, each of which contains
a set of Compute Units. In the same manner, each of these provides one or more Process-
ing Elements. The complete system could have multiple platforms, since the composition of
drivers in execution platforms is determined by the drivers and their implementation.

2.1.3.2 Executionmodel

It defines and specifies how kernels execute on the devices and interact with the host. It is
subdivided in host and device execution models. The data management and execution be-
tween host and devices are coordinated by the host execution model via command groups.
These are groupings of commands like kernel invocation and memory access (accessor, to
be detailed later), which are submitted to queues for execution. The device execution model
specifies how computation is accomplished on the accelerator, specifying range data sets.
These are allocated across a hierarchy of ND-ranges, work-groups, sub-groups, and work-
items, easing the programming patterns and their composition. This facilitates the memory
and compute operation relationships, giving the programmer flexibility to express the algo-
rithms.

A fundamental concept in the SYCL execution model is the Directed Acyclic Graph
(DAG). Each node contains an action to be performed on a device, such as kernel invo-
cation or data movements. The SYCL runtime controls, asynchronously, the resolution of
dependencies and triggering of node executions. Thus, it tracks and orchestrates actions
and their dependencies to perform in the devices, safely executing each operation when the
requirements are met. On the other side, if the handler is not used, the code executes syn-
chronously by the CPU as part of the host program, bypassing the DAG.

2.1.3.3 Memorymodel

It coordinates the allocation and management of memory between the host and devices, and
how they interact. Memory resides upon and is owned by either the host or the device and
is specified by declaring a memory object. Accessors define the interaction of these memory
objects between host and device, communicating the desired location and access mode.

An extension to the standard SYCL memory model is Unified Shared Memory (USM),
which enables the sharing of memory between the host and devices without explicit acces-
sors. It manages access and enforces dependencies with explicit functions to wait on events
or by signaling a dependency relationship between events. Another important feature of
USM is that it provides a C++ pointer-based alternative to the buffer programming model
(SYCL Buffers), which increases the abstraction by leaving the migration of memory to the
underlying runtime and device drivers. On the other side, since it does not rely on accessors,

47

2 Background & RelatedWork

dependencies between command group operations must be specified using events to help
the compiler determine the data dependencies and patterns.

2.1.3.4 Kernel programmingmodel

The kernel is the computing function instantiated to be executed by every processing ele-
ment of the accelerator. It allows the programmer to determine what code executes on the
host and device, giving an explicit computing function via lambda expression, functor or
kernel class. Therefore, the separation of host and device codes is straightforward, without
language extensions. Device code can specify the parallelism mechanism with a coarse-
grained task, data-parallel work or data-parallel construct taking into consideration the hi-
erarchical range of the execution model. It supports the single source property, meaning the
host code and device code can be in the same source file. Therefore, it improves usability,
safety between host and device boundaries (matching kernel arguments) and optimization
strategies due to better understanding of the execution context (aliasing inference and prop-
agating constants). Finally, DPC++ kernels execute asynchronously via forced allocations of
kernel class instances, implicit waits of C++ destructors or explicit queue waits.

2.2 Load Balancing Algorithms

A fundamental consideration for successful co-execution is an effective workload distribu-
tion between the host and the devices. Therefore, the load balancing algorithms used in the
experiments along this dissertation are briefly described.

It is necessary to have a sufficient variety of algorithms, since there is generally no schedul-
ing strategy for data parallelism that is always the best for all types of situations. Moreover,
it is important to contrast the behavior of the different proposals, runtimes and technologies
to know their differences and implications for their utilization and exploitation. Algorithms
can be divided into static or dynamic. Static algorithms are usually simpler and easier to
implement, generally achieving low overhead and synchronization since the partitioning
decisions are made in advance [156]. However, they are less adaptable to the type of work-
load, so they tend to suffer with irregular problems. On the other hand, dynamic algorithms
have more synchronization issues because they distribute the workload on demand, adapt-
ing themselves at runtime [82, 126, 291]. Three load balancing algorithms are chosen, one
static and two dynamic. These offer enough diversity to study the behavior of the problems,
runtimes and the heterogeneity of the system. To facilitate understanding the behavior of
the algorithms detailed below, Figure 2-4 depicts a comparison among the three load bal-
ancing algorithms in real executions. The Y axis shows every algorithm and the package
distribution per device, using the host device (CPU) and an accelerator (ACC), while the
X axis reflects the execution time per benchmark (Ray and NBody). Every rectangle is a

48

2.2 Load Balancing Algorithms

CPU

ACC

CPU

ACC

Dynamic

Static
CPU

ACC

HGuided

Execution time

NBODY regular RAY irregular

Package execution Device waiting Package data transfer

Execution time

Figure 2-4: Package distribution in real executions for irregular and regular problems using the Static,
Dynamic and HGuided load balancing algorithms.

work package launched to a specific device. As can be seen, every algorithm balances per-
fectly the load. For the sake of completeness, this chart represents an ideal situation in which
all the algorithms have achieved a perfect balance efficiency, simultaneously finishing both
devices. Additionally, the packages data transfer, both writing and reading, are almost neg-
ligible compared with the packages execution and device idle times. This is a real behavior
found, but it can vary drastically due to the complexity of the heterogeneous systems, archi-
tectures and technologies involved, as will be seen throughout the experimentations of the
dissertation.

2.2.1 Static algorithm

This algorithm works before the kernel is executed by dividing the data-set in as many pack-
ages as devices are in the system. To take heterogeneity into account, the division relies on
knowing the computing power of the devices in advance. Then the execution time of each
device can be equalized by proportionally dividing the data-set among the devices.

Considering a heterogeneous system with 𝑛 devices. Each device 𝑖 has computational
power 𝑃𝑖, which is defined as the amount of work that a device can complete per time unit,
including the communication overhead. These powers are parameters that must be given to
the algorithm and can be extracted by profiling. Then, the total computational power of the
heterogeneous system is the sum of the individual powers of the devices 𝑃𝐻 = ∑

𝑛
𝑖=1 𝑃𝑖.

The application will execute a kernel over 𝑊 work-items, grouped in 𝐺 work-groups of
fixed size 𝐿𝑠 =

𝑊
𝐺 . Since the work-groups cannot communicate among themselves, it makes

sense to distribute the workload taking the work-group as the atomic unit. Each device will
have an execution time of 𝑇𝑖. Then the execution time of the heterogeneous system will be
that of the last device to finish its work, or 𝑇𝐻 = 𝑚𝑎𝑥𝑛𝑖=1𝑇𝑖.

The goal of the Static algorithm is to determine the number of work-groups to assign each
device, so that all the devices finish their work at the same time. This means finding a tuple
{𝛼1, ...𝛼𝑛}, where 𝛼𝑖 is the number of work-groups assigned to the device 𝑖. Therefore, the
expression used by the algorithm is:

49

2 Background & RelatedWork

𝛼𝑖 = �
𝑃𝑖𝐺
∑𝑛
𝑗=1 𝑃𝑗

� (2-1)

If there is not an exact solution with integers then∑𝑛
𝑖=1 𝛼𝑖 < 𝐺. In this case, the remaining

work-groups are assigned to the most powerful devices.
The beauty of the Static algorithm is that it minimizes the number of synchronization

points. This makes it perform well when facing regular loads with known computing powers
that are stable throughout the data-set. However, it is not adaptable, so its performance
might not be as good with irregular loads.

2.2.2 Dynamic algorithm

Some applications do not present a constant load during their executions. To adapt to their
irregularities, the Dynamic algorithm divides the data-set (work-groups of OpenCL) in small
packages of equal size. The number of packages is well above the number of devices in the
heterogeneous system. During the execution of the kernel, a master thread in the host is in
charge of assigning packages to the different devices, including the CPU, following the steps
shown below:

Input: 𝐺 number of work-groups,
𝑁 devices,
𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒 package size multiple of work-group size

𝐺𝑟 ← 𝐺 (Number of remaining work-groups)
𝐶𝑟 ← 0 (Number of work-groups computing)
for 𝑗 ← 1 to 𝑁 do

𝑐𝑖 ← 𝑚𝑖𝑛(𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒, 𝐺𝑟)
if 𝑐𝑖 > 0 then

Schedule 𝑐𝑖 work-groups on device 𝑑𝑖
𝐺𝑟 ← 𝐺𝑟 − 𝑐𝑖
𝐶𝑟 ← 𝐶𝑟 + 𝑐𝑖

while 𝐶𝑟 > 0 do
(𝑑𝑖, 𝑐𝑖, 𝑟𝑖) ← Wait for any device
Merge partial results 𝑟𝑖 in host memory
𝐶𝑟 ← 𝐶𝑟 − 𝑐𝑖
if 𝐺𝑟 > 0 then

𝑐𝑖 ← 𝑚𝑖𝑛(𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒, 𝐺𝑟)
Schedule 𝑐𝑖 work-groups on device 𝑑𝑖
𝐺𝑟 ← 𝐺𝑟 − 𝑐𝑖
𝐶𝑟 ← 𝐶𝑟 + 𝑐𝑖

The master splits the𝐺work-groups in packages, each with the package size 𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒

50

2.2 Load Balancing Algorithms

specified by the programmer. This number must be a multiple of the work-group size. If the
number of work-items is not divisible by the package size, the last package will be smaller. In
an initial stage, the master launches one package 𝑐𝑖 on each device, including the host itself
if it is desired. Then, it waits for the completion of a package given to any device until there
are no more pending work-groups computing. When device 𝑑𝑖 completes the execution of
a package:

1. The device returns the partial results corresponding to the processed package.
2. The master stores the partial results in host memory, merging them with previous

ones.
3. If there are remaining packages, a new package 𝑐𝑖 is launched on device 𝑑𝑖.

This algorithm adapts to the irregular behaviour of some applications. However, each
completed package represents a synchronization point between the device and the host,
where data is exchanged and a new package is launched. This overhead has a noticeable
impact on performance. The Dynamic algorithm takes the size of the packages as a param-
eter. The time to process a package of equal size is the same in regular applications, while it
is not in irregular ones, like it is depicted in Dynamic in the Figure 2-4.

2.2.3 HGuided algorithm

The previous strategies have their strong points and their weak spots. Although neither is the
best for every application, both give hints toward an optimal data-division algorithm. The
Heterogeneous Guided algorithm (HGuided) is an attempt to reduce the synchronization
points of the Dynamic while retaining most of its adaptiveness.

The same algorithm used in the Dynamic approach is applicable to the HGuided, except
for how the data-set is divided. The HGuided algorithm makes larger packages at the begin-
ning and reduces the size of the subsequent ones as the execution progresses. This reduces
the number of synchronization points and the corresponding overhead, while retaining a
small package granularity towards the end of the execution to allow all devices to finish si-
multaneously, as can be seen in HGuided in the Figure 2-4.

Since it is an algorithm for heterogeneous systems the size of the packages is also depen-
dent on the computing power of the devices. The size of the package for device 𝑖 is calculated
as follows:

𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒𝑖 = 𝑚𝑎𝑥��
𝐺𝑟 𝑃𝑖

𝑘 ∑𝑛
𝑗=1 𝑃𝑗

� , 𝑚𝑖𝑛_𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒� (2-2)

where 𝑘 is an arbitrary constant, and the smaller the constant, the slower decreases the
package size. Setting this constant appropriately prevents too large package sizes when there
are only a few devices, with cases such as giving half the workload in the first package to a
device, unbalancing the load. Generally, a value of 𝑘 between 2 and 3 provides the best
results. 𝐺𝑟 is the number of pending work-groups and is updated with every package launch.

51

2 Background & RelatedWork

𝑃𝑖 is the computational power of the device 𝑖, while 𝑃𝑖 and 𝑃𝑗 obtains the computational
power ratio compared with the 𝑛 devices of used in the computation. Finally, HGuided uses
the computing powers of the devices and the minimum package size as its input parameters,
being the minimum package size a lower bound for the 𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒𝑖. Furthermore, this
algorithm is slightly improved for a specific scenario by performing parameter tuning during
the Integration I of Chapter 4.

2.3 RelatedWork

The rise of heterogeneous computing and the proliferation of a rich variety of architectures
have led to research and propose a huge number of programming languages, frameworks
and libraries to exploit these heterogeneous systems comfortably and efficiently. Such is the
complexity and variety that in-depth studies are periodically carried out to provide the state
of the art and help other researchers and developers, both from industry and academia, to
understand the implications of the different existing technologies [261, 265, 278, 292–295].
In addition to establishing an overview of the hardware and software tradeoffs in heteroge-
neous computing and the importance in the present and future [86, 217], specific visions
related to development patterns in parallel programming [296], by device [297], by pro-
gramming paradigm [298] or by execution environment [299], among others, have been
discussed.

This multi-objective problem, both due of the implications in maintainability and pro-
grammability, generally opposed to a low level of detail and accessible optimization, together
with the possibilities of extension and compatibility, determine the portability of perfor-
mance and effective exploitation of heterogeneous systems. Moreover, on many occasions,
as a result of the work on facilitating programmability, mechanisms are provided that de-
termine the way of interacting with the devices, or algorithmic proposals are made directly
to facilitate load distribution, with even greater implications on the performance obtained.
For this reason, three large blocks of work are distinguished: programming models and lan-
guages as integral solutions, frameworks and proposals to improve abstraction, and those
related to load balancing and scheduling optimization.

2.3.1 Programmingmodels

The innovation in parallel programming models and languages for heterogeneous systems
offers an ambitious approach, generating an integral solution from which implementations,
derived technologies and runtime libraries emerge. The languages and solutions listed here
fall into the category of high-level languages, as they offer a higher level of abstraction, gen-
erating an intermediate layer to facilitate programmability. Low-level languages, sometimes
referred to as native languages, have been described in the Section 1.2 for their relevance

52

2.3 RelatedWork

in programming heterogeneous devices, and have generally served as the basis for building
abstraction proposals.

High-level programming models can be categorized under different application scopes.
On the one hand, those based on specific languages, intimately associated with their syntax
and expressiveness, as in the case of C++ [300–305], due to its strong popularity in industrial
projects. These proposals respect the modern development philosophy and incorporate the
features of the latest standards, sometimes unifying host and device code, offering type infer-
ence and favoring the use of templates, among others. This language-speficic approach also
arises with other languages, such as Rust [306], Java [307, 308], Julia [309], Javascript [310],
or Python [311], although some are often associated with specific frameworks and acceler-
ation uses, such as Tensorflow or PyTorch [312, 313]. The advantages of this variant are the
enhancement of code reusability and maintainability, as well as a level of abstraction and per-
formance similar to that provided by the level given by the language itself, being something
beneficial in the first listings.

Since C++ has so much relevance, in many instances it is possible to differentiate its
exploratory aspects based on the Standard Template Library (STL), such as one of the
best known and previously presented, TBB. There are generic runtimes based on asyn-
chronous mechanisms for task execution to different backends [314, 315], using only spe-
cific GPUs [316], facilitating programmability based on common patterns [317], but also
including the managing of concurrent data structures [318].

There are also proposals focused on programming models based on skeletons, often re-
ferred to as algorithmic skeletons since they are high-order functions that implement com-
mon computational patterns, such as map, reduce or scan. These languages provide their
own predefined data structures and operations, determining dependencies and performing
code transformations to different backends [319, 320] or to a particular technology [321–
323]. However, this approach suffers complications when porting existing code or express-
ing certain non-trivial programming patterns with the provided skeletons.

Finally, there are other models with less common work lines, such as directive-based and
domain-specific programming models. In addition to the most well-known standards and
models previously explained, there are academic works that offer code constructs and anno-
tations, delegating to compilers and runtime systems the work of offloading, optimization
and parallelization [324–327]. These works improve productivity and enable incremental
porting, but there are often difficulties when integrating and adapting certain parallel pat-
terns. Considering specific environments and applications, there are several works that fa-
cilitate heterogeneous programming using domain-specific languages, from the application
of multi-block grids to solve sparse linear systems [328, 329], to facilitating parallel im-
age processing [330], to defining high-level parallel languages for graph analysis and task
scheduling [331, 332]. There are also instances where interoperability efforts are made be-
tween technologies and languages, such as the possibility of exploiting mobile devices and

53

2 Background & RelatedWork

their low-level languages for GPU acceleration [333] or the possibility of describing high-
level structures centered on the object-oriented paradigm, but with layers of translation,
finally mapping to OpenCL and CUDA code [334, 335].

2.3.2 Abstraction

Abstracting the heterogeneous system and the underlying hardware architectures is a task
addressed from different perspectives, but generally focused on providing a runtime or
framework that facilitates programmability. Most proposals are centered on providing run-
times that exploit specific technologies [336–341], although there are also solutions that
choose to combine them [123, 124, 339, 342–350]. There are works that focus on kernel
modifications and source-to-source transformations, detecting memory access patterns and
extending the code to support more devices [123, 124, 320, 336, 342, 348, 351, 352].

Most proposals address solutions that orchestrate the system by facilitating the exploita-
tion of task parallelism [323, 353], through the use of heuristics and reuse of historical
information [339, 343, 354], through prediction models [129, 337] or replacement tech-
niques [346, 347]. On the other hand, work focused on co-execution techniques on im-
proving programmability by identifying computational patterns and distributing the work-
load [123, 124, 351, 352], as well as facilitating the merge of results from different de-
vices [342].

As detailed in the programming models approach, there are many projects aiming at
high-level parallel programming in C++, although two major blocks can be distinguished
to provide abstraction to the heterogeneous system and facilitate programmability. There
are those that offer an STL-like API [314, 355–357], sometimes being applied as backends
of other technologies [315, 358, 359], increasing the efficiency for modern runtimes. And on
the other side, common approaches to provide abstraction are the pattern-based proposals
and algorithmic skeletons [319–321, 323, 353, 360, 361]. However, there are also lower level
proposals with simpler toolchains, which make efforts to abstract the system using only the
C language [291, 362, 363].

2.3.3 Load balancing

One of the fundamental aspects to improve the efficiency in the exploitation of the hetero-
geneous system is the scheduling and load distribution mechanisms among the available
resources. There are authors who have proposed techniques to address both objectives of
energy consumption and performance, based on monitoring their devices and tasks and
doing frequency throttling [364, 365] and task-based scheduling based on energy efficiency
tracking [345], but most proposals are focused on performance improvement. Several works
are based on leveraging the task-based paradigm, where devices use coarse-grained kernels,
with the runtime acting as an orchestrator, often taking into account execution history to de-

54

2.3 RelatedWork

cide future assignments. Some are centered on performing profiling of devices, kernels and
data transfers [339, 366, 367], others by using regression models [337], classification [368],
machine learning [369, 370] and greedy algorithms [343]. Under this prism there are works
that focus on performing concurrent secondary kernel enqueueing to devices, if previous
kernels do not perform well and achieve full occupation of the available resources [348, 349,
371, 372], as well as applying work-stealing techniques [346, 347].

However, co-execution involves another set of challenges, usually associated with the
efficient partitioning of data among hardware resources, often performed with static ap-
proaches [122–124, 351, 352, 373, 374]. The main problem, as stated in Section 1.3 of
Chapter 1, is that these strategies lack the adaptativeness to efficiently exploit all kinds of
heterogeneous problems and systems. Although there is work focused on prior training
and performance modeling [375–377], they continue to suffer penalties in the face of new
irregular problems.

There are works that propose dynamically modifying the assigned workload, either by
performing throughput measurement strategies of the packages sent to a device [342, 378],
using heuristic algorithms [379], or by studying the behavior in the first packages to deter-
mine the rest of the problem [155, 157]. Some work focuses on defining a weight-based
scheduling [155, 157], relying on studies that determine the behavior of GPUs for mainly
regular problems [158], which indicates that the throughput follows a logarithmic curve
with respect to the package size. However, there are also proposals that adapt this study to
deal with irregularity by creating a model that predicts the throughput of future packages
based on the logarithmic approximation of the throughput of previous packages [159]. Fi-
nally, recent works propose an adaptive effortless load balancing algorithm, by measuring
the performance of the devices and tunning internal parameters, following a logistic func-
tion to set package sizes at runtime [127].

55

EngineCL 3
CHAPTER

EngineCL

This chapter proposes EngineCL as a runtime to satisfy the main problems of het-
erogeneous computing while serving as a tool to exploit new scheduling proposals. It
is a comprehensive solution with a modular architecture focused on programming ef-
ficiently heterogeneous devices. It is originally built as an abstraction over OpenCL,
managing by itself all the operations necessary to make use of the existing devices in
the system, without a programmer having to use the low level framework. The runtime
has been built with two principles in mind: usability and performance. Its purpose is
to overcome these conflicting objectives, offering high maintainability while exploiting
the heterogeneous system in the best possible way.

The proposal is validated exhaustively in terms of usability, performance and energy
efficiency. Regarding usability, a wide variety of well-known and widely used Software
Engineering metrics have been analyzed. Hence, the maintainability offered by the En-
gineCL API has been contrasted with respect to OpenCL. The performance has been
validated on two different nodes, an HPC system and a commodity system, with six
different architectures to show the compatibility and efficiency of EngineCL. A set of
programs have been evaluated both using a single device under the host-device pro-
gramming model and co-executing with all the devices in the system, exploiting the
load balancing algorithms implemented in the software architecture. Finally, an eval-
uation of the energy efficiency achieved by the runtime is exposed, highlighting the
improvements over using the most energy-efficient device.

Chapter contents

♦ Abstract . 59

3.1 Motivation . 61

3.2 Overview of EngineCL . 63

3.3 EngineCL . 64

3.4 API Design . 75

3.5 Methodology . 79

3.6 Validation . 81

3.7 Conclusions . 92

3.1 Motivation

3.1 Motivation

As it is exposed in Section 1.5, the main objective to increase performance and energy effi-
ciency is to simplify and enhance heterogeneous co-execution, that is, the simultaneous exe-
cution of a single massive data-parallel kernel in a set of devices with different architecture
and computing capacity. This objective plans a range of challenges to be addressed and
solved, which can be grouped under three fundamental concepts: abstraction, performance
portability and usability.

Challenge 1: Abstraction. OpenCL forces the programmers to manipulate a set of low-
level operations that require a thorough knowledge of the underlying architecture of the
heterogeneous system [125, 291]. Thus, they are burdened with discovering the available
platforms and devices, defining buffers and distributing data among all devices, launching
the execution of kernels, as well as collecting partial results and organizing them properly.
All this greatly complicates the programming of heterogeneous systems, reducing produc-
tivity and making it very prone to errors. Specifically, data management is a very complex
aspect, since in general devices have separate memories [123, 124, 342, 351, 352]. Moreover,
even if there are devices with shared memory and other architectural strategies, the technol-
ogy may limit these features [126]. Therefore, developers must create and manage buffers
for each device and memory region, allocate a part of the data, retrieve partial results and
organize them properly to obtain the final result of the application.

To minimize the co-execution effort, it is necessary that programmers do not know many
of the details of the underlying architecture present in the heterogeneous system. The solu-
tion to these problems is to offer tools that provide a higher level of abstraction. These tools
must take care of all the tasks mentioned above, in a completely transparent way for them,
or at most with a minimum specification support on their part.

Challenge 2: Performance portability. OpenCL solves code portability, meaning that the
same kernel can run on different heterogeneous systems. However, performance portability
goes one step further. The idea is that the same code harnesses the computational capacity
of processing resources of different heterogeneous systems. For this, two key problems have
been identified: load balancing and differences in the architecture of accelerators.

Considering the load balancing problem, its objective is to distribute the workload among
all the devices in the system proportionally to their computing power. To do this, it is neces-
sary to consider both the heterogeneity of the system and the behavior of kernels that can be
regular or irregular, as it was detailed in Section 1.3 [128, 291]. In the former, two workloads
of the same size always spend the same time on the same device. However, in irregular ker-
nels this does not happen, so it is necessary to have a dynamic and adaptive algorithm that is
able to distribute the workload at runtime and can adapt to the behavior of the application.

61

3 EngineCL

Regarding the architecture of the accelerators, these hardware devices are designed to ac-
celerate the execution of applications with specific properties. For instance, GPUs favor the
execution of massively data-parallel kernels through using multi-threading, while FPGAs
favor the execution of kernels with deeply segmented implementations. This means that
it is often necessary to adapt a kernel implementation to achieve maximum performance
from a particular device. On the other hand, compiling for some devices, such as FPGAs,
is time consuming, thus it is necessary to pre-compile and provide the binary code at run-
time. However, in others, on-line compilation can provide advantages, as some parameters
can be tuned for the specific architecture to be used. Therefore, it is important to offer the
possibility to manage device-specific kernels, as well as the possibility to work with binary
kernels or source code.

Challenge 3: Usability. OpenCL is a powerful programming language since it allows code
portability between different devices. However, this feature increases the complexity of the
language and its effective utilization. The current OpenCL API is very tedious and presents
a wide variety of functions with multiple and complex parameters, as can be seen below for
a simple memory operation [291].

clBuffs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | CL_MEM_ALLOC_HOST

_PTR, sizeof(float) * numEntries, buffHostPtr, &err);

clBuffersMap[0] = clEnqueueMapBuffer(cmdQueue, clBuffs[0], false, CL_MAP

_READ, offset, sizeof(float) * numEntries, numEventLst, eventLst,

&event, &err);

On the other hand, there are currently several OpenCL specifications available and differ-
ent devices support one specific version or another. The differences between these specifi-
cations are noteworthy, so that an application programmed to run on an OpenCL 2.0 device
cannot run on a device that only supports the OpenCL 1.0 specification. For instance, the ba-
sic function for queueing a kernel launch, enqueueNDRangeKernel , has a different number
of parameters in OpenCL 1.0 and 2.0 [125]. Another example is the support of mechanisms
for the synchronization between host and device, since some specifications support asyn-
chronous callbacks, while others force the use of blocking communication mechanisms [48].

For all these reasons, it is necessary to provide programmers of heterogeneous systems
with a simpler and intuitive API, simplifying the set of functions and their parameters. It is
also necessary to have a runtime that internally manages the possible differences in configu-
ration and functionality of the devices, regarding their OpenCL support. And most impor-
tantly, the multi-objective perspective, to achieve all this without penalizing performance.

To overcome these challenges, this chapter proposes EngineCL, a new runtime and API
based on OpenCL that notably simplifies the programming of heterogeneous systems. The
abstraction level is increased because it frees the programmers from tasks that require a

62

3.2 Overview of EngineCL

specific knowledge of the underlying architecture, and that are very error prone. It ensures
performance portability thanks to the integration of schedulers that successfully distribute
the workload among the devices, adapting both to the heterogeneity of the system and to
the behavior of the applications. And finally, the simplified and extensible API has a great
impact on their usability, productivity and maintainability.

3.2 Overview of EngineCL

EngineCL is an OpenCL-based runtime system, built with modern standards and designed
under the principles of usability and performance. Its design decisions are based on previ-
ous work related to heterogeneous systems, OpenCL and other parallel programming mod-
els [128, 139, 291]. The designed architecture is modular and flexible enough to extend the
internal core and runtime functionalities. Although it has been initially created to facilitate
co-execution in OpenCL, its structure allows extending the internal management and com-
putation modules. One of the modules favored from the beginning has been the scheduling
system, which allows experimenting with load balancing algorithms thanks to the schedul-
ing pluggable system.

The main ideas of EngineCL are:

◼ Enable easy integration and porting of applications to be used in heterogeneous sys-
tems. The designed API has to be flexible but easy to use by a novice programmer.
One of the key points is the maintainability of the applications, and EngineCL must
not be a burden on the development and evolution efforts of the software that uses it.

◼ Facilitate the design, implementation, porting and validation of scheduling algo-
rithms. One of the fundamental aspects of performance portability is the ability to
exploit new architectures and applications without the need for the programmer to
be involved in decisions or to develop complicated workload management strategies.
Therefore, the system must facilitate the exploitation of new load balancing algo-
rithms. At the same time, it must make it possible to study and optimize the behavior
of these schedulers, knowing at all times the low-level operations and the implications
they have on systems and applications.

◼ Offer an extensible and modular architecture, thoroughly tested by profiling under
different architectures and systems. OpenCL is a complex language that requires sig-
nificant effort to master correctly, and is often tied to the specific behavior of architec-
tures, device types or even systems and drivers. This experience determines the design
decisions, and makes the effort of implementing structures that correctly exploit these
optimizations very tedious.

63

3 EngineCL

3.3 EngineCL

EngineCL is a runtime with a multi-threaded architecture and multiple modules that en-
dows a programmer with the ability to properly exploit heterogeneous systems. The basics
explained in this chapter focus on four sections to understand the most important parts and
functionalities provided by the runtime:

◼ General design principles, to understand its conception and key ideas.
◼ The architecture, including its tiers, contexts and modules, to expose its composition.
◼ OpenCL abstractions and how the platform, execution, memory and programming

models are encapsulated and exploited.
◼ The schedulers provided, the pluggable scheduling system and its main features re-

garding extensibility and optimization.

3.3.1 Principles of design

EngineCL is tightly coupled to OpenCL and how it works. Therefore, it is not intended to
replace it, but to act as a wrapper over it. The system modules and their relationships have
been defined according to the most efficient and stable patterns. Every major design decision
has been benchmarked and profiled to achieve the most optimal solution in every of its parts,
but mainly promoting the modules related with the data management, synchronization and
API abstraction.

Four main decisions have been applied since the very beginning:

◼ OpenCL should be isolated to improve the compatibility of the runtime. It allows
high adaptation to new technologies while preserving the runtime API and its main
schedulers. It is slightly independent to OpenCL, but still promoting it since it is the
best technology to support heterogeneous devices.

◼ It should be managed to be easily extensible while providing the best average per-
formance between all the available devices. It ensures the best performance and ef-
ficiency independently of the new devices to be incorporated, solving many issues
found when adapting new architectures to runtime systems. The usage of callback
mechanisms mixed with events is one of the core aspects to boost the performance
of the system, while being able to improve the expressiveness of the schedulers. This
strategy helps the device drivers to optimize the enqueued operations, such as recog-
nizing data movements or creating sub-queues, when the driver programmers con-
sider such scenarios.

◼ Asynchronous inside, synchronous outside. Although this design decision hardly
complicates the internal implementation of the runtime, due to its asynchronous na-
ture, it allows the incorporation of unconstrained scheduling mechanisms. OpenCL

64

3.3 EngineCL

was originally created not providing thread-safe API operations, limiting its oper-
ations to basic synchronous offloading execution loops. However, such constraints
limited the load balancing and algorithmic benefits. EngineCL exposes an API with
synchronous operations to facilitate its adoption for common use cases, but it can
easily be extended to expose asynchronous behaviors to the programmer.

◼ In case an increase in maintainability implies a performance penalty, being verified
via profiling, an implementation with the minimum performance overhead is chosen.
The runtime addresses usability and performance, but the latter is more critical and
should be promoted.

These design decisions allow incorporate any type of scheduling algorithm, providing asyn-
chronous operations between the runtime and the devices, enhancing the general efficiency
for every program. After all, EngineCL excels the more devices it has to manage, exploiting
simultaneously all of them to compute a problem.

The overview of the scheduling design in relation to the runtime technology is presented
in Figure 3-1. It represents two of above design principles. On the one hand, OpenCL has
been isolated as an execution core associated to each device. On the other hand, the inter-
action between the scheduling mechanisms and the devices is done through interfaces and
custom software protocols, being job notification queues the most common internally. The
purpose of these is facilitating the extension of the runtime, especially with regard to load
balancers. This example shows two threads creating and managing their devices. Generally,
each system thread manages one device, although this is a parameter configurable by the
developer and the runtime. Each has a stage to configure everything related with OpenCL

z

Thread 0 Thread 1

Figure 3-1: Technology encapsulation that isolates its interaction with the scheduling mechanisms.

65

3 EngineCL

for each device (Setup), containing multiple operations. This is isolated to avoid propagat-
ing technology decisions through the software architecture. Once the cooperative work with
the scheduler begins, a iterative cycle of work occurs. This cycle continuously requests new
data, computes kernels and sends results to the host (read, compute, write), ending when
the scheduler notifies the devices to finish. The general idea of this design is to decouple
the load distribution algorithms from the devices, as well as to isolate the entire runtime
from the base technology. However, the architecture design and computing patterns are fo-
cused on the needs of OpenCL and also by the provided abstractions. Therefore, although a
modular architecture has been provided, many structures, interfaces and classes have been
created with OpenCL in mind. This can be seen when reusing concepts from the execution
model, such as work-items and work-groups, as well as when propagating data types from
its kernel programming language, as will be seen in the following sections.

3.3.2 Architecture

EngineCL has been developed in C++, mostly using C++11 modern features to reduce the
overhead and code size introduced by providing a higher abstraction level. It has a multi-
threaded architecture that combines the best measured techniques regarding OpenCL man-
agement of queues, devices and buffers. Some of the decisions involve atomic queues, paral-
lel operations, custom buffer implementations, reusability of costly OpenCL functions, effi-
cient asynchronous enqueueing of operations based on callbacks and event chaining. These
mechanisms are used internally by the runtime and hidden from the programmer to achieve
efficient executions and transparent management of devices and data.

It redefines the concept of program to facilitate its usage and the understanding of a kernel
execution. Because a program is associated with the application domain, it has data inputs
and outputs, a kernel and an output pattern. The data are materialized as C++ containers
(like vector), memory regions (C pointers) and kernel arguments (POD-like types, pointers
or custom types). The kernel accepts directly an OpenCL-kernel string, and the output pat-
tern is the relation between the global work size and the size of the output buffer written by
the kernel. The default value is 1 ∶ 1, because every work-item (thread-kernel instantiation)
writes to a single position in the output buffers.

It is designed to support massive data-parallel kernels, but thanks to the program ab-
straction the runtime will be able to orchestrate multi-kernel executions (task-parallelism),
prefetching of data inputs, optimal data transfer distribution, iterative kernels and track ker-
nel dependencies and act accordingly. Therefore, the architecture of the runtime is not con-
strained to a single program.

The runtime follows Architectural Principles with well-known Design Patterns [380] to
strengthen the flexibility in the face of changes. As it is depicted in Figure 3-2, the runtime
is layered in three tiers, and its implementation serves the following purposes: Tier-1 and

66

3.3 EngineCL

Relations of main modules between Tiers

Proxy pattern

Engine

Scheduler

Runtime

Device

Program

Manager Dynamic HGuided

Facade
 pattern

Strategy pattern

Buffer

T
ie

r-
1

T
ie

r-
2

T
ie

r-
3

uses

manages

uses uses

manages

uses

Modules per Tier

HGuided

Engine
Runtime
Manager

Program
Application

Domain

Buffer
Data

Management

RuntimeDirector

Work
Work

Distribution

InspectorIntrospection

SynchronizerConcurrency

StaticScheduling

Manager

Commander

CLUtils

Range

OpenCL

Configurator
Runtime

Behaviour
DeviceWorkers Scheduler

Load Balancing
and Scheduling

Dynamic

Static

implements

T
ie

r-
1

T
ie

r-
2

T
ie

r-
3

Figure 3-2: EngineCL building blocks: tiers, contexts and modules (main are highlighted).

Tier-2 are accessible by the programmer. The lower the Tier, the more functionalities and
advanced features can be manipulated. Most programs can be implemented in EngineCL
with just the Tier-1, by using the EngineCL and Program modules. The Tier-2 is accessed
when the programmer selects a specific Device and provides a specialized kernel, uses the
Configurator to obtain statistics and optimize the internal behavior of the runtime, or
sets options for the Scheduler , among others. Tier-3 contains the hidden inner parts of the
runtime that allows a flexible system regarding memory management, pluggable schedulers,
work distribution, high concurrency and OpenCL encapsulation. It also depicts contexts,
which are groupings of modules with a common purpose, usually by making them coupled.
For example, OpenCL has several modules, but all of them with dependencies to the base
technology, so a change in one could affect the rest. Another context of several modules
is Scheduling , although this one does not have coupling between Static , Dynamic and
HGuided modules, but rather they present similar functionality and a common interface.
On the other hand, between different contexts there is only the cohesion inherent to any
software architecture, thereby making the system easy to extend.

Having seen tiers and contexts, the lowest representation in this overview are modules,
such as Program , Device or Buffer . These group together functionality for a specific
purpose, and their components are tightly coupled. For example, the Inspector module
has structures, functions and constants to collect and present profiling and execution de-
bugging information. If any signature, structure or set of operations change, the rest of the
module will probably have to be adapted in order to be used correctly. An important aspect
to all modules is that there is generally one class with the same name, although the module
can be implemented using several classes. This facilitates its use, acting as the primary class
or as an entry point to the module. For example, as will be seen in the API Section 3.4, the
developer imports EngineCL , Program , Device or Scheduler classes.

The Program and Engine modules are focused on encapsulating the global behavior of

67

3 EngineCL

T
ie

r-
1

T
ie

r-
2

T
ie

r-
3

Relations of main modules between Tiers

Proxy pattern

Engine

Scheduler

Runtime

Device

Program

Manager Dynamic HGuided

Façade pattern

Strategy pattern

Buffer

uses

Static

uses

implements

manages

manages

Blocking

NonBlocking

Skeleton behaviors

P
lu

gg
ab

le

uses

uses

Figure 3-3: Relations andDesign Patterns of themainmodules to provide encapsulation and extensibility.

both the application domain and the rest of the runtime functionalities, from devices to
schedulers. Device represents all interaction with the hardware devices, acting as a man-
agement module. However, its functionalities are found in lower level classes, mainly under
the OpenCL context. The Scheduler module supports the use of schedulers, helping to
hook load balancers and configure them. From Tier-3, the Buffer , Runtime and Manager

modules stand out. Buffer is responsible for managing memory and providing associa-
tions with scheduler data, such as C++ containers. Runtime acts as the orchestrator of the
system and its multi-threaded architecture. It uses the synchronization primitives of the
Concurrency context and organizes the devices and their initialization and teardown stages,
among others. Finally, Manager is in charge of establishing and managing OpenCL-related
functions and primitives, instructing the Commander module to make certain requests and
process data receptions, as well as making it easier for other external modules to request
operations of the OpenCL context.

Figure 3-3 depicts how the Tier-1 API has been provided mainly as a Facade Pattern, facil-
itating the use and readability of the Tier-2 modules, reducing the signature of the higher-
level API with the most common usage patterns. The Buffer is implemented as a Proxy
Pattern to provide extra management features and a common interface for different type of
containers, independently of the nature (C pointers, C++ containers) and its locality (host or
device memory). Finally, the Strategy Pattern combined with skeleton behaviors have been
used in the pluggable scheduling system, where each scheduler is encapsulated as a strategy
that can be easily interchangeable within the family of algorithms. Because of its common
interface, new schedulers can be provided to the runtime. They have an extensible skeleton-
based design that implement behaviors, as will be detailed in Section 3.3.4.

In summary, EngineCL is designed following an API and feature-driven development to
achieve high external usability and internal adaptability to support new runtime features
when the performance is not penalized. This is accomplished through a layered architecture
and a set of core modules well profiled and encapsulated.

68

3.3 EngineCL

3.3.3 OpenCL Abstractions

All OpenCL primitives and concepts that interfere with kernel offloading have been rede-
fined and encapsulated as part of the EngineCL architecture. The layered design encapsulates
new concepts, non-existent in OpenCL, to provide the runtime with sufficient flexibility and
usability. Going down through the layers, the concept of Device can be found, as an inde-
pendent execution unit that materializes an execution core. This core implements all the
functionality associated with the underlying technology. In this way, multiple levels of ab-
straction can be identified, and the programmer never handles the concepts of program,
device, kernel or buffer, as they are necessary in OpenCL.

Nevertheless, the following abstractions or encapsulations produced on OpenCL concepts
are identified:

◼ Platform and Execution models: Device, Platform and Context.
◼ Execution model: CommandQueue and Event.
◼ Execution, Programming and Compilation models: Program, Kernel, EnqueueND-

RangeKernel and other execution primitives.
◼ Memory and Execution models: Buffer, EnqueueWriteBuffer and other memory man-

agement primitives.

Device , Platform and Context are treated independently as {Device,Platform} tuples,
since the same system can experience different OpenCL driver implementations. Thus, the
same device can be used in different ways depending on its identification tuple. Further-
more, this independence facilitates the management of devices, since they are not restricted
to OpenCL working contexts determined by the manufacturers and their drivers. For ex-
ample, two AMD devices, a CPU and a GPU, are considered independent devices and their
drivers are unaware that there is another device in the system managed by it. This favors
encapsulation and generalization in the use of devices and their interconnections. It is En-
gineCL who has complete control of drivers, implementations and devices, limiting the
scope of knowledge and management of each OpenCL driver. Moreover, such indepen-
dence enables sophisticated management strategies, such as using a specific driver to com-
pute memory-limited kernels, and another driver for compute-limited kernels, on the same
device. It also allows to combine different OpenCL versions, and even different types of
implementations and origins, for instance, open-source and proprietary.

CommandQueue and Event are primitives used as part of kernel launch operations, at a
higher level of abstraction, providing utilization mechanisms. The execution core contains
this type of primitives, being able to manage the verbosity of OpenCL queues and events.
Nevertheless, EngineCL command queues are configurable by the programmer, since dif-
ferent devices may have different behaviors when taking advantage of concurrent execution
channels. However, over time, manufacturers have favored low-level queuing strategies, as
well as limitations on effective command queues, all implemented within the driver. For

69

3 EngineCL

this reason, one command queue per concurrent read, execute or write operation is gener-
ally recommended and is the default choice in the runtime. Moreover, it is not uncommon
to find modern devices and drivers that no longer suffer penalties when using a single com-
mand queue per device, determined by the validation and experimentation performed in
many devices while developing the runtime. Even so, being an empirical process depend-
ing on the system, drivers, problem and devices used, EngineCL makes it possible to set the
number of command queues used, being at least one command queue per device to a pattern
of up to two command queues per buffer and one command queue per launched kernel.

Program , Kernel , EnqueueNDRangeKernel and other execution primitives are grouped
and encapsulated to make it possible to traverse the domain of the program to be com-
puted. Since EngineCL has to manage the dependencies between needed memory regions
and compute kernels, as well as the relationship of work-items and data used, a comprehen-
sive solution that takes into account all these relationships within the runtime is needed.
The program now denotes a much higher abstraction, the program domain, which can en-
compass several OpenCL programs and origins, such as pre-computed binaries, specialized
code per architecture or generic source code compiled at runtime per device, among others.
On the other hand, the EngineCL Kernel has associations to the programs it comes from,
arguments with information about the types used, as well as the identification of dependen-
cies in terms of memory transfer. These distinctions and encapsulations in the operations
make it possible to distribute the work, instantiating kernels among the devices of the node,
taking into account the displacements and quantities of work-items launched according to
the needs of the problem. In addition, since EngineCL is prepared to be executed on devices
of various kinds, there is an operation translation layer, taking into account both initial ver-
sions of OpenCL that did not have support for offsets in launched work-items or where the
N-dimensional instantiation of kernels is performed internally to the OpenCL kernel, using
OpenCL APIs such as clEnqueueTask , as in the case of FPGAs [125, 381].

Buffer , EnqueueWriteBuffer and other memory management primitives are encapsu-
lated as elements of the memory of the program to be computed, being accessed by the ex-
ecution mechanisms indicated above. EngineCL implements its own management buffers
in order to recognize the types of data used in memory, the size of requested and occu-
pied regions, the locations and offsets assigned to kernel launches, as well as the relation-
ship between computation and writing pattern (output pattern) of the programs. Thanks to
metaprogramming and a flexible architecture, it is possible to provide programmers with
a simple API. It is able to establish direct associations with containers and structures typi-
cal of the C++ standard, but also with raw pointers. Internally, the runtime instantiates the
OpenCL structures (Buffer) necessary to transfer the used data to the device memories,
without requiring programmer intervention, except for identifying the mode of the buffers
(if they are read, write or read and write). There are several mechanisms to transfer the data,
being configurable from the runtime and allowing an extensible behavior. There are two

70

3.3 EngineCL

main parameters to configure a buffer that requires reading, that is, the one that will need
the data in the device memory to be computed by the kernel:

◼ transfer type: complete or by region, specifying the amount of buffer data to send and
receive.

◼ transfer mode: synchronous or asynchronous, determining the concurrent behavior
as part of the multi-threaded architecture.

Both can be configured in those buffers that require their reading, that is, those that need the
data in the device memory to be computed by any kernel. The synchronous mode facilitates
the data transfer prior to the initialization of the computation by the runtime, being a block-
ing operation, while the asynchronous mode will only transfer the memory when it needs to
be computed. These behaviors have implications for program performance, and are largely
determined by the desired behavior of a programmer. As an example, sending a full buffer
to the device is beneficial if there is sufficient memory and if memory queuing management
generates unacceptable delays in the computation, even more so if many work packages are
generated. Even so, it is generally advisable to use asynchronous sending mode by regions,
optimizing the use of memory and the speed of operations, especially if there are multiple
concurrent command queues and the sending regions are not extremely large, facilitating

each Buffer

each

each Rd Buffer

only if Program
Binary

each Kernel Arg

each Device

only if Custom
Scheduler

each Wr Buffer

each Rd Buffer

each Kernel

only if Error
Control

each Wr Buffer

Discovery
and

Device Selection

Buffer
Management

Program
and Kernel

Configuration

Kernel
Execution and

Results Reading

OpenCL

Optional

Repeat for each X

EngineCL

Arg

Device

Figure 3-4: Overview of the portability and migration of a generic OpenCL program to EngineCL.

71

3 EngineCL

the overlap of computation and communication. As for the output buffers, only the transfer
mode parameter is configurable, being synchronous or asynchronous. The former reduces
intermediate management overheads to delay sending computed data to the host until all
computation is complete, but increases memory usage to keep track of all blocks pending
sending. Asynchronous mode, the default behavior, sends regions of already computed data
to the host as soon as the computation is finished, but without establishing control mecha-
nisms over the operations to avoid unnecessary waits. Finally, API extensions are available
to facilitate the creation of local memory on each device, for those kernels that require it in
their kernel arguments.

Thanks to all these abstractions it is possible to design an API that is able to offer a reduc-
tion of code like the one shown in Figure 3-4. The height of every rectangle has the same
proportions in lines of code as the real program. OpenCL involves more code density and
repeats almost all phases per device used. As will be seen in the usability validation, this
simplification has very clear programmability advantages.

3.3.4 Schedulers

The EngineCL architecture allows to easily incorporate a set of schedulers, as it is shown
in Figure 3-3. The runtime provides by default three well-known schedulers, implement-
ing the load balancing algorithms described in Section 2.2 of Chapter 2, validated in many
works [82, 93, 125, 252, 291]. Programmers decide which one to use in each case, depending
on the characteristics and knowledge they have of the system architecture and the applica-
tion.

The Scheduling context provides a skeleton from which to model the general behavior of
schedulers, building behaviors as specialized skeletons. However, new types can be created,
allowing new ways of interacting with the runtime and devices. Currently, two types of
behaviors are provided, Blocking and NonBlocking . These are the basis on which the
implemented algorithms are built.

Blocking behavior focuses on achieving maximum compatibility and minimum code
execution to resolve load distribution. The main purpose of it this behavior is to be able to
use the implemented skeleton approaches in any case, even in old versions or draft imple-
mentations of OpenCL drivers. This is achieved by reducing interaction with other mod-
ules and restricting requests to the OpenCL execution context. In this way, fewer calls are
triggered to the OpenCL runtime API. The variety of OpenCL uses, drivers and versions
complicates the use of devices, overriding more sophisticated usage patterns, such as Non-
Blocking. However, the Blocking behavior is lightweight and offers a clear advantage based
on minimal overhead, favoring execution in other types of environments, as will be seen in
the Integrations Chapter 4. For instance, there are embedded architectures that rule out the
use of non-blocking strategies, restricting asynchronous and extended OpenCL API calls.

72

chap:integrations

3.3 EngineCL

This is also found for FPGAs and embedded SoCs, as briefly discussed in related works at
the end of such Integrations.

The other behavior is NonBlocking , being much more complex but offering much more
versatility and potential throughput utilization. These launch mechanisms are governed
by the most efficient patterns found with the hardware architectures and drivers studied.
This operation structure relies on the runtime multi-threaded architecture to provide the
coarse-grained parallelism, while favoring fine-grained parallelism via event chaining be-
tween operations (synchronous and asynchronous). Furthermore, every thread manages
private scheduling primitives, but interact with other parts of the architecture via synchro-
nization primitives and OpenCL callbacks. This behavior is appropriate when it is necessary
to implement more complex workload distribution algorithms or the hardware architecture
allows to leverage more efficiency in the overlapping of operations. The disadvantage is the
complexity of implementation and its limitation of use in some drivers or architectures, such
as those mentioned above.

The load balancing algorithms have been implemented using these two behaviors.
Static is implemented using the Blocking behavior, designed to be as simple and effi-
cient as possible. It focuses on the same principles as its skeleton, in order to offer max-
imum compatibility and portability between platforms. In addition, the operations and
OpenCL primitives used are limited, simplifying its design but coupling it with a oracle-
like algorithm. Therefore, it is a limited scheduler and is not intended to be extended. On
the other hand, both Dynamic and HGuided are implemented with the same common root,
the NonBlocking behavior. They use chained events, multiple callbacks (write, read and
execute events), a concurrent queue for the queuing of work packages, as well as config-
urable operation mechanisms to provide flexibility to each scheduler. For instance, they can
be capture and dump profiling data at runtime, provide overlapping mechanisms, such as
combining execution with data sending, or setup device-host data consistency during the
execution, among others. The main difference between both algorithms with respect to the
use of the NonBlocking behavior is the way the package size is calculated, which is more
complex and time consuming in HGuided . However, as can be seen in the Section 3.6, this
complexity is worthwhile.

Related to the schedulers and the software architecture itself, the Introspection con-
text enables a series of utilities that can be attached to different parts of the runtime. This
provides greater detail on the behavior of the system, and in particular, of the schedulers.
This is a very versatile mechanism, since it allows schedulers to mutate their behavior during
execution based on states and information provided by Introspection functions. In other
words, it is not only useful for the development and debugging of new schedulers, but it can
also be used to dump execution traces for profiling purposes. For example, the programmer
can design a dynamic algorithm based on throughputs provided by the EngineCL context
itself, conditioning the distribution of work and the performance of the devices. This has

73

3 EngineCL

0 1 2 3 4

0M

20M

40M

60M

80M

Chunk size

Time (s)
0 2 4 6

0M

1M

1M

2M

2M

Chunk size

Time (s)
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0M

10M

20M

30M

40M

Chunk size

Time (s)

cpu

igpu

gpu

Time(s)

Chunk size Chunk size Chunk size

Time(s)Time(s)

G
a
u

s
s
ia

n
(r

e
g

u
la

r)
Static Dynamic, 50 packages HGuided

Figure 3-5: Introspection utils showing the package distribution for every load balancing algorithm in a
regular program.

Figure 3-6: Introspection utils representing visually the package distribution in terms of the output com-
puted by Mandelbrot.

clear advantages, since the throughputs are real at the software level, based on the imple-
mentation conditions and efficiency of the runtime itself, as well as providing normalized
values. Therefore, it avoids performing costly calls to OpenCL drivers from different man-
ufacturers during execution, if supported at all. For all these reasons, the Introspection

context is very useful to study and optimize the behavior of the algorithms.

In relation to this context, Figures 3-5 and 3-6 show the package distribution produced
by the three load balancing algorithms of EngineCL. In both cases the Introspection util-
ities are used, specifically thanks to its Inspector module, since both representations are
built once the executions are performed, and not during them. The Inspector shows more
information, such as memory allocations and its data transfers, debugging of the computed
values, runtime management overheads, types of data and kernels involved, device proper-
ties and runtime configurations. Thanks to this information it is possible to analyze results
of the Section 3.6, as for example in the study of the Binomial timings before the computa-
tion phase or the effective distribution of work. It is also used during the optimizations of
the Integrations Chapter. Figure 3-5 depicts the size of each package and the time during
the Gaussian execution, detailed in Section 1.7.2 of Chapter 2. Every marker on the chart

74

3.4 API Design

represents when a specific device computes a package. As it is a regular problem, it is clear
how each algorithm works. The software architecture and optimizations performed are im-
portant for adaptive algorithms, mainly due to the amount of synchronizations. Dynamic
delivers packages regularly per device, while HGuided increases the number at the end of
the execution, balancing the computation.

On the other hand, Figure 3-6 shows the visual representation constructed based on the
Mandelbrot program output. This problem has been computed from top to bottom for each
of the images. These show how the workload has been distributed in the three implemented
algorithms. For instance, the Static algorithm delivered three regions to the devices, the first
for the CPU, then the iGPU and finally the GPU. The colored horizontal regions represent
the chunk sizes computed by each device, overlapping the real computation performed, the
mandelbrot fractal, in black and red. Since this is an irregular problem, the adaptive dynamic
algorithms tend to perform better. This is appreciated in Dynamic and HGuided considering
the amount of work processed by the faster devices, such as the GPU, with respect to the rest.

Summing up, the multi-threaded architecture and scheduling abstractions provided by
EngineCL are flexible enough to enable blocking and non-blocking mechanisms. Since
the runtime architecture provides parallelism as part of its tiers and modules, the co-
execution drawbacks of the static approaches, based on chaining consecutive operations in
synchronous fashion, are mainly overcame. On the other side, the more sophisticated load
balancing algorithms are implemented using the non-blocking mechanisms, and its code
and runtime complexity is compensated by the algorithmic improvements.

3.4 API Design

This section describes two use cases of the EngineCL API. As the Section 3.3.2 describes,
the runtime has been thought from the beginning to provide a straightforward and flexible
API from the point of view of the programmer. Both examples are real use cases, but they
have been modified intentionally to show different API calls for demonstration purposes.
As an example, the programmer will usually prefer a single call to work_items than two
consecutive calls to global_work_items and local_work_items .

The programmer starts by initializing the EngineCL and Program . Both primitives are
common to all programs using EngineCL. The instantiated engine is the main element of
the system because it manages devices, the application domain and extended features such
as schedulers and introspection data, such as statistics and profiling of the execution. It
handles well-known OpenCL concepts, such as the number of global and local work items.
Additionally, it allows setting the devices to be used by masks (CPUs, GPUs, Accelerators,
All devices in the system, any mixed combination, etc) or explicitly setting the platform
and device. The latter mode is commonly used not only under development but also in
production systems with many driver implementations (Pocl, Beignet, vendor specific, etc.)

75

3 EngineCL

and when the programmer needs custom sets of devices or kernel specializations.

The concept of Program is decoupled from the runtime to help the programmer to un-
derstand it as an independent entity to be modified and to be easily extended to support
multi-kernel executions. Therefore, it will allow establishing new parameters such as the
concurrency of execution (many kernels at the same time) or linked buffers between pro-
grams (shared).

The API can be extended to support new features or to expose Tier-3 functionality to the
above tiers, being able to use them directly without the need to access the EngineCL internal
code. Finally, the API is evolving as EngineCL integrates or supports new applications, data
types, OpenCL features or devices, such as FPGAs, but the current examples show the core
of its expressiveness and functionality.

3.4.1 Case 1: Using only one device

Listing 1 shows how EngineCL is used to compute the benchmark Binomial Options with
only a single device, the GPU. This example shows the explicit versions of some calls, such as
global and local work items and a mixture of positional and aggregate kernel arguments.
This is usually the first step to port OpenCL programs to EngineCL.

It starts reading the kernel, defining variables, containers (C++ vectors) and OpenCL val-
ues like local and global work size (lws , gws), in lines 1 to 6 (L1-6). Then, the program is
initialized, setting all the variables and filling the containers with the appropriate data. The
helper function binomial_init_setup is used to simplify the example with everything that
is not related to EngineCL (L8). The rest of the program is where EngineCL is instantiated,
used and released. The instantiated engine (L10) uses the preferred GPU of the system
by using a DeviceMask (L11). In case there is no graphics card in the system, it has auto-
matic fallback mechanisms to use the CPU, so the application is guaranteed to be computed
(GPU_FALLBACK). Then, the gws and lws are given by explicit methods (L13,14). The appli-
cation domain starts by creating the program and setting the input and output containers
with methods in and out (L16-18). With these statements the runtime manages and syn-
chronizes the input and output data before and after the computation. The out_pattern

is set because the implementation of the Binomial OpenCL kernel uses a writing pattern of
1 ∶ 255 (L20), that is, 255 work-items compute a single out index. Then, the kernel is config-
ured by setting its source code string, name and arguments. Assignments are highly flexible,
supporting aggregate and positional forms, and above all, it is possible to transparently use
the variables and native containers (L22-27). The enumerated LocalAlloc is used to de-
termine that the value represents the bytes of local memory that will be reserved, reducing
the complexity of the API. Finally, the runtime consumes the program and all the compu-
tation is performed (L29,31). When the run method finishes, the output values are in the
containers. Optionally, errors can be checked and processed easily.

76

3.4 API Design

1 auto kernel = file_read(”binomial.cl”);

2 auto samples = 16777216; auto steps = 254; auto steps1 = steps + 1;

3 auto samplesBy4 = samples / 4; auto lws = steps1; auto gws = lws * samplesBy4;

4

5 vector<cl_float4> in(samplesBy4);

6 vector<cl_float4> out(samplesBy4);

7

8 binomial_init_setup(samplesBy4, in, out, steps);

9

10 ecl::EngineCL engine;

11 engine.use(ecl::DeviceMask::GPU_FALLBACK_CPU);

12

13 engine.global_work_items(gws);

14 engine.local_work_items(lws);

15

16 ecl::Program program;

17 program.in(in);

18 program.out(out);

19

20 program.out_pattern(1, lws);

21

22 program.kernel(kernel, ”binomial_opts”);

23 program.arg(0, steps); // positional by index

24 program.arg(in); // aggregate

25 program.arg(out);

26 program.arg(steps1 * sizeof(cl_float4), ecl::Arg::LocalAlloc);

27 program.arg(4, steps * sizeof(cl_float4), ecl::Arg::LocalAlloc);

28

29 engine.use(std::move(program));

30

31 engine.run();

32

33 /*

34 * if (engine.has_errors()) // [Optional lines]

35 * for (auto& err : engine.get_errors())

36 * show or process errors

37 */

Listing 1: EngineCL computing Binomial Options benchmark using the GPU while supporting the CPU as
a fallback at runtime.

3.4.2 Case 2: Using several devices

Using a single device provides a much more convenient and maintainable API than OpenCL,
but as the number of devices and the complexity of the system configuration increases, En-
gineCL excels even more. Listing 2 depicts EngineCL computing the NBody benchmark
using three devices of the system: CPU, GPU and Xeon Phi. Because of that, the engine is
configured to use two of the provided schedulers: Static and HGuided. The scheduler used
is selected at runtime by means of a boolean environment flag. Moreover, it uses kernel
specialization for different devices, getting the maximum performance per device, but also
using the generic kernel for maximum compatibility.

77

3 EngineCL

Like in the previous use case, the benchmark is initialized up to line 12. In this example,
the programmer has specified two kernel specializations along with the common version:
a specific implementation for GPUs and a binary kernel built for the Xeon Phi (L2-4). The
Device class from the Tier-2 allows more features like platform and device selection by
index (platform, device), device discovery flags, as well as specialization of kernels and
building options. Three specific devices are instantiated, two of them with custom kernels
(source and binary) by just giving to them the file contents (L18,19). After setting the work-
items in a single method (L20), the runtime is configured to use the Static or HGuided

schedulers with different work distributions for the CPU, Phi and GPU (L21,22). Finally,
the program is instantiated without any out pattern, because every work-item computes a

1 using namespace ecl;

2 auto kernel = file_read(”nbody.cl”);

3 auto gpu_kernel = file_read(”nbody.gpu.cl”);

4 auto phi_kernel_bin = file_read_binary(”nbody.phi.cl.bin”);

5 auto bodies = 512000; auto del_t = 0.005f; auto esp_sqr = 500.0f;

6 auto lws = 64; auto gws = bodies;

7 vector<cl_float4> in_pos(bodies);

8 vector<cl_float4> in_vel(bodies);

9 vector<cl_float4> out_pos(bodies);

10 vector<cl_float4> out_vel(bodies);

11

12 nbody_init_setup(bodies, del_t, esp_sqr, in_pos, in_vel, out_pos, out_vel);

13

14 auto props = { 0.08, 0.3 };

15

16 EngineCL engine;

17 engine.use(Device(0, 0),

18 Device(0, 1, phi_kernel_bin),

19 Device(1, 0, gpu_kernel))

20 .work_items(gws, lws)

21 .scheduler(env_bool_flag(”ECL_SCHEDULER_ST”) ?

22 Scheduler::Static(props) : Scheduler::HGuided(props))

23 ;

24

25 Program program;

26 program.in(in_pos)

27 .in(in_vel)

28 .out(out_pos)

29 .out(out_vel)

30 .kernel(kernel, ”nbody”)

31 .args(in_pos, in_vel, bodies, del_t, esp_sqr, out_pos, out_vel)

32 ;

33

34 engine.program(std::move(program));

35

36 engine.run();

Listing 2: EngineCL computing NBody benchmark using a runtime-decided load balancing approach to
exploit CPU, GPU and Intel Xeon Phi.

78

3.5 Methodology

single output value. After data containers are mapped (L26-29), the seven kernel arguments
are set in a single method, increasing the productivity even further (L31).

As it is shown, EngineCL manages both programs with an easy and similar API, but
completely changes the way it behaves: Binomial is executed completely in the CPU, while
NBody is computed using the CPU, Xeon Phi and GPU with different kernel specializations
and workloads. Platform and device discovery, data management, compilation, specializa-
tion, synchronization and computation are performed transparently for the programmer in
a few lines. As it was depicted in Section 3.3.3 in Figure 3-4 and later exposed in Section 3.6,
EngineCL saves hundreds to thousands of lines of code to manage all the operations here
exposed to compute each program, but even more when using all the available resources of
the heterogeneous system. EngineCL only needs a single line to incorporate a new device to
the co-execution. For instance, assuming a simplification of functionality, case 1 and case 2
could involve about 750 and 3200 lines of OpenCL, respectively. All these without providing
execution information and profiling, runtime fallbacks and compatibility between versions,
as EngineCL provides. Furthermore, OpenCL does not offer an optimized multi-threaded
architecture, asynchronous mechanisms between devices and the scheduling system, partial
memory transfers or direct consumption of C++ structures.

3.5 Methodology

EngineCL has been validated both in terms of usability and performance. The experiments
have been carried out using the machines Batel and Remo, defined in Section 1.7.1. It is
interesting to emphasize that with these two nodes it is possible to test the versatility of
EngineCL for 6 different types of devices: Intel CPU, AMD CPU, commodity GPU, HPC
GPU, integrated GPU and Intel Xeon Phi.

Five benchmarks have been used to show a variety of scenarios regarding the ease of use,
overheads compared with a native version in OpenCL C++ and performance gains when
multiple heterogeneous devices are co-executed. Section 1.7.2 contains the properties of
the selected benchmarks: Gaussian, Binomial, Mandelbrot, NBody and Ray. Moreover, Ray
contains three different raytracing scenes, containing sets of lights and objects with enough
complexity to provide a variety of irregular computations. Furthermore, the amount of
properties, computing patterns and use cases are relevant because they provide enough di-
versity to compare EngineCL with OpenCL both in terms of overheads and usability. The
worst-case scenario is considered for EngineCL in terms of exploiting its potential, since
only one device is used for these comparisons.

The validation of usability is performed with eight metrics based on a set of Software
Engineering studies [382–385]. These metrics determine the usability of a system and the
programmer productivity, because the more complex the API is, the harder it is to use and
maintain the program.

79

3 EngineCL

The McCabe’s cyclomatic complexity (CC) measures the number of linearly independent
paths. It is the only metric that is better the closer it gets to 1, whereas for the rest a greater
value supposes a greater complexity. The number of C++ tokens (TOK) and lines of code (LOC,
via tokei) determine the amount of code. TheOperation Argument Complexity (OAC) gives a
summation of the complexity of all the parameters types of a method, while Interface Size (IS)
measures the complexity of a method based on a combination of the types and number of
parameters. The maintainability worsens the more parameters and more complex data types
are manipulated. On the other side, INST and MET measure the number of Structs/Classes
instantiated and methods used, respectively. Finally, the error control sections (ERRC) mea-
sures the amount of sections involved with error checking.

To facilitate the understanding of the impact on usability that EngineCL has with respect
to the OpenCL base technology, a ratio per benchmark and metric analyzed is given. The
only exceptional case is the CC metric, since it has a quantitative nature, with zero being the
best possible value. The Equation 3-1 reflects the improvement ratio per metric:

𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑟𝑎𝑡𝑖𝑜 =
𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑂𝐶𝐿
𝑈𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐸𝐶𝐿

(3-1)

Regarding the performance evaluation two types of experiments are presented. The first
analyzes the overheads and scalability of EngineCL with respect to OpenCL C++ when using
a single device. Due to the difficulty in measuring stable overheads, these executions are car-
ried out by removing every non-necessary process of the system, establishing user-defined
CPU governors with fixed frequencies and increasing the batch of executions to reduce the
noise of the system. The minimum problem sizes are selected based on the computing power
of every device, being reasonable for each benchmark. Then, the size increases per device
and benchmark until the overheads are stabilized or when the execution time is prohibitive,
such as CPU reaching more than 100 seconds of execution or GPU being memory-bounded.
As a result, they represent the overall trend.

The time overhead, expressed as percentage, is computed as the ratio between the differ-
ence of the response times in the execution of the same kernel for both EngineCL (𝑇𝐸𝐶𝐿)
and the OpenCL version (𝑇𝑂𝐶𝐿), as shown in Equation 3-2:

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇𝐸𝐶𝐿 − 𝑇𝑂𝐶𝐿

𝑇𝑂𝐶𝐿
⋅ 100 (3-2)

To evaluate the co-executionperformanceofEngineCL and its load balancing algorithms,
the total response time, as well as the response time of each of the devices, are measured,
including kernel computing and data transfer. Each program uses a single problem size,
given by the completion time of around 10 seconds in the fastest device (GPU) for Batel,
and 7 seconds in the fastest device (GPU) for Remo. Then, as it is exposed in Section 1.7.3,

80

3.6 Validation

three metrics are calculated: balancing efficiency, speedup and heterogeneous efficiency. The
comparison is performed with respect to a pure OpenCL C++ solution using its host-device
programming model. Hence, EngineCL is evaluated against the fastest device, which is the
GPU for all the cases studied.

Furthermore, the energy efficiency analysis is performed by measuring the total time and
the energy consumption in Joules. It is measured using the sauna tool, detailed in Sec-
tion 1.7.4. With these two values the EDP is calculated, obtaining the energy efficiency.
Since the EDP results are benchmark and device dependent, a related metric is used to bet-
ter understand the impact of the runtime and co-execution. Equation 3-3 presents the im-
provement ratio of co-execution, per scheduler and benchmark, with respect to execution
on the most energy efficient device, which is the GPU.

𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜 =
𝐸𝐷𝑃𝐺𝑃𝑈

𝐸𝐷𝑃𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
(3-3)

The scheduling configurations are grouped by algorithm. The first two bars represent the
Static algorithm varying the order of delivering the packages to the devices. The one la-
belled St delivers the first chunk to the CPU, the second to the iGPU/PHI (depending on
the node) and the last one to the GPU, while in the St Rev the order is GPU-iGPU/PHI-CPU.
The next two show the Dynamic scheduler configured to run with 50 and 150 chunks (Dyn
50, Dyn 150), being chosen for offering an acceptable compromise between adaptability and
synchronization for this load balancer. Finally, the latter presents the HGuided algorithm,
labelledHg. The Static algorithm requires an exhaustive search for the best load distribution,
performing work prior to the actual execution that is time consuming for the programmer.
On the other hand, with adaptive algorithms such as Dynamic or HGuided it is not neces-
sary, being generally effective with different values in the input parameters, both in number
of packages and assigned computational powers, respectively.

To guarantee integrity of the results when doing the load balancing experiments, 60 exe-
cutions are performed per case, divided in 3 sets of no consecutive executions. Every set of
executions performs 20 iterations contiguously without a wait period, discarding an initial
execution to avoid warm-up penalties in some OpenCL drivers and devices. When mea-
suring the overheads, the experiments are modified to 300 executions, 2 sets and 100 itera-
tions.

3.6 Validation

This section provides a comprehensive validation of EngineCL with respect to OpenCL. The
first two validations detail the worst-case scenario for EngineCL, which is when only a single
device is used to offload the computation.

81

3 EngineCL

◼ Determine the usability and maintainability of the EngineCL API compared with
OpenCL, thanks to the use of a set of metrics that are the state of the art in research
in Software Engineering.

◼ Expose the overhead and scalability of EngineCL compared with OpenCL, indicating
the penalization of all the runtime features and management.

Then, the next three validations expose the power of EngineCL when using the full sys-
tem, considering the co-execution of all devices, finally leveraging the EngineCL runtime,
its design decisions and load balancing algorithms.

◼ Exposing the balancing efficiency of EngineCL when distributing the workload be-
tween them.

◼ The performance and efficiency obtained when the heterogeneous system is fully ex-
ploited, compared with the fastest device.

◼ An energy efficiency evaluation compared with the most energy efficient device of the
system.

3.6.1 Usability

This section shows the experiments performed to evaluate the usability provided by En-
gineCL. For this purpose, the listed benchmarks are implemented using both OpenCL and
EngineCL. Only one device is used to perform the computation, otherwise it would be te-
dious to implement all the functionality and load balancing in OpenCL. The benchmarks
have been selected based on a variety of different properties, computation patterns and use
cases in order to show sufficient diversity in the use of the APIs. Table 3-1 presents the values
obtained for every benchmark (rows) in every of the eight metrics (columns) when using
the EngineCL Tier-1+Tier-2 API, compared with the OpenCL C++ API. Additionally, the
average of each ratio per metric, considering the set of programs, is depicted as a chart. This
chart shows the base case, OpenCL C++ API, the ratios presented in the table on the left for
the EngineCL Tier-1+Tier-2 API, and finally, the impact in ratios if using only the EngineCL
Tier-1 API. The further away from the center of the radar chart a marker is located, the bet-
ter the level of usability for the metric in question, represented by each axis. For instance,
the IS metric improvement of Tier-1+Tier-2 over OpenCL is the region denoted in the chart
with the label A (7.3x), while Tier-1 over Tier-1+Tier-2 is outlined by the letter B (1.97x).

For every program, the maintainability and testing effort is reduced drastically, as can
be seen with CC, reaching the ideal cyclomatic complexity, or ERRC. The savings in error
checking are on average 21 times better by using EngineCL, reducing the visual complexity
of alternate paths for error control.

The code density and complexity of the operations are reduced between 7.3 to 8.5 times
compared with OpenCL, as it is shown with TOK, OAC and IS. In programs like Ray and
Binomial the OAC ratio is greater than in TOK, because the number of parameters grows in

82

3.6 Validation

Table 3-1: Comparison of usability metrics for a set of programs implemented in OpenCL C++ and En-
gineCL Tier-1+Tier-2 APIs (left) and their average ratios for Tier-1, Tier-1+Tier-2 and OpenCL (right).

Program Runtime CC ERRC TOK OAC IS LOC INST MET

Gaussian OpenCL 4 22 585 312 433 87 17 28

EngineCL 1 1 60 33 53 15 3 13

ratio 4:1 22.0 9.8 9.5 8.2 5.8 5.7 2.2

Ray OpenCL 4 21 618 307 424 89 17 27

EngineCL 1 1 191 40 65 24 3 17

ratio 4:1 21.0 3.2 7.7 6.5 3.7 5.7 1.6

Binomial OpenCL 4 18 522 255 355 77 16 24

EngineCL 1 1 81 28 48 18 3 11

ratio 4:1 18.0 6.4 9.1 7.4 4.3 5.3 2.2

Mandelbrot OpenCL 4 18 473 222 313 74 15 24

EngineCL 1 1 65 35 55 15 3 13

ratio 4:1 18.0 7.3 6.3 5.7 4.9 5.0 1.8

NBody OpenCL 4 26 658 373 517 96 18 32

EngineCL 1 1 66 38 60 16 3 15

ratio 4:1 26.0 10.0 9.8 8.6 6.0 6.0 2.1

𝑟𝑎𝑡𝑖𝑜 4:1 21.0 7.3 8.5 7.3 4.9 5.5 2.0

MET

8
12

16
20

4

more usability

ERRC

TOK

OAC

IS

LOC

INST

CC

A

B

API Improvements

Tier-1+Tier-2
OpenCL

A
Tier-1

Tier-1+Tier-2

B
EngineCL Tier-1+Tier-2 API
EngineCL Tier-1 API

Usability metrics per API

OpenCL C API++

both implementations, but managing complex types is harder in OpenCL.
As it is exposed with INST and MET, the number of classes instantiated and methods

employed by the programmer are around 5 and 2 times less than in the OpenCL implemen-
tation, mainly because it has been deliberately instantiated Tier-2 classes.

The EngineCL code is using the explicit Device class, as in Listing 2, but also one ar-
gument per line, as in Listing 1, with all the program.arg calls. Therefore, the compari-
son is performed using Tier-1 and Tier-2 of EngineCL, instead of benefiting of the higher-
level functions and classes, using only the simplified Tier-1 API. For this reason, to get an
overview of the impact, the chart shows the improvement if only the Tier-1 API is used.
Therefore, metrics affected by the use of more explicit calls and lines of code benefit when
using only the Tier-1. Therefore, TOK, OAC, IS, LOC, INST and MET achieve improve-
ment ratios of 12.5, 15.1, 14.4, 9.8, 8.3 and 4.3, respectively, over the OpenCL C++ API. The
only metrics not affected are CC and ERRC, since conditional flow and error control man-
agement cannot be further reduced. Thus, for the analyzed metrics and benchmarks, it can
be seen how the Tier-1 API can become on average 1.84x better than using Tier-1+Tier-2
in terms of usability. Certainly, this is applicable if there are no special needs only accessible
through the use of Tier-2, as detailed in the Architecture Section 3.3.2 and demonstrated
with two examples in the API Section 3.4.

Summing up, EngineCL has excellent results in maintainability, implying less develop-
ment effort. Thanks to its API usability, the programmer is able to focus on the application
domain, and its productivity is boosted by hiding complex decisions, operations and checks

83

3 EngineCL

related with OpenCL. Moreover, all this considering that EngineCL is employed to exploit
only one device. The advantage is that just by adding one more line of code the program-
mer would have support for an additional device, and so forth. In OpenCL, on the other
hand, multiple new code regions would be required to achieve that, as shown in real code
proportions in Figure 3-4.

3.6.2 Overhead of EngineCL

This section presents results of experiments performed to evaluate the overhead introduced
by EngineCL compared with OpenCL when a single kernel is executed in a single device.
On the one hand, a scalability analysis is presented for some specific cases, in order to un-
derstand the behavior of the runtime as the size of the problem grows. On the other hand,
an overhead analysis is offered, showing the worst combinations of devices and benchmarks,
as a detailed study.

Figure 3-7 shows the execution times for both OpenCL and EngineCL for different prob-
lem sizes. Since there are 6 architectures and 5 benchmarks, the representative cases regard-
ing the progression of overheads are considered. For this purpose, Binomial is shown as
regular benchmark, and Ray as an irregular one. They have been selected since they present
the worst overheads, Binomial in Batel and Ray in Remo. Each chart shows on the abscissa
axis the different problem sizes, and on the ordinate axis the execution time. They show the
behavior when executing each of the problems on a device, in columns, while nodes are on
each row. Finally, there are two types of graphs, each showing different problem sizes.

0 500 1k
0

2

4

6

8

10
T (s)

S

0 500 1k 2k 2k 2k

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4 Time (s)

Size

0 5k
0

2

4

6

8

10
T (s)

S

0 1k 2k 3k 4k

0.5

1.0

1.5

2.0

Time (s)

Size

0 5k
0

2

4

6

8

10
T (s)

S

300 400 500 600

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4 Time (s)

Size0
0

0 0

CPU iGPU GPU

R
e
m
o

R
a
y
tr
a
c
in
g

0 50k 100k 200k

1.4

1.6

1.8

2.0

2.2

2.4 Time (s)

Size

CPU

OpenCL

EngineCL

0 500k 1M
0

2

4

6

8

10
T (s)

S

0 5k 10k 20k 20k 20k 30k 40k

2.10

2.15

2.20

2.25

2.30

2.35

2.40 Time (s)

Size

PHI

300k 600k
0

2

4

6

8

10
T(s)

S

0 500k 1M 2M 2M 2M

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4 Time (s)

Size

GPU

0 10M 20M
0

2

4

6

8

10
T (s)

S

00 0

B
a
te
l

B
in
o
m
ia
l

Overall trend view

Figure 3-7: Scalability of EngineCL compared with OpenCL for each device in the system.

84

3.6 Validation

The maximum overhead value is produced with the CPU in the Remo node, with very
small problem sizes. Its overhead value is 2.8%, while the average value obtained for the
minimum problem size for all benchmarks is 1.3%. Inside each chart there is another smaller
chart showing the overall trend with larger problem sizes.However, the main charts highlight
the execution times for the smallest problem sizes, exposing the slightly differences between
EngineCL and OpenCL.

For example, in the larger chart view, presenting the smaller sizes, the Phi in Batel has
execution times that appear further apart from each other. However, these are absolute time
values, therefore they do not represent a more significant amount between EngineCL and
OpenCL than what happens on the CPU for Remo.

For this reason it is important to introduce the summary of the worst overheads encoun-
tered, showing localized points. Figure 3-8 depicts the maximum overheads per device and
benchmark, including the variability (standard deviation). The general trend is that over-
heads decrease with longer execution times, so the larger the problem size the more amor-
tization of the absolute overhead of the runtime. Each bar represents the overhead when
computing problem sizes that takes the execution times indicated. For example, 1% at +5s
means a specific device presents 1% of overhead in EngineCL compared with OpenCL when
computing a particular benchmark that takes around 5 seconds to complete.

Analyzing each device separately, it can be observed that the worst results are obtained
in the Remo CPU. This is reasonable since EngineCL also runs on the CPU, that has only 2
cores and 4 threads. Therefore, its multi-threaded architecture interferes with the execution
of benchmarks, stealing them computing capacity. This behavior is highly mitigated in the
Batel CPU, where the threads used by the runtime does not penalize since there are 24 avail-
able threads on the CPU. Regarding the discrete devices, the differences between them are
mainly dependent on the driver implementation and how it is affected by the multi-threaded
and optimized architecture of EngineCL. The commodity Remo GPU has the highest over-
head between the discrete devices, up to 1.59%, but quickly reducing it with larger problem
sizes. There are cases, like the Xeon Phi, in which the driver and device produces high vari-
ability in the results, probably produced by the amount of host threads that are spawned.

Remo CPU (Ray) Remo iGPU (Gaussian) Remo GPU (Ray) Batel CPU (Binomial) Batel PHI (Gaussian) Batel GPU (Ray)
-2%

-1%

0%

1%

2%

3%

4%

5%

+0s +5s +10s +20s

W
o
rs

t
o
v
e
rh

e
a
d

 p
e
r

d
e
v
ic

e Overhead

Problem times and Benchmarks

Figure 3-8: Worst overheads found per device and benchmark.

85

3 EngineCL

Two conclusions can be drawn from the results as a whole. On the one hand, the overhead
introduced by the EngineCL runtime is negligible for all evaluated devices. On the other
hand, that EngineCL scales very well with the execution time, so that the overhead decreases
significantly as the execution time of the application increases.

3.6.3 Load Balancing

Starting from this Section, EngineCL is evaluated performing co-execution using all the
devices of the heterogeneous system. For this purpose, five configurations of the schedulers
provided by the runtime are analyzed to execute five benchmarks, including three different
irregular scenes for Ray, as presented in Section 3.5.

The first metric analyzed determines whether EngineCL successfully distributes the work-
load among the devices. To this end, Figure 3-9 presents the Load Balance, defined as the
ratio of the response times of the first and last devices to conclude its work. The ideal value
for this metric is one, meaning that all devices finish simultaneously and the maximum uti-
lization of the machine is attained.

Based on these results, three general conclusions can be outlined. Firstly, EngineCL suc-
cessfully balances the workload in the two systems analyzed. The mean value of the balance
is 0.96, very close to 1.0, with maximum values of 0.98, for example in Gaussian (Batel)
and Ray1 (Remo). Secondly, HGuided is the algorithm that offers the best results in all the

IrregularRegular

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

geomean

B
a
te
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Balance

St Rev

St

Dyn 50

Dyn 150

Hg

IrregularRegular

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot geomean

R
e
m
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Balance

Figure 3-9: Balancing of the system per benchmark and scheduling configuration.

86

3.6 Validation

scenarios studied, in both Batel and Remo, and for both regular and irregular applications.
Finally, it can also be seen the great relevance of selecting a suitable load balancing algorithm,
since otherwise very large imbalances can occur as shown in the cases of static algorithms
in Mandelbrot or dynamic approaches with a few packages for Binomial.

Regarding the rest of the algorithms, it can be observed that both static algorithms have
a very similar behavior in regular applications, as expected. Nevertheless, they present im-
portant differences in the irregular ones, for instance Mandelbrot in Remo. Besides, their
behavior depends completely on each case, as can be seen in the cases of Ray1 (static is bet-
ter) and Ray2, where the reverse gets better results. Finally, the dynamic algorithm always
achieves the best-balanced results with the greatest number of packages. However, as it can
be seen later, this does not always mean the best performance.

3.6.4 Performance

The performance results achieved in the heterogeneous systems with different load balanc-
ing algorithms are shown in Figure 3-10 and 3-11, where the speedups and efficiency are
depicted, respectively. The speedups are due to the co-execution when using all the devices
of the heterogeneous system, compared with only using the fastest device in each node, that
is the GPU on both heterogeneous systems. The efficiency gives an idea of how the system is
utilized. A value of 1.0 represents that all the devices have been working all the time. Both
metrics are detailed in Section 1.7.3.

The main conclusion that can be drawn is that, for all benchmarks and both nodes,
EngineCL achieves better performance than the baseline. This is achieved thanks to co-
execution, balancing the workload among the devices, but also due to the low overhead
introduced by the runtime and its efficient management. The magnitude of the improve-
ments will depend on the computing power of the devices of the system. On the other hand,
efficiency figures show that EngineCL can exploit co-execution very efficiently. This is an
excellent result, taking into account the great difference in computing power that exists be-
tween the devices of the nodes employed.

However, to achieve these improvements, it is necessary to select an appropriate load bal-
ancing algorithm. As can be seen in the figures, HGuided achieves the best results for all the
scenarios analyzed, with an average efficiency of 0.89 in Batel and 0.82 in Remo. Therefore,
EngineCL can adapt to different kinds of loads and computing nodes, obtaining outstand-
ing performance. It is important to note that efficiencies will tend to improve the larger the
problems to be computed, since EngineCL and its schedulers have more time to amortize the
impact of load management and distribution. Moreover, as seen in the overhead analysis,
the penalty on OpenCL is reduced as the problem size increases. Hence, EngineCL stands
out even more in HPC environments such as the Batel heterogeneous system.

Analyzing the speedups and efficiencies in detail, Static delivers good results in regular

87

3 EngineCL

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot

IrregularRegular
B
a
te
l

St Rev
St

Dyn 50

Dyn 150

Hg

Speedup

0
0.8

0.9

1.1

1.2

1.7

1.8

1.0

1.6

1.5

1.3

1.4

2.0

geomean
0

0.2

0.4

1.1

1.2

1.7

1.8

1.0

1.6

1.5

1.3

1.4

2.0

IrregularRegular

Gaussian NBody Ray1 Ray2 Ray3 MandelbrotBinomial

R
e
m
o

0.2

0.4

0.6

0.8

1.2

1.4

1.0

Speedup

geomean

0.2

0.4

0.6

0.8

1.2

1.4

1.0

0

Figure 3-10: Speedups for every scheduler compared with the fastest device (GPU).

applications, with consistent efficiencies between 0.73 (Remo) and 0.87 (Batel), regardless of
the order of the devices. Binomial in Batel is an exception that will be explained later, due to
the Xeon Phi. However, in irregular applications the results are much more erratic, because
it does not adapt to these irregularities, such as Ray1 (0.76) and Ray2 (0.92) in Batel or Ray1
(0.58) and Ray3 (0.75) in Remo. Furthermore, the order in which the devices are considered
also has a significant impact on efficiency, as it is shown in Ray2, Ray3 and Mandelbrot.
When a slower device processes regions of problems with less computational load, its speed
increases compared to other regions, unbalancing the execution.

The Dynamic algorithm has good results in most irregular applications when every device
can provide enough computing capacity (Batel), achieving a geometric mean efficiency of
0.81, but suffers in benchmarks like NBody and Gaussian. They are sensitive to the number
of chunks and their size, increasing the overhead of communication and usage of slow de-
vices, respectively. Therefore, it is important to accurately determine the number of packages
to get the best results in each benchmark. In Remo, the Dynamic algorithm suffers these pe-
nalizations due to its CPU with low computing power, which imbalances the co-execution
when a wrong package size is giving to the slow device.

An analysis of the work size distribution among the devices is shown in Figure 3-12. It
depicts the percentage of work distribution given to each device, taking into account each
scheduler and benchmark. Each bar has three regions with the work size given to each

88

3.6 Validation

St Rev

St

Dyn 50

Dyn 150

Hg

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot

IrregularRegular

geomean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

B
a
te
l

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Efficiency

IrregularRegular

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot geomean
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
m
o

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Efficiency

Figure 3-11: Efficiency for every scheduler compared with the fastest device (GPU).

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot

Work size distribution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
a

te
l

St Rev

St

Dyn 50

Dyn 150

Hg

PHI

GPU

CPU

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e
m
o

iGPU

GPU

CPU

Figure 3-12: Work size distribution per device, benchmark and scheduler.

89

3 EngineCL

device. Every scheduling configuration distributes a similar workload for each device, except
NBody and Mandelbrot, in Batel. The CPU takes more workload as the number of packages
increases in NBody, introducing synchronization overheads that are negligible with fewer
packages. Also, Mandelbrot shows how the Phi processed too much amount of work for
the part of the image given in the Static, being more complex to calculate than the expected
when computing the complete image. Also, Remo work distribution shows how the CPU
penalized the whole execution in Dynamic due to large work sizes.

As it was introduced, the GPU in Binomial outperforms the CPU and Xeon Phi, as can be
seen in the Static work size distributions. Therefore, a slightly variation in the completion
time for any of these devices will imbalance the execution. Another important point is intro-
duced to the analysis, regarding low-level drawbacks from driver implementations. When
using the CPU in co-execution, the OpenCL driver of the Xeon Phi requests high CPU us-
age to initialize, configure and operate with the Phi. Therefore, when the Intel Xeon and the
Intel Xeon Phi are being used simultaneously, the CPU is shared by both drivers without
any coordination, despite being part of the same OpenCL platform. This introduces time
variations during the initialization and new overheads in the final completion times. This
behavior is depicted in Figure 3-13, on the top side, showing the average times from ini-
tialization for all the executions in Binomial. The abscissa axis shows the base case (single
device) and each scheduling configuration, with a bar showing the behavior for each device.
The ordinate axis shows the time since EngineCL started. Using only the Phi needs around
1800 ms. to initialize and start computing, while it is up to 2700 ms. when using it as Single,
that is, without co-executing. This variation combined with the small amount of work given

Single St St Rev Dyn 150 HgDyn 50 geomean

B
a

te
l

Time from runtime init (ms.)

PHI

GPU

CPU

Program
Write buffers

Init
Discovery

Single St St Rev Dyn 150 HgDyn 50 geomean

R
e
m
o

iGPU

GPU

CPU

Figure 3-13: Binomial timings before the computation phase.

90

3.6 Validation

to the CPU and Phi produces enough imbalance to not achieve the goal. On the other side,
the Dynamic approach it is much worth for two reasons. First, it releases the CPU inter-
mittently between the delivered chunks, so that both CPU and Phi drivers are interleaved.
Second, thanks to its adaptability, it solves initialization variations by giving more chunks to
the GPU, as shown. Drivers and their management are relevant for OpenCL computation
and to achieve efficient co-execution. This can be seen in the bottom of the figure, where
Remo drivers and devices are completely stable compared to the Xeon Phi, used in Batel.

3.6.5 Energy

This section presents the energy efficiency analysis performed on the Batel heterogeneous
system. Remo AMD APU does not allow measuring energy consumption as it does not have
accessible hardware counters or alternative mechanisms to measure it, so the study of energy
efficiency would be very limited with only the discrete GPU.

To measure the energy efficiency, the EDP is used, as discussed in Section 3.5. For ease
of understanding, Figure 3-14 shows the improvement ratio obtained by using co-execution
with EngineCL with respect to executing the benchmark on the GPU, that is, the most energy
efficient device. Thus, values above 1.0 indicate that the co-execution is more energy efficient
than the GPU.

The main conclusion that can be drawn is that for all the benchmarks studied, EngineCL
obtains improvements in energy efficiency compared with the GPU. This is satisfied as long
as an appropriate load balancing algorithm is chosen, with the HGuided scheduler being the
best in all cases, except in Ray3. This is an exceptional situation, since the Static algorithm,
as contrasted with its Static Rev version, gives very different results depending on the com-
putational regions assigned to it. Thus, it can be severely penalized by irregular programs,
and the fact that it has managed to be more energy efficient than HGuided is due to the
specific layout of the raytracing scene. The slightest change in the scene or in the order of
the devices in the system could cause Static to achieve a very high EDP value, and therefore
very low energy efficiency.

The HGuided algorithm is able to obtain a geometric mean of 1.37 for all the benchmarks
studied, around 1.36 for the regular ones, and 1.39 for the irregular ones. The rest of the al-
gorithms have an average improvement of around 1.1, except in the case of Static Rev, which
suffers a major penalty due to the irregularity of the Ray and Mandelbrot problems. This is
a curious phenomenon, since generally the Xeon Phi has higher power consumption when
launching the entire problem. However, when acting in co-execution and especially when
exploiting sophisticated dynamic algorithms, such as HGuided, it tends to be more energy
efficient. However, if there is a larger number of packages and management penalties, as
with Dyn 50 and Dyn 150, the energy consumption increases and the resulting EDP is not
as advantageous. For instance, NBody only achieved an improvement of 1.49 over the GPU,

91

3 EngineCL

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Gaussian Binomial NBody Ray1 Ray2 Ray3 Mandelbrot

IrregularRegular

geomean
00

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8
E

n
er

g
y

E
ff

ic
ie

n
cy

(G
P

U
/C

o
ex

ec
u

ti
o

n
)

G
P

U

St Rev

St

Dyn 50

Dyn 150

Hg

Figure 3-14: Energy Efficiency compared with GPU in Batel (more is better).

when its speedup was as high as 1.80, so it was clearly penalized by its power consump-
tion. NBody is a benchmark that requires a lot of synchronizations, and although the Xeon
Phi has taken almost 38% of the work, as represented in Figure 3-12, it has consumed too
much power. It is a less efficient device and although it contributes to the time reduction, it
significantly increases the power consumption.

The most significant improvement has been achieved with HGuided for Mandelbrot, be-
coming 1.59 times more efficient than the GPU. However, it is a benchmark that has obtained
the lowest heterogeneous efficiency, but in terms of EDP it is the one that has achieved a
balanced performance. It has reduced the total time without consuming much power. Con-
sidering the Binomial case demonstrated in the previous section, the conclusions are reaf-
firmed here, indicating how the energy efficiency is degraded due to the CPU saturation by
the OpenCL driver, wasting both energy and time.

In summary, it can be seen how performance and energy efficiency are related. However,
there are situations where peculiar behaviors are obtained. Despite the GPU being a more
energy efficient device than the Xeon Phi, when co-execution and different load balancing
algorithms come into play, there are situations where the whole heterogeneous system is
better leveraged. For this reason, it is important to have a compromise between compu-
tational power, management overheads, power consumption and efficient load balancing
algorithms, as all of these influence whether all devices co-executing can be more energy
efficient, despite having units such as the Xeon Phi.

In summary, EngineCL can execute a single massive data-parallel kernel simultaneously
on all devices in a heterogeneous system with negligible overhead. In addition, thanks to
the load balancing algorithms, it yields excellent efficiencies, both in terms of performance
and energy.

3.7 Conclusions

This Chapter introduces EngineCL, a powerful OpenCL-based tool that greatly simplifies
the programming of applications for heterogeneous systems. This runtime frees the pro-

92

3.7 Conclusions

grammer from tasks that require a specific knowledge of the underlying architecture, and
that are very error prone, with a great impact on their productivity. Moreover, the runtime
is designed and profiled to provide internal flexibility to support new features, high perfor-
mance to avoid any overheads compared with OpenCL and a pluggable scheduling system
to efficiently use all the available resources with custom load balancers. Hence, for these rea-
sons and with appropriate schedulers, it favors performance portability. The API provided
to the programmer is very simple, thus improving the usability of heterogeneous systems.

These statements are corroborated by the exhaustive validation that is presented, both in
usability and efficiency. Regarding usability, a large variety of well-known and widely used
Software Engineering metrics has been analyzed, achieving excellent results in all of them.
Considering 5 implementations of programs both in EngineCL and OpenCL when using a
single device, the worst-case scenario for EngineCL, the maintainability improvement ratios
range from 2 to 21 times more usable than using OpenCL technology and its runtime API.

The efficiency has been validated in two different nodes, one HPC and one commod-
ity system, with six different architectures to show the compatibility and capabilities of En-
gineCL. Three important conclusions can be drawn. First, the careful design and implemen-
tation of EngineCL allows negligible overheads with respect to the native OpenCL version,
always below 2.8% in all the cases studied. Moreover, considering the worst values per de-
vice, the average overhead is 1.3%. Furthermore, EngineCL scales very well with the size of
the problem, so overheads vanish for large problem sizes. Second, it is critical to select the
right scheduler, especially for irregular applications, where it needs to be dynamic and adap-
tive. Among the schedulers implemented and integrated in EngineCL, HGuided provides
the best results, being able to balance both regular and irregular applications, with an aver-
age efficiency of 0.89 and 0.82 for the HPC and desktop system, respectively. Furthermore,
the multi-threaded architecture and co-execution mechanisms allow leveraging the hetero-
geneous system in terms of energy efficiency. On average, for the cases studied, EngineCL
achieves an improvement of 1.37 over the most energy efficient accelerator, the GPU, if the
appropriate load balancing algorithm is selected. Finally, thanks to all the above, EngineCL
is able to provide the programmer with effortless co-execution, thus ensuring performance
portability between very different heterogeneous systems.

93

EngineCL Integrations 4
CHAPTER

EngineCL Integrations

The existing variety of applications, execution environments, architectures and tech-
nologies, provides enough situations where a single technology, such as OpenCL or
OpenMP, is not able to cope. It is not just a matter of squeezing out maximum per-
formance, but a multitude of cases where it is impossible to use it. It may be that the
computing device does not have software support for a specific technology, such as
incomplete, non-existent, incompatible or non-thread safe drivers; that it is not acces-
sible from a custom location, operating system or execution node, as occurs when run-
ning desktop graphics applications or multi-node web servers; or simply because the
problem execution environment was never intended to exploit heterogeneous systems,
limiting computation to the CPU, as occurs in many sandbox environments, virtual
machines, web browsers or runtimes of programming languages.

The approach lies in extending and exploiting EngineCL, presented in the Chap-
ter 3, supporting more complex programming models and situations for which they
were not initially conceived. However, thanks to their architecture, design principles
and efficiency, they offer a working environment suitable to be extended, increasing
their functionality. There are cases in which it is impossible to exploit problems or de-
vices using the OpenCL technology, since the limitation is at a lower level, as in the case
of drivers and firmwares. In these cases, it is important to obtain more sophisticated
solutions that allow mixing programming models in order to meet performance and
flexibility needs. This is a multi-objective purpose, since these solutions generally in-
crease the complexity of the system and its programmability, requiring to enhance the
architecture, achieving low coupling among the runtime modules, all without affecting
the original effective performance. The most important aspect of the whole extension
process is to be able to preserve all the features for which they were designed, that is, to
add new functionality without penalizing the original capabilities already validated.

EngineCL has been applied to different scenarios, among which two integrations
of the runtime are detailed. Each integration refers to the exploitation of EngineCL to
solve a problem in a specific environment, implying that the application and adaptation
involves an extension of the runtime system and its design decisions. The first one
is focused on optimizations for time-constrained applications, and the second one is
applied to exploit a molecular dynamics simulator, supporting hybrid programming
models.

Chapter contents

♦ Abstract . 97

4.1 Integration I: time-constrained scenarios 99

4.2 Integration II: hybrid programming models 115

4.3 Discussion . 131

4.1 Integration I: time-constrained scenarios

This integration addresses time-constrained scenarios where applications run on commod-
ity nodes and service servers for a very short period of time. This is a problem for host-
device programming models, where drivers and loader systems are a bottleneck for such
constraints. The OpenCL execution infrastructure, known for its verbosity and complexity,
requires many steps to launch kernels to accelerators, penalizing its utilization. EngineCL,
despite its already proven efficiency in HPC, suffers from the impediments of the under-
lying technology. However, it is an appropriate framework to optimize both the runtime
architecture and the algorithmic aspects of co-execution for such scenarios.

4.1.1 Motivation

Modest heterogeneous systems are often used to exploit problems that transcend high-
performance computing and fall under other types of challenges, such as multimedia work-
loads, video encoding, image filtering and inference in machine learning. Low cost and ease
of acquisition are some of their strengths, providing versatility to these ubiquitous systems.
It is increasingly common to find desktop computers and embedded devices composed of in-
tegrated heterogeneous systems, CPU cores and GPU compute units in a single chip. Along
with them, it is common to attach discrete GPUs. The availability of these systems in both
commodity infrastructures and medium-sized service servers facilitate a new field of work,
but involves great challenges [80].

Challenge 1: Technology overheads. These systems and applications require minimizing
the overhead introduced by EngineCL and its underlying technology, OpenCL. The offload-
ing kernels and everything related to their execution should be performed in hundreds of
milliseconds, sometimes a few seconds, where every management operation or the mini-
mum overhead completely penalizes the offloading to devices.

This type of computations are included as part of a Processing System (PS), since they are
not generally independent applications, such as CLI or GUI programs. However, through-
out the Integration the PS will be referred to as program for ease of understanding, since the
main program would refer to the service process, server or desktop application, excluded
from this Integration work because it is unique to the host and has no association with ac-
celeration technologies like OpenCL. For instance, a Binomial Options program mean that
a PS implements such kernel computation as one of its main externally callable functions,
so the main program can launch it.

For this reason, the margin for improvement is very small, since the problem is isolated
to the download technology. Even so, it is important to lighten the computation process
with accelerators to extend the chances of execution. It is not possible to optimize commu-

4 EngineCL Integrations

nications and transfers between the PS and the main program, or anything related with the
host. However, both OpenCL and EngineCL have a number of execution stages, runtime
primitives and mechanisms for transferring memory that must be addressed to lighten the
overhead produced by the programming model.

Challenge 2: Nature of the executions. These type of computations are typically carried
out in two operating modes. First, the most widespread usage and termed Region of Inter-
est execution (ROI) to simplify, integrated in a main program, directly consuming the data
and making only the transfer and computation through the use of other technologies. This
function is executed in parallel while the main program continues operating, such as the
server managing requests or the GUI rendering charts. Second, by launching the computa-
tion function as a process independently to the main program, serializing and exchanging
the data and results. This mode is simpler for the programmer, does not involve extra com-
plexity due to decoupling, and it is often referred to as binary or full-process execution.

This work addresses both modes, although the most important one is the ROI operat-
ing mode, since it is the normal operation mode in many desktop applications and service
servers, like Nginx or Apache, often delegated through C++ plugins or scripting dynamic
languages, such as PHP, CGI, uWSGI or Lua. In this case, the server application is previously
up, and the PS has three main functions to be called by the main program:

◼ init y setup: the main program is initialized together with the connected plugins and
processing systems. At this stage the PS is also called to prepare for subsequent com-
putation calls.

◼ compute: the PS is eventually called, performing memory transfers and dispatching
computational functions. These have to be performed as quickly as possible, as they
are usually part of requests to the main program that must be resolved with low la-
tency.

◼ tear down: the main program restarts, suspends or shuts down, and therefore notifies
the PS to act accordingly, freeing memory, preparing execution snapshots or storing
profiling data, among others.

For this reason, it is necessary to take into account the impact on both modes of operation
and study their behavior in the face of optimizations, as it will determine the types of PS that
can be implemented.

Challenge 3: Algorithmic tuning. Since the ultimate goal is to perform efficient co-
execution in systems where it is not common to take advantage of available accelerators,
it is not only necessary to focus on optimizations of the software architecture and the use of
its technology. HGuided, the most effective algorithm seen so far for adaptive co-execution,
can be tuned for the environments where it is going to be used. There are certain parameters
that can be adjusted, and performing an exploratory search and behavioral analysis can be

100

4.1 Integration I: time-constrained scenarios

decisive in squeezing even more efficiency out of the system.
Therefore, it is important to take into account the context in which the applications are

executed, knowing that this is the worst possible scenario to do co-execution. This has also
been contrasted when integrating other accelerators, such as FPGAs, as it is briefly described
in the Discussion, at the end of this Chapter. In short, it is necessary to exploit techniques
and optimizations to allow an efficient execution that takes advantage of all the available
resources. The original EngineCL proposal never focused on these types of applications, so
co-execution suffers in these very limited scenarios. These types of optimizations do not
have much impact on HPC applications where execution times are much longer, hence the
reason why they have not been addressed so far. It has been the integration in this type of
environments and applications that has revealed new requirements.

4.1.2 Optimizations

To overcome the above problems, focused on desktop systems and time-constrained sce-
narios, the runtime and the execution procedures have been enhanced. Two groups of op-
timizations have been researched: runtime-centered to allow using load balancing under
more problem sizes, competing against the fastest device in the system, and algorithmically,
improving the best algorithm used so far by tuning its parameters to boost the average effi-
ciency in a wide range of program types.

Regarding the runtime and its software architecture, improvements are grouped in terms
of execution-platform models and memory model. These optimizations have been incor-
porated to reduce overheads produced both in the initialization and closing stages of the
program, mainly due to the use of OpenCL drivers in the analyzed infrastructures, as well
as the management of OpenCL memory regions and primitives. They are tagged as initial-
ization and buffer optimizations.

4.1.2.1 Execution & Platformmodels

This optimization focuses on the initialization stages, taking advantage of the discovery,
listing and initialization of platforms and devices by the same thread (Runtime), as it is de-
picted in Figure 4-1 for the initialization phase. These stages involve both the execution
model, mainly its first steps that need to be addressed in every execution, and the plat-
form model, since it requires interaction with devices, drivers and their configuration. The
figure shows vertically three layers of abstraction of the software architecture correspond-
ing to the Runtime module, from an execution perspective, as time progresses horizontally
to the right. Considering the initialization and configuration stages, the Runtime module
encapsulates the Runtime Setup , Devices Discovery , Devices Setup and Scheduler

blocks. The latter is also an independent module with the same name, but its function-
ality is simplified here as it is not important for this optimization. Devices Discovery

101

4 EngineCL Integrations

and Devices Setup are now practically parallel, hence they are on top of each other, con-
sidering the same layer (Module Blocks). Descending to the lowest layer, where the Exe-
cution stages are indicated, each of the operations performed by each block of the upper
layer are represented. For example, S. Ops is a work region that occurs at the beginning
of the Devices Setup block, while D. Ops occurs at the end of the Devices Discovery

block. The discovery and acquisition of Device 1 occurs when contacting the OpenCL
Platform 1 . Considering Device 2 and Device 3 , both depend on Platform 2 , but
the driver suffers a small delay that prevents a perfect parallelization in the discovery of
Device 3 . On the other hand, considering the timeline, it is observed how the initializa-
tion of the devices (e.g. Setup Device 1) depends on finishing its discovery and releas-
ing the platform. This is also the case when configuring all devices once they are initial-
ized (Config D1 , Config D2 , Cfg D3), needing all of them simultaneously to be ready
to continue. This occurs mainly due to blocking requirements to establish synchronization
primitives, initialize semaphore barriers, copy EngineCL Program domain structures, reuse
OpenCL primitives or query device flags, among others.

To understand the change produced it is necessary to observe the rectangle of dashed
lines around this area (New parallel region), and how the same discovery and configura-
tion region is projected downwards using the original EngineCL perspective and behavior
(Original region). The lower part shows the original steps and how the restrictions limited
parallelism. There was only effective concurrency and overlapping operations for a short
period of time when some devices were discovered and others initialized, as long as they
belonged to different OpenCL platforms.

In parallel, both the thread in charge of load balancing (Scheduler) and the threads as-
sociated with devices (Device) take advantage of this time interval to start configuring and
preparing their resources as part of the execution environment. These threads will wait only
if they have finished their tasks independent of the OpenCL primitives, instantiated by the
Runtime . It takes advantage of the same discovery and initialization structures to configure
the devices before delegating them to the Scheduler and Device threads, which will be
able to continue with the following stages. These optimizations reduce the execution time
affecting the beginning and end of the program, due to the increase of the parallel fraction
of the program as well as the reuse of the structures in memory, liberating the redundant
OpenCL primitives.

Platforms and devices are now initialized and configured in parallel. Only some opera-
tions are necessarily sequential, although such regions have been reduced to a minimum.
Some sequential examples are the mappings of OpenCL primitives, such as contexts, plat-
forms and configuration flags, needed to be able to produce independent operations concur-
rently. This also happens in EngineCL modules, such as Manager , when setting and linking
structures associated with the Device , encapsulating OpenCL device identifiers that should
be unique to track all their resources. These mechanisms are vital to communicate with the

102

4.1 Integration I: time-constrained scenarios

Runtime

Devices Discovery

C
on

fig
ur

ab
le

 b
ar

rie
r

Platform 1

Device 1

Platform 2

Device 2

Device 3

Devices Setup

Setup Device 2

Setup Device 3

Setup Device 1 Device 1

Device 2

Device 3

Config D1

Config D2

Cfg D3

Runtime Setup

Module

Module Blocks

Execution
stages in the
Multi-Thread
Architecture

Scheduler

start events

can block all
devices

Time

D. OpsS. OpsRuntime Ops

Setup and Discovery Ops
independent of the devices

Scheduler, Buffer and
Device modules are

needed (omitted to simplify)

New parallel region

Platform 1

Device 1

Platform 2

Device 2

Device 3

Setup Device 2

Setup Device 3

Setup Device 1 Config D1

Config D2

Cfg D3Time

O
rig

in
al

 s
te

ps

D
is

co
ve

ry
 &

 S
et

up

Original region

Cfg. Ops

bl
oc

ki
ng

bl
oc

ki
ng

Minor configuration
regions are extracted

Only parallel operations
between platforms & devices

ab
st

ra
ct

io
n

Figure 4-1: Diagram of the Runtimemodule showing the optimization in the device discovery and config-
uration blocks thanks to the parallelization of the initial execution stages, using two platforms and three
devices as an example.

Runtime module. For example, if EngineCL is configured to operate with the GPUs and
CPU of the node, and the programmer has a specialized kernel for AMD accelerators, the
Runtime must necessarily consult and keep track of the discovered devices and configure
them appropriately at runtime. This type of operations continue to restrict the runtime im-
provement, as exemplified in the figure with the blocking barrier (dotted lines) and the next
operations (final setups). However, the gain is significant since there are multiple regions
that benefit from overlapping stages. Even though the initialization process has increased
and now it is more complex, the programmer is still unaware of the changes, as the external
API has remained stable.

4.1.2.2 Memorymodel

Regarding the memory model, the software architecture has been modified to improve the
usage of OpenCL memory containers, both when instantiating and sending data through
input and output buffers (Buffer). The variety of architectures as well as the importance
of OpenCL sharing memory strategies save costs when doing transfers and unnecessary
complete bulk copies of memory regions. This occurs usually between main memory and
device memory, but also between reserved parts of the same main memory (CPU - inte-
grated GPU). Some of the most important features are the incorporation of fine-grained
and coarse-grained Shared Virutal Memory (SVM) Buffers and the use of clSVMAlloc for
explicit memory reservation without the need to create OpenCL Buffers. Although SVM

103

4 EngineCL Integrations

capabilities (OpenCL 2.0) allow further shared memory features, many vendors still apply
the OpenCL 1.2 version, leaving such improvements for future implementations. In fact,
OpenCL 3.0, already present in some devices of the Desktop and DevCloud machines pre-
sented in Section 1.7.1, does not mean that they have implemented full SVM support. This
is relevant because from this version onwards the features are modular and optional. How-
ever, Remo node used in this Integration has an integrated GPU with partial support for
OpenCL 2.0 and its SVM features, so these optimizations serve to achieve tighter synchro-
nizations when accessing SVM memory. Therefore, all these variations in functionality and
complexity due to the diversity in the implementation of capabilities and extensions of the
specification highlight the importance of offering the maximum compatibility and versatil-
ity possible. In this case, offering the possibility of exploiting those memory models and
optimizations present in the hardware and drivers that may appear.

For this reason, changes are made to the EngineCL memory model. Figure 4-2 shows
the software design proposed for OpenCL memory allocations. The Strategy pattern is used
to implement the different behaviors when interacting with OpenCL memory [380]. On the
one hand, GenericBufferStrategy , is the original EngineCL mechanism, encapsulated as
the common way of constructing and manipulating memory in case a more specialized one
is not available. The advantage is that it is able to operate with any type of device, offer-
ing maximum portability, but at the cost of being less usable and without potential opti-
mizations. The PinnedMemoryStrategy class implements memory mapping, relieving the
programmer from having to program such verbose code, but being able to leverage Shared
Physical Memory optimizations (SPM via IOMMU) with integrated GPUs (OpenCL 1.2).
Additionally, this strategy enables also DMA transfers for OpenCL buffers when using dis-
crete GPUs. Finally, with SVMRegionStrategy it is possible to use explicit SVM memory
region allocations and OpenCL API functions, as expressed above. The drawback is that
it requires OpenCL 2.0, only partially supported by the integrated GPU of the AMD APU
(Remo system).

Buffer

implements

PinnedMemoryStrategy SVMRegionStrategyGenericBufferStrategy

cl::mem

Any Device DMA / SPM SVM

implements

AllocOpenCLMemory

Buffer

OpenCLMemoryStrategy
uses

cl::mem / raw pointers raw pointers

uses usesuses

Figure 4-2: Memory model optimizations encapsulated as OpenCL strategies.

104

4.1 Integration I: time-constrained scenarios

Finally, by tweaking OpenCL buffer flags that set the direction and use of the memory
block with respect to the device and program, OpenCL drivers are able to apply underlying
optimizations to the memory management.

4.1.2.3 Algorithmic optimizations

Finally, considering the algorithmic approach, an extension and exploration of two param-
eters of the best algorithm used so far, HGuided, has been performed in order to maximize
the co-execution performance.

Considering the formula for splitting and assigning packages to devices in HGuided, as
it is shown in Section 2.2 of the Background Chapter, the package size for device 𝑖 is now
computed as:

𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒𝑖 = 𝑚𝑎𝑥��
𝐺𝑟 𝑃𝑖

𝑘𝑖 ∑
𝑛
𝑗=1 𝑃𝑗

� , 𝑚𝑖𝑛_𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒𝑖� (4-1)

As it is detailed in the HGuided Equation 2-1, 𝐺𝑟 is the number of pending work-groups
and is updated with every package launch. 𝑃𝑖 is the computational power of the device 𝑖,
while 𝑃𝑖 and 𝑃𝑗 obtains the computational power ratio compared with the 𝑛 devices of used
in the computation. The parameters of the HGuided are the computing powers and the min-
imum package size. However, performance variations have been found when using distinct
minimum packages, as it affects the devices in different ways. Thus, new input parameters
are allowed, being able to assign as many minimum sizes as devices are computing. There-
fore, the parameter search for this scenario focuses on studying the relationship between
the constant 𝑘 and the minimum packet per device, keeping the rest of the parameters un-
changed.

The minimum package size is a lower bound for the 𝑝𝑎𝑐𝑘𝑎𝑔𝑒_𝑠𝑖𝑧𝑒𝑖 and they are usually
dependent on the computing power of the devices, being bigger package sizes in the most
powerful devices. Moreover, 𝑘𝑖 is an arbitrary constant. The smaller the 𝑘 constant, the faster
decreases the package size. Tweaking this constant prevents too large package sizes when
there are only a few devices, with cases such as giving half the workload in the first package
to a device, unbalancing the load.

HGuided is optimized by applying a combined tweaking to both the 𝑘 constant and the
minimum package size, inversely related. For each device, a pair of minimum package size
and 𝑘𝑖 constant is given. The former is a multiplier of the local work size and it increases with
more powerful devices, while the latter decreases in such cases. The 𝑘𝑖, although related with
the computing power of each device, it is established with values between 1 and 4 to avoid
crossing the border penalties: neither too large nor too small packages.

105

4 EngineCL Integrations

4.1.3 Methodology

The experiments are carried in Remo, the heterogeneous commodity system composed of
CPU, integrated GPU (iGPU) and GPU, as it is described in Section 1.7.1.

Five benchmarks have been used to show the performance gains of the optimizations.
Table 1.7.2 shows the properties of the selected benchmarks: Gaussian, Binomial, Mandel-
brot, NBody and Ray. Moreover, Ray is provided with two scenes with a variety of lights and
objects to explore different irregular behaviors.

The performance evaluation of EngineCL for time-constrained scenarios is done by ana-
lyzing the co-execution with the optimizations in the heterogeneous system. As it is highly
detailed in Section 2.2, Static and HGuided algorithms are evaluated, along with the new
HGuided optimized version described in this Integration. The Dynamic algorithm is dis-
carded because it delivers low performance, strongly penalized by the synchronization due
to the short duration of the executions. Few packages generate a strong imbalance, whereas
many impose high execution overheads. The scheduling configurations are grouped by al-
gorithm. The first two bars represent the Static algorithm varying the order of delivering
the packages to the devices. The one labelled Static delivers the first chunk to the CPU, the
second to the iGPU and the last one to the GPU, while in the Static rev the order is GPU-
iGPU-CPU. Then, the latter present the HGuided algorithm and its new optimized version.

To evaluate the performance of the load balancing algorithms the total response time is
measured, as well as the response time of each of the devices. The measures include the
kernel computation and buffer operations (reading and writing), but excluding program
initialization and releasing, as part of a time-constrained scenario. Each program uses a
single problem size, given by the completion time of around 1.5 seconds in the fastest de-
vice (GPU). Then, as it is exposed in Section 1.7.3, three metrics are calculated: balancing
efficiency, speedup and heterogeneous efficiency.

To guarantee integrity of the results, 50 executions are performed per case. An initial
execution is discarded for every set of iterations to avoid warm-up penalties in some OpenCL
drivers and devices.

4.1.4 Results

This section presents results of experiments carried out to evaluate the performance when
using all the devices in the system with the load balancing algorithms, including the new
runtime and HGuided optimizations. In other words, all schedulers benefit from new design
decisions, parallel initialization steps and memory management optimizations. As noted in
Chapter 3 during the energy efficiency validation, Remo AMD APU does not allow mea-
suring energy consumption as it does not have accessible hardware counters or alternative
mechanisms to measure it, so the study of energy efficiency would be very limited with only
the discrete GPU.

106

4.1 Integration I: time-constrained scenarios

4.1.4.1 Performance Results

The performance results achieved in the heterogeneous system with different load balanc-
ing algorithms are shown in Figures 4-3 and 4-4, where the speedups and efficiency are
depicted. The abscissa axis contains the benchmarks defined in Section 4.1.3, each one with
four scheduling configurations. The last group of bars shows the geometric mean per sched-
uler.

The results reveal, as contrasted in Chapter 3, that HGuided scheduling configurations
achieve the best results. However, there are situations in which some algorithmic configu-
rations can reach or even slightly surpass the original version of the HGuided balancer, as
in the case of the Static algorithm for the NBody computation.

Any extra operation can cause an overhead that penalizes the complete execution, espe-
cially in this type of scenarios with short execution times. For this reason, Static is the sim-
plest algorithm and allows an efficient implementation, providing acceptable results since it
generates low overheads due to minimum package and device synchronizations. However,
HGuided is a much more complex algorithm to implement optimally, requires more oper-
ations to distribute the packages and involves more synchronization overheads. And yet,
its algorithmic advantage most of the time overcomes the other negative points, as demon-

Gaussian Binomial NBody Ray1 Ray2

S
p

e
e

d
u

p
 (

g
p

u
)

0.2

0.4

0.6

0.8

1.0

1.2

0

1.4
IrregularRegular

geomean

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0
Mandelbrot

St Rev

St

Hg

Hg Opt

Figure 4-3: Speedups for every scheduler and program compared with a single GPU.

Gaussian Binomial NBody Ray1 Ray2

E
ff
ic
ie
n
c
y

IrregularRegular

geomeanMandelbrot

St Rev

St

Hg

Hg Opt
0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

Figure 4-4: Efficiency for every scheduler and program compared with a single GPU.

107

4 EngineCL Integrations

Gaussian Binomial NBody Ray1 Ray2

B
a
la
n
c
e

IrregularRegular

geomeanMandelbrot

St Rev

St

Hg

Hg Opt
0.2

0.4

0.6

0.8

1.0

0

0.2

0.4

0.6

0.8

1.0

0

Figure 4-5: Balance for every scheduler compared with a single GPU.

strated in these and previous experiments.
The algorithmic optimizations of HGuided allow improved performance for all the cases

studied, which is not the case with the previous version. Nevertheless, they require a de-
tailed analysis of the execution scenario in order to establish the appropriate parameter tun-
ing. However, since they are parameters with a range of values over which to perform the
exploratory search, it is a task that does not require programmer intervention. Regarding its
differences, HGuided achieves average efficiencies of 0.81 and 0.84, when using the default
and the new optimized version, respectively. Due to the optimizations applied, the results
of the HGuided improve 3% for regular problems and 3.5% for the irregular ones, being
ahead of the rest scheduling configurations and reaching efficiencies of up to 0.89 and 0.93
for Binomial and Ray2, respectively.

Figure 4-5 depicts the balance metric obtained per scheduler, as it is defined in Sec-
tion 4.1.3, achieving near the best balance when using HGuided, in all applications. This
is a consequence of the computation of smaller packages at the end of the execution. For
regular problems, the balance is directly related with the performance of its scheduling con-
figuration, but it is not completely fulfilled for irregular ones, with cases like Mandelbrot.
It has higher performance in Static than in its reversed version, but it suffers imbalance.
These variations are produced because a slow device (CPU) finishes working and no more
packages need to be computed, waiting for the other devices, but finishing the total problem
computation in less time, because faster devices compute more work.

4.1.4.2 Optimizations Evaluation

Taking into consideration the global vision of the problem as well as the excellent results
obtained with the new proposal of the HGuided, it is necessary to emphasize the optimiza-
tion work performed at the algorithmic level as well as in the runtime, as it was detailed in
Section 4.1.2.

Figure 4-6 shows how the performance is affected by the combination of pairs (𝑚, 𝑘), being
𝑚 the multiplier value to obtain the minimum package size and 𝑘 the HGuided constant,

108

4.1 Integration I: time-constrained scenarios

T
im

e
(s

)

Gaussian

m multipliers
k constants

30,3
0,1

1,15
,30

1,30
,1

1,30
,30

1,1,
30

30,3
0,30

1,1,
1

30,1
,1 3.5,1.5,1

3,1.5,1

3,3,1

3,2,1

3.5,2,1

2,3,1

2.5,2.5,1

1.5,1.5,1.5

3,3,3

2,2,2

2.5,2.5,2.5

1,1,1

2,1,1
1.97

1.98

2.00

2.01

2.03

2.04

2.06

2.07

2.09

2.10

1,1,
1

1,30
,30

1,30
,1

1,15
,30

1,1,
30

30,3
0,30

30,1
,1

30,3
0,1

3,2,1

3,1.5,1

3,3,1

2.5,2.5,1

3.5,1.5,1

2,3,1

3.5,2,1

2.5,2.5,2.5

2,2,2

1.5,1.5,1.5

3,3,3

2,1,1

1,1,1

T
im

e
(s

)

2.36

2.38

2.40

2.42

2.44

2.46

2.48

2.50

2.52

2.54

Binomial

m multipliers
k constants

3,1.5,1
3,2,13.5,2,1

1,1,12,1,13.5,1.5,1
1.5,1.5,1.5

2.5,2.5,1
3,3,12,3,12,2,22.5,2.5,2.5

3,3,3

1.91

1.96

2.01

2.06

2.11

2.16

2.21

2.26

2.31

2.36

T
im

e
(s

)
Nbody

1,30
,301,1,

301,15
,301,30

,11,1,
130,3

0,3030,3
0,130,1

,1

m multipliers
k constants

1,30
,30

1,30
,1

1,1,
1

1,15
,30

1,1,
30

30,3
0,30

30,3
0,1

30,1
,1 3.5,1.5,1

3.5,2,1

3,1.5,1

3,2,1
3,3,1

2.5,2.5,1

2,3,1
2.5,2.5,2.5

1.5,1.5,1.5

3,3,3
2,2,2
2,1,1
1,1,1
2.30

2.33

2.36

2.38

2.41

2.44

2.47

2.50

2.52

2.55

T
im

e
(s

)

Ray

m multipliers
k constants

1,30
,30

1,1,
1

1,1,
30

1,30
,1

1,15
,30

30,3
0,1

30,1
,1

30,3
0,30

3,1.5,1

3.5,1.5,1

3.5,2,1

2,1,1

1,1,1

3,2,1

2.5,2.5,1

3,3,1

3,3,3

2,3,1

2.5,2.5,2.5

2,2,2

1.5,1.5,1.5

2.02

2.03

2.04

2.06

2.07

2.09

2.10

2.11

2.13

2.14

T
im

e
(s

)

Mandelbrot

m multipliers
k constants

Figure 4-6: HGuided scheduler performance: 𝑚 multiplier (minimum package size) and 𝑘 constant pa-
rameter combination.

109

4 EngineCL Integrations

both for each device in the heterogeneous system. The Z axis sets the program execution
time for the problem size indicated in the Section 4.1.3, while X and Y axes show the 𝑚 and
𝑘 values per device, respectively. The order of the three values represent the CPU, iGPU and
GPU. For example, a Gaussian execution with the values 𝑘 {3, 3, 1} and 𝑚{1, 15, 30} means
that the HGuided has scheduled the workload by distributing smaller packages to the CPU
and iGPU but larger to the GPU. This 𝑘 variation affects the first packages delivered. In
addition, as packages are distributed and their size decrease is when the minimum package
size limitation occurs. In this case, because of the 𝑚 selected values, the CPU is not limited,
but the iGPU and GPU minimum package sizes are 15 and 30 times larger than the local
work size, respectively. For instance, the local work size (lws) of Gaussian benchmark is
128, as it is detailed in Section 1.7.2.

For all the programs there is a correlation between the 𝑚 multipliers and 𝑘 constants, in-
versely related. The charts show how the 𝑘 constants have a greater impact on performance
than the minimum packet size, except in NBody, where the limitation of the minimum pack-
age size for the CPU is completely relevant to avoid synchronization overheads. The more
packages are created, the more management needs to be performed, and both Runtime and
Scheduler units are CPU-managed (host thread), incurring in more overheads when dealing
with transfers and computations. Although this effect can be appreciated in every applica-
tion, in NBody it is even more highlighted due to its communications.

Considering all programs, by classifying the results based on the performance average,
several conclusions can be extracted to improve the general efficiency:

◼ The more powerful the device, the greater the minimum package size.
◼ The more powerful the device, the fewer the 𝑘 constant.
◼ There is not a perfect choice for every program, but the combination of𝑚𝑖 = {1, 15, 30}

and 𝑘𝑖 = {3.5, 1.5, 1} give the best results.
◼ If a single 𝑘 constant should be selected for every device, 𝑘 = 2 is the best option.
◼ If the CPU is involved in the computation and no previous profiling can be performed,

it should maintain 𝑚 = 1 to avoid major penalties in performance.

On the other hand, taking into account the runtime, two tasks have been carried out: the
initialization optimization affects the execution of the complete program (binary), while the
buffers optimization improves both binary and based on the region of interest (ROI). The
ROI discards the initialization and release stages, considering only the transfer and compu-
tation, where a minor management overhead or synchronization call highly penalizes the
general performance.

Figure 4-7 depicts the evolution of the execution time as the problem size increases for
each program, as well as the trade-off between single or multi-device execution. The abscissa
axis represents the problem size expressed as total work items (gws). The green (top) and
blue (bottom) lines show how the execution time increases as the size of the problem grows,
for binary and ROI, respectively. Every vertical line represents a inflection point when it

110

4.1 Integration I: time-constrained scenarios

T
im

e
 (

s
)

Gaussian

Problem size (gws, 1e6)

0.50

0 10 20 30 40

0

50 60 70

0.75

0.25

1.00

1.25

1.50

1.75

2.00 Binary
Balance/GPU (opt)
Balance/GPU
ROI
Balance/GPU (opt)
Balance/GPU

0

2.0

2.5

T
im

e
 (

s
)

Binomial

Problem size (gws, 1e4)

1.5

1.0

0.5

0

20 40 60 80 100

T
im

e
 (

s
)

NBody

Problem size (gws, 1e4)

2.0

2.5

1.5

1.0

0.5

0

10 15 20 255

T
im

e
 (

s
)

Ray

Problem size (gws, 1e5)

2.0

1.5

1.0

0.5

0

0 25 50 75 100 125 150 175

2.5
T

im
e

 (
s

)

Mandelbrot

Problem size (gws, 1e6)

2.0

1.5

1.0

0.5

0

0 25 50 75 100 125 150 175 200

Figure 4-7: HGuided Opt execution time per problem size when launching the binary and only the region
of interest (transfer and compute).

crosses the previous continuous lines associated with its execution type, indicating when it
is worthwhile to balance the load with HGuided Opt, compared to executing only in the
fastest device (GPU). The dotted lines show the previous version, while the dashed lines the
new optimized one.

Analyzing the results in detail, all programs show a similar increasing linear trend in their
first seconds of execution, except NBody, which grows exponentially. The difference be-
tween executions is practically a constant value, due to the amount of common operations
during initialization and end of execution, although influenced by the type of kernel (com-
pilation and arguments configuration) but also the amount and size of buffers involved.

The initialization optimization has a strong impact on its constant, saving 131 millisec-
onds on average when reusing OpenCL primitives and the configuration stages are highly
parallelized until they are limited by their own dependencies (Buffer, Context, Queue, etc).

111

4 EngineCL Integrations

On the other hand, buffers optimization affects both execution modes, but has a greater im-
pact on ROI, as it affects transfers. Devices that share the same main memory can reuse the
buffers without penalty. Nevertheless, its impact is minimal for such small problem sizes,
since the transfers are practically negligible compared to the rest operations.

The inflection points improve, on average and taking into account the two types of exe-
cution, 7.5% when optimizing the initialization and 17.4% when facilitating the recognition
of buffers types and avoiding unnecessary copies. These two optimizations are fundamental
considering the scenario in which these applications are evaluated.

Considering the experimental setup, a set of conclusions can be indicated:
◼ The average time it is worthwhile balancing the load has to exceed 15 milliseconds

when considering the region of interest, and 1.75 seconds when executing the com-
plete program.

◼ The bigger the problem size, the better it performs load balancing, and therefore, it
excels over a single execution over the fastest device.

◼ The amount of potential optimizations and time savings that can be achieved in the
runtime are limited by the gains obtained by applying optimizations on the slowest
device and being executed alone (single mode).

In summary, both EngineCL and its load balancing algorithms, thanks to the exhaustive
analysis and evaluation, support optimizations and fine-grained work focused on specific
scenarios, significantly improving their results.

4.1.5 Conclusions

This Integration has highlighted the importance of optimizing both software and algorith-
mic designs, in order to properly exploit commodity systems and time-constrained scenar-
ios. These situations cause high overheads in work-load distribution and device manage-
ment, making it prohibitive for such short-duration problems, where the host-device model
is heavily penalized. This reveals the importance of adaptability in runtime systems, reflected
in the changes needed to exploit other types of scenarios for which it was not initially con-
ceived.

Thus, considering these scenarios and the challenge of achieving efficient co-execution,
the contributions focus on two main improvements. First, a number of optimizations have
been designed and implemented on EngineCL that address the initialization stages, the reuse
of primitives in the multi-threaded architecture and buffer management. Second, an effort
has been made to optimize the HGuided scheduler, tunning the values of its parameters.
For this purpose, an experimental evaluation has been carried out to evaluate the variations
and relations of the parameters of this algorithm under the worst-case scenario for load
balancing.

A number of conclusions can be drawn from the experimental results. Firstly, the pro-

112

4.1 Integration I: time-constrained scenarios

posed optimizations reduce the execution time of a program by 7.5% and 17.4% to make
co-execution successful for the binary and ROI operation modes, respectively. Regarding
the HGuided parameters, it can be concluded that the more powerful the device, the larger
the minimum package size and the lower the k parameter value should be. Thus, the best
result is always obtained if the minimum package size is not limited for the CPU, when be-
ing the less powerful device in the system. Finally, thanks to all the optimizations, the new
load balancing algorithm is always the fastest and most efficient scheduling configuration,
yielding an average efficiency of 0.84. Thus, opportunities to compete in time-constrained
scenarios against the fastest device increase.

113

4.2 Integration II: hybrid programmingmodels

4.2 Integration II: hybrid programmingmodels

Molecular dynamics simulators are a relevant application field for heterogeneous systems
due to their potential savings in execution times and reduction of energy consumption. For
this reason, they have been optimized for years for multi-core HPC architectures, making it
difficult to port them to other architectures that allow simultaneous computation on several
devices.

In this Integration, EngineCL is extended to enable efficient co-execution of molecular
dynamics kernels of the ls1-MarDyn simulator. Several contributions are made including
support for a new execution core and a hybrid co-execution mode, solving the problems
encountered when executing with OpenCL-based technologies. The architecture has been
modified to offer greater flexibility and to combine programming models, offering new en-
capsulations and API adaptations. The changes produced allow similar CPU efficiency to the
optimized and vectorized code currently used by the simulator, while exploiting simultane-
ously the accelerators of a heterogeneous system, reducing the total computation time.

4.2.1 Motivation

The advent of heterogeneous systems has opened up new optimization opportunities for
applications that have traditionally been optimized to run on clusters of CPUs, like the ls1-
MarDyn molecular dynamic simulator [116].

An interesting collaboration arises with researchers of the Scalable Programming Models
& Tools Department (SPMT), located in the High Performance Computing Center Stuttgart
(HLRS), the supercomputing and research center of Stuttgart, as a result of a stay during the
second quarter of 2019. This Integration work is carried out until the beginning of 2021,
focusing on the exploitation of ls1-MarDyn in heterogeneous systems. The essence of this
work is that it is the first real scientific application of the dissertation, moving away from
the benchmarks and synthetic or simplified applications, typically used in most works and
benchmark suites. A feasibility study was carried out in the porting and exploitation of this
software with OpenCL, finding many challenges and complexities derived from the soft-
ware architecture and optimizations implemented to its core. It is a very ambitious simu-
lator, developed for years by multiple physicists and expert computer optimizers. Since the
rebuilding of the software architecture to fit accelerators is an unfeasible task, due to con-
straints regarding time and the access to the original architects and developers, the approach
has shifted. A study of the design principles and the currently implemented parallelism has
been carried out, with the aim of recognizing the most computationally intensive regions
and incrementally porting these bottlenecks using EngineCL.

Two key insights emerge from this porting efforts. The first one, focused on the archi-
tectural modification of the simulator, profiling studies and proposals for adapting the base

115

4 EngineCL Integrations

parallelism, all of them of interest to ls1-MarDyn developers and optimizers. The second
one, the extensions and optimizations applied to EngineCL, the impact of the underlying
technologies and its experimental results in heterogeneous systems. For HPC interest and
coherence with the rest of the dissertation, this Integration focuses on this second aspect.
The following results focus on evaluating the behavior of the most intense and/or most used
regions, present in different software layers of the simulator. Therefore, they serve as a refer-
ence in order to study the impact of the optimizations. They are called kernels for simplicity,
considering the OpenCL/EngineCL terminology.

The use of heterogeneous systems and the OpenCL technology for ls1-MarDyn gives rise
to two main challenges: device performance portability issues as the programming model
varies and the programming complexity when extending the core of EngineCL.

Challenge 1: OpenCL performance portability. One of the key points of the performance
of a device and the associated OpenCL programming model is determined by the quality
of the driver and the optimizations provided by the vendor. This has been a serious prob-
lem encountered during the OpenCL technology applicability study in the kernels extracted
from the ls1-MarDyn simulator. The Intel Xeon processor requires a degree of optimizations
not achievable by its driver regarding these molecular dynamics kernels, causing a perfor-
mance penalty. Thus, the feasibility study only allowed a correct use by the GPU, but ruled
out any possibility of exploiting the CPU.

EngineCL facilitates incremental transformation and analysis of compute-intensive re-
gions, thanks to its architecture, built-in schedulers and introspection capabilities. However,
on the other hand, since EngineCL uses internally OpenCL technology, it still presents this
problem. The ls1-MarDyn software uses parallelized and vectorized kernels, so OpenCL is
not able to cope with such an optimized code, as it is depicted in Figure 4-8. It depicts the
time to compute two types of kernels for different problem sizes. Gaussian kernel, a classical
kernel and evaluated throughout the dissertation, is shown on the left. It shows how both
OpenCL and OpenMP technologies offer similar performance. On the right, on the other

0

5k

10k

15k

2048 4096 8192
0

11534336 22020096 32505856

Technology
OpenCL Intel for CPU
OpenMP + vectorized

Problem size

Co
m

pu
ta

tio
n

tim
e

(m
s)

Gaussian Blur filtering kernel Molecular Dynamics distance kernel
1.5k

1.0k

0.5k

Figure 4-8: CPU computation times for classical and ls1-MarDyn kernels, usingOpenCL andOpenMP tech-
nologies for a set of problem sizes.

116

4.2 Integration II: hybrid programmingmodels

hand, shows the penalization of OpenCL when computing a ls1-MarDyn kernel. For this
reason, there is a need to improve the performance of OpenCL in comparison with the code
optimized for CPUs.

Consequently, it is necessary to transform the core of EngineCL, enabling the exploita-
tion of hybrid programming models. That is, the combination of different programming
paradigms, languages or technologies, but being treated as an integral part in the resolution
of a program (Program Domain in EngineCL nomenclature). The objective of this combi-
nation is to increase the runtime flexibility and be able to exploit different programming
techniques and source code origins. All of this while enabling transparent co-execution be-
tween hybrid programming models to achieve maximum performance.

Challenge 2: Programming complexity. Due to the need of mixing technologies and pro-
gramming models based on different philosophies, new drawbacks arise. The main one is the
increased complexity of the whole system to enable all the advanced and innovative func-
tionality. Such technological flexibility requires structural changes, affecting all software
layers. However, EngineCL is a runtime system with proven adaptability and modularity.
Therefore, it is necessary to adapt the runtime in order to maintain its premises and design
principles, but to provide it with new computational capabilities more optimized for the
CPU. To guarantee the abstraction and performance portability achieved by EngineCL and
validated through the dissertation, the runtime must preserve its main features. In short,
EngineCL should keep a negligible overhead with respect to OpenCL, allow efficient co-
execution and maintain a clean API design, while providing new execution methods that
are independent of OpenCL to properly exploit the simulator.

The goal is to achieve efficient co-execution between CPUs and accelerators, leveraging
years of optimization efforts to exploit Intel Xeon CPUs. These have ranged from the ap-
plication of vectorization and parallelization with threads, through memory hierarchy ex-
ploitation, embedded assembly code in specific regions, to the application of mapping and
affinity strategies. In this particular case, the optimizations materialize in the execution of
molecular dynamics kernels, but the strategies and extensions developed are applicable to
other types of applications. Nevertheless, this work shows the impact of these optimizations
and the use of different devices with respect to the initial implementations limited to CPUs.

4.2.2 Overview

The proposal of this extension focuses on enhancing EngineCL with more functionality,
without compromising its usability. The main objective of this Integration has been to pro-
vide model support for hybrid heterogeneous computing models. In particular to the ls1-
MarDyn simulator and the heterogeneous system evaluated, it means to be able to combine
different computing technologies for CPU-GPU co-execution. Thereby, the runtime has

117

4 EngineCL Integrations

experienced three innovations from the functional point of view.

First, the entire system has been adapted to support new execution cores, such as the native
and OpenCL. An execution core is an internal part of the software architecture of EngineCL.
It is responsible for translating EngineCL commands into operations of the underlying tech-
nology. Until this Integration, OpenCL was the only usable technology. With this work, this
concept is defined, amplified and encapsulated, taking full relevance. This has required an
internal transformation, including the generation of new interfaces to encapsulate the dis-
tinct implementations of its behavior. Furthermore, it has also required a minimal modifi-
cation of the external API, trying to preserve the high usability.

Secondly, a new execution core has been implemented, the native execution core, thanks to
the architectural adaptation to support variants of the internal computational engine. This
core is specialized in the execution of binary kernels for the CPU, as a native execution,
instead of an execution core based on OpenCL.

Finally, the third one focuses on adapting the runtime to support hybrid co-execution,
mixing native and OpenCL-based execution cores. In this way, the same kernel is computed
simultaneously by two independent technologies, being EngineCL in charge of synchroniza-
tion, workload distribution and resource management, regardless of the execution core.

The last two are clear optimizations in both offload-based executions with a single de-
vice à la pure host-device programming model, and co-execution powered by schedulers.
The changes made to achieve these improvements are detailed below, focusing on the func-
tional and architectural enhancements that directly affect the optimizations validated in Sec-
tion 4.2.6.

4.2.3 Optimizations

The optimizations made in the runtime affect multiple system modules, mainly focused
on decoupling the components related to OpenCL technology and providing efficient co-
execution mechanisms for new execution cores, without requiring structures and mecha-
nisms inspired by OpenCL’s own execution and management models. Section 4.2.3.1 pro-
vides an overview of the affected modules and the most important design patterns applied.

Since the new native execution core introduces multiple changes in the initialization
chain and association to the application domain, the execution model is detailed in Sec-
tion 4.2.3.2. The divergent behavior created by each execution core is encapsulated, thanks
to the proposed architecture. This allows reducing the number of common operations re-
quired, while ensuring independent operation flows per device and execution core used.
Furthermore, this independence favors specialization strategies in the instantiation of prim-
itives and structures used by the runtime, as is the case of the memory regions and the ab-
straction performed on the Buffers, highlighted in Section 4.2.3.3.

118

4.2 Integration II: hybrid programmingmodels

Tier-1

Modules

Tier-2

HGuided

Engine
Runtime
Manager

Program
Application

Domain

Buffer
Data

Management

RuntimeDirector

Work
Work

Distribution

InspectorIntrospection

SynchronizerConcurrency

StaticScheduling

Tier-3

Manager

Commander

CLUtils

OpenCL

Configurator
Runtime
Behavior

DeviceWorkers Scheduler
Load Balancing

and Scheduling

DynamicExecutorCore

NDRange

RangeExecSpace

Figure 4-9: EngineCL contexts and main modules, highlighting those affected by the optimizations.

4.2.3.1 Architecture

As it has been detailed in Chapter 3, EngineCL offers a layered architecture in three tiers,
increasing the functionality and degree of complexity the lower the tier. The changes of this
Integration have been very relevant, producing structural modifications, since the base tech-
nology has changed. For this reason, it has been necessary to access Tier-3. As presented in
Section 3.3.2, Figure 4-9 shows the layers, tiered horizontally, contexts and the main mod-
ules, highlighting those affected by the optimizations:

◼ Program , Device : API design modifications to allow using the low-level features of
Tier-3.

◼ Buffer , Runtime , Work : modules extended to support further functionalities, while
providing compatible interfaces with other modules.

◼ Executor : new module to deal with different execution technologies.
◼ Range : refactored functionality, extracted from the OpenCL context and created as a

new isolated ExecRange context and Range module.
As can be seen, this layered design allows encapsulating the functionality provided by the

modules of the lower layers, while favoring functionality reuse and a simplified API design.
The original design principles and the resulting software architecture have been necessary
to conveniently modify the runtime to support new features.

The adaptation of the runtime to support new execution paradigms has involved a refac-
toring of the execution engine, which until now was intended only for OpenCL. A new ex-
ecution interface, Executor , has been incorporated, which determines the execution core
of a device. In order to traverse the execution space, provided by the application domain
(Program), the Range module has been refactored and isolated as a new one, which masks
how the kernel is executed, independently of the execution core. In addition, both the
Runtime and the Work distribution are adapted to understand the new abstract execu-
tion mechanism provided by Executor. The new component signatures influence how they

119

4 EngineCL Integrations

are manipulated and instantiated by each Device and the Runtime itself. These structural
changes have not affected the API design, thanks to the layered architecture.

On the other hand, with the addition of a new native execution core, a slight modification
of Tier-1 has been facilitated, as will be seen in Section 4.2.4. The runtime can provide a
native optimized kernel for the CPU, using directly the Program , favoring independency
between the computing technologies and the application domain. In this way, the variables
and parameters provided to the Program class are internally associated to the structures
needed by each internal execution core, regardless of the technology used.

Finally, new design principles have been provided to facilitate internal maintainability and
extensibility. Three functionalities have been defined that can work independently of each
other, the execution space (Range), the execution core (Executor) and the data manage-
ment (Buffer). Since the behavior of each of the new interfaces depends on the instantia-
tion of the chosen adapter, theAbstractFactory pattern is applied to simplify the composition
of operating modes [380].

In this way, the mode of operation of the core does not determine the rest of the internal
components on which it depends, the extensibility of the runtime and its internal execution
mechanisms. Abstract Factories facilitate the construction of products with interchangeable
parts. Therefore, the NativeFactory and OpenCLFactory are consolidated in this Inte-
gration, assisting when instantiating and manipulating native or OpenCL primitives and
operations.

The NativeFactory builds the most optimal components for a native execution mode
on CPU, instantiating an execution space based on C++ iterators, an execution core based
on a executable code blob for CPU and a lightweight data management with direct access
to host memory. Finally, OpenCLFactory offers the original EngineCL components, now
refactored and encapsulated as independent instances. It builds an n-dimensional range-
based execution space, an OpenCL-based execution kernel, and explicit reservation-based
memory management with disjoint spaces.

4.2.3.2 Executionmodel

The execution model is explained focusing on the divergent tasks regarding the execution
cores, helping to understand the main differences that allow supporting distinct executors
including the novel native CPU processor. To simplify the model, it is taken into account
the compilation and execution phases of a program when using the runtime. Moreover, an
overview of the co-execution process is described, focusing on job scheduling and synchro-
nization with devices that is performed internally.

Figure 4-10 shows the kernel compilation stage in the upper part, while the lower one
summarizes the stages produced during the execution phase. The starting point is a source
code with an OpenCL kernel, while the offline compiler is used to prepare the binary kernels
to be used later during runtime execution.

120

4.2 Integration II: hybrid programmingmodels

Considering the compilation stages, the clkernel tool performs a compilation for the
different devices present in the system, thanks to the ICD loadingmechanism of OpenCL and
the subsequent binary construction offered by its drivers. On the other hand, the cl2native

tool performs a source code transformation to be compiled by the different backends present
in the system. The programmer can include annotations to facilitate the conversion, provide
his own optimized variant or even use his own binary file, as long as it maintains the appro-
priate signature to be consumed. The tool to provide automatic transformation serves as a
straightforward and easy method to execute kernels with the new functionality, but hand-
optimized variants would be the best option to reach the maximum performance. In any
case the code will be provided with a wrapper that establishes a common interface to be
called. This signature will be consistent with the specification needed by EngineCL at run-
time. The programming model chosen by cl2native is OpenMP, but the programmer is free
to use any other strategy and model. Finally, one of the established compilers, such as icc

or gcc , will be used, building an optimized binary kernel with position-independent exe-
cution and without name mangling, to be used directly by the runtime. In both cases, the
resulting files contain the pre-compiled programs with the code ready to be consumed by
the different devices of the heterogeneous node.

Subsequently, during the execution phase, as it is shown in the lower part of Figure 4-10,
as soon as the Engine module uses the Program , a series of steps occur, affecting the chosen
execution mode. The Runtime creates and configures the devices through the Device in-
terface, initiating their configuration and starting to operate independently. This behavior is

OpenCL code
mardyn-lennard-jones.cl

of
fli

ne
-c

om
pi

le
r

OpenCL kernel
.cl.bin

Native kernel
.cpu.bin

EngineCL clkernel
ICD loader

EngineCL cl2native

source-to-source
transformer

OpenMP +
vectorizations

interface wrapper

iGPU Driver

GPU Driver

CPU Driver

CPU compiler

icc
clang

gcc

OpenCL compiler ...

OpenCL kernel
.cl.bin

Native kernel
.cpu.bin

Device GPU

Device CPU

OpenCL Core
Executor

NDRange

binaries = cl::Program::Binaries
program = cl::Program

Native
Core Executor

IteratorRange

handle = dlopen(native krnl,
RTLD_NOW)

program = dlsym(handle,
KRNL_IFACE_WRAPPER)

PIC

selects

Program

OpenCL
Program

usesEngine

Native
Program

LennardJones
kernel

configure

R
un

tim
e

Setup

Setup

Figure 4-10: Kernel source code compilation process (above) and initialization during the EngineCL exe-
cution phase (below).

121

4 EngineCL Integrations

hidden from the rest of the runtime, while they perform a set of steps depending on the cho-
sen mode of operation determined by the instantiated components (Factories, for instance
OpenCLFactory). Figure 4-10 shows two paths at the bottom, one for the GPU and one for
the CPU. The OpenCL binaries are initialized and assigned to the devices associated to the
context managed by the Device, that is the GPU, who uses an execution engine based on
OpenCL, an n-dimensional range and a program based on a low-level class of OpenCL. On
the other hand, the CPU device uses the native execution core, its execution space is based
on an iterator and initializes the program through a dynamic indirection mechanism. Fi-
nally, the previously constructed binary kernel is loaded dynamically in a blocking fashion,
and the start function of the program is subsequently configured. Access to the appropriate
symbol within the executable is provided by using a wrapper with a common signature.

Considering the major steps in the scheduling process, Figure 4-11 shows the overview
when using the hybrid co-execution model. This represents the extension produced on the
original design shown in Section 3.3.1 of Chapter 3. In this example, each device uses a
different execution core, the CPU device exploits the native core, while the GPU keeps using
the OpenCL core. The execution cores are encapsulated for the rest of the system, providing
opaque operations for the runtime.

Thanks to the optimizations implemented, the native kernel configured with buffer bypass
(bypassed allocs , bypassed) avoid a number of operations that occur in the OpenCL-
based model (allocs). For example, the reservation of disjoint memory spaces (config-
uration phase), the discovery and configuration of platforms (fast init), the enqueuing
of read and write operations, or the data exchange mechanisms during asynchronous op-

Create and Setup
Devices

Setup
Scheduling Policy

Split Work and
Distribution

Synchronization

Device 0 (CPU)

Setup

Read

Compute

Write

Core: Native

Scheduling

Tear Down and
Collect

Thread 0

Runtime

Device 1 (GPU)

Thread 1

bypassed

bypassed

Setup

Read

Compute

Write

Core: OpenCL

bypassed allocs allocs

callback mock

callback mock OpenCL callback

OpenCL callback

OpenCL callbackcallback mock

fast init

Figure 4-11: Technology encapsulation in relation to the scheduling mechanisms with the hybrid co-
execution model.

122

4.2 Integration II: hybrid programmingmodels

erations. As the interface has to be consistent for communication with the rest of the run-
time modules, some of the operations offer light layers for interaction, such as callbacks
(OpenCL callback), synchronization or the queuing of work packages and their computa-
tion operations, which are not necessary in the native model (callback mock). The slowest
operation of the native core execution process is the initialization and its blocking load. This
phenomenon of blocking in the runtime initialization process has similarities with what hap-
pened initially EngineCL and how it was optimized in Section 4.1.2 of Integration I. Those
enhancements contributed to speed up the initialization phases of the runtime when devel-
oping this hybrid mode. Thanks to the multi-thread architecture and optimized pipeline, the
loading of resources by the native core does not affect the rest of the runtime phases, whether
it is the device initialization, the scheduler configuration or the distribution of work pack-
ages. The scheduling stage of EngineCL is not affected by the different execution cores, so the
division and allocation of work as well as the synchronization stages continue to maintain
the same mode of operation as in the original engine.

4.2.3.3 Memorymodel

The outline of the memory model, regarding the modifications performed in this work, is
shown in Figure 4-12. Originally there was only one Buffer class that encapsulated an
OpenCL buffer, reserving one region of memory on the host and another on the device,
except if it was the CPU, in which case there was only one region.

With the addition of the native mode and its optimizations, two new types of buffers have
been offered for EngineCL. On the one hand, those based on memory region reservation,
BufferAlloc , where two classes can be instantiated. The AllocOpenCLMemory acts as a
Proxy pattern that delegates actions to an OpenCL buffer, preserving the initial EngineCL
behavior for every OpenCL device [380]. The AllocHostMemory provides a host buffer that
can be used and manipulated exclusively by a native execution core.

On the other hand, a BufferBypass class is provided as an optimization for the native
core. This mechanism acts as a proxy with respect to the AllocHostMemory class, being able

Buffer

BufferAlloc delegates BufferBypass

delegates

AllocOpenCLMemory

implements

AllocHostMemory

cl::buffer

Proxy pattern

Proxy pattern

Figure 4-12: Hybrid memory model optimizations providing new classes and interfaces as an abstraction
of the EngineCL Buffer.

123

4 EngineCL Integrations

to configure the behavior depending on how the memory region is accessed. It offers two
configurable behaviors, either at compile time with a static policy or at run time based on dy-
namic conditions, such as how to access the memory region, including size, data type or po-
sition. Considering ls1-MarDyn and its kernels, it has been found that a pure bypass strategy
is the most advantageous, since there is no reservation or copying of memory subregions.
However, this bypass mechanism can be useful for other configurations, applications and
systems that use the new execution core. That is, the BufferBypass class configured by the
runtime to always reuse host memory and never make instances of the AllocHostMemory

class under any conditions. Thereby any memory request acts directly on the C++ contain-
ers or the host memory regions provided by the application domain (Program) itself. It is
worth mentioning that the possibility of beneficial use of AllocHostMemory could be found
in kernels that mutate buffer contents or where more sophisticated execution space strategies
are performed, taking advantage of the memory hierarchy, such as in stencil algorithms.

Finally, it should be noted that the use of the native model reduces the memory require-
ments of the runtime, since the OpenCL-based operating mode includes multiple primi-
tives and structures to be able to use this technology. The OpenCL execution core and its
increase in memory occupation is not directly related to the application domain data, but is
influenced by the use of this programming model and the number and architecture of the
devices. Examples are contexts, command queues, events or the callback payloads them-
selves. Therefore, by using the native execution core, the runtime is being lightened, pro-
viding it with higher performance, less memory footprint, and facilitating a more beneficial
co-execution, as will be seen in the Section 4.2.6.

4.2.4 API Design

The design pillars of EngineCL are usability and performance, and as noted in the Architec-
ture Section 4.2.3.1, the innovations introduced have not adversely affected the Tier-1 and
Tier-2 used by programmers and users of the runtime. Listing 3 shows a block of code that
computes one of the kernels exploited and optimized in this Integration, the Lennard-Jones
potential for a set of molecules. The first two statements obtain the OpenCL kernels, both
generalist and specialized for a GPU. Next, the problem data is reserved and initialized, as
part of the ls1-MarDyn simulation process, masked in the ljpotential_init_setup func-
tion. The runtime engine is initialized and configured between lines 11 and 20 (𝐿11 − 20),
where the devices to be used and the scheduling algorithm are established. Subsequently,
the application domain is built, where the input and output buffers are specified (𝐿23 − 25),
as well as the kernel and its arguments to be executed (𝐿27, 28). Finally, the program is
provided to the runtime to be executed in co-execution.

Regarding the high level API, the only noticeable variation after these innovations, is the
one produced in lines 13 and 14, where the Engine is being requested to use the CPU natively

124

4.2 Integration II: hybrid programmingmodels

1 /* binary and source code file readers */

2 auto kernel = file_read(”mardyn-lennard-jones.cl”);

3 auto tesla_kernel = file_read(”mardyn-lennard-jones.gpu-k20m.cl.bin”);

4 /* omitted for brevity: data init, mesh, fields and potentials */

5 vector<cl_float4> in_pos(molecules);

6 vector<cl_float4> out_pos(molecules);

7 auto gws = molecules; auto lws = 64;

8

9 ljpotential_init_setup(molecules, /* ..., many args */ in_pos, out_pos);

10

11 ecl::EngineCL engine;

12 engine.use({

13 ecl::DeviceMask::CPU,

14 ecl::Device::CpuBlob(”mardyn-lennard-jones.hand-opt-cpu.bin”)

15 },

16 ecl::Device(2, 1),

17 ecl::Device(1, 0, tesla_kernel));

18

19 engine.work_items(gws, lws);

20 engine.scheduler(ecl::Scheduler::Dynamic(120));

21

22 ecl::Program program;

23 program.in(in_pos);

24 /* rest of the application domain arguments */

25 program.out(out_vel);

26

27 program.kernel(kernel, ”LennardJonesPot”);

28 program.args(in_pos, /* ..., */ out_pos, molecules);

29

30 engine.program(std::move(program));

31

32 engine.run();

Listing 3: EngineCL API with hybrid co-execution mode for LennardJones computation.

through a binary execution object (CpuBlob). The rest of the code statements maintain the
same API design as originally established, encapsulating all the functionality internally. It
should be noted an important feature that allows further customization and potential ben-
efits. The hybrid co-execution mode does not prevent a programmer from simultaneously
requesting the CPU by two different execution cores (native and OpenCL), or even identical
ones (e.g. two native ones), offering greater flexibility in the exploitation of optimizations or
programming models for certain kernels.

4.2.5 Methodology

The experiments are carried out on the node Trainera, referred in Section 1.7.1. The first
technology involved is the current ls1-MarDyn implementation, labelled CPU-icc. It is par-
allelized with OpenMP, vectorized and compiled with the Intel compiler (icc). Then, in-
volving OpenCL technology and its drivers are GPU and CPU-ocl. Finally, the new hybrid

125

4 EngineCL Integrations

mode and its native execution core for the CPU, labelled CPU-hy.
Five kernels related to the computation of particles and their interactions have been

selected as part of the computational core of ls1-MarDyn. Two of them, md_dist and
md_distn2 are related to the computation of distances between molecules. The former offers
a flow-based interaction with low computational load, while the latter performs calculations
based on indirections over all cells. On the other hand, md_diststar handles the minimum
image convention while computing the distance between molecules. Finally, md_bin com-
putes the associated indices for a set of cells in streaming mode, while md_lj obtains the
potential and evaluates the force for the Lennard Jones 12-6 potential.

The validation of the proposal is done by analyzing the performance of the new native
execution core as well as the hybrid co-execution compared with CPU-icc. First, a scalability
analysis of each device and technology involved is presented, using only one device at a
time. To do this, the total execution time each of the individual devices has been measured,
increasing the size of the problems.

Then, the analysis of performance and energy efficiency of the hybrid co-execution is per-
formed. The total response time is measured, including kernel computing and data trans-
fer. Two EngineCL scheduling configurations are evaluated when co-executing, Static and
HGuided, labelled as St and Hg, respectively. The Dynamic algorithm is discarded as it
gives very poor results with these kernels, penalized by the synchronization of the packages.
Speedup and energy efficiency metrics are used to measure performance, as it is detailed
in Section 1.7.3. Nevertheless, Energy-Delay Product (𝐸𝐷𝑃) is used to measure energy ef-
ficiency. To simplify the understanding of the results, the improvement of the hybrid co-
execution over the CPU-icc version is provided, as it is shown in Equation 4-2.

𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜 =
𝐸𝐷𝑃𝐶𝑃𝑈−𝑖𝑐𝑐

𝐸𝐷𝑃ℎ𝑦𝑏𝑟𝑖𝑑 𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
(4-2)

To guarantee integrity of the results, the values reported are the arithmetic mean of 30
executions, discarding the first one to avoid warm-up penalties. The standard deviation is
not shown because it is negligible in all cases. To measure the energy consumption, another
30 executions are performed to avoid introducing time delays due to the sampling overheads.

4.2.6 Validation

The execution times when using a single device to compute the whole problem are depicted
in Figure 4-13, showing how each device scales as the problem size is increased. For all
the kernels, the CPU-ocl obtains the worst results, making it pointless to use OpenCL on
the CPU. These results are so poor that it limits the co-execution, penalizing the runtime
management itself and preventing it from being competitive with respect to the CPU-icc
version.

126

4.2 Integration II: hybrid programmingmodels

md_dist md_distn2 md_diststar md_ljmd_bin

1

2

3

4

0 20M 40M 60M

Device
CPU-ocl
GPU
CPU-icc
CPU-hy

5

10

15

20

25

1

2

3

4

0 20M 40M 60M 0 0.3M 0.6M 0.9M 0 20M 40M 60M 0 20M 40M 60M

Ti
m

e
(s

)

Problem size

0.5

1.0

1.5

2.0

1.5

3.0

4.5

6.0

Figure 4-13: Scalability when launching the computation in a single device.

md_bin

0.25

0.75

1.00

1.25

3.00

0.50

md_dist md_diststarmd_distn2 md_lj

St

Hg

1.
04

St

Hg

1.
05

St

Hg

3.
46 4.

02
2.
82

St

Hg

1.
07

1.
04

St

Hg

1.
38

1.
30

St

Hg

1.
28

1.
17

3.
02

4.00

Load Balancing
Algorithm

geomean

(C
PU

 ic
c/

Co
ex

ec
ut

io
n) Coexec.

devices
GPU +
CPU-hy

GPU +
CPU-ocl

CP
U
-ic
c

1.
04

0.
99

} 1.
33

} 1.
34

0.25

0.75

1.00

1.25

3.00

0.50

4.00

Sp
ee

du
p

Figure 4-14: Speedups when co-executing compared with ls1-MarDyn technology (CPU-icc).

However, thanks to the contributions of this Integration, a new execution kernel for En-
gineCL is provided that offers very similar performance to the CPU optimized ls1-MarDyn
version, as shown by CPU-hy and CPU-icc. As stated in Section 4.2.5, CPU-hy refers to the
new native execution core, as in this experiment, but also to hybrid co-execution when us-
ing OpenCL and native execution cores at the same time, as will be seen later. On the other
hand, the GPU obtains computation times close to these last two CPU modes, although
being slightly slower except in the case of the md_distn2 kernel. It computes 2.64 times
faster than the best version of the CPU, when calculating the distances between one million
molecules. These kernels are highly optimized for the CPU, taking advantage of the memory
hierarchy and vectorizations. Thus, the GPU is not the fastest device, as has been the case
in many other classical kernels.

It is now possible to properly exploit a heterogeneous environment thanks to the new ex-
ecution core and the performance offered. These results show how the CPU with EngineCL
is competitive and co-execution strategies may be possible.

Considering the co-execution in the heterogeneous system, Figure 4-14 shows the
speedups when co-executing with respect to the CPU optimized version, CPU-icc. The ab-
scissa axis shows the load balancing algorithms used for each of the kernels, including the
geometric mean. The annotations of the most significant values have been rounded to the

127

4 EngineCL Integrations

second decimal place in both cases, speedups and energy efficiency charts. EngineCL per-
forms co-execution using the CPU and GPU devices, but after these enhancements, the CPU
device can run with OpenCL-based or native execution cores.

The results show that, using the right scheduler in each case, co-execution is always worth-
while, with the new hybrid execution model. This is not the case if the old OpenCL-based
model is used, as can be seen by comparing the green bars with the blue ones. The average
speedup is of 1.38x, and up to 4.02x on the md_distn2 kernel. This is due to the new ar-
chitecture and optimizations enabled by the hybrid mode. Therefore, it allows concurrent
operation without incurring overheads that slow down execution, as is the case with the
purely OpenCL-based mode. The GPU + CPU-ocl setup only becomes competitive with the
CPU-icc version with a single kernel, due to its computational overhead.

It can be seen that the md_distn2 and md_lj kernels are the ones that offer the highest per-
formance in co-execution, due to the fact that they have a higher computational cost. The
number and complexity of their operations, along with the memory regions used per kernel,
increase the total computation time. On the other hand, kernels limited by memory or with a
strong communication pattern compared with the computation time, are restricted in time.
Therefore, dynamic balancing algorithms, such as HGuided, do not have enough time to
amortize their cost by making decisions at runtime. The Static algorithm offers the best gen-
eralized performance, due to the simplification of management operations by the runtime,
and the correct workload distribution. Static is adequate since the total computation time is
low and the kernels present regular behaviors, balancing properly the workload. Since ker-
nels are CPU intensive, it is counterproductive to take up management and scheduling time,
as it slows down the final execution for such limited times. On the other hand, it is observed
how in the case of md_distn2, where the execution is longer, the HGuided algorithm is able
to amortize its synchronizations and CPU usage, obtaining shorter computation times than
in the Static version. Since the total computation time is long enough, it benefits from the
parallel operations provided by a strategy that generates multiple chunks at runtime, con-
currently computing and doing data transfer. A scalability study would be appropriate to
contrast the behavior of different algorithms with these molecular dynamics kernels. How-
ever, most of these kernels are memory-bound, and the heterogeneous node is not suitable
to perform this analysis that requires long-term computations.

Therefore, it is important to highlight the advantage of having different scheduling algo-
rithms, as each one offers beneficial exploitation situations. This is a situation that had not
occurred in the validation of EngineCL in Chapter 3. However, it is positive that the runtime
has different schedulers, exploits efficient implementations and benefits in diverse scenarios,
including the possibility for the programmer to define his own strategies and balancers with
the pluggable system.

Finally, Figure 4-15 shows the experimental results considering the energy efficiency of
the co-execution with respect to the system using the CPU-icc version. Thus, it depicts the

128

4.2 Integration II: hybrid programmingmodels

Load Balancing
Algorithm

geomean

En
er

gy
 E
ffi

ci
en

cy
(C

PU
 ic
c

/C
oe

xe
cu

tio
n)

Coexec.
devices

GPU +
CPU-hy

GPU +
CPU-ocl

CP
U
-ic
c

md_bin

St Hg

1.
17

St Hg

md_dist

1.
02

md_distn2

St Hg

4.
74 4.
94

md_diststar

St Hg

1.
03

St Hg

1.
60

1.
35

St Hg

md_lj

1.
82

1.
53

0.3

0.6

1.2

0.9

1.8

1.5

4.0

5.0

2.
89

2.
61

0.
450.
51

} 3.
14 } 2.

96

0.3

0.6

1.2

0.9

1.8

1.5

4.0

5.0

Figure 4-15: Energy efficiency when co-executing compared with ls1-MarDyn technology (CPU-icc).

gains in EDP when co-executing compared to using the current optimized version. The
conclusions observed in the performance evaluation are accentuated since both energy con-
sumption and response time are taken into account. The GPU is a very energy efficient de-
vice, so that in kernels where there is a higher computational load, the improvements with
respect to the CPU optimized version are intensified, reaching up to 4.94 in md_disnt2 and
1.82 in md_lj. On average, improvements of 1.60x are obtained with Static and 1.35x with
HGuided, with respect to the CPU-icc. Regarding the differences between the CPU-hy and
CPU-ocl based co-execution, the performance is up to 1.34x better on average with the new
hybrid mode, while in energy efficiency they increase to 3.14x with Static and 2.96x with
HGuided.

4.2.7 Conclusions

In this Integration, ls1-MarDyn, a highly optimized simulator for HPC processors, is chosen
to exploit more efficient solutions that simultaneously take advantage of the different hetero-
geneous devices of a node, such as GPU and CPU. Since the OpenCL technology for CPU
does not have an appropriate performance for a set of molecular dynamics kernels, a number
of innovations on the EngineCL runtime is carried out in order to exploit the co-execution
efficiently.

These contributions show the importance of having a modular architecture and the pos-
sibility of encapsulating the computational technology. This runtime system not only allows
to squeeze heterogeneous systems and their performance, but also offers great flexibility in
the mutation of its capabilities and programming models. The major extensions carried out
have been the adaptation of the architecture to support new execution approaches, the new
native execution core for the CPU and a hybrid method of co-execution.

An experimental evaluation is performed to compare both performance and energy effi-
ciency with respect to the current parallelized and vectorized processing mode. Scalability
analysis of the new CPU execution core shows similar performance to the optimized mode

129

4 EngineCL Integrations

used by ls1-MarDyn, improving over the OpenCL version in all cases. When performing co-
execution there is always at least one scheduling mechanism that offers improvements over
the CPU version, both in performance and energy efficiency. On average, improvements of
up to 1.38x in performance and 1.60x in energy efficiency are obtained with respect to the
current optimized version.

130

4.3 Discussion

4.3 Discussion

EngineCL has proven to be a solid runtime system and capable of adapting to the needs
that are encountered. This is evidenced by the two integrations detailed here. The first one,
focused on short duration executions in low resource environments, one of the most chal-
lenging scenarios for the host-device programming model, and in particular for runtimes
that offer high software layers. The second, showing how despite being focused on OpenCL
technology, there are some situations in which it is not the most effective programming
model. Thus, it is necessary to overhaul the guts of the engine, making it possible to exploit
other technologies and hybrid forms of accelerator programming.

However, EngineCL has been integrated in other situations, although they have been
omitted in this thesis because they are mostly carried out by collaborating groups, are being
developed, or are beyond the scope and focus of this dissertation. Still, a brief mention may
be of interest, considering the scope of this Chapter. Three other adaptation and integration
works have been done throughout this dissertation, one of which has already been published
in the scientific community.

On the one hand, the approach to mainstream computing, since the runtime, its building
system and execution toolchain have been adapted for operating systems other than Linux,
such as Android, by means of NDK with Java-C++ connectors through JNI, as well as Mi-
crosoft Windows and its Visual C++. This allows the exploitation of accelerators and devices
based on other types of OpenCL drivers and loader systems, sometimes offering more op-
timized versions due to the efforts of vendors for the gaming communities. In addition, it
provides the access to platforms with many other types of programs and use cases, rang-
ing from efficient remote processing in mobile devices with low-power profiles, through the
processing of geographic information systems, trading algorithms and rendering engines, to
the acceleration of simulators and GUI software based on native operating system libraries,
such as Android Window Manager, OpenGL Platform Runtime or Win32 API [386–388].

On the other hand, EngineCL has been integrated as a core part of two utilities for video
and audio processing. The first one focused on embedded platforms such as Raspberry Pi,
thanks to community open source drivers for VideoCore IV graphics cards [389], while
the second one has been exploited in commodity environments with conventional video
recorders. This work has shown the compatibility offered by the runtime system, since it
can run in restricted environments and operating systems, Arm-based CPUs and with pro-
prietary technologies. The fundamental aspect of this runtime extension is that it supports
hybrid computing paradigms, fostering coarse-grained tasks and data-parallel processing
within the same node. These efforts allow a user to manipulate and observe a graphical in-
terface with asynchronous support for notifications, use IPC-based distributed computing,
and stream processing using OpenMP and OpenCL technologies, all simultaneously. In
addition, a fundamental aspect of this work is cross-platform compatibility achieved by em-

131

bracing such technological complexity and software stacks based on open standards, such as
WebRTC and Web Audio API. The first steps of both developments and experiments have
been reflected in these works [390, 391].

Finally, the most relevant work so far due to the implications in heterogeneous systems
and their programmability. EngineCL has been integrated in heterogeneous systems com-
posed of CPUs, GPUs and FPGAs, thanks to the collaborative effort with researchers from
the Computer Architecture Group of the University of Zaragoza. The behavior of FPGAs is
very different from other accelerators, requiring other ways of traversing the Program Do-
main and its iteration space, with limitations in the OpenCL runtime API and requiring
greater efforts in the synthesis and use of kernels. Even so, the runtime system has been
adapted and extended to support this type of architectures, increasing its compatibility and
enabling the efficient exploitation of all node devices. It is an interesting and impactful work
for the HPC community, precisely because it offers an appropriate performance portability
to such heterogeneous machines with configurations that are increasingly popular [48, 125].

In short, this Chapter highlights the importance of thinking about both the present and
future challenges. It is important to deliver high efficiency with current environments, de-
vices and applications. However, it is even more critical to provide the foundations to easily
extend the runtime capabilities and achieve exploitable solutions to future problems.

Coexecutor Runtime 5
CHAPTER

Coexecutor Runtime

As new technologies and programming models emerge, new possibilities
open up in the use of heterogeneous systems. Intel oneAPI and its SYCL-
based unified memory model is one of these, amplifying the ambitious hori-
zon of high-level programming languages for heterogeneous computing. How-
ever, this proposal has some challenges, both in programmability and efficiency
when exploiting diverse architectures.

In this chapter, Coexecutor Runtime is proposed as an abstraction on top
of the oneAPI technology, increasing the expressiveness and guaranteeing co-
execution capabilities. Its approach with a SYCL-compliant API facilitates
portability and interoperability with the underlying technology, while provid-
ing architecture flexibility to incorporate extended features and new proposals.
Its design decisions regarding dynamic mechanisms and the implementation
of efficient schedulers allow to fully exploit applications on these systems.

The proposal is validated on two types of heterogeneous systems and with
a set of diverse benchmarks, highlighting the improvements in performance,
energy efficiency and scalability achieved with respect to oneAPI and its host-
device programming model.

Chapter contents

♦ Abstract . 135

5.1 Motivation . 137

5.2 Coexecutor Runtime . 139

5.3 API Design . 146

5.4 Methodology . 150

5.5 Validation . 151

5.6 Conclusions . 160

5.1 Motivation

5.1 Motivation

There are many proposals to simplify the programming and management of acceleration
devices and multi-core CPUs, as it is exposed in Chapter 2. However, in many cases, porta-
bility and ease of use compromise the efficiency of different devices, even more so when
co-executing. There are new languages that have gained traction in recent years, trying to
increase the level of abstraction, while simplifying the work of the programmer.

One of the most promising programming models is SYCL, which allows to run a sin-
gle C++ code in different architectures, improving the programmability and enabling code
portability. Although initially conceived as an abstraction over OpenCL for C++ program-
mers, its adoption has been moderate, mainly due to support difficulties from manufactur-
ers and compilers. However, since 2019, Intel oneAPI has emerged as a new and powerful
standards-based unified programming model, built on top of SYCL. This commitment and
continuous development until the release of the first stable version in the last quarter of
2020, has aroused great interest in the community. This approach has two key advantages
over OpenCL. On the one hand, Intel has strongly endorsed it, attracting other manufactur-
ers and communities. On the other hand, SYCL is a very suitable language for the industry,
since C++ has stood out for decades. Thus, the adoption of C++/SYCL is straightforward
and natural. With the support of major manufacturers and the scientific community, along
with the proliferation of the SYCL 2020 standard and its extensions, an inflection point ap-
pears regarding the importance of SYCL for C++ programmers.

Therefore, considering this proposal and the new features offered by oneAPI, different
challenges can be distinguished.

Challenge1: Performanceportability. As it is previously introduced, Intel oneAPI is based
in the host-device programming model, where the compiler builds C++ regions (kernels) and
the runtime offloads them to a set of hardware accelerators. Its runtime is able to manage
complex applications composed of a set of kernels, even if they have dependencies between
them, through a Directed Acyclic Graph (DAG), as it is detailed in Section 2.1.3. The assign-
ment of a kernel to a particular device can be done by the programmer, so it is determined
at compile time, or let oneAPI choose the device at runtime. In either case, a kernel can only
be scheduled to a single device when the dependencies are satisfied.

The only possibility of co-execution with SYCL is for the programmer to split the work
into several kernels, as many as devices in the system. Also, data partition and workload dis-
tribution must be done manually. Furthermore, the compiler must detect that these kernels
are independent and schedule them simultaneously. This complicates the co-execution and,
therefore, the exploitation of the whole system to solve a single kernel. Even if the program-
mer is willing to face this extra effort, an additional problem arises with workload balancing.
Since the division of the workload is done at compile time, it is necessarily static. This does

137

5 Coexecutor Runtime

not scale well, as has been demonstrated previously through Chapters 3 and 4, being neces-
sary to address this situation with dynamic balancing algorithms. Nevertheless, as this is a
novel technology for another type of architectures, it is necessary to exploit all possibilities
and evaluate the behavior in the face of different types of strategies and optimizations.

Challenge 2: Abstraction. The oneAPI technology allows easy offloading to a device, but
there are many problems when balancing the load between different devices, since it is
still fundamentally a host-device programming model. All the management to achieve co-
execution and dynamic mechanisms, as well as the support for a wide enough variety of
devices, makes it necessary to establish abstractions to facilitate programmability. Although
C++ operations are high-level, many of its code regions still suffer from verbosity and poten-
tial sources of error. This need is increased when efficient management interfaces have to
be built on top of technologies with such expressiveness. For this reason, with oneAPI it is
also necessary to provide mechanisms for programmers to exploit the heterogeneous system
without having to interfere with all the operations needed to efficiently leverage all devices.

Challenge 3: Extensibility, scope and interoperability. The level of abstraction is given by
both C++ and SYCL, but the definition of the applications and their interactions does not
involve an abstraction as high as that achieved with EngineCL. In this case, SYCL is tied to
a modern C++ programming style, so this association should not be decoupled in the ab-
straction being built, as it limits its adoption. Interoperability between C++, SYCL and the
abstraction features of the runtime reduce the efforts of transforming and incorporating
SYCL-compatible applications and libraries. Furthermore, the concept of program domain
should be approached differently, since expert C++ programmers must be able to comfort-
ably alter the code as if it were SYCL/oneAPI. Herein, it is important to only abstract the
runtime and its management operations, while still keeping the scope of the problem di-
rectly visible to the programmers. In this way, they will feel under the same philosophy of
SYCL, being able to compose operations and extend the behavior of the runtime without
penalizing its performance.

Challenge 4: Adaptability. In the span of a year, oneAPI has evolved a lot, providing
new features and extensions, deprecating functionalities and modifying the behavior of its
DPC++ compiler. Experimental features may end up being included in the SYCL standard,
as it happened before, so it is important to have them in order to exploit new capabilities.
This standardization process allows other implementations to end up adapting this type of
proposals, and it is a matter of time to have compilers with support for all types of manufac-
turers and devices. Thus, it is necessary that the proposal is able to incorporate experimental
features and extensions from manufacturers. For example, one of the most relevant exten-
sions of oneAPI is the possibility of exploiting unified shared memory as an alternative to

138

5.2 Coexecutor Runtime

SYCL Buffers, as indicated in Section 2.1.3. For this reason, the architecture and API should
easily be extended in order to allow programmers to leverage the full potential without in-
terfering with the rest of the design decisions and optimizations.

5.2 Coexecutor Runtime

Considering all the previous reasons and challenges, Coexecutor Runtime addresses them
by designing a proposal with a clearly distinct foundation from EngineCL. The latter focuses
on compatibility and usability, uses the OpenCL framework and language, encapsulates the
problem domain with a very high layer of abstraction and provides an integral solution
to accelerate applications. However, with Coexecutor Runtime, the abstraction and API
is higher than oneAPI, but fully compatible with C++ and SYCL. This runtime is being part
of the problem domain, combining its ease of management aspects with the features pro-
vided by oneAPI. That is, programmers are aware of the fundamental parts of the process
of co-execution, data dispatch and computation. This design decision relieves them from
tedious tasks while allowing them to extend the lower level behaviors. Furthermore, its ar-
chitecture has been designed with adaptability to changes in mind. For this reason, oneAPI
extensions have been incorporated, extending the API so that the programmer can exploit
these functionalities.
Coexecutor Runtime is based on the DPC++ compiler and runtime, hereafter referred to

as oneAPI for simplicity. It is built on top of oneAPI as a runtime library, providing with
this approach several architectural and adaptive advantages. Firstly, the design and imple-
mentation are based on open standards, both C++ and SYCL, following easily recognizable
architectural patterns. Hence, any C++/SYCL programmer could extend its software archi-
tecture for their own purposes. Secondly, since it is drawing on previous standards such as
OpenCL, it facilitates the adaptation for a whole repertoire of libraries and software gener-
ated over a decade, helping to benefit from co-execution. Thirdly, it serves as a skeleton upon
which to apply different strategies and workload balancing algorithms for using oneAPI and
SYCL. Finally, as it is designed from a sufficiently standardized and abstract approach, it al-
lows the adaptation and extension to execution technologies and proposals created by other
manufacturers, both compilers and accelerator drivers.

Therefore, in order that the runtime provides co-execution it is necessary the correct de-
tection of a potential concurrent execution path by the oneAPI compiler and runtime. This
materializes a parallel execution of several tasks of the DAG, thanks to the existence of totally
independent hardware resources. In this way, the proposal is flexible enough to adapt to a
variable number of computation entities, while simple enough to assist the compiler in the
detection, favoring the creation of totally independent nodes recognizable by the runtime.

It is important to highlight that the architecture designed to provide the best efficiency in
operations and to enable the exploitation of purely dynamic algorithms is based on a multi-

139

5 Coexecutor Runtime

thread architecture with asynchronous mechanisms. Synchronous co-execution is the basis
on which dynamic co-execution and the final architecture are built. This idea is general-
ized and provided with mechanisms to synchronize the launching of work packages, a sys-
tem of notifications and events, or to enable more sophisticated schedulers, among others.
Likewise, the synchronous proposal serves as a method to guarantee static co-execution in
implementations that may offer less favorable behavior in the face of dynamic algorithms.
Moreover, SYCL does not guarantee even static co-execution, so this synchronous mecha-
nism, even less sophisticated and versatile than the dynamic and asynchronous one, is useful
for other more constrained heterogeneous systems and SYCL implementations.

Finally, the three balancing algorithms presented in Section 2.2 are implemented, as per-
formed with EngineCL. Hence, they are adapted to this architecture in order to provide the
best possible efficiency and verify the technological trade-offs.

5.2.1 Synchronous static co-execution

The SYCL standard does not determine the behavior in the face of different computational
regions used by independent devices, but the DPC++ implementation of the standard is not
able to guarantee simultaneous execution. The main problem arises in the detection of dis-
jointed memory regions when the same data structures are used by many oneAPI scopes.
This problem occurs both when using independent or shared kernel execution regions, even
though the programmer is able to recognize the independence between the execution and
data spaces. For this reason, it is necessary to provide an architecture that facilitates the
recognition and management of the system devices, as well as their transfer and computa-
tion regions, part of the oneAPI command queues and scopes. The main conceptual idea is
to provide with a multi-threaded architecture that isolates every oneAPI scope, and there-
fore, each device used in the computation. This allows the underlying compiler and DPC++
runtime to recognize the disjoint spaces and be able to perform operations simultaneously.
Since this promotes a static scheduling and workload distribution approach, it is necessary
to establish a runtime layer that is as light as possible, reducing the management overhead,
because it only schedules one work package per device.

The synchronous co-execution mechanism in the Coexecutor Runtime ensures that there
is simultaneous execution among the devices, while reducing runtime management opera-
tions. However, this approach is limited in terms of implementing more sophisticated adap-
tive algorithms. For this reason, the synchronous mechanism focuses on static approaches.
Nevertheless, since there is a part of the architecture that benefits from parallel operations
in conjunction with the DPC++ runtime, an asynchronous pattern is developed internally
to isolate each scope of oneAPI. Therefore, it provides the foundations for more advances
scheduling strategies. C++ futures and its asynchronous mechanisms facilitate an accept-
able degree of usability without the need to complicate the management code to solve co-

140

5.2 Coexecutor Runtime

execution problems. This solution favors independency of regions and captures in a lambda
region that makes the offload to another device asynchronously. It takes advantage of the
primitives and variables previously initialized, reducing time and favoring reuse, thanks to
being included in a bigger scope, that is, the parent scope of the lambda function. This is
a key aspect if the programmer is using USM, since it allows reusing the memory regions
directly, giving direct access to the original queue at any time.

Summing up, this mode of co-execution is limited to using static, oracle-style algorithms.
Although internally it uses an asynchronous pattern, the programmer uses it synchronously,
limiting the extensibility and the scheduling behaviors. The main advantage of this co-
execution mode is that the solution is lightweight, in addition to guaranteeing better com-
patibility, making it suitable for limited environments.

5.2.2 Asynchronous dynamic co-execution

The dynamic co-execution is based on a generalization of the asynchronous pattern pre-
sented in the previous section. As it was shown in Chapter 3 with EngineCL, high efficiencies
have been achieved by using strategies based on event chaining and multithreaded architec-
tures with mixed management. That is, notifications based on callbacks and using workload
management with standard C++ threads [93, 126, 128]. The main problem when trying to
extrapolate these strategies, based on events, futures and C++ asynchronicity, is the limita-
tion of expressiveness in the iterative distribution of workloads, complicating and preventing
dynamic strategies and disabling all usability. Therefore, custom notification mechanisms
have been developed and integrated as part of the runtime architecture, leaving those pro-
vided by the technology. This improves the resulting extensibility of the runtime, leveraging
its effective compatibility. Thanks to this approach, it allows operating with architectures
incompatible with callbacks, as is the case of FPGAs [125].

The strategy proposed for dynamic co-execution is to promote multithreaded manage-
ment architectures based on the runtime of oneAPI. The Coexecutor Runtime enhances the
isolation between devices, since one of the key points is to make it easier for the compiler
to detect disjoint memory structures as well as the independence between queues and tasks.
In addition, since oneAPI offers a sufficiently sophisticated and complete memory model,
the management architecture must be adapted to favor both buffer management and the
possibility of exploiting USM.

To define the proposal, three perspectives are considered, the execution model, from the
memory point of view and the last one, the relationship of the Coexecutor Runtime with the
runtime of oneAPI, as it is explained in the following sections.

141

5 Coexecutor Runtime

5.2.2.1 Executionmodel

The execution model is shown in Figure 5-1(a), representing the interaction of the runtime
as part of the execution process of an application. Execution is blocked from an application
point of view, although internally it works asynchronously. In this way, the programmer only
has to wait to finish the computation taking advantage of all its devices. However, it has the
possibility to continue extending operations to be run on devices from the application side.
It is done since the task graph is managed by the runtime of oneAPI. TheCoexecutor Runtime
is in charge of the creation and control of management threads (curved arrows), which will
be part of the operation mechanisms of the co-execution architecture until the control is
returned to the application. There is a thread belonging to the main manager, with its core
component called Director. In addition, there are lightweight management threads, termed
Coexecution Units, requiring one per computing device.

The Director configures the Coexecution Units and manages both the Commander and its
communication with the rest of the entities. The Scheduler is instantiated and plugged in
with a policy established by the programmer, using one of the schedulers explained in Sec-
tion 5.2.3. The Commander is responsible of packaging the work, emitting tasks and receiv-
ing events, as part of the computation workflow with the Coexecution Units. This process is
termed as Commander loop, and it follows the scheduling strategy defined by the Scheduler.

Regarding the Coexecutor Runtime internal workflow, the Director instantiates and con-
figures oneAPI primitives and structures necessary both for the operation with oneAPI run-
time and used by the Scheduler itself. Among these are work and queue entities, execution
contexts and mapping of memory structures between the application and the runtime. These
oneAPI structures and instantiations are shared by the components of theCo-execution Run-
time, favoring the reuse and detection of data types by the oneAPI runtime. In parallel, the
management threads of the Coexecution Units initialize the communication mechanisms
within the runtime, as well as the request of devices and their configuration with oneAPI.

bl
oc

ki
ng

Scheduler

C
P

U

Execution model

Commander

Application

policy

Coexecution
Unit

Coexecutor Runtime

G
P

U

Commander loop

Coexecution
Unit

asynchronous

Application

Director

(a) Execution model as part of a blocking
section of an application.

co
py

, p
oi

nt
,

tr
an

sf
er

GPU Scope

Coexecutor Runtime

CPU Scope

Memory model

U
S

M

GPU Scope CPU Scope

shared memory
shared memory

memory region
memory region

private memory

B
uf

fe
rs

private memory

private memory

memory region

in array

in ptr

inout vector

inout local
object

inout local
structs

Application

(b) Memory model example for USM and SYCL
buffers when using CPU and GPU.

Figure 5-1: Coexecutor Runtime considering an example of CPU-GPU dynamic co-execution.

142

5.2 Coexecutor Runtime

The communication is bidirectional between Commander and each Coexecution Unit, since
it is co-executed with an independent scheduler that handles the decisions. As soon as there
is a Coexecution Unit ready to receive work and the management thread has finished the
initial phase, it establishes communication with the Commander loop. As the rest of the de-
vices are completing their initialization, they incorporate into the loop, where the scheduling
phase starts.

It is important to note that in multi-core CPUs, where oversubscription has a significant
impact, it might be convenient to disable the Director management thread via its config-
urable behavior, and merge its management as part of the CPU Coexecution Unit. It is a
compromise in terms of oversubscription overhead and runtime acceleration when over-
lapping Commander tasks with the computation or communication of Coexecution Units.

5.2.2.2 Memorymodel

The memory model is presented in Figure 5-1(b). It shows the separation between structures
and memory containers, taking into account the two types of strategies used: USM or buffers
of SYCL, although the Coexecutor Runtime supports the combination of both during the co-
execution. On the left side are shown the structures, C++ containers and memory pointers
used by the application, while the right side outlines the view of the runtime. The Director
and itsCoexecutionUnits handle the allocations and configuration of the memory space with
oneAPI, and the programmer only has to request the use. The runtime will distribute them
in the oneAPI memory model, either by transferring pointers, copying memory regions or
sharing unified memory blocks.

Since the co-execution proposal is designed and evaluated to run on host and accelerator
devices, two operating modes of the runtime are distinguished regarding OneAPI memory
environments. If USM is used, the Coexecutor Runtime provides two scopes: a larger one for
a device (GPU) and a smaller for another (CPU). This way, the memory spaces initialized
by the GPU are reused in the CPU using oneAPI primitives. On the other hand, if SYCL
buffers are used, the scope of each device will manage independent buffers with memory
regions that will be part of a higher container or structure. Therefore, favoring the recog-
nition of disjointed data spaces by the compiler. Private memory allocations can be made
in both memory models, in the form of buffers and variables, where each field is controlled
independently by each Coexecution Unit and its oneAPI scopes.

Finally, both ways of operating can be combined, since could be regions of the kernel that
use the USM model and others that rely on buffers and variables. Coexecutor Runtime will
reuse the scope of each device to map any C++ containers and memory regions, each of
which will be governed by a memory model.

143

5 Coexecutor Runtime

Read

Compute

Write

Stage 1

Read

Compute

Write

Read

Compute

Write

Stage 2

Read

Compute

Write

Read

Compute

Read

Compute

Write

Stage 3

Read

Compute

Write

Read

Compute

Write

Queue
Q1

Queue
Q2

Queue
Q1

Queue
Q2

Queue
Q1

Queue
Q2

DirectorDirector
wait for
events

indep.
tasks

Directoradd tasks concurrently
(new nodes, parallel)

add tasks concurrently
(new nodes, linked)

wait for
events,

collect Q1

wait for
events,

collect Q2

blocked

finishedrunning

Figure 5-2: Example of interaction with the DAG from oneAPI’s perspective while running a dynamic ap-
proach with two queues.

5.2.2.3 Runtimes interaction

The interaction between the Coexecutor Runtime and oneAPI is shown in Figure 5-2. Three
stages are presented during the execution of the runtime, with two different queues Q1 and
Q2. It starts from a situation where the runtime has established two independent parallel
execution queues, due to the existence of two separate underlying architectures. The nodes
of each queue are managed by the runtime through the DAG, and they can be in three dif-
ferent states: execution (blue), blocked waiting for resources (white) or finished (gray with
a dashed line). The Director waits for events related to the DAG or performs independent
tasks, such as resource management, receiving and sending notifications, status control or
work reparation, some of which are essential within the Scheduler.

By switching to the stage 2, it can be distinguished how the Q2 is able to process nodes
more efficiently, so the Director collects results of the write operation and enqueues new
nodes of the DAG to the same queue, overlapping computation and communication. Col-
lection operations are dependent on the memory model, the type of operations (explicit or
implicit) and the amount of bytes used, thus they could be fast, as in unified memory, or
slow, when using mixed models or while transferring large blocks. Finally, in the stage 3,
the end of the Q1 is represented with the output data collection while in the Q2 a next writ-
ing task is added. This is linked to the branch created in stage 2, as soon as its computation
task has started, distributing the DAG management among different time periods.

5.2.3 Load balancing algorithms

Coexecutor Runtime implements two kind of algorithms, static and dynamic, thus it is nec-
essary to provide a runtime flexible enough to accommodate such modes of operation in
an efficient manner. The experiments launched with EngineCL have shown the predomi-
nance of HGuided in most experiments. However, a novel, much more abstracted underly-
ing technology is now being studied, with extended features and a constant evolution. For
this reason, it is necessary to implement and validate the diverse load balancing algorithms

144

5.2 Coexecutor Runtime

Director

emit
work

notify
work endcollect

setup
queues

update
indexes

prepare work

update work
or finish

Coexecution Units

Sc
he
du

le
r

di
sp

at
ch

er
 in

te
rfa

ce

SYCL/DPC++
runtime

C
PU

C
om

m
an

de
r l

oo
p

G
PUD
AG

Figure 5-3: Commander’s loop where the scheduling strategy is performed to coordinate the behaviors
of the Coexecution Units.

presented in Section 2.2, analyzing and determining the behavior of Coexecutor Runtime
and the underlying technology.

In order to generalize the architecture, the two previous approaches, synchronous static
and asynchronous dynamic co-execution designs, are unified in favor of the latter. As no
overheads have been found due to the additional management in the dynamic strategy with
respect to the static one when using Intel oneAPI, it is decided to implement the static ap-
proach as a dynamic algorithm with just one package per device. Nevertheless, the pure
static co-execution approach could be worthwhile in other architectures, less powerful host
devices or SYCL implementations that offer disadvantages when exploiting decisions dy-
namically. This is because it requires fewer management structures, freeing up CPU and
memory resources for proper load distribution.

In addition to the advantages described in the Section 5.2.2, theCoexecutor Runtime archi-
tecture offers an efficient scheduling module (Scheduler) that allows the dynamic strategies
to be exploited easily, with a common internal scheduling interface and offering negligible
synchronization overheads. However, it increases the internal complexity of the runtime,
albeit it is hidden to the programmer, who receives a simple and straightforward API to op-
erate with. Nevertheless, the dynamic co-execution design is sophisticated enough to use
any static co-execution algorithm with no efficiency penalties, as it is shown in Section 5.5.

To enable dynamic policies to squeeze all the computing capacity out of the heterogeneous
system, the Scheduler component is introduced, as it is shown in Figure 5-1(a). It configures
the behavior of the load balancer, the distribution and division of the work packages (amount
and region of data to be computed by each device), as well as the way to communicate with
the different execution devices.

Figure 5-3 depicts the relationship of theCoexecutor Runtimewith the runtime of oneAPI,
all of it involved as part of the Commander loop. The Coexecutor Runtime internal commu-
nication is performed between the management threads, either those associated with the
devices (right) or the global manager, usually associated with the Director (left). This view
simplifies the runtime of oneAPI and its internal DAG management, being considered as a

145

5 Coexecutor Runtime

single entity, part of the Coexecution Units (right). The Director performs a set of periodic
actions, as a loop managing events and operations, among which are:

◼ Preparing and packing the next job to be issued.
◼ Collecting completed and updating pending jobs.
◼ Managing the end of a work block and its completion.
◼ Preparing and reusing the queue and command groups as well as other oneAPI prim-

itives.
◼ Updating the indexes, ranges and offsets of memory entities, as well as variables and

containers.
Every time a work package is prepared, the runtime adds a task in the DAG. Similarly,

with the completion of a job, the Commander receives the notification to collect and merge
the output data, if needed. This operation can be lightweight in case of using USM or using
implicit operations, delegating more responsibility to oneAPI. The emission and reception
of work is requested through a dispatch interface, as a way of unifying requests. Finally,
when there are no more pending jobs, the Commander will notify the Director to close and
destroy the primitives and management objects to return control to the application.

Based on the proposed architecture and its designed dynamic co-execution model, the
three algorithms described in Section 2.2 of Chapter 2 are implemented in the Scheduler.
The Static algorithm has a minimum management inside the Scheduler component, because
it only runs as many iterations in the loop of events as devices are co-executing. Regarding
the strictly dynamic strategies inside the Scheduler, it is not possible to know in advance
the quantity of iterations, because it will depend on each execution parameters, as well as
the number and type of devices. These operations increase the management overhead due
to the operations related to the update of indexes and ranges, as well as the division of the
problem into independent regions. Finally, concerning the differences in the operations car-
ried out by Commander, Dynamic will simplify the number of instructions involved in the
calculation of work packages compared to HGuided. This is explained since the latter per-
forms a more sophisticated algorithm that takes into account certain conditions, including
the computing power of each device. However, the calculation overheads of the latter are
compensated by the efficiency of its workload distribution policy.

5.3 API Design

TheCoexecutor Runtime has been designed to offer an API that is flexible as well as closely
linked to the SYCL standard, favoring reuse of existing code and a slightly higher usability.
Furthermore, it offers two modes of computation from the point of view of the program-
mers. The results of architectural and design decisions concerning expressiveness and us-
ability enhancement are materialized in both modes, providing distinct usage facilities. The
same SAXPY kernel is computed using both modes to compare its differences. Both code

146

5.3 API Design

1 coexecutor_runtime<hg> runtime;

2 runtime.config(CounitSet::CpuGpu, coexecutor_runtime::dist(0.35));

3 runtime.launch(data.size(), [&](coexecutor_unit *counit, package pkg) {

4 sycl::buffer<int, 1> buf_input(data.data() + pkg.offset,

5 sycl::range<1>(pkg.size));

6 counit->dispatch([&](sycl::handler &h) {

7 auto R = sycl::range<1>(pkg.size);

8 auto input = buf_input.get_access<sycl::access::mode::read_write>(h);

9 h.parallel_for(R, [=](sycl::item<1> it) {

10 auto tid = it.get_linear_id();

11 input[tid] = input[tid] * datav;

12 });

13 });

14 });

Listing 4: Coexecutor Runtime computing SAXPY with a dynamic algorithm using simultaneously CPU
and GPU.

snippets show the runtime usage from the perspective of the programmer, thus omitting the
initialization of the problem and its data, as well as the subsequent use of the results.

The simple mode it is shown in Listing 4, where an explicit embedded context (lambda
function) is used to perform the computation in a few lines of code. It shows an example of
use when computing the SAXPY problem simultaneously exploiting two different devices,
being in this case the CPU and GPU. Line 1 instantiates the coexecutor_runtime prepared
to compute a program using the HGuided balancing algorithm. In the next line, it is con-
figured to use both the CPU and GPU, giving a hint of the computational power of 35% for
the CPU compared to the GPU. This value will leverage the algorithm to further exploit co-
execution efficiency. Next, the co-execution scope associated with the problem is provided
(lines 3 to 14), where a lambda function captures the values used by reference. This scope is
executed by each of the Coexecution Units, and therefore, they must establish independent
memory reservations (or shared, if unified shared memory is exploited), using the values
provided by the runtime itself through the package class. Line 6 opens an execution scope,
associated to the kernel computation for each device. In lines 7 and 8 a read and write ac-
cess is requested for the previous memory region (buffer accessors), indicating the execution
space based on the given package size. Finally, lines 9 to 11 show the data-parallel execution,
traversing the indicated execution space (R), using the accessor templates and variables
needed (datav , input).

After executing the lines shown in Listing 4, the problem is computed simultaneously
using both devices. The launch call blocks the program execution since it is a synchronous
operation from the point of view of the programmer. Therefore, the data resulting from the
computation is in the expected data structures and containers that the programmer uses in
the C++ program (vector input in the example), without the need to create any new buffer
exchange structures specific for the coexecution.

147

5 Coexecutor Runtime

1 class SAXPY : public CommanderKernel {

2 public:

3 SAXPY(int *x_ptr, int *y_ptr, int *out_ptr, size_t data_l, float sc_fl)

4 : m_x_ptr(x_ptr), m_y_ptr(y_ptr), m_out_ptr(out_ptr),

5 m_sc(sc_fl), m_data_l(data_l){}

6

7 // pre-setup config: shared internally between Coexecution Units

8 void init(coexecutor_unit *counit){ // Director Scope

9 counit->add_buffer<int, 1>(0, m_x_ptr, sycl::range<1>(m_data_l));

10 }

11 // void init_completed() {} /* @callback */

12 program_size size() { return m_data_l; }

13 void compute(coexecutor_unit *counit, package pkg){

14 std::cout « ”[” « counit->id() « ”] computing...\n”;

15 sycl::buffer<int, 1> buf_x =

16 *counit->get_buffer<int, 1>(0); // use all buffer

17 sycl::buffer<int, 1> buf_y(m_y_ptr+pkg.offset, sycl::range<1>(pkg.size));

18 sycl::buffer<int, 1> buf_out(m_out_ptr+pkg.offset,

19 sycl::range<1>(pkg.size));

20

21 // communicate with the Commander to dispatch a transaction

22 counit->dispatch([&](sycl::handler &h){ // Director-CoExecUnit comm.

23 auto R = sycl::range<1>(pkg.size);

24 auto x = buf_x.get_access<sycl::access::mode::read>(h);

25 auto y = buf_y.get_access<sycl::access::mode::read>(h);

26 auto out = buf_out.get_access<sycl::access::mode::discard_write>(h);

27 auto sc = (int)m_sc; // caching

28 h.parallel_for(R, [=](sycl::item<1> it){

29 auto tid = it.get_linear_id();

30 out[tid] = x[tid] * sc + y[tid];

31 });

32 });

33 }

34 /* @callback */

35 void compute_completed(coexecutor_unit *counit, package pkg){

36 std::cout « ”[” « counit->id() « ”] package ” « pkg.id

37 « ” computed with throughput ” « pkg.throughput « ”\n”;

38 counit->dump_statistics(); // Stats per package - CoExecUnit related

39 }

40 private: // organized data:

41 int *m_x_ptr; int *m_y_ptr; int *m_out_ptr; size_t m_data_l; float m_sc;

42 };

Listing 5: SAXPY program definition using the CommanderKernel interface provided by Coexecutor Run-
time to implement the kernel behavior as an independent unit.

On the other side, the extended computation mode offers more flexibility to the run-
time and the kernel computation. It allows accessing extended methods and callback func-
tions, based on the CommanderKernel interface provided by Coexecutor Runtime, as it is
implemented in Listing 5 and instantiated and executed in Listing 6. The advantages of this
computation mode are encapsulation of the program, increasing the maintainability, along
with enhanced flexibility regarding runtime operations. Some of them allow the program-
mer to share buffers between devices (lines 8-10) and perform custom operations at specific

148

5.3 API Design

1 auto N = pow(10,8); std::vector<int> x; int* y; std::vector<int> out(N);

2

3 coexecutor_runtime<dyn> runtime;

4 runtime.config(CounitSet::CpuGpu, 128); // dynamic; 128 packages

5

6 x.assign(N, 1);

7 y = runtime.alloc<int>(N);

8 // more assigns: foreach, assign x[i], y[i] ...

9

10 SAXPY program{x.data(), y, out.data(), N, 3.14159};

11 runtime.run(program);

12 // from here on, we have the data in our C++ containers

13

14 runtime.free<int>(y);

Listing 6: Coexecutor Runtime using the CPU and GPU simultaneously to compute the SAXPY kernel def-
inition of the Listing 5. This example shows the exploitation of the extended computation mode to en-
hance the flexibility of the runtime.

places during the Coexecutor Runtime execution process, such as, during the initialization
and completion of theDirector scope (lines 8 and 11), during the initialization or completion
of the Coexecution Units or at the end of every work package completed (lines 36-40). The
drawbacks are increased complexity and verbosity compared with the simple computation
mode, but the latter is only recommended for smaller and easier kernel algorithms. More-
over, in this example the SAXPY computation is performed using a dynamic load balancing
algorithm (dyn), splitting the workload in 128 packages, scheduled at runtime among the
devices (lines 3-4 of Listing 6). Finally,Coexecutor Runtime allows using oneAPI features and
extensions, integrated as part of the architecture of the runtime, presented in Section 5.2, or
exposed via API calls to the programmer, such as using unified shared memory by calling
the alloc and free methods of the runtime (shown in lines 7 and 14 of Listing 6). Taking
into account the runtime design principles as outlined in these two examples, theCoexecutor
Runtime hides all the implementation details, easing the use of its co-execution capabilities
to exploit easily any oneAPI program.

Since the philosophy of Coexecutor Runtime is closer to oneAPI and its SYCL API, the
level of abstraction is not so high as it is EngineCL compared with OpenCL. Here, it is de-
signed to be located in the scope of the program to be computed, favoring composition and
flexibility for all types of applications. Even so, more than 500 lines of SYCL code would be
needed to implement the specific behavior seen in Listing 4, computing SAXPY, one of the
simplest programs, and excluding other features such as support for shared memory, statis-
tics and execution information, an optimized architecture, a dynamic scheduling system or
the automatic incorporation of new devices, among others. Moreover, the more complex
the problem to be computed or the more different devices are used, the easier it is to use
CoexecutorRuntime with respect to a SYCL-based solution. This is because the kernel is a

149

5 Coexecutor Runtime

region of code practically invariant, since it encapsulates the application behavior, but all the
memory and execution operations, as well as devices, runtime and algorithmic management
will require considerable non-scalable programming efforts.

5.4 Methodology

The experiments to validate the Coexecutor Runtime [242, 392]1 have been carried out in
two nodes, labelled Desktop and DevCloud, defined in Section 1.7.1.

To accomplish the validation, 6 benchmarks have been selected, which represent both
regular and irregular behavior. These are Gaussian, MatMul, Taylor, Ray, Rap and Mandel-
brot, all detailed in Section 1.7.2. Additionally, NBody is included as a special case, since it
exposes a peculiar dynamic behavior to be exposed in Section 5.5.4. Table 5-1 presents the
problem sizes and number of work-items launched to verify the behavior of the runtime,
its co-execution capabilities and the validations performed with the chosen benchmarks.
The property data containers refers to the C++structures and buffers (not to be confused with
SYCL Buffers) that must be transferred to the devices, regardless of the memory transfer and
abstraction strategy chosen.

The validation of the proposal is done by analyzing the co-execution when using four
scheduling configurations in the heterogeneous system. As it is designed and summarized
in Section 5.2.3, but highly detailed in Section 2.2, Static, Dynamic and HGuided algorithms
are evaluated, labelled as St, Dyn and Hg, respectively. In addition, the dynamic scheduler
is configured to run with 5 and 200 packages. Finally, the two different memory models
presented in Section 2.1.3 have also been tested: Unified Shared Memory (USM) and SYCL
Buffers (Buffers).

To guarantee integrity of the results, 50 executions are performed per case with an ini-
tial execution discarded to avoid warm-up penalties. Since the GPU is on-chip and there
are hardware policies regarding frequency throttling due to temperature thresholds, some
decisions have been applied to stabilize results. First, CPU turboboost is disabled and CPU
governor is set to performance. CPU and GPU are set to 2400Mhz and 600Mhz fixed fre-
quencies, respectively. Finally, every execution starts when the CPU socket temperature is
under 38º. In DevCloud, where some of the previous conditions could not be applied, wait-
ing times have been introduced between executions, increasing the duration of the experi-
ments but stabilizing their measurements and results. The standard deviation is not shown
because it is negligible in all cases.

To evaluate the performance of the Co-executor Runtime and its load balancing algo-
rithms, the total response time, as well as the response time of each of the devices, are mea-
sured, including kernel computing and data transfer. Then, as it is exposed in Section 1.7.3,
three metrics are calculated: balancing efficiency, speedup and heterogeneous efficiency. The

1 https://github.com/oneAPI-scheduling/CoexecutorRuntime

150

5.5 Validation

Table 5-1: Memory usage and execution ranges for the benchmarks used to validate Coexecutor Runtime.

Property Gaussian MatMul Taylor Ray Rap Mandel NBody

Read:Write data containers 2:1 2:1 3:2 1:1 2:1 0:1 2:2

Work-items (N×105) 262 237 10 94 5 703 4

Mem. usage (MiB) 195 264 46 35 6 1072 26

baseline is performed with respect to a pure oneAPI solution using its host-device program-
ming model. Hence, Coexecutor Runtime is evaluated against the fastest device, which is the
GPU for all the cases studied.

Furthermore, a scalability analysis of the co-execution with respect to the problem size
is presented. To do this, the total execution time of the heterogeneous system using co-
execution and of each of the individual devices has been measured, increasing the size of
the problems.

Finally, two metrics have been used to assess the behavior of co-execution with respect to
energy. The energy consumption of the whole system is measured using RALP counters via
perf, providing measurements in Joules. On the other hand, the energy efficiency has been
calculated using the Energy-Delay Product (EDP) metric, defined in Section 1.7.3. Since the
values obtained have a very wide range, this metric is computed as a ratio with respect to
the EDP of the only-GPU execution, as it is shown in Equation 5-1:

𝐸𝐷𝑃𝑟𝑎𝑡𝑖𝑜 =
𝐸𝐷𝑃𝐺𝑃𝑈

𝐸𝐷𝑃𝑐𝑜−𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
(5-1)

5.5 Validation

This section presents the experimental results carried out to evaluate performance and en-
ergy of the Coexecutor Runtime, performing co-execution with three scheduling policies.
Also, a scalability analysis is performed for CPU, GPU and the best scheduling algorithm.
Finally, a special case is detailed when using dynamic approaches for the NBody benchmark.

5.5.1 Performance

The values measured in the experiments for the two different architectures evaluated, Desk-
top and DevCloud, are shown in Figures 5-4, 5-5 and 5-6, respectively. They are the bal-
ancing efficiency, speedup and heterogeneous efficiency achieved by co-execution in the
CPU-GPU system, with respect to the only-GPU execution.

The abscissa axes show the benchmarks, each one with four scheduling policies and two

151

5 Coexecutor Runtime

memory models, as defined in Section 5.4. Moreover, the geometric mean for each schedul-
ing policy is shown on the right side (average).

The main conclusion that is important to highlight is that co-execution is always profitable
from a performance point of view, as long as it is done with dynamic schedulers, and even
more if using unified shared memory (USM, explained in Section 2.1.3), as the geometric
mean summarizes for these benchmarks and scheduling configurations.

Regarding balancing efficiency, the optimal is 1.0, where both devices finish simultane-
ously without idle times. Any deviation from that value means more time to complete for one
device compared with the other. Generally, the imbalance is below 1.0 due to the overheads
introduced by the CPU because it has to process part of the workload as a device, but also to
manage the Coexecutor Runtime, as the host. In Desktop, it rarely completes its computation
workload before the GPU finishes, since the latter requires more resource management by
the host, increasing the CPU load. As the number of cores in the system increases, the man-
agement cost of the runtime is reduced, benefiting the CPU and requiring more work than
is allocated to it. This behavior can be appreciated when using the DevCloud node, with 12
logical cores, compared to 4 in Desktop.

Speedup allows assessing how much faster co-execution is compared to GPU-only exe-
cution, while heterogeneous efficiency helps understand how well the whole system is being
utilized. Therefore, the latter metric allows comparing performance on both architectures,
which cannot be done with speedup, as speedup in a heterogeneous system is always relative
to the computational power of each device.

Analyzing the different load balancing algorithms, it can be seen that the Static offers the
worst performance, even in regular applications where it should excel. This is because the
initial communication overhead caused by sending a large work package, leads to a signifi-
cant delay at the beginning of the execution, strongly penalizing the final performance. As
can be seen later in the Section 5.5.3, even in a single, full kernel offload to the GPU, consid-
erable CPU (host) management is required. Therefore, if CPU intensive is being performed
without the possibility of alternating runtime management with kernel computation, as is
the case with static co-execution, the whole system will generally be penalized. In theory,
this algorithm should cause less communication and synchronization overhead. However,
it fails to balance the workload properly, as can be seen in Figure 5-4, resulting in very low
speedups, with averages below or equal to 1.0 in both architectures, which means that co-
execution is not profitable.

Regarding dynamic algorithms, they provide good results in general, especially when the
USMmemory model is used. However, they have the drawback that the number of packages
for each benchmark has to be carefully selected. A very small number of packages can lead
higher imbalances causing a performance penalty, as can be seen in Gaussian, Mandelbrot
or Ray, in the case of Dyn5. At the other extreme, a very large number of packages increases
the communication overhead, impacting negatively on performance, as in Gaussian with

152

5.5 Validation

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

Gaussian Matmul Taylor Mandelbrot Rap Ray

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

geomean

St D
yn5

D
yn200

H
g

D
es
kt
op

0

0.3

0.6

1.0

1.3

1.6

2.0 Buffers

USM

D
ev
Cl
ou

d

0

0.3

0.6

1.0

1.3

1.6

2.0

Figure 5-4: Balancing efficiency for a set of benchmarks when doing CPU-GPU co-execution in Desktop
and DevCloud nodes.

Gaussian Matmul Taylor Mandelbrot Rap Ray geomean

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

0

0.5

1

1.5

2

2.5

D
es
kt
op

0

0.5

1

1.5

2

2.5

D
ev
Cl
ou

d

0

0.3

0.6

1

1.3

Buffers

USM

St D
yn5

D
yn200

H
g

0

0.3

0.6

1.0

1.3

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

Figure 5-5: Speedups for a set of benchmarks when doing CPU-GPU co-execution in Desktop and Dev-
Cloud nodes.

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

Gaussian Matmul Taylor Mandelbrot Rap Ray

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

geomean

D
es
kt
op

D
ev
Cl
ou

d

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

St D
yn5

D
yn200

H
g

0

0.2

0.4

0.6

0.8

1

Buffers

USM

Figure 5-6: Efficiency for a set of benchmarks when doing CPU-GPU co-execution in Desktop and Dev-
Cloud nodes.

Buffers. In between, there is a tendency that the greater the number of packages, the better
the balancing. Moreover, in such cases with good balancing efficiency, it achieves better
performance, especially if USM is used. This is an expected behavior because the packages

153

5 Coexecutor Runtime

are smaller and their computation is faster, giving less chance of imbalance in the completion
of both devices. This is an interesting behavior since the Coexecutor Runtime is delivering
high performance when using dynamic strategies due to the low overhead of theCommander
loop when managing packages and events. This behavior is also found and detailed in the
special case of NBody, explained later in Section 5.5.4.

The HGuided algorithm offers the best scheduling policy, both for regular and irregu-
lar kernels, and for the two architectures evaluated Desktop and DevCloud. This result is
achieved thanks to a combination of two properties. On the one hand, its excellent balanc-
ing efficiency, that in average is very close to 1, as can be seen in Figure 5-4. On the other
hand, the Co-executor Runtime does a great job in overlapping computation and commu-
nication, thus minimizing the impact of the synchronization and communication overhead
inherent to dynamic algorithms. For example, HGuided scheduled, on average, 42 and 53
packages for Mandelbrot and Ray, while the best dynamic configuration (Dyn200) used 200
packages for both cases. Although the balancing efficiency is good in both scheduling con-
figurations, the reduction of communications and synchronization mechanisms boosts the
HGuided strategy compared with the Dynamic one. HGuided yields the best performance
in all the analyzed benchmarks, with average speedup values of 1.65 and 1.26 in the Desktop
and DevCloud architectures, respectively. Therefore, the co-execution is able to squeeze the
maximum performance out of all the resources available in the system, such as the CPU and
GPU shown in this validation, offering an efficiency of 0.92 on Desktop and 0.89 on Dev-
Cloud. Moreover, since it is a dynamic algorithm with high balancing efficiency, it does not
require any a priori parameters, simplifying the programming effort.

These results show how the Coexecutor Runtime built on oneAPI technology is able to
overlap computation and communications very well, which has two consequences. In the
static algorithm, being limited by as many packets as devices, it cannot take advantage of
any overlap, penalizing co-execution. On the other hand, in dynamic algorithms, it has a
positive effect because the synchronization and communication overhead is greatly reduced,
by overlapping them with the computation. Thus, there is a clear advantage of dynamic
algorithms, which was not always the case with EngineCL and its OpenCL technology.

Considering the memory models, there is a general improvement in balancing and per-
formance when using USM compared with Buffers. It can be observed than USM performs
much better than Buffers, especially when dynamic strategies are being used and when large
memory transfers interfere. This is highlighted in those benchmarks that manipulate mul-
tiple memory containers, either Buffers or USM regions, with large amounts of data, as it
is detailed in Section 5.4. Splitting into many packages causes more management by the
abstract memory containers, the SYCL Buffers, which is alleviated by using shared mem-
ory optimizations, such as in Gaussian, Matmul or Mandelbrot. However, the HGuided
load balancer is so algorithmically efficient that it tends to alleviate the differences between
memory container types.

154

5.5 Validation

Finally, it is important to note that there is generally a tendency for good balancing effi-
ciency to be related with increased speedups. However, it is important to qualify this pattern,
since the validation presents two different architectures and an interesting variety of bench-
marks with distinct properties. For this reason, there are cases with imbalance issues, but
the total work is completed in less time, because the device that receives more work executes
faster. Thus, it achieves more throughput per packet, fewer synchronizations and communi-
cations, as well as less host management overheads, enhancing the total computation. This
behavior is observed in MatMul, Ray and Taylor for dynamic algorithms, specially in config-
urations that include too many packages (Dyn200), where there is an increase in host-device
communications. In such cases, the workload distribution and scheduling management can
penalize performance, especially if Buffer-type structures are being used instead of shared
memory optimizations (USM). This is also the main reason why HGuided excels since it
solves these problems.

5.5.2 Scalability

This section presents a scalability analysis of system Co-executor Runtime with HGuided,
the best load balancing algorithm determined in the previous section. To this aim, Figure 5-
7 shows the evolution of the execution time of each benchmark with respect to the size
of the problem, in different configurations: CPU-only, GPU-only and co-executing using
HGuided scheduler.

The most important conclusion to be drawn is that, in all the cases studied, there is a turn-
ing point from which co-execution improves the performance of the fastest device. For very
small problem sizes, the overhead introduced by the Co-executor Runtime cannot be com-
pensated by the performance increase provided by the co-execution. These points are more
noticeable in Gaussian, Mandelbrot, Ray and Taylor, because the differences in computing
capacity between CPUs and GPUs are much more pronounced (13.5x, 4.8x, 4.6x and 3.2x,
respectively).

Experiments have been done considering the memory models, but from a scalability
and representation point of view, it is difficult to discern the differences between USM and
Buffers. As reflected in Section 5.5.1, USM offers better efficiencies but both models show
similar trends. For this reason, only USM is represented to clarify the representation of
scalability and the impact of co-execution.

Matmul is a special case, since by increasing the size of the problem, a point is reached
where co-execution obtains the same performance as the GPU-only. A detailed analysis
of the hardware counters indicates how the LLC memory suffers constant invalidations be-
tween CPU and GPU. Temporary locality of the shared memory hierarchy is penalized when
co-executing with very large matrices, because the GPU requests memory blocks aggres-
sively. This does not occur in the other benchmarks, as there is no temporal locality. Since
the data is only used once, there are no conflict misses.

155

5 Coexecutor Runtime

2000 4000 6000
0

10k

20k

30k

40k

CPU Co-execution HGuidedGPU

0

10k

20k

30k

40k

500 1000

Problem size

1000 2000 3000 4000 5000
0

10k

20k

30k

40k
Time (s) Gaussian Matmul

1000 2000 3000 4000 5000
0

10k

20k

30k

40k

5k 10k 15k 20k
0

10k

20k

30k

40k
Mandelbrot Rap

200 400 600 800 1000
0

10k

20k

30k

40k
Ray

Taylor
D

ev
Cl

ou
d

D
es

kt
op

1000 2000 3000 4000
0

10k

20k

30k

40k

1000 2000 3000 4000 5000
0

10k

20k

30k

40k

500 1000
0

10k

20k

30k

40k

5k 10k
0

10k

20k

30k

40k

200 400 600 800 1000
0

10k

20k

30k

40k

1000 2000 3000 4000 5000
0

10k

20k

30k

40k

D
ev

Cl
ou

d
D

es
kt

op

Figure 5-7: Scalability for CPU, GPU and CPU-GPU coexecution using the Coexecutor runtime with its
HGuided scheduling policy and USMmemory model for Desktop and DevCloud nodes.

5.5.3 Energy

This section presents the analysis of the energy consumption as well as the energy efficiency
of the Desktop system, both when using only the CPU and the GPU, and with different

156

5.5 Validation

En
er

gy
 (J

)

Matmul

GPU
St Dyn5
Dyn200
Hg

0

10
0

20
0

30
0

40
0

50
0

0

25
0

50
0

75
0

10
00

12
50

Gaussian

GPU
St Dyn5
Dyn200
Hg

0

50
0

10
00

15
00

20
00

Mandelbrot

GPU
St Dyn5
Dyn200
Hg

0

10
0

20
0

30
0

40
0

50
0

Rap

GPU
St Dyn5
Dyn200
Hg

0

10
0

20
0

30
0

40
0

50
0

Ray

GPU
St Dyn5
Dyn200
Hg

0

70

14
0

21
0

28
0

35
0

Taylor

GPU
St Dyn5
Dyn200
Hg

0

10
0

20
0

30
0

40
0

50
0

geomean

CoresGPUUncore
DRAM Buffers USM

GPU
St Dyn5
Dyn200
Hg

Figure 5-8: Energy consumption by cores, GPU and the other units of the package with the DRAM con-
sumption for Desktop node.

0

1

2

3
Buffers

USM

En
er

gy
 E
ffi

ci
en

cy
(G

PU
/C

oe
xe

cu
tio

n)

geomean

St Dyn5
Dyn200
Hg

Gaussian

0

1

2

3

St Dyn5
Dyn200
Hg

Mandelbrot

St Dyn5
Dyn200
Hg

Rap

St Dyn5
Dyn200
Hg

Ray

St Dyn5
Dyn200
Hg

Matmul

St Dyn5
Dyn200
Hg

Taylor

St Dyn5
Dyn200
Hg

Figure 5-9: Energy Efficiency compared with GPU for Desktop node (more is better).

configurations of co-execution runtime. The DevCloud node does not offer any possibility
to measure power consumption, such as RAPL counters, perf events or any Intel system
tools. Therefore, this section focuses on analyzing the energy behavior of the Desktop node
when using the oneAPI Coexecutor Runtime.

Figure 5-8 presents the energy consumption, with each bar composed of up to three re-
gions representing the energy used by: the CPU cores, the GPU and the rest of the CPU
package together with the DRAM (uncore + dram).

Considering the average energy consumption, using only the GPU is the safest option to
ensure minimum energy consumption. This is because the energy savings achieved by the
reduction in execution time thanks to co-execution, is not enough to counteract the increase
in power consumption caused by the use of CPU cores. However, there are also benchmarks
such as Taylor and Rap where co-executing does improve energy consumption over GPU,
and others where co-execution and GPU-only have similar energy consumption, such as
MatMul. This is because the computational powers between the two devices are considerably
close, achieving very balanced distributions that result in efficient energy consumptions.
Taylor has a computational power ratio of 0.44 ∶ 0.56 (CPU and GPU), while Rap has a ratio
of 0.39 ∶ 0.61. The case of MatMul is particular as it is due to LLC sharing penalties, as it is
explained in Section 5.5.2.

Regarding the schedulers, there is a clear correlation between performance and energy

157

5 Coexecutor Runtime

consumption. Therefore, the algorithms that offer the best performance in co-execution are
also the ones that consume the least energy. On the contrary, the schedulers that cause a lot
of imbalance by giving more work to the CPU, spike the energy consumption, due to the
higher usage of CPU cores, like Gaussian and Mandelbrot with Dyn5, and RAP with Static.

An interesting behavior can be observed in MatMul. The balancing efficiency using dy-
namic algorithms is very close to 1.0 in all cases. However, the performance obtained is very
different using buffers than with USM. The explanation is found by analyzing the memory
power consumption results shown in Figure 5-8. It can be seen that the memory power
consumption (and therefore the memory usage) in the case of buffers is much higher than
in the case of USM. The memory power consumption results correlate perfectly with the
performance results. Also, Taylor presents a similar behavior.

Another very interesting metric is energy efficiency, which relates performance and en-
ergy consumption. In this case it is represented by the ratio of the Energy-Delay Product of
the GPU with respect to the co-execution, presented in Figure 5-9. Therefore, values higher
than 1.0 indicate that the co-execution is more energy efficient than the GPU.

Looking at the geometric mean, it can be concluded that co-execution is 72% more en-
ergy efficient than the GPU execution, using the HGuided scheduler and the USM memory
model. Furthermore, this metric is indeed favorable to co-execution in all benchmarks stud-
ied, reaching improvements of up to 2.8x in Taylor and RAP. Thus, while co-execution con-
sumes more energy in absolute terms on some benchmarks, the reduction in execution time
compensates for this extra consumption, resulting in a better performance-energy trade-off.

5.5.4 NBody Benchmark

NBody presents an outstanding behavior, and a detailed study of the characteristics of the
application, together with an evaluation of the throughputs, has highlighted the importance
of dynamic strategies. Figure 5-10 shows the speedups of the Coexecutor Runtime with re-
spect to the execution of a single package offloaded with the full problem size for a single
device (Single). It depicts the results when using a single device, the CPU and GPU indepen-
dently, for each supported memory model, when using different package distributions with
the Dynamic scheduler. Each of the graphs shows 6 configurations of the scheduler, with 5,
50, 100, 400, 800 and 1200 packages of the same size, all dynamically scheduled. In addi-
tion, there are four rows of graphs, showing the results for 4 different number of molecules
to compute in the NBody simulation, considering increasing problem sizes, from x1 to x4.

It can be contrasted how NBody offers an extraordinary behavior when using the dy-
namic strategy provided by Coexecutor Runtime. It generally yields higher speedups as the
number of packages and problem sizes increase, providing good scalability. However, when
using a very high number of packages, a turning point is reached and the speedup starts
to drop. This behavior occurs earlier when using Buffers than when using shared memory

158

5.5 Validation

Dyn100
Dyn400

Dyn800

Sp
ee

du
ps

 (S
in

gl
e/

D
yn

am
ic

)

CPU GPU

Buffers USM

Dyn5
Dyn50

Dyn100
Dyn400

Dyn800

0

10

20

30

0

5

10

15

0
2
4
6
8

0

0.5

1

1.5

Dyn1200

Dyn1200

Dyn5
Dyn50

0

20

40

0
10
20

0
5

10
15
20

0
0.5

1
1.5

2
Size x4

Size x3
Size x2

Size x1

30
40

60

Figure 5-10: NBody speedups when using single-device dynamic policies for a set of increasing problem
sizes. Baselines are single CPU or GPU execution per memory model.

USM. Additionally, the speedups obtained are not so good in the CPU compared with the
GPU, but on the other hand the difference between memory models is not as important
when using the CPU device. Moreover, in bigger problem sizes (Size x3, x4), larger package
configurations, such as Dyn400 or Dyn800, obtain even better speedups, especially on CPU.
Therefore, for these cases and depending on the problem size, the inflection point is at a
very large number of packages, with an amount in between Dyn800 and Dyn1200. Beyond
that point, many packages increase the communications penalization, degrading the overall
performance. Furthermore, even if management and synchronization have been increased,
the overhead is considerably reduced when using USM. The performance of NBody is ex-
cellent mainly due to three main factors: the characteristics of the kernel computation, the
heterogeneous architecture, and the efficiency of the runtime. As a result of this combina-
tion, the cost of computation and communication produced by each package launched is
very similar, so the computation-communication overlap helps to practically eliminate the
communication cost. In other benchmarks the ratio of computation to communication is
higher, so the overlap does not have as much impact. In addition, it is possible that the
implementation of DPC++ and the oneAPI extensions recognize the independency of the
data computation given by the multi-threaded architecture of Coexecutor Runtime, gener-
ating multiple command queues to transfer memory regions and perform parallel kernel
executions, overlapping computation and communication, as has been seen in Chapter 3
and many papers [93, 125, 126, 128, 381].

The results presented in this section are from the Desktop node, but similar behaviors are
found in the DevCloud server.

159

5 Coexecutor Runtime

5.6 Conclusions

This Chapter details the Coexecutor Runtime, facilitating the exploitation of heterogeneous
systems and providing co-execution to the novel oneAPI technology. As a result of this
work, several conclusions can be obtained regarding its design and architecture, as well as
behavioral aspects, thanks to the exhaustive experimental validation.

Intel oneAPI and its unified programming model, based on SYCL, is a powerful approach
to facilitate the programming of heterogeneous systems. Although initially limited to Intel
devices, it is gaining strong adoption among other manufacturers and devices. The exten-
sions provided, such as the possibility of exploiting unified shared memory (USM), give the
technology greater capabilities, enhancing its versatility. However, this technology does not
allow leveraging the devices of the heterogeneous system efficiently. For this reason, Coex-
ecutorRuntime is designed and implemented as an abstraction over the oneAPI technology,
with the objective of inheriting its advantageous features, and solving its drawbacks. In ad-
dition to enabling co-execution, a fundamental point is its API similar to SYCL. Thus, the
system is abstracted while facilitating its programmability in a style defined by the stan-
dard, while providing different levels of detail to define the co-execution of the problem.
This enables the reuse of programs and greater extensibility in the kernel code, improv-
ing the expressiveness when implementing applications. Another relevant point is that the
multi-threaded architecture has been designed with asynchrony and dynamic mechanisms
in mind, since the objective is to exploit the heterogeneous system in the best possible way.
Thanks to this strategies, it has been possible to implement load balancing algorithms effi-
ciently. Finally, the third factor to consider is that the runtime has mechanisms to guarantee
its extensibility without penalizing its API design, optimization efforts and the evolution of
the oneAPI capabilities, making it easy to adapt new features and extensions.

The most important conclusion drawn from the results is that co-execution is worthwhile
when using dynamic algorithms. The underlying technology is able to offer exceptional per-
formance by exploiting dynamic mechanisms, favoring a high computation-communication
overlap, with extreme cases such as the one shown in the NBody study. This conclusion is
further evidenced when using the HGuided algorithm, which offers the best dynamic be-
havior for Coexecutor Runtime, and the unified shared memory strategy. However, even if
USM is the most efficient strategy, the abstraction of the memory model with respect to the
scheduling system allows to exploit also SYCL Buffers with good co-execution results, pro-
moting compatibility with devices that do not support USM. It is important to note how the
benchmark is performed against the GPU, the fastest device, and yet it is worthwhile to use
the runtime and perform co-execution beyond an inflection point. This is generally located
in small problem sizes, as it is highlighted by the scalability analysis.

Considering the benchmarks studied, Coexecutor Runtime achieves an efficiency of 0.92
in Desktop and 0.89 in DevCloud, in addition to achieving 72% more energy efficiency than

160

5.6 Conclusions

when using only the GPU. All these results are achieved due to efficient synchronization,
architecture design decisions, computation and communication overlap, and the underlying
oneAPI technology and its DPC++ compiler and runtime. Finally, co-execution has been
validated with CPUs and integrated GPUs, but Coexecutor Runtime is also able of effortlessly
exploit other types of architectures that will be incorporated into oneAPI.

161

Conclusions & FutureWork 6
CHAPTER

Conclusions & FutureWork

Trends in recent years are demonstrating how the ubiquity of heterogeneous sys-

tems is key to exploiting all kinds of computational problems, from the most ambi-

tious ones with large data volumes and in HPC environments, through specific accel-

erations in embedded devices, to commercial applications and cloud service servers.

However, current programming models require portability and integration efforts, pe-

nalizing usability, all while not squeezing the full efficiency of these massively parallel

systems. This dissertation proposes the development of heterogeneous runtimes with

a simplified API to facilitate programmability and improve the performance and en-

ergy efficiency of these systems. For that purpose, it draws on current trends and de

facto standards, performing abstractions and optimizations on these technologies. The

two proposals made, EngineCL and CoexecutorRuntime, take different approaches in

the resolution of the objectives. The first one offers a flexible engine with maximum

compatibility between architectures, centered on OpenCL and with an API provid-

ing a very high level of abstraction, offering a runtime decoupled from the application

domain. The second focuses on offering a solution as close as possible to the compu-

tational problem, providing an architecture close to C++ and SYCL, with co-execution

capabilities through an API compatible with oneAPI technology. Finally, two inte-

grations made with one of the designed engines are adapted and evaluated by applying

and extending it to two situations for which it was not originally designed. This chapter

highlights the most important conclusions of the work done in this PhD, synthesized

and grouped in the three previous chapters. In addition, multiple lines of future work

are outlined, both general and specific, as a result of the research and contributions

presented.

Chapter contents

♦ Abstract . 165

6.1 Conclusions . 167

6.2 Future Work . 170

6.1 Conclusions

6.1 Conclusions

The popularity of massively parallel systems, and especially heterogeneous computing, is
driven by their excellent capabilities, particularly their performance and energy efficiency.
The diversity of computationally intensive and data-intensive problems continues to grow,
so a future with even greater heterogeneity is inevitable. As a result of this constant demand,
more and more specialized and innovative architectures are emerging, including all kinds
of on-chip units and external accelerators. However, this brings a multitude of challenges
from the software perspective, as programming becomes radically more complicated. The
host-device accelerator offloading model is limited by both low architectural scalability and
usability, as it under-utilizes existing devices and wastes power, especially on the host. Ex-
ecution models focus on task-based parallelism to make it easier for programmers to use
accelerators, since they assign a coarse-grained task per accelerator. However, they require
manual adaptation efforts and do not fully exploit system resources, as it is often data paral-
lelism which facilitates the exploitation of these devices. Co-execution strategies are useful
to squeeze the potential of heterogeneous systems, but are not supported by existing frame-
works, requiring the programmer to perform a manual transformation of the applications,
incurring in high engineering efforts that may lead to errors or low optimization.

This dissertation presents several contributions focused on enabling and optimizing co-
execution in heterogeneous systems, relieving the programmer and promoting high usabil-
ity. The main approach to solving these problems is through the conception of runtimes that
abstract the underlying systems, orchestrate all operations with existing devices and facilitate
performance portability. Furthermore, scheduling strategies and load balancing algorithms
are incorporated, evaluated and optimized to efficiently execute the problems to be solved.
The approach of the proposals is always multi-objective, trying to squeeze the maximum
performance and energy efficiency not only avoiding penalizing the usability, but improv-
ing it. The programmer will be able to generate maintainable, extensible and portable code,
making implementations built independently of the heterogeneous systems used. The pur-
pose is to take advantage of all available computing devices to solve tasks in a cooperative
way. Moreover, the efforts elaborated here have contributed to any further evolution and
maintainability, with special emphasis on runtime extensibility. The incorporation of future
accelerators and even variations of their low-level APIs should be a simple task thanks to the
modular design, flexible architecture and encapsulation principles, as demonstrated by the
various integrations and other external work. The aim is to make good use of existing ar-
chitectures and programming models, but also to prepare for future technological changes.
Therefore, this dissertation addresses these objectives by making contributions grouped in
three blocks.

First, the EngineCL runtime is proposed as a flexible and portable solution for hetero-
geneous systems, focusing on improving the programmability of OpenCL technology. The

167

6 Conclusions & FutureWork

design principles underlying the resulting architecture and API are usability and perfor-
mance, thereby also improving its energy efficiency. Thanks to the practices carried out on
top of the OpenCL technology, it is possible to comfortably exploit all the devices of a hetero-
geneous system, thanks to the compatibility not only between different manufacturers but
also between existing driver versions and architectures. Since it has a layered design based
on software architecture practices, its maintainability and extensibility excels, as it has been
verified both in the software engineering metrics and in the integrations presented in Chap-
ter 3. One of the fundamental advantages of the runtime is its abstraction, encapsulating
the execution core and decoupling the problem domain, thus allowing the isolation of the
algorithmic and hardware optimization fundamentals of the problem to be solved. More-
over, this modularity has been especially exploited by incorporating a pluggable scheduling
system that has made it possible to squeeze the performance of the heterogeneous system
with various load balancing algorithms. Validation has been exhaustive, considering two
fronts, programmability and performance. EngineCL has been compared with OpenCL in
a counterproductive situation for the former proposal, since only a single device offloading is
used for the comparison, without exploiting all the existing capabilities. Even so, regarding
the worst cases found per device for all benchmarks studied, the average overhead is around
1.3%, with the maximum found being 2.8%. The runtime scaled well as the problem size and
execution duration increased, with a decreasing tendency towards negligible overheads. As
for usability, it improves significantly in all the metrics analyzed, reaching extreme cases of
up to 21 and 8.5 times better on average, considering error control or operational complex-
ity, respectively. Maintainability improves even more as the number and type of devices in
the system increased, standing out over a pure execution based only on OpenCL. Further-
more, the validation on two heterogeneous systems, one HPC and one commodity, with 6
different architectures, obtained remarkable results with average efficiencies of 0.89 and 0.82,
respectively. Finally, considering the energy validation, EngineCL reached improvements of
up to 1.6 times better than the most energy efficient device. The co-execution achieved, on
average, 1.36 and 1.39 times better energy efficiency than the GPU for regular and irregular
problems, respectively. In short, the runtime is able to take advantage of all existing archi-
tectures without effort for the programmer, while achieving high performance, good energy
efficiencies and low overhead compared with OpenCL.

Secondly, EngineCL is extended for two different application scenarios, making integra-
tions for time-constrained executions and also in the exploitation of a molecular dynamics
simulator where the code was hand-optimized for CPUs and OpenCL cannot be competi-
tive against it. One of the clearest conclusions is the versatility of the designed runtime, and
how it can be adapted comfortably to situations for which it was not initially designed.

The integration performed in a commodity node as a service server performs optimiza-
tions to be competitive in the execution of kernels of short duration. The architectural ap-
proach focuses on optimizing the initial stages of the runtime, parallelizing the configura-

168

6.1 Conclusions

tion stages, reusing OpenCL primitives and optimizing data management, so as to lighten
the overhead of using a management infrastructure. On the other hand, the exploration
and tuning of parameter values of the best used load balancing algorithm has been per-
formed.The optimization of the runtime together with parameter tuning results in a schedul-
ing combination that is always the most efficient, obtaining averages of 0.84 for the applica-
tions studied. This contribution reduces the inflection point from which it is advantageous
to perform co-execution, bringing heterogeneous systems closer to these initially counter-
productive computations.

On the other hand, the second integration solves a performance degradation encoun-
tered when using OpenCL technology in the computation of molecular dynamics kernels,
as part of the ls1-MarDyn simulator. The runtime architecture is extended, incorporating a
new CPU-native execution core and hybrid co-execution capabilities, allowing to efficiently
exploit the heterogeneous system. This contribution delves into the exploration of combi-
nations of heterogeneous programming models, amplifying their potential for exploitation
and preventing the programmer from being aware of the internal management complexity.
The validation and experimental results highlight several conclusions, such as the impor-
tance of having diverse scheduling algorithms to better squeeze the variety of problems, the
importance of a lightweight but flexible arquitecture with efficient mechanisms, and how
the new native execution kernel achieves comparable performance to the highly optimized
version developed and used for years. Furthermore, considering the complete heteroge-
neous system, better performance and energy efficiency are achieved than with the current
mechanism, with improvement averages of 1.38x and 1.60x, respectively.

Finally, thanks to the new Intel oneAPI technology, CoexecutorRuntime is conceived and
built to facilitate the exploitation of heterogeneous architectures from a modern program-
ming perspective based on C++ and SYCL. The proposal provides a design close to the prob-
lem domain and with an oneAPI-compatible programming interface, combining ease of use
with the extensions of this technology. The principle of a single source code and the versatil-
ity of C++ in the definition of operations and its architecture are preserved, thus facilitating
its modification and extension. The limitation of oneAPI with respect to co-execution has
been overcome thanks to the incorporation of a multi-threaded asynchronous architecture
that exploits the simultaneous execution of devices, benefiting from the potential of dynamic
strategies and implementing various load balancing algorithms. The proposal has been val-
idated in terms of performance, energy efficiency and scalability, to verify the behavior in
the face of regular and irregular problems, since the possibility of using dynamic scheduling
mechanisms were previously non-existent. Experimental results show how the runtime is es-
pecially advantageous when using a dynamic load balancing algorithm and exploiting shared
memory optimization. The validation on two heterogeneous machines, a commodity node
and an HPC node, reached average efficiencies of 0.92 and 0.89, respectively. Moreover, the
more balanced the computational powers of the devices used are, the faster they take advan-

169

6 Conclusions & FutureWork

tage of co-execution, scaling appropriately as the problem size increases and achieving better
energy efficiencies. The exhaustive study and evaluation of the oneAPI technology and its
DPC++ compiler during the conception of the runtime has led to an efficient synchroniza-
tion, allowing computation-communication overlap and highlighting the good behavior of
CoexecutorRuntime when using dynamic algorithms.

The contributions presented herein led to the conclusion that the initial hypothesis has
been verified. The runtimes developed effectively improve initially competing objectives.
On the one hand, enhancing those related to the efficiency of heterogeneous systems, such
as performance, scalability and energy efficiency. On the other hand, alleviating the chal-
lenges regarding compatibility, programmability and maintainability of these architectures
and systems, simplifying the effort required to exploit them properly.

A fundamental factor of these proposals is the interest aroused in the community, as well
as their applicability and effective extensibility, materializing in other external works and
integrations. Both EngineCL and CoexecutorRuntime have been extended by another re-
search group, adapting the runtimes to leverage architectures such as FPGAs, further im-
proving the exploitation of such heterogeneous systems effortlessly.

6.2 FutureWork

This dissertation has managed to advance in the proposed objectives, obtaining tangible re-
sults both in terms of programmability and performance and energy efficiency, but the ex-
ploratory path continues. It is an ambitious problem on which a multitude of scientists and
professionals, from academia to industry, have been generating proposals and contributions
for years. There are many approaches to this problem, including architectural solutions, pro-
gramming models and abstraction frameworks, but ultimately, they all nourish each other,
converging and building progressively better solutions.

Three main research fronts can be distinguished on the basis of this thesis:

◼ Combination of runtime systems, technologies and models. Considering the two en-
gines designed, a combined solution between both proposals could be conceived and
exploited, with the best of each of them: the compatibility and usability provided by
EngineCL together with the flexibility and easy adaptability of CoexecutorRuntime.
This front is wide because the diversity is huge, but ambitious explorations can result
in really good approaches. It is important to explore new proposals and extensions,
both of previous runtimes and new technologies, introducing the most relevant ones
in order to build integral solutions as versatile as possible. As it has been seen in Chap-
ter 5 with the case of oneAPI, the initial limitation in architectures of a single vendor
is soon overcome, becoming a new heterogeneous computing framework applicable
to many architectures. Without sufficient hatching and combination of possibilities,

170

6.2 FutureWork

it does not generate traction and adoption, generating new innovations. Hybrid pro-
gramming models are the prelude to new languages and the incorporation of func-
tionalities in existing runtimes.

◼ Scheduling algorithms. Just as the designed runtimes have achieved very high efficien-
cies, they still have room for improvement. Architectural and software optimization
solutions have been key to exploit the variety of architectures, systems and problems
shown, but there is still a niche for enhancement, especially as the types of devices and
their specialized capabilities continue to grow. On the one hand, contrasted with the
evaluations performed on the different proposed runtimes, load balancing algorithms
are not decoupled from the implementations. Thus, it is important to elaborate pro-
posals considering their runtimes and execution technologies from the very concep-
tion, empirically validated and not being considered as purely theoretical algorithms.
Moreover, algorithms have traditionally been focused on performance maximization,
but other objectives could be considered, such as lower energy consumption or higher
energy efficiency. It is also possible to optimize the best utilization of specialized de-
vices and their available units, avoiding hogging all their resources if they are not
going to be exploited. Additionally, some proposals can include greater efficiency in
obtaining suitable results, something of vital importance in current computations in
fields such as deep learning, visual or signal processing, where precision may not be
as important as a compromise between accuracy-error and throughput.

◼ Heterogeneous inter- and intra-node computing. A field with great impact is to lever-
age the proposals built by amplifying their scope of application, raising the potential of
exploitation by being extended to heterogeneous clusters. The integration performed
between hybrid programming models and the extension of execution cores outline the
first steps in this path, albeit limited to a single node. The runtime should be extended
to enable replication between nodes, increasing communication and load distribu-
tion capabilities, while exploiting hybrid computing patterns with well-established
distributed computing technologies, such as MPI or even PGAS. This end-to-end
execution solution could be approached by considering internally all technologies,
frameworks and languages involved, managed by itself as encapsulated parts. In such
case, it facilitates establishing high level optimizations and patterns, relieving the pro-
grammer from complex decisions. Additionally, two types of scheduling algorithms
could be considered, those that distribute the work between nodes, and those that
do it within the node, each one attending to different considerations to squeeze the
maximum out of the set of distributed nodes.

In view of the proposals presented, the details of their design and the experimental results,
more specific future works are emphasized:

171

6 Conclusions & FutureWork

◼ Support for problems based on other execution types. Provide both EngineCL and Co-
executorRuntime with support for problems that require execution modes other than
those based on data-parallel iterations, such as multi-kernel executions, streaming
processes or iterative problems. The execution of applications with different compu-
tational functions can be found in deep learning training, bioinformatics or in the
application of filters and pattern recognition, among others. Stream-based comput-
ing, usually binary data flows, generally involves the entire spectrum of stream, signal,
video, audio and communications processing. Finally, iterative computations are typ-
ical in all types of simulators, where each epoch solves a series of stages, drawing on
information solved in previous epochs.

◼ Expand the type of devices evaluated and exploited. The diversity of existing devices
is immense, and for this reason, there is a great deal of scope for study and experi-
mentation. On the one hand, there are specific accelerators for neural, visual, signal
or even pattern processing. These devices can be integrated into the runtimes, either
by means of an appropriate driver (OpenCL), or by encapsulation and native incor-
poration, as has been done in the Chapter 4 on hybrid paradigm integrations. On
the other hand, CoexecutorRuntime has been evaluated only with Intel architectures,
due to its current support with oneAPI technology. However, there are devices from
other manufacturers that could be integrated and evaluated. For instance, evalua-
tion of neural and visual acceleration devices such as Intel Compute Stick, AMD Navi
RDNA and Intel Xe discrete GPUs, as well as A311D heterogeneous SoCs are some of
the architectures that are beginning to be explored, in addition to ongoing work with
FPGAs.

◼ Broaden heterogeneous computing platforms and nodes. Commodity and HPC nodes
have been the focus so far, but embedded platforms and SoCs have yet to be addressed.
There are low-power computers that offer processors with special neural and vector
processing units, GPUs integrated on-chip and digital and visual signal coprocessors,
as well as NVME technology and access to ports where specific accelerator sticks can
be attached. This heterogeneous amalgam enables a myriad of possibilities, where the
challenges seen in the integration Chapter for time-limited scenarios will be empha-
sized. However, low-power units that are efficiently exploited and take advantage of
all specialized resources represent a breakthrough for energy saving, distributed edge
computing and IoT, such as autonomous vehicles and drones, forced to do energy-
efficient in-situ computations. Nevertheless, EngineCL has already been integrated
and has support for exploiting both embedded mobile SoCs, running Android and
Linux, and heterogeneous commodity nodes running Microsoft Windows. It cur-
rently has multi-platform support, being adapted to work with .NET and NDK, en-
abling the use of Microsoft Visual C++ runtime and Java Native Interface (JNI). How-

172

6.2 FutureWork

ever, it is still necessary to evaluate performance and exploit real applications used in
such systems, from 3D graphic modeling and rendering, to trading algorithms and
crypto-mining, as well as mobile IoT processing and inference acceleration tools.

◼ Support for distributed computing, both clusters and service servers. Both EngineCL
and CoexecutorRuntime can be encapsulated and used as load balancing manage-
ment runtimes within the node, once distributed by consolidated technologies. These
technologies can be either MPI, focusing on the message-passing paradigm, PGAS
languages for the distribution of data structures and objects, or virtual machine run-
times specialized in service orchestration, such as the Erlang BEAM. However, this
exploratory space not only contemplates the optimization of inter-process communi-
cations and memory sharing, but also the possibility of incorporating these technolo-
gies as an integral solution, so that EngineCL or CoexecutorRuntime are the orches-
trators of the entire heterogeneous cluster.

◼ Dynamic scheduling algorithms specifically designed for CoexecutorRuntime. The excel-
lent capabilities of this runtime and its asynchronous architecture have demonstrated
a very efficient behavior for dynamic mechanisms, discovering exceptional peculiar-
ities when faced with some kind of patterns. A dynamic algorithm expressly created
for this runtime could benefit from such behaviors, provided that these cases are an-
alyzed and generalized to be properly exploited.

◼ Dynamic scheduling algorithms that take into account the characteristics of architec-
tures. EngineCL provides a unique architecture that allows to comfortably extend
scheduling algorithms, in addition to offering a very large compatibility by supporting
hybrid computing thanks to its native execution cores and OpenCL. Load balancing
algorithms could be created to exploit all this diversity, considering different optimiza-
tion criteria and the types of architectures present. EngineCL is a runtime that has the
advantage of being able to validate itself against a multitude of architectures, and for
this reason, it is a good framework to exploit different lines of optimization. Load bal-
ancing algorithms can consider not only performance and energy efficiency, but also
the correct use of the resources present and the occupancy of their units. For example,
after a learning phase, divide workload types based on architectures with more vector
units, those with neural processors and those with more versatility in the divergence
of conditions, such as architectures exploiting branch predictors and multiple layers
in the memory hierarchy. In short, facilitating the workload to be distributed in the
best way among the existing devices.

◼ Exploitation of other accelerators in the ls1-MarDyn simulator. Modern and powerful
multi-cores and other architectures with multiple vector units can be interesting in
processing problems where CPUs have excelled with respect to other accelerators, as

173

6 Conclusions & FutureWork

seen in the integration in the ls1-MarDyn simulator. For instance, it will be interesting
evaluating the NEC SX-Aurora TSUBASA vector engine coprocessor with up to 10
cores per processor, the next Intel Shappire Rapids with up to 56 cores, as well as the
AMD Epyc Genoa and Ryzen Threadripper CPUs, having up to 96 cores. With the
extension of the runtime and its new processing modes, it is now possible to exploit
hybrid co-execution with diverse technologies.

◼ Runtime integration strategies. The incorporation of runtimes and heterogeneous pro-
gramming models in real applications is far from trivial. For this reason, techniques
can be devised to address the study of bottlenecks, technology porting, architectural
transformation and incorporation of proposals that improve usability and perfor-
mance. Besides, as a result of these studies, innovative solutions can be developed
that exploit techniques to improve throughput or device utilization, with the conse-
quent improvement in performance. Some of these techniques could involve data
compaction and serialization to objects that exploit texture units, device code porta-
bility tools with support for pointer indirections in data structures or the adaptation of
kernels to higher level programming models (OpenCL C++) with support for features
used in real-world applications.

◼ Exploiting heterogeneity in modern languages. This dissertation has approached the
problem from an industrial perspective, where traditionally most applications that
exploit massively parallel computing are built in C++, with its advantages and disad-
vantages. However, there are multiple languages among which Rust or Julia stand out,
which are increasingly adopted and may become a significant industrial alternative in
a few years. These languages provide the software with other guarantees, both in terms
of security and determinism, as well as maintainability and performance. Some of
them even offer abstractions to use technologies such as OpenCL, but they are still far
from being complete solutions that enable effortless co-execution. For this reason, the
goal could be both to provide wrappers and interfaces to reuse the runtimes proposed
here, as well as to enable these languages with these capabilities without incurring in
foreign-function interfaces (FFI), bindings and external languages. Nevertheless, the
impact of accelerating bottleneck regions in languages that are not as computationally
efficient, but which are much more popular in all kinds of domains, should not be un-
derestimated. Service servers with millions of monthly requests worldwide can ben-
efit from the exploitation of the technologies and runtimes designed through the use
of connectors, such as Erlang Ports, PHP extensions or FFIs for Node.js and Python,
among others.

◼ Include new execution cores in EngineCL. There are other technologies with great pop-
ularity in the market, such as CUDA for Nvidia devices, and some more restricted
ones, such as ROCm for some of the latest AMD generations or HiP for several models

174

6.2 FutureWork

of AMD and Nvidia GPUs. However, their usefulness and efficiency is demonstrated
by the number of jobs and industries using these technologies. Hence, as it has been
carried out in the extension for hybrid models, a new execution core can be included
to support them, extending the portability of existing programs and obtaining an in-
crease in efficiency by extending the hybrid co-execution.

◼ Extension of real-world applications and benchmarks. The diversity of characteristics
of the benchmarks used is substantial, but new applications comprising other patterns,
primitives or extensions of the technologies explored could continue to be incorpo-
rated. This is important to validate both runtimes, algorithmic proposals and future
integral solutions, so it is important to have a sufficient repertoire. Furthermore, the
work done on the ls1-MarDyn simulator shows the inherent complexity of using real
applications and integrative efforts, but it further consolidates the proposals gener-
ated. For this reason, it is important to expand the programs used by incorporating
real-world softwares, presenting a clear benefit to industrial or scientific applications
that are currently in use. Using this approach, HPC applications used in industry
and research centers can be addressed, from astrophysics and molecular dynamics to
fire prediction, as well as general applications used by hundreds of thousands of users
worldwide, including geographic information systems procedures, rendering engines,
or multimedia processors and converters, among others.

In conclusion, the optimization of performance and energy efficiency in massively parallel
systems is an open problem, as it is a relevant and impactful, but complex and multi-objective
issue, necessarily having to be approached from multiple perspectives.

175

Publications and Contributions

The research presented in this PhD thesis is supported or highly related with the following
publications, all obtained during the quest to accomplish the PhD.

Journals:

⧫ R. Nozal and J. L. Bosque, “Straightforward Heterogeneous Computing with the
oneAPI Coexecutor Runtime”, Electronics, vol. 10, no. 19:2386. Sep. 2021. [JCR
Q2; 125/266].

⧫ R. Nozal, J. L. Bosque, and R. Beivide, “EngineCL: Usability and Performance in Het-
erogeneous Computing”, Future Generation Computer Systems, vol. 107, no. C, pp.
522–537, Jun. 2020. [JCR Q1; 7/110].

⧫ M. A. Dávila Guzmán, R. Nozal, R. Gran Tejero, M. Villarroya-Gaudó, D. Suárez Gra-
cia, and J. L. Bosque, “Cooperative CPU, GPU, and FPGA heterogeneous execution
with EngineCL”, The Journal of Supercomputing, vol. 75, no. 3, pp. 1732–1746, Mar.
2019. [JCR Q2; 24/53].

⧫ R. Nozal, B. Perez, J. L. Bosque, and R. Beivide, “Load Balancing in a Heterogeneous
World: CPU-Xeon Phi co-execution of data-parallel kernels”, The Journal of Super-
computing, vol. 75, no. 3, pp. 1123–1136, Feb. 2019. [JCR Q2; 24/53].

Peer-reviewed conferences and workshops:

⧫ R. Nozal and J. L. Bosque, “Exploiting Co-execution with oneAPI: Heterogeneity from
a Modern Perspective”, 27th International European Conference on Parallel and Dis-
tributed Computing (Euro-Par 2021: Parallel Processing), L. Sousa, N. Roma, and P.
Tomás, Eds., Cham: Springer International Publishing, pp. 501–516. Lisbon, Portu-
gal. Apr. 2021. Presented Sep. 2021. [GII CoRE A- (Idx 2018)].

⧫ R. Nozal, C. Niethammer, J. Gracia, and J. L. Bosque, “Feasibility study of Molecular
Dynamics kernels exploitation using EngineCL”, 19th International Workshop on Al-
gorithms, Models and Tools for Parallel Computing on Heterogeneous Platforms (Het-
eroPar’2021), Euro-Par 2021: Parallel Processing Workshops. Lisbon, Portugal. Apr.
2021. Presented Aug. 2021.

177

https://doi.org/10.3390/electronics10192386
https://doi.org/10.3390/electronics10192386
https://doi.org/10.1016/j.future.2020.02.016
https://doi.org/10.1007/s11227-019-02768-y
https://doi.org/10.1007/s11227-018-2318-5
https://dx.doi.org/10.1109/HPCS48598.2019.9188188

Publications and Contributions

⧫ R. Nozal, J. L. Bosque, and R. Beivide, “Towards Co-execution on Commodity Het-
erogeneous Systems: Optimizations for time-constrained scenarios”, 2019 Interna-
tional Conference on High Performance Computing & Simulation (HPCS), IEEE, pp.
628–635, Dublin, Ireland. May 2019. Presented Jul. 2019. [GII CoRE B (Idx 2018)].

⧫ R. Nozal and J. L. Bosque, “EngineCL as a high performance runtime system for het-
erogeneous computing”, Programmability and Architectures for Heterogeneous Multi-
cores, Int. Workshop MULTIPROG-2019. European Network of Excellence on High
Performance and Empedded Architecture and Compilation (HIPEAC 2019). Valencia,
Spain. Dec 2018. Presented Jan. 2019.

⧫ M. A. Dávila-Guzmán, R. Nozal, R. Gran, M. Villaroya-Gaudó, D. Suárez, and J. L.
Bosque, “First steps towards CPU, GPU, and FPGA parallel execution with EngineCL”,
Proc. 18th Int. Conf. Comput. Math. Method Sci. Eng. C. (CMMSE). Cádiz, Spain.
May 2018.

⧫ R. Nozal, B. Pérez, and J. L. Bosque, “Towards co-execution of massive data-parallel
opencl kernels on CPU and Intel Xeon Phi”, Proc. 17th Int. Conf. Comput. Math.
Methods Sci. Eng. (CMMSE), pp. 1561–1572. Cádiz, Spain. May 2017. Presented Jul.
2017.

Other presentations at conferences, workshops and industrial events:

⧫ R. Nozal and J. L. Bosque, “Towards an efficient adaptive load balancing algorithm for
heterogeneous computing”, Int. Conf. Comput. Math. Methods Sci. Eng. and Conf.
on High Performance Computing (CMMSE and CHPC 2021). Cádiz, Spain. Jul. 2021.

⧫ R. Nozal and J. L. Bosque, “Towards high-level heterogeneous co-execution via
oneAPI (Hacia la co-ejecución heterogénea de alto nivel con oneAPI)”, XXXI Jor-
nadas de Paralelismo (JP2021), Sociedad deArquitectura yTecnología deComputadores
(SARTECO). Málaga, Spain. Sep. 2021.

⧫ R. Nozal and J. L. Bosque, “EngineCL: Usability and Performance in Heterogeneous
Computing (EngineCL: usabilidad y rendimiento en computación heterogénea)”, XXX
Jornadas de Paralelismo (JP2019), Sociedad de Arquitectura y Tecnología de Computa-
dores (SARTECO). Cáceres, Spain. Sep. 2019.

Open source software:

⧫ R. Nozal, “Coexecutor Runtime”, C++/SYCL Heterogeneous Runtime using the
oneAPI technology, promoting a compatible and extensible API and exploiting dy-
namic policies. Author. Free open-source repository at https://github.com/oneAPI-
scheduling/CoexecutorRuntime.

178

https://dx.doi.org/10.1109/HPCS48598.2019.9188188
https://github.com/oneAPI-scheduling/CoexecutorRuntime
https://github.com/oneAPI-scheduling/CoexecutorRuntime

⧫ R. Nozal, “EngineCL”, C++ Heterogeneous Runtime focusing on usability and per-
formance, powered mainly by the OpenCL technology, offering a high level API
with a flexible and efficient architecture. Author. Free open-source repository at
https://github.com/EngineCL/EngineCL.

⧫ E. Stafford, B. Pérez and R. Nozal, “Sauna”, C tool to measure energy consumption of
CPUs, GPUs and XeonPhi. Contributor (XeonPhi, AMD GPUs, sysfs devices). Free
open-source repository at https://github.com/esteban-stafford/sauna.

The following publication is out of the scope of this dissertation but was performed during
the same period:

⧫ J. Larruskain, D. Celorrio, I. Barrio, A. Odriozola, S. M. Gil, J. R. Fernandez-Lopez,
R. Nozal, I. Ortuzar, J. A. Lekue, and J. M. Aznar, “Genetic variants and hamstring
injury in soccer: An association and validation study”, Medicine and science in sports
and exercise, vol. 50, no. 2, pp. 361–368, 2018. [JCR Q1]

179

https://github.com/EngineCL/EngineCL
https://github.com/esteban-stafford/sauna
https://doi.org/10.1249/mss.0000000000001434

Bibliography

[1] Gordon E Moore et al. Cramming more components onto integrated circuits. 1965 (see p. 5)

[2] Robert H Dennard, Fritz H Gaensslen, Hwa-Nien Yu, V Leo Rideout, Ernest Bassous, and
Andre R LeBlanc. “Design of ion-implanted MOSFET’s with very small physical dimen-
sions.” In: IEEE Journal of Solid-State Circuits 9.5 (1974), pp. 256–268 (see p. 5)

[3] Tse-Yu Yeh and Yale N Patt. “A comprehensive instruction fetch mechanism for a processor
supporting speculative execution.” In: ACM SIGMICRO Newsletter 23.1-2 (1992), pp. 129–
139 (see p. 5)

[4] Harry Dwyer and Hwa C Torng. “An out-of-order superscalar processor with speculative ex-
ecution and fast, precise interrupts.” In: ACM SIGMICRONewsletter 23.1-2 (1992), pp. 272–
281 (see p. 5)

[5] Pradeep K Dubey and Michael J Flynn. “Optimal pipelining.” In: Journal of Parallel and
Distributed Computing 8.1 (1990), pp. 10–19 (see p. 5)

[6] Kazuaki Murakami, Naohiko Irie, and Shinji Tomita. “SIMP (Single Instruction stream/-
Multiple instruction Pipelining): A novel high-speed single-processor architecture.” In:
ACM SIGARCH Computer Architecture News 17.3 (1989), pp. 78–85 (see p. 5)

[7] Mike Johnson. Superscalar multiprocessor design. Prentice-Hall, Inc., 1991 (see p. 5)

[8] Norman P Jouppi and David W Wall. “Available instruction-level parallelism for superscalar
and superpipelined machines.” In:ACMSIGARCHComputer Architecture News 17.2 (1989),
pp. 272–282 (see p. 5)

[9] Dean M Tullsen, Susan J Eggers, and Henry M Levy. “Simultaneous multithreading: Maxi-
mizing on-chip parallelism.” In: Proceedings of the 22nd annual international symposium on
Computer architecture. 1995, pp. 392–403 (see p. 5)

[10] Jack L Lo, Joel S Emer, Henry M Levy, Rebecca L Stamm, Dean M Tullsen, and Susan J Eg-
gers. “Converting thread-level parallelism to instruction-level parallelism via simultaneous
multithreading.” In: ACM Transactions on Computer Systems (TOCS) 15.3 (1997), pp. 322–
354 (see p. 5)

[11] Herb Sutter et al. “The free lunch is over: A fundamental turn toward concurrency in soft-
ware.” In: Dr. Dobb’s journal 30.3 (2005), pp. 202–210 (see p. 5)

[12] Nian Liu, Jinyu Gu, Dahai Tang, Kenli Li, Binyu Zang, and Haibo Chen. “Asymmetry-aware
Scalable Locking.” In: arXiv preprint arXiv:2108.03355 (2021) (see p. 5)

181

Bibliography

[13] Amit Kumar Singh, Alok Prakash, Karunakar Reddy Basireddy, Geoff V Merrett, and Bashir
M Al-Hashimi. “Energy-efficient run-time mapping and thread partitioning of concurrent
OpenCL applications on CPU-GPU MPSoCs.” In: ACM Transactions on Embedded Com-
puting Systems (TECS) 16.5s (2017), pp. 1–22 (see p. 5)

[14] Ananya Muddukrishna, Peter A Jonsson, and Mats Brorsson. “Locality-aware task schedul-
ing and data distribution for OpenMP programs on NUMA systems and manycore proces-
sors.” In: Scientific Programming 2015 (2015) (see p. 5)

[15] Robert Schöne, Thomas Ilsche, Mario Bielert, Andreas Gocht, and Daniel Hackenberg. “En-
ergy efficiency features of the intel skylake-sp processor and their impact on performance.”
In: 2019 International Conference on High Performance Computing & Simulation (HPCS).
IEEE. 2019, pp. 399–406 (see p. 5)

[16] José L Bosque, Oscar D Robles, Luis Pastor, and Angel Rodríguez. “Parallel CBIR implemen-
tations with load balancing algorithms.” In: Journal of parallel and distributed computing 66.8
(2006), pp. 1062–1075 (see p. 6)

[17] Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis Bosque. “Financial appli-
cations on multi-CPU and multi-GPU architectures.” In:The Journal of Supercomputing 71.2
(2015), pp. 729–739 (see p. 6)

[18] G Ortega, Julia Lobera, MP Arroyo, Inmaculada García, and Ester M Garzón. “High perfor-
mance computing for optical diffraction tomography.” In: 2012 International Conference on
High Performance Computing & Simulation (HPCS). IEEE. 2012, pp. 195–201 (see p. 6)

[19] Jose A Piedra-Fernandez, Gloria Ortega, James Z Wang, and Manuel Canton-Garbin. “Fuzzy
content-based image retrieval for oceanic remote sensing.” In: IEEE Transactions on Geo-
science and Remote Sensing 52.9 (2013), pp. 5422–5431 (see p. 6)

[20] Alejandro Gutierrez-Alcoba, Gloria Ortega, Eligius MT Hendrix, and Inmaculada García.
“Accelerating an algorithm for perishable inventory control on heterogeneous platforms.”
In: Journal of Parallel and Distributed Computing 104 (2017), pp. 12–18 (see p. 6)

[21] Pablo Toharia, Oscar D Robles, Ricardo SuáRez, Jose Luis Bosque, and Luis Pastor. “Shot
boundary detection using Zernike moments in multi-GPU multi-CPU architectures.” In:
Journal of Parallel and Distributed Computing 72.9 (2012), pp. 1127–1133 (see p. 6)

[22] F Orts, G Ortega, AM Puertas, Inmaculada García, and Ester M Garzón. “On solving the
unrelated parallel machine scheduling problem: active microrheology as a case study.” In:
The Journal of Supercomputing 76.11 (2020), pp. 8494–8509 (see p. 6)

[23] James Jeffers and James Reinders. Intel Xeon Phi coprocessor high performance programming.
Newnes, 2013 (see pp. 6, 9, 37, 41)

[24] David Kirk and W Hwu Wen-Mei. Programming massively parallel processors: a hands-on
approach. Morgan kaufmann, 2016 (see pp. 6, 9, 35, 41)

[25] Sparsh Mittal. “A survey on evaluating and optimizing performance of Intel Xeon Phi.” In:
Concurrency and Computation: Practice and Experience 32.19 (2020), e5742 (see p. 6)

182

Bibliography

[26] Chao-Tung Yang, Jung-Chun Liu, Yu-Wei Chan, Endah Kristiani, and Chan-Fu Kuo. “Per-
formance benchmarking of deep learning framework on Intel Xeon Phi.” In: The Journal of
Supercomputing 77.3 (2021), pp. 2486–2510 (see p. 6)

[27] Ji-Hoon Kang, Jinyul Hwang, Hyung Jin Sung, and Hoon Ryu. “High-performance simula-
tions of turbulent boundary layer flow using Intel Xeon Phi many-core processors.” In: The
Journal of Supercomputing (2021), pp. 1–18 (see p. 6)

[28] Victoria Sanz, Adrián Pousa, Marcelo Naiouf, and Armando De Giusti. “Accelerating Pat-
tern Matching on Intel Xeon Phi Processors.” In: International Conference on Algorithms and
Architectures for Parallel Processing. Springer. 2020, pp. 262–274 (see p. 6)

[29] Fang Huang, Hao Yang, Jian Tao, Jian Wang, and Xicheng Tan. “Preliminary study on the
automatic parallelism optimization model for image enhancement algorithms based on In-
tel’s® Xeon Phi.” In: Concurrency and Computation: Practice and Experience (2021), e6260
(see p. 6)

[30] Kengo Nakajima, Balazs Gerofi, Yutaka Ishikawa, and Masashi Horikoshi. “Efficient Paral-
lel Multigrid Method on Intel Xeon Phi Clusters.” In: The International Conference on High
Performance Computing in Asia-Pacific Region Companion. 2021, pp. 46–49 (see p. 6)

[31] Simon J Pennycook, Chris J Hughes, Mikhail Smelyanskiy, and Stephen A Jarvis. “Exploring
simd for molecular dynamics, using intel® xeon® processors and intel® xeon phi coproces-
sors.” In: 2013 IEEE 27th International Symposium on Parallel and Distributed Processing.
IEEE. 2013, pp. 1085–1097 (see p. 6)

[32] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sundaram
Chinthamani, Steven Hutsell, Rajat Agarwal, and Yen-Chen Liu. “Knights landing: Second-
generation intel xeon phi product.” In: Ieee micro 36.2 (2016), pp. 34–46 (see p. 6)

[33] Mitsuo Yokokawa, Ayano Nakai, Kazuhiko Komatsu, Yuta Watanabe, Yasuhisa Masaoka,
Yoko Isobe, and Hiroaki Kobayashi. “I/o performance of the sx-aurora tsubasa.” In: 2020
IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE. 2020, pp. 27–35 (see p. 6)

[34] Matthias Noack, Erich Focht, and Thomas Steinke. “Heterogeneous active messages for of-
floading on the NEC SX-Aurora TSUBASA.” In: 2019 IEEE International Parallel and Dis-
tributed Processing SymposiumWorkshops (IPDPSW). IEEE. 2019, pp. 26–35 (see p. 6)

[35] Hiroyuki Takizawa, Shinji Shiotsuki, Naoki Ebata, and Ryusuke Egawa. “An OpenCL-Like
Offload Programming Framework for SX-Aurora TSUBASA.” In: 2019 20th International
Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT).
IEEE. 2019, pp. 282–288 (see p. 6)

[36] Kazuhiko Komatsu, Shintaro Momose, Yoko Isobe, Osamu Watanabe, Akihiro Musa, Mitsuo
Yokokawa, Toshikazu Aoyama, Masayuki Sato, and Hiroaki Kobayashi. “Performance eval-
uation of a vector supercomputer SX-Aurora TSUBASA.” In: SC18: International Conference
for High Performance Computing, Networking, Storage and Analysis. IEEE. 2018, pp. 685–696
(see p. 6)

183

Bibliography

[37] Sergio Rivas-Gomez, Antonio J Pena, David Moloney, Erwin Laure, and Stefano Markidis.
“Exploring the vision processing unit as co-processor for inference.” In: 2018 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE. 2018,
pp. 589–598 (see pp. 6, 7)

[38] Gerard JM Smit, André BJ Kokkeler, Gerard K Rauwerda, and Jan WM Jacobs. “Recon-
figurable Multicore Architectures for Streaming Applications.” In: Model-Based Design for
Embedded Systems. CRC Press, 2018, pp. 347–374 (see p. 6)

[39] Imad Al Assir, Mohamad El Iskandarani, Hadi Rayan Al Sandid, and Mazen AR Saghir.
“Arrow: A RISC-V Vector Accelerator for Machine Learning Inference.” In: arXiv preprint
arXiv:2107.07169 (2021) (see p. 6)

[40] Christophe Clienti, Serge Beucher, and Michel Bilodeau. “A system on chip dedicated to
pipeline neighborhood processing for mathematical morphology.” In: 2008 16th European
Signal Processing Conference. IEEE. 2008, pp. 1–5 (see p. 6)

[41] Yeyong Pang, Shaojun Wang, Yu Peng, and Xiyuan Peng. “Fully Pipelined Soft Vector Pro-
cessor as a CPU Accelerator.” In: Chinese Journal of Electronics 26.6 (2017), pp. 1198–1205
(see p. 6)

[42] Tassadaq Hussain, Oscar Palomar, Adrian Cristal, Eduard Ayguade, and Amna Haider.
“Mvpa: An fpga based multi-vector processor architecture.” In: 2016 13th International Bhur-
ban Conference on Applied Sciences and Technology (IBCAST). IEEE. 2016, pp. 213–218 (see
p. 6)

[43] Marziyeh Nourian, Mostafa Eghbali Zarch, and Michela Becchi. “Optimizing Complex
OpenCL Code for FPGA: A Case Study on Finite Automata Traversal.” In: 2020 IEEE 26th
International Conference on Parallel andDistributed Systems (ICPADS). IEEE. 2020, pp. 518–
527 (see p. 7)

[44] Iman Firmansyah and Yoshiki Yamaguchi. “OpenCL implementation of FPGA-based signal
generation and measurement.” In: IEEE Access 7 (2019), pp. 48849–48859 (see p. 7)

[45] Maria A. Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó, and Darío Suárez
Gracia. “An Analytical Model of Memory-Bound Applications Compiled with High Level
Synthesis.” In: 2020 IEEE 28th Annual International Symposium on Field-Programmable Cus-
tom Computing Machines (FCCM). 2020, pp. 218–218 (see p. 7)

[46] Maria Angélica Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó, Darío Suárez
Gracia, Lester Kalms, and Diana Göhringer. “A Cross-Platform OpenVX Library for FPGA
Accelerators.” In: 2021 29th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP). 2021, pp. 75–83 (see p. 7)

[47] Maria A. Dávila-Guzmán, Rubén Gran Tejero, María Villarroya-Gaudó, and Darío Suárez
Gracia. “Analytical Model for Memory-Centric High Level Synthesis-Generated Applica-
tions.” In: IEEE Transactions on Computers (2021) (see p. 7)

184

Bibliography

[48] Maria A Dávila-Guzmán, Raúl Nozal, R Gran, M Villaroya-Gaudó, D Suárez, and Jose Luis
Bosque. “First Steps Towards CPU, GPU, and FPGA Parallel Execution with EngineCL.” In:
Proc. 18th Int. Conf. Comput. Math. Method Sci. Eng. C. 2018 (see pp. 7, 13, 62, 132)

[49] Ian Kuon and Jonathan Rose. “Measuring the gap between FPGAs and ASICs.” In: IEEE
Transactions on computer-aided design of integrated circuits and systems 26.2 (2007), pp. 203–
215 (see p. 7)

[50] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Deb-
bie Marr. “Accelerating binarized neural networks: Comparison of FPGA, CPU, GPU, and
ASIC.” In: 2016 International Conference on Field-Programmable Technology (FPT). IEEE.
2016, pp. 77–84 (see p. 7)

[51] Eriko Nurvitadhi, Dongup Kwon, Ali Jafari, Andrew Boutros, Jaewoong Sim, Phillip Tom-
son, Huseyin Sumbul, Gregory Chen, Phil Knag, Raghavan Kumar, et al. “Why compete
when you can work together: Fpga-asic integration for persistent rnns.” In: 2019 IEEE
27th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE. 2019, pp. 199–207 (see p. 7)

[52] Sang Yoon Park and Pramod Kumar Meher. “Efficient FPGA and ASIC realizations of a
DA-based reconfigurable FIR digital filter.” In: IEEE Transactions on Circuits and Systems II:
Express Briefs 61.7 (2014), pp. 511–515 (see p. 7)

[53] Amara Amara, Frederic Amiel, and Thomas Ea. “FPGA vs. ASIC for low power applications.”
In: Microelectronics journal 37.8 (2006), pp. 669–677 (see p. 7)

[54] Arun Subramaniyan and Reetuparna Das. “Parallel automata processor.” In: 2017
ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA). IEEE.
2017, pp. 600–612 (see p. 7)

[55] Ke Wang, Elaheh Sadredini, and Kevin Skadron. “Sequential pattern mining with the mi-
cron automata processor.” In:Proceedings of theACM International Conference onComputing
Frontiers. 2016, pp. 135–144 (see p. 7)

[56] Keira Zhou, Jack Wadden, Jeffrey J Fox, Ke Wang, Donald E Brown, and Kevin Skadron.
“Regular expression acceleration on the micron automata processor: Brill tagging as a case
study.” In: 2015 IEEE International Conference on Big Data (Big Data). IEEE. 2015, pp. 355–
360 (see p. 7)

[57] Gene Frantz. “Digital signal processor trends.” In: IEEE micro 20.6 (2000), pp. 52–59 (see
p. 7)

[58] John A Stratton, Jyothi Krishna Viswakaran Sreelatha, Rajiv Ravindran, Sachin Sudhakar
Dake, and Jeevitha Palanisamy. “Optimizing Halide for Digital Signal Processors.” In: 2020
IEEE Workshop on Signal Processing Systems (SiPS). IEEE. 2020, pp. 1–6 (see pp. 7, 41)

[59] Jia-Jhe Li, Chi-Bang Kuan, Tung-Yu Wu, and Jenq Kuen Lee. “Enabling an opencl compiler
for embedded multicore dsp systems.” In: 2012 41st International Conference on Parallel Pro-
cessing Workshops. IEEE. 2012, pp. 545–552 (see pp. 7, 41)

185

Bibliography

[60] Pramesh Pandey, Prabal Basu, Koushik Chakraborty, and Sanghamitra Roy. “GreenTPU:
Improving timing error resilience of a near-threshold tensor processing unit.” In: 2019 56th
ACM/IEEE Design Automation Conference (DAC). IEEE. 2019, pp. 1–6 (see p. 7)

[61] Youngeun Kwon and Minsoo Rhu. “A disaggregated memory system for deep learning.” In:
IEEE Micro 39.5 (2019), pp. 82–90 (see p. 7)

[62] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder
Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. “In-datacenter perfor-
mance analysis of a tensor processing unit.” In: Proceedings of the 44th annual international
symposium on computer architecture. 2017, pp. 1–12 (see p. 7)

[63] Norman Jouppi, Cliff Young, Nishant Patil, and David Patterson. “Motivation for and eval-
uation of the first tensor processing unit.” In: IEEE Micro 38.3 (2018), pp. 10–19 (see p. 7)

[64] Kuan-Chieh Hsu and Hung-Wei Tseng. “Accelerating applications using edge tensor pro-
cessing units.” In: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis. 2021, pp. 1–14 (see p. 7)

[65] Savvas Sioutas, Sander Stuijk, Twan Basten, Lou Somers, and Henk Corporaal. “Program-
ming tensor cores from an image processing DSL.” In: Proceedings of the 23th International
Workshop on Software and Compilers for Embedded Systems. 2020, pp. 36–41 (see p. 7)

[66] Minsoo Rhu. “Accelerator-centric deep learning systems for enhanced scalability, energy-
efficiency, and programmability.” In: 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE. 2018, pp. 527–533 (see p. 7)

[67] Bin Zhang, Chen Zhao, Kuizhi Mei, Jizhong Zhao, and Nanning Zheng. “Hierarchical and
parallel pipelined heterogeneous soc for embedded vision processing.” In: IEEE Transactions
on Circuits and Systems for Video Technology 28.6 (2017), pp. 1434–1444 (see p. 7)

[68] Lorenzo Petrosino, Giulio Iannello, Mario Merone, and Luca Vollero. “Image sensors and
VPU acceleration for data analysis and classification.” In: 2021 IEEE International Workshop
on Metrology for Industry 4.0 & IoT (MetroInd4. 0&IoT). IEEE. 2021, pp. 392–396 (see p. 7)

[69] Suyash Bakshi and Lennart Johnsson. “Analysis of Factors Affecting Power Consumption
and Energy Efficiency of SGEMM on the Low-Power Myriad-2 VPU.” In: 2021 IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS). IEEE. 2021,
pp. 76–78 (see p. 7)

[70] Hongqiang Wang, Jay Yun, and Alex Bourd. “Opencl optimization and best practices for
qualcomm adreno gpus.” In: Proceedings of the International Workshop on OpenCL. 2018,
pp. 1–8 (see p. 7)

[71] David Baldo, Alessandro Mecocci, Stefano Parrino, Giacomo Peruzzi, and Alessandro
Pozzebon. “A Multi-Layer LoRaWAN Infrastructure for Smart Waste Management.” In: Sen-
sors 21.8 (2021), p. 2600 (see p. 7)

[72] Chenhao Xie, Jieyang Chen, Jesun Firoz, Jiajia Li, Shuaiwen Leon Song, Kevin Barker, Mark
Raugas, and Ang Li. “Fast and scalable sparse triangular solver for multi-gpu based hpc ar-
chitectures.” In: 50th International Conference on Parallel Processing. 2021, pp. 1–11 (see p. 7)

186

Bibliography

[73] Nitin A Gawande, Jeff A Daily, Charles Siegel, Nathan R Tallent, and Abhinav Vishnu. “Scal-
ing deep learning workloads: Nvidia dgx-1/pascal and intel knights landing.” In: Future Gen-
eration Computer Systems 108 (2020), pp. 1162–1172 (see p. 7)

[74] Amir Yazdanbakhsh, Jongse Park, Hardik Sharma, Pejman Lotfi-Kamran, and Hadi Es-
maeilzadeh. “Neural acceleration for gpu throughput processors.” In: Proceedings of the 48th
international symposium on microarchitecture. 2015, pp. 482–493 (see p. 7)

[75] Sumin Kim, Seunghwan Oh, and Youngmin Yi. “Minimizing GPU Kernel Launch Over-
head in Deep Learning Inference on Mobile GPUs.” In: Proceedings of the 22nd International
Workshop on Mobile Computing Systems and Applications. 2021, pp. 57–63 (see p. 7)

[76] Roberto Giorgi, Farnam Khalili, and Marco Procaccini. “Energy efficiency exploration on
the zynq ultrascale+.” In: 2018 30th International Conference on Microelectronics (ICM).
IEEE. 2018, pp. 48–54 (see p. 8)

[77] Panagiotis Mousouliotis, Stavros Zogas, Panagiotis Christakos, Georzios Keramidas, Nikos
Petrellis, Christos Antonopoulos, and Nikolaos Voros. “Exploiting Vitis Framework for Ac-
celerating Sobel Algorithm.” In: 2021 10thMediterranean Conference on Embedded Comput-
ing (MECO). IEEE. 2021, pp. 1–5 (see p. 8)

[78] Khoa Dang Pham, Anuj Vaishnav, Malte Vesper, and Dirk Koch. “ZUCL: a ZYNQ Ultra-
scale+ framework for OpenCL HLS applications.” In: FSPWorkshop 2018; Fifth International
Workshop on FPGAs for Software Programmers. VDE. 2018, pp. 1–9 (see p. 8)

[79] Balint Barna Kövari and Emad Ebeid. “MPDrone: FPGA-based Platform for Intelligent Real-
time Autonomous Drone Operations.” In: 2021 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR). IEEE. 2021, pp. 71–76 (see p. 8)

[80] Juan Carlos Castillo, Francisco Almeida, Vicente Blanco, and M Carmen Ramírez. “Web
services based platform for the cell counting problem.” In: European Conference on Parallel
Processing. Springer. 2014, pp. 83–92 (see pp. 8, 99)

[81] Vincent Chau, Xiaowen Chu, Hai Liu, and Yiu-Wing Leung. “Energy efficient job scheduling
with DVFS for CPU-GPU heterogeneous systems.” In:Proceedings of the Eighth International
Conference on Future Energy Systems. 2017, pp. 1–11 (see p. 8)

[82] Borja Pérez, Esteban Stafford, José Luis Bosque, and Ramón Beivide. “Energy efficiency of
load balancing for data-parallel applications in heterogeneous systems.” In: The Journal of
Supercomputing 73.1 (2017), pp. 330–342 (see pp. 8, 48, 72)

[83] Sunbal Cheema and Gul N Khan. “Power and Performance Analysis of Deep Neural Net-
works for Energy-aware Heterogeneous Systems.” In: 2020 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). IEEE. 2020, pp. 2184–2189 (see p. 8)

[84] Yuxiang Gao, Saeed Iqbal, Peng Zhang, and Meikang Qiu. “Performance and power analysis
of high-density multi-GPGPU architectures: A preliminary case study.” In: 2015 IEEE 17th
International Conference on High Performance Computing and Communications, 2015 IEEE
7th International Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th Inter-
national Conference on Embedded Software and Systems. IEEE. 2015, pp. 66–71 (see p. 8)

187

Bibliography

[85] Qiang Liu and Wayne Luk. “Heterogeneous systems for energy efficient scientific com-
puting.” In: International Symposium on Applied Reconfigurable Computing. Springer. 2012,
pp. 64–75 (see p. 8)

[86] Mohamed Zahran. “Heterogeneous computing: Here to stay.” In: Communications of the
ACM 60.3 (2017), pp. 42–45 (see pp. 8, 52)

[87] Keith A Britt and Travis S Humble. “High-performance computing with quantum processing
units.” In: ACM Journal on Emerging Technologies in Computing Systems (JETC) 13.3 (2017),
pp. 1–13 (see p. 8)

[88] Keith A Britt, Fahd A Mohiyaddin, and Travis S Humble. “Quantum accelerators for high-
performance computing systems.” In: 2017 IEEE International Conference on Rebooting
Computing (ICRC). IEEE. 2017, pp. 1–7 (see p. 8)

[89] Travis S Humble, Ronald J Sadlier, and Keith A Britt. “Simulated execution of hybrid quan-
tum computing systems.” In: Quantum Information Science, Sensing, and Computation X.
Vol. 10660. International Society for Optics and Photonics. 2018, p. 1066002 (see p. 8)

[90] Tom Deakin and Simon McIntosh-Smith. “Evaluating the performance of HPC-style SYCL
applications.” In: Proceedings of the International Workshop on OpenCL. 2020, pp. 1–11 (see
pp. 9, 38)

[91] Wei-Chen Lin, Tom Deakin, and Simon McIntosh-Smith. “On measuring the maturity of
SYCL implementations by tracking historical performance improvements.” In: International
Workshop on OpenCL. 2021, pp. 1–13 (see pp. 9, 38)

[92] Beau Johnston, Jeffrey S Vetter, and Josh Milthorpe. “Evaluating the Performance and Porta-
bility of Contemporary SYCL Implementations.” In: 2020 IEEE/ACM International Work-
shop on Performance, Portability and Productivity in HPC (P3HPC). IEEE. 2020, pp. 45–56
(see pp. 9, 38)

[93] R. Nozal, J. L. Bosque, and R. Beivide. “EngineCL: Usability and Performance in Heteroge-
neous Computing.” In: Future Generation Computer Systems 107.C (June 2020), pp. 522–537
(see pp. 9, 12, 72, 141, 159)

[94] David R Kaeli, Perhaad Mistry, Dana Schaa, and Dong Ping Zhang.Heterogeneous computing
with OpenCL 2.0. Morgan Kaufmann, 2015 (see pp. 9, 40, 41, 43)

[95] Sunita Chandrasekaran and Guido Juckeland. OpenACC for Programmers: Concepts and
Strategies. Addison-Wesley Professional, 2017 (see pp. 9, 36)

[96] Aaftab Munshi. “The opencl specification.” In: 2009 IEEE Hot Chips 21 Symposium (HCS).
IEEE. 2009, pp. 1–314 (see p. 9)

[97] John E Stone, David Gohara, and Guochun Shi. “OpenCL: A parallel programming standard
for heterogeneous computing systems.” In: Computing in science & engineering 12.3 (2010),
p. 66 (see p. 9)

188

Bibliography

[98] James Reinders, Ben Ashbaugh, James Brodman, Michael Kinsner, John Pennycook, and
Xinmin Tian. Data Parallel C++: Mastering DPC++ for Programming of Heterogeneous Sys-
tems using C++ and SYCL. Springer Nature, 2021 (see pp. 10, 38, 46)

[99] Kui Wang, Jari Nurmi, and Tapani Ahonen. “Accelerating Computation on an Android
Phone with OpenCL Parallelism and Optimizing Workload Distribution between a Phone
and a Cloud Service.” In: 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Comput-
ing, Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and
Big Data Computing, Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CB-
DCom/IoP/SmartWorld). IEEE. 2016, pp. 636–642 (see p. 10)

[100] Onur Atan, Yiannis Andreopoulos, Cem Tekin, and Mihaela van der Schaar. “Bandit frame-
work for systematic learning in wireless video-based face recognition.” In: IEEE Journal of
Selected Topics in Signal Processing 9.1 (2014), pp. 180–194 (see p. 10)

[101] Roberto Di Lauro, Flora Giannone, Luigia Ambrosio, and Raffaele Montella. “Virtualizing
general purpose GPUs for high performance cloud computing: an application to a fluid sim-
ulator.” In: 2012 IEEE 10th International Symposium on Parallel and Distributed Processing
with Applications. IEEE. 2012, pp. 863–864 (see p. 10)

[102] Federico Simmross-Wattenberg, Manuel Rodríguez-Cayetano, Javier Royuela-del-Val,
Elena Martin-Gonzalez, Elisa Moya-Sáez, Marcos Martín-Fernández, and Carlos Alberola-
López. “OpenCLIPER: an OpenCL-based C++ Framework for overhead-reduced medical
image processing and reconstruction on heterogeneous devices.” In: IEEE journal of biomed-
ical and health informatics 23.4 (2018), pp. 1702–1709 (see pp. 10, 15)

[103] Ibrahim Savran, Elif Aras, Gökhan Uzer, and Shaafici Abdi. “Accelerating gene identification
in DNA sequences with CUDA and OpenCL.” In: 2018 26th Signal Processing and Commu-
nications Applications Conference (SIU). IEEE. 2018, pp. 1–4 (see p. 10)

[104] Adrian Odriozola, José A Riancho, Raul Nozal, Arancha Bermúdez, Ana Santurtún, Jana
Arozamena, and María Teresa Zarrabeitia. “Chimerism analysis in transplant patients: A
hypothesis-free approach in the absence of reference genotypes.” In: Clinica Chimica Acta
414 (2012), pp. 85–90 (see p. 10)

[105] Ummu Habibe Unal and Ibrahim Savran. “Accelerating next generation sequencing read
errors correction with CUDA.” In: 2017 25th Signal Processing and Communications Appli-
cations Conference (SIU). IEEE. 2017, pp. 1–4 (see p. 10)

[106] Alexey Cheptsov, Stefan Wesner, and Bastian Koller. “Service-Oriented Development of
Workflow-Based Semantic Reasoning Applications.” In: International Journal of Distributed
Systems and Technologies (IJDST) 5.1 (2014), pp. 40–53 (see p. 10)

[107] Nauman Ahmed, Hamid Mushtaq, Koen Bertels, and Zaid Al-Ars. “GPU accelerated API for
alignment of genomics sequencing data.” In: 2017 IEEE International Conference on Bioin-
formatics and Biomedicine (BIBM). IEEE. 2017, pp. 510–515 (see p. 10)

189

Bibliography

[108] Mitsuhiro Okada, Takayuki Suzuki, Naoya Nishio, Hasitha Waidyasooriya, and Masanori
Hariyama. “FPGA-accelerated Searchable Encrypted Database Management Systems for
Cloud Services.” In: IEEE Transactions on Cloud Computing (2020) (see p. 10)

[109] Mohamed G Malhat and Ashraf B El-Sisi. “Parallel ward clustering for chemical compounds
using opencl.” In: 2015 Tenth International Conference on Computer Engineering & Systems
(ICCES). IEEE. 2015, pp. 23–27 (see p. 10)

[110] Yanpeng Cao, Feng Yu, and Yongming Tang. “A digital watermarking encryption technique
based on FPGA cloud accelerator.” In: IEEE Access 8 (2020), pp. 11800–11814 (see p. 10)

[111] Yoji Yamato, Tatsuya Demizu, Hirofumi Noguchi, and Misao Kataoka. “Proposal of Auto-
matic GPU Offloading Technology on Open IoT Environment.” In: 2018 IEEE 42nd Annual
Computer Software and Applications Conference (COMPSAC). Vol. 2. IEEE. 2018, pp. 634–
639 (see p. 10)

[112] Chi-Sheng Shih, Yu-Kai Chen, Joen Chen, and Norman Chang. “Virtual cloud core: Opencl
workload sharing framework for connected devices.” In: 2013 IEEE Seventh International
Symposium on Service-Oriented System Engineering. IEEE. 2013, pp. 486–493 (see p. 10)

[113] Chin-Chen Chang, Wai-Kong Lee, Yanjun Liu, Bok-Min Goi, and Raphael C-W Phan. “Sig-
nature gateway: Offloading signature generation to IoT gateway accelerated by GPU.” In:
IEEE Internet of Things Journal 6.3 (2018), pp. 4448–4461 (see p. 10)

[114] Akhila Prabhakaran and J Lakshmi. “Cost-benefit Analysis of Public Clouds for offload-
ing in-house HPC Jobs.” In: 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE. 2018, pp. 57–64 (see p. 10)

[115] Shuo Wang, Yun Liang, and Wei Zhang. “Poly: Efficient heterogeneous system and appli-
cation management for interactive applications.” In: 2019 IEEE International Symposium on
High Performance Computer Architecture (HPCA). IEEE. 2019, pp. 199–210 (see p. 10)

[116] Christoph Niethammer, Stefan Becker, Martin Bernreuther, Martin Buchholz, Wolfgang
Eckhardt, Alexander Heinecke, Stephan Werth, Hans-Joachim Bungartz, Colin W Glass,
Hans Hasse, et al. “ls1 mardyn: The massively parallel molecular dynamics code for large
systems.” In: Journal of chemical theory and computation 10.10 (2014), pp. 4455–4464 (see
pp. 11, 115)

[117] Nikola Tchipev, Steffen Seckler, Matthias Heinen, Jadran Vrabec, Fabio Gratl, Martin
Horsch, Martin Bernreuther, Colin W Glass, Christoph Niethammer, Nicolay Hammer, et
al. “TweTriS: Twenty trillion-atom simulation.” In: The International Journal of High Perfor-
mance Computing Applications 33.5 (2019), pp. 838–854 (see p. 11)

[118] Iuliana Marin, Nicolae Goga, and Maria Goga. “Benchmarking MD systems simulations on
the graphics processing unit and multi-core systems.” In: 2016 IEEE International Sympo-
sium on Systems Engineering (ISSE). IEEE. 2016, pp. 1–5 (see p. 11)

190

Bibliography

[119] Hasitha Muthumala Waidyasooriya, Masanori Hariyama, and Kota Kasahara. “Architec-
ture of an FPGA accelerator for molecular dynamics simulation using OpenCL.” In: 2016
IEEE/ACIS 15th International Conference onComputer and Information Science (ICIS). IEEE.
2016, pp. 1–5 (see p. 11)

[120] István Lőrentz, Răzvan Andonie, and Levente Fabry-Asztalos. “Accelerating Molecular
Structure Determination Based on Inter-Atomic Distances Using OpenCL.” In: IEEE Trans-
actions on Parallel and Distributed Systems 26.12 (2014), pp. 3250–3263 (see p. 11)

[121] Alexander S Minkin, Anton B Teslyuk, Andrey A Knizhnik, and Boris V Potapkin. “GPGPU
performance evaluation of some basic molecular dynamics algorithms.” In: 2015 Inter-
national Conference on High Performance Computing & Simulation (HPCS). IEEE. 2015,
pp. 629–634 (see p. 11)

[122] Ziming Zhong, Vladimir Rychkov, and Alexey Lastovetsky. “Data partitioning on multicore
and multi-GPU platforms using functional performance models.” In: IEEE Transactions on
Computers 64.9 (2014), pp. 2506–2518 (see pp. 11, 15, 55)

[123] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. “Transparent CPU-GPU
collaboration for data-parallel kernels on heterogeneous systems.” In:Proceedings of the 22nd
international conference on Parallel architectures and compilation techniques. IEEE. 2013,
pp. 245–255 (see pp. 11, 15, 54, 55, 61)

[124] Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. “Skmd: Single kernel on
multiple devices for transparent cpu-gpu collaboration.” In: ACMTransactions on Computer
Systems (TOCS) 33.3 (2015), pp. 1–27 (see pp. 11, 15, 54, 55, 61)

[125] M. A. Dávila Guzmán, R. Nozal, R. Gran Tejero, M. Villarroya-Gaudó, D. Suárez Gracia, and
J. L. Bosque. “Cooperative CPU, GPU, and FPGA heterogeneous execution with EngineCL.”
In: The Journal of Supercomputing 75.3 (Mar. 2019), pp. 1732–1746 (see pp. 12, 13, 15, 41,
61, 62, 70, 72, 132, 141, 159)

[126] R. Nozal, J. L. Bosque, and R. Beivide. “Towards Co-execution on Commodity Heteroge-
neous Systems: Optimizations for Time-Constrained Scenarios.” In: 2019 International Con-
ference on High Performance Computing & Simulation (HPCS). IEEE. 2019, pp. 628–635 (see
pp. 12, 48, 61, 141, 159)

[127] Borja Pérez, E Stafford, JL Bosque, and R Beivide. “Sigmoid: an auto-tuned load balanc-
ing algorithm for heterogeneous systems.” In: Journal of Parallel and Distributed Computing
(2021) (see pp. 12, 25, 55)

[128] R. Nozal, B. Perez, J. L. Bosque, and R Beivide. “Load balancing in a heterogeneous world:
CPU-Xeon Phi co-execution of data-parallel kernels.” In:The Journal of Supercomputing 75.3
(2019), pp. 1123–1136 (see pp. 12, 13, 15, 41, 61, 63, 141, 159)

[129] Feng Zhang, Jidong Zhai, Bingsheng He, Shuhao Zhang, and Wenguang Chen. “Understand-
ing co-running behaviors on integrated CPU/GPU architectures.” In: IEEE Transactions on
Parallel and Distributed Systems 28.3 (2016), pp. 905–918 (see pp. 12, 16, 54)

191

Bibliography

[130] Jie Shen, Ana Lucia Varbanescu, Yutong Lu, Peng Zou, and Henk Sips. “Workload parti-
tioning for accelerating applications on heterogeneous platforms.” In: IEEE Transactions on
Parallel and Distributed Systems 27.9 (2015), pp. 2766–2780 (see p. 12)

[131] Lukasz Szustak, Roman Wyrzykowski, Lukasz Kuczynski, and Tomasz Olas. “Architectural
Adaptation and Performance-Energy Optimization for CFD Application on AMD EPYC
Rome.” In: IEEE Transactions on Parallel and Distributed Systems 32.12 (2021), pp. 2852–
2866 (see p. 12)

[132] Cristian Constantinescu. “AMD EPYC™ 7002 Series–A Processor with Improved Soft Error
Resilience.” In: 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems
and Networks-Supplemental Volume (DSN-S). IEEE. 2021, pp. 33–36 (see p. 12)

[133] Samuel Naffziger, Noah Beck, Thomas Burd, Kevin Lepak, Gabriel H Loh, Mahesh Subra-
mony, and Sean White. “Pioneering Chiplet Technology and Design for the AMD EPYC™
and Ryzen™ Processor Families: Industrial Product.” In: 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA). IEEE. 2021, pp. 57–70 (see p. 12)

[134] Evgenii P. Vasiliev, Valentina D. Kustikova, Valentin D. Volokitin, Evgeny A. Kozinov, and
Iosif B. Meyerov. “Performance Analysis of Deep Learning Inference in Convolutional Neu-
ral Networks on Intel Cascade Lake CPUs.” In: Mathematical Modeling and Supercom-
puter Technologies. Ed. by Dmitry Balandin, Konstantin Barkalov, Victor Gergel, and Iosif
Meyerov. Cham: Springer International Publishing, 2021, pp. 346–360 (see p. 12)

[135] Maxim A Krivov, Nikita G Iroshnikov, Andrey A Butylin, Anna E Filippova, and Pavel S
Ivanov. “Comparison of AMD Zen 2 and Intel Cascade Lake on the Task of Modeling the
Mammalian Cell Division.” In: International Conference on Mathematical Modeling and Su-
percomputer Technologies. Springer. 2020, pp. 320–333 (see p. 12)

[136] Douglas Doerfler, Farzad Fatollahi-Fard, Colin MacLean, Tan Nguyen, Samuel Williams,
Nicholas Wright, and Marco Siracusa. “Experiences Porting the SU3_Bench Microbench-
mark to the Intel Arria 10 and Xilinx Alveo U280 FPGAs.” In: International Workshop on
OpenCL. 2021, pp. 1–9 (see p. 13)

[137] Yong Wang, Yongfa Zhou, Qi Scott Wang, Yang Wang, Qing Xu, Chen Wang, Bo Peng, Zhao-
jun Zhu, Katayama Takuya, and Dylan Wang. “Developing medical ultrasound beamform-
ing application on GPU and FPGA using oneAPI.” In: 2021 IEEE International Parallel and
Distributed Processing SymposiumWorkshops (IPDPSW). IEEE. 2021, pp. 360–370 (see p. 13)

[138] Srihari Cadambi, Giuseppe Coviello, Cheng-Hong Li, Rajat Phull, Kunal Rao, Murugan
Sankaradass, and Srimat Chakradhar. “COSMIC: middleware for high performance and re-
liable multiprocessing on xeon phi coprocessors.” In: Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing. 2013, pp. 215–226 (see
p. 13)

[139] Raúl Nozal, Borja Pérez, and Jose Luis Bosque. “Towards co-execution of massive data-
parallel OpenCL kernels on CPU and Intel Xeon Phi.” In: Proc. 17th Int. Conf. Comput.Math.
Methods Sci. Eng.(CMMSE). 2017, pp. 1561–1572 (see pp. 13, 63)

192

Bibliography

[140] Noah Wolfe, Tianyu Liu, Christopher Carothers, and Xie George Xu. “Heterogeneous con-
current execution of Monte Carlo photon transport on CPU, GPU and MIC.” In: Proceedings
of the 4th Workshop on Irregular Applications: Architectures and Algorithms. 2014, pp. 49–52
(see p. 13)

[141] Jiri Filipovic and Siegfried Benkner. “OpenCL kernel fusion for GPU, Xeon Phi and CPU.” In:
2015 27th International Symposium on Computer Architecture and High Performance Com-
puting (SBAC-PAD). IEEE. 2015, pp. 98–105 (see p. 13)

[142] Jaume Bosch, Antonio Filgueras, Miquel Vidal, Daniel Jimenez-Gonzalez, Carlos Alvarez,
and Xavier Martorell. “Exploiting parallelism on GPUs and FPGAs with OmpSs.” In: Pro-
ceedings of the 1st Workshop on AutotuniNg and aDaptivity AppRoaches for Energy efficient
HPC Systems. 2017, pp. 1–5 (see p. 13)

[143] Enrico Calore, Alessandro Gabbana, Sebastiano Fabio Schifano, and Raffaele Tripiccione.
“Optimization of lattice Boltzmann simulations on heterogeneous computers.” In: The In-
ternational Journal of High Performance Computing Applications 33.1 (2019), pp. 124–139
(see p. 13)

[144] Marco Minutoli, Maurizio Drocco, Mahantesh Halappanavar, Antonino Tumeo, and Ananth
Kalyanaraman. “cuRipples: Influence maximization on multi-GPU systems.” In: Proceedings
of the 34th ACM International Conference on Supercomputing. 2020, pp. 1–11 (see p. 13)

[145] Tal Ben-Nun, Michael Sutton, Sreepathi Pai, and Keshav Pingali. “Groute: An asynchronous
multi-GPU programming model for irregular computations.” In: ACM SIGPLAN Notices
52.8 (2017), pp. 235–248 (see p. 13)

[146] Trong-Tuan Vu and Bilel Derbel. “Parallel Branch-and-Bound in multi-core multi-CPU
multi-GPU heterogeneous environments.” In: Future Generation Computer Systems 56
(2016), pp. 95–109 (see p. 13)

[147] Paulo Ferrão, Hélder Marques, and Hervé Paulino. “Stream Processing on Hybrid CPU/In-
tel® Xeon Phi™ Systems.” In: European Conference on Parallel Processing. Springer. 2018,
pp. 796–810 (see p. 13)

[148] Nilanjan Goswami, Amer Qouneh, Chao Li, and Tao Li. “An Empirical-cum-Statistical
Approach to Power-Performance Characterization of Concurrent GPU Kernels.” In: arXiv
preprint arXiv:2011.02368 (2020) (see p. 13)

[149] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.
“StarPU: a unified platform for task scheduling on heterogeneous multicore architec-
tures.” In: Concurrency and Computation: Practice and Experience 23.2 (2011), pp. 187–198
(see p. 14)

[150] Alejandro Duran, Eduard Ayguadé, Rosa M Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. “Ompss: a proposal for programming heterogeneous multi-core
architectures.” In: Parallel processing letters 21.02 (2011), pp. 173–193 (see pp. 14, 38)

193

Bibliography

[151] Josep M Perez, Rosa M Badia, and Jesus Labarta. “A dependency-aware task-based program-
ming environment for multi-core architectures.” In: 2008 IEEE international conference on
cluster computing. IEEE. 2008, pp. 142–151 (see p. 14)

[152] Harri Renney, Benedict R Gaster, and Tom Mitchell. “OpenCL vs: Accelerated finite-
difference digital synthesis.” In: Proceedings of the International Workshop on OpenCL. 2019,
pp. 1–11 (see p. 15)

[153] Chakib Mustapha Anouar Zouaoui and Nasreddine Taleb. “CL_ARRAY: A new generic li-
brary of multidimensional containers for c++ compilers with extension for OpenCL frame-
work.” In: Computer Languages, Systems & Structures 50 (2017), pp. 53–81 (see p. 15)

[154] Jung-Hyun Hong and Ki-Seok Chung. “Parallel LDPC decoding on a GPU using OpenCL
and global memory for accelerators.” In: 2015 IEEE International Conference on Networking,
Architecture and Storage (NAS). IEEE. 2015, pp. 353–354 (see p. 15)

[155] Rashid Kaleem, Rajkishore Barik, Tatiana Shpeisman, Chunling Hu, Brian T Lewis, and Ke-
shav Pingali. “Adaptive heterogeneous scheduling for integrated GPUs.” In: 2014 23rd In-
ternational Conference on Parallel Architecture and Compilation Techniques (PACT). IEEE.
2014, pp. 151–162 (see pp. 15, 55)

[156] Esteban Stafford, Borja Pérez, Jose Luis Bosque, Ramón Beivide, and Mateo Valero. “To dis-
tribute or not to distribute: the question of load balancing for performance or energy.” In:
European Conference on Parallel Processing. Springer. 2017, pp. 710–722 (see pp. 15, 27, 48)

[157] Michael Boyer, Kevin Skadron, Shuai Che, and Nuwan Jayasena. “Load balancing in a chang-
ing world: dealing with heterogeneity and performance variability.” In: Proceedings of the
ACM International Conference on Computing Frontiers. 2013, pp. 1–10 (see pp. 15, 55)

[158] Mehmet E. Belviranli, Laxmi N. Bhuyan, and Rajiv Gupta. “A Dynamic Self-scheduling
Scheme for Heterogeneous Multiprocessor Architectures.” In: ACM Trans. Archit. Code Op-
tim. 9.4 (Jan. 2013), 57:1–57:20 (see pp. 16, 55)

[159] Antonio Vilches, Rafael Asenjo, Angeles Navarro, Francisco Corbera, Rubén Gran, and
María Garzarán. “Adaptive partitioning for irregular applications on heterogeneous CPU-
GPU chips.” In: Procedia Computer Science 51 (2015), pp. 140–149 (see pp. 16, 55)

[160] Jan Lemeire, Jan G Cornelis, and Laurent Segers. “Microbenchmarks for gpu characteristics:
The occupancy roofline and the pipeline model.” In: 2016 24th Euromicro International Con-
ference on Parallel, Distributed, and Network-Based Processing (PDP). IEEE. 2016, pp. 456–
463 (see p. 16)

[161] Thanh Tuan Dao and Jaejin Lee. “An auto-tuner for OpenCL work-group size on GPUs.” In:
IEEE Transactions on Parallel and Distributed Systems 29.2 (2017), pp. 283–296 (see p. 16)

[162] Patrik Goorts, Sammy Rogmans, Steven Vanden Eynde, and Philippe Bekaert. “Practical
examples of gpu computing optimization principles.” In: 2010 International Conference on
Signal Processing and Multimedia Applications (SIGMAP). IEEE. 2010, pp. 46–49 (see p. 16)

194

Bibliography

[163] Ghassan Shobaki, Austin Kerbow, and Stanislav Mekhanoshin. “Optimizing occupancy and
ILP on the GPU using a combinatorial approach.” In: Proceedings of the 18th ACM/IEEE In-
ternational Symposium on Code Generation and Optimization. 2020, pp. 133–144 (see p. 16)

[164] Yuval Eshkol and Intel. Debugging and Optimizing OpenCL Applications. Last accessed
November 2021. 2016. url: https://www.iwocl.org/wp-content/uploads/iwocl-
2016-best-practices-to-debug-opencl.pdf (see p. 24)

[165] Intel. OpenCL™ Developer Guide for Intel® Processor Graphics. Last accessed November
2021. 2016. url: https : / / software . intel . com / content / www / us / en / develop /
documentation/iocl-opg/top.html (see p. 24)

[166] Albert Navarro Torrentó. “Optimization of OpenCL applications on FPGA.” MA thesis. Uni-
versitat Politècnica de Catalunya, 2018 (see p. 24)

[167] Intel. oneAPI GPU Optimization Guide. Last accessed November 2021. 2021. url: https:
//software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-

optimization-guide/top.html (see p. 24)

[168] Intel. Intel® oneAPI DPC++ FPGA Optimization Guide. Last accessed November 2021. 2021.
url: https://software.intel.com/content/www/us/en/develop/documentation/
oneapi-fpga-optimization-guide/top.html (see p. 24)

[169] Intel. Intel® oneAPI samples. Last accessed November 2021. 2020. url: https://github.
com/oneapi-src/oneAPI-samples (see p. 24)

[170] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Programming Stan-
dard for Heterogeneous Computing Systems.” In: IEEE Des. Test 12.3 (May 2010), pp. 66–73
(see p. 24)

[171] AMD Accelerated Parallel Processing (APP) Software Development Kit (SDK) V3. Last ac-
cessed December 2017. December 2017. url: http://developer.amd.com/tools-and-
sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/ (see p. 24)

[172] Jose Luis Bosque and Luis Pastor Perez. “Theoretical scalability analysis for heterogeneous
clusters.” In: IEEE International Symposium on Cluster Computing and the Grid, 2004. CC-
Grid 2004. IEEE. 2004, pp. 285–292 (see p. 25)

[173] Luis Pastor. “An efficiency and scalability model for heterogeneous clusters.” In: Cluster.
Vol. 1. 2001, p. 427 (see p. 25)

[174] Jose L Bosque, Oscar D Robles, Pablo Toharia, and Luis Pastor. “Evaluating scalability in
heterogeneous systems.” In: The Journal of Supercomputing 58.3 (2011), pp. 367–375 (see
p. 25)

[175] Emilio Castillo, Cristóbal Camarero, Ana Borrego, and Jose Luis Bosque. “Financial Appli-
cations on multi-CPU and multi-GPU Architectures.” In: J. Supercomput. 71.2 (Feb. 2015),
pp. 729–739 (see p. 26)

195

https://www.iwocl.org/wp-content/uploads/iwocl-2016-best-practices-to-debug-opencl.pdf
https://www.iwocl.org/wp-content/uploads/iwocl-2016-best-practices-to-debug-opencl.pdf
https://software.intel.com/content/www/us/en/develop/documentation/iocl-opg/top.html
https://software.intel.com/content/www/us/en/develop/documentation/iocl-opg/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-gpu-optimization-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-fpga-optimization-guide/top.html
https://github.com/oneapi-src/oneAPI-samples
https://github.com/oneapi-src/oneAPI-samples
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/

Bibliography

[176] Emilio Castillo, Miquel Moreto, Marc Casas, Lluc Alvarez, Enrique Vallejo, Kallia Chronaki,
Rosa Badia, Jose Luis Bosque, Ramon Beivide, Eduard Ayguade, et al. “CATA: criticality
aware task acceleration for multicore processors.” In: 2016 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE. 2016, pp. 413–422 (see p. 26)

[177] Francisco Almeida and Jesús Vigo-Aguiar. “High performance computing tools in science
and engineering.” In: The Journal of Supercomputing 65.3 (2013), pp. 997–998 (see p. 26)

[178] Advanced Micro Devices Inc. AMD CodeXL: a comprehensive tool suite that enables devel-
opers to harness the benefits of CPUs, GPUs and APUs. Last accessed November 2021. 2016.
url: https://github.com/GPUOpen-Tools/CodeXL (see p. 26)

[179] Intel. Intel VTune Profiler: tool to optimize application performance, system performance, and
system configuration for HPC, cloud, IoT, media and storage. Last accessed November 2021.
2021. url: https://software.intel.com/content/www/us/en/develop/tools/vtune-
profiler.html (see p. 26)

[180] Intel. Intel Intercept Layer for OpenCL. Last accessed November 2021. 2018. url: https:
//github.com/intel/opencl-intercept-layer (see p. 27)

[181] Intel.Profiling Tools Interfaces forGPU -OpenCLTracer. Last accessed November 2021. 2021.
url: https://github.com/intel/pti-gpu (see p. 27)

[182] Evgeny Peshkov. CLTracer - cross-platform cross-vendor OpenCL profiler. Last accessed
November 2021. 2020. url: https://www.cltracer.com (see p. 27)

[183] Ben Juurlink, Jan Lucas, Nadjib Mammeri, Martyn Bliss, Georgios Keramidas, Chrysa
Kokkala, and Andrew Richards. “The LPGPU2 Project: Low-Power Parallel Computing on
GPUs.” In: Proceedings of the 20th International Workshop on Software and Compilers for
Embedded Systems. 2017, pp. 76–80 (see p. 27)

[184] Esteban Stafford, Borja Pérez, and Raúl Nozal. Sauna: C tool to measure energy consumption
of CPUs, GPUs and XeonPhi. Last accessed November 2021. 2017. url: https://github.
com/esteban-stafford/sauna (see p. 27)

[185] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and Eli Weiss-
mann. “Power Management Architecture of the 2nd Generation Intel Core Microarchitec-
ture, Formerly Codenamed Sandy Bridge.” In: IEEE Int. HotChips Symp. on High-Perf. Chips
(HotChips~2011). 2011 (see p. 27)

[186] NVIDIA. NVIDIA Management Library (NVML). Last accessed April 2019. 2018. url:
https://developer.nvidia.com/nvidia-management-library-nvml (see p. 27)

[187] John Cheng, Max Grossman, and Ty McKercher. Professional CUDA c programming. John
Wiley & Sons, 2014 (see p. 35)

[188] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-purpose
GPU programming. Addison-Wesley Professional, 2010 (see p. 35)

[189] Bohan Wang and Jernej Barbic. “CUDA Deformers for Model Reduction.” In: Motion, Inter-
action and Games. 2020, pp. 1–10 (see p. 35)

196

https://github.com/GPUOpen-Tools/CodeXL
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://github.com/intel/opencl-intercept-layer
https://github.com/intel/opencl-intercept-layer
https://github.com/intel/pti-gpu
https://www.cltracer.com
https://github.com/esteban-stafford/sauna
https://github.com/esteban-stafford/sauna
https://developer.nvidia.com/nvidia-management-library-nvml

Bibliography

[190] Chin-Pin Ko, Praveen Kumar Chittem, Chiang-An Hsu, Mohammad Alkhaleefah, Min-Jui
Huang, and Yang-Lang Chang. “CUDA-enabled Programming for Accelerating Flood Sim-
ulation.” In: 2021 the 5th International Conference on Graphics and Signal Processing. 2021,
pp. 72–75 (see p. 35)

[191] Yu Ma, Liguo Zhang, and Xia Zhang. “Target tracking algorithm based on cuda parallel
acceleration.” In: Proceedings of the 2019 3rd International Conference on Computer Science
and Artificial Intelligence. 2019, pp. 333–337 (see p. 35)

[192] Ban Quy Tran, Thai Van Nguyen, Dat Duy Tran, Anh Duy Tran, and Hoang Van Nguyen.
“Accelerating Exemplar-based Image Inpainting with GPU and CUDA.” In: 2021 10th Inter-
national Conference on Software and Computer Applications. 2021, pp. 173–179 (see p. 35)

[193] Xuechao Li and Po-Chou Shih. “Performance comparison of cuda and openacc based on
optimizations.” In: Proceedings of the 2018 2nd High Performance Computing and Cluster
Technologies Conference. 2018, pp. 53–57 (see pp. 35, 36)

[194] Alejandro Acosta, Robert Corujo, Vicente Blanco, and Francisco Almeida. “Dynamic load
balancing on heterogeneous multicore/multiGPU systems.” In: HPCS. Ed. by Waleed W.
Smari and John P. McIntire. IEEE, 2010, pp. 467–476 (see p. 35)

[195] JJ Moreno, G Ortega, Ernestas Filatovas, José A Martínez, and Ester M Garzón. “Improving
the Energy Efficiency of Evolutionary Multi-objective Algorithms.” In: International Confer-
ence on Algorithms and Architectures for Parallel Processing. Springer. 2016, pp. 62–75 (see
p. 35)

[196] JJ Moreno, G Ortega, Ernestas Filatovas, José A Martínez, and Ester M Garzón. “Improving
the performance and energy of non-dominated sorting for evolutionary multiobjective opti-
mization on GPU/CPU platforms.” In: Journal of Global Optimization 71.3 (2018), pp. 631–
649 (see p. 35)

[197] JJ Moreno, G Ortega, Ernestas Filatovas, José A Martínez, and Ester M Garzón. “Using low-
power platforms for evolutionary multi-objective optimization algorithms.” In: The Journal
of Supercomputing 73.1 (2017), pp. 302–315 (see p. 35)

[198] Barbara Chapman, Gabriele Jost, and Ruud Van Der Pas. Using OpenMP: portable shared
memory parallel programming. Vol. 10. MIT press, 2008 (see p. 36)

[199] Ruud Van der Pas, Eric Stotzer, and Christian Terboven. Using OpenMP# The Next Step:
Affinity, Accelerators, Tasking, and SIMD. MIT press, 2017 (see p. 36)

[200] Michael J. Quinn. Parallel Programming in C with MPI and OpenMP. McGraw-Hill Educa-
tion Group, 2003 (see p. 36)

[201] Jacob Lambert, Seyong Lee, Jeffrey S Vetter, and Allen D Malony. “CCAMP: an integrated
translation and optimization framework for OpenACC and OpenMP.” In: SC20: Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis. IEEE.
2020, pp. 1–14 (see p. 36)

197

Bibliography

[202] Michael Klemm, Eduardo Quiñones, Tucker Taft, Dirk Ziegenbein, and Sara Royuela. “The
OpenMP API for High Integrity Systems: Moving Responsibility from Users to Vendors.”
In: ACM SIGAda Ada Letters 40.2 (2021), pp. 48–50 (see p. 36)

[203] Swapnil Gaikwad, Andy Nisbet, and Mikel Luján. “Hosting OpenMP programs on Java vir-
tual machines.” In: Proceedings of the 16th ACM SIGPLAN International Conference onMan-
aged Programming Languages and Runtimes. 2019, pp. 63–71 (see p. 36)

[204] Hervé Yviquel, Lauro Cruz, and Guido Araujo. “Cluster programming using the openmp
accelerator model.” In: ACM Transactions on Architecture and Code Optimization (TACO)
15.3 (2018), pp. 1–23 (see p. 36)

[205] Huan Zhou, José Gracia, and Ralf Schneider. “MPI collectives for multi-core clusters: Op-
timized performance of the hybrid MPI+ MPI parallel codes.” In: Proceedings of the 48th
International Conference on Parallel Processing: Workshops. 2019, pp. 1–10 (see p. 36)

[206] Joseph Schuchart, Mathias Nachtmann, and José Gracia. “Patterns for OpenMP task data de-
pendency overhead measurements.” In: InternationalWorkshop onOpenMP. Springer. 2017,
pp. 156–168 (see p. 36)

[207] Christoph Niethammer, José Gracia, T Hilbrich, A Knupfer, MM Resch, and WE Nagel.
“Tools for High Performance Computing.” In: Switzerland: Springer International Publishing,
AG (2017) (see p. 36)

[208] Andreas Knüpfer, José Gracia, Wolfgang E Nagel, and Michael M Resch. Tools for High Per-
formance Computing 2013: Proceedings of the 7th International Workshop on Parallel Tools
for High Performance Computing, September 2013, ZIH, Dresden, Germany. Springer, 2014
(see p. 36)

[209] Masahiro Nakao, Hitoshi Murai, and Mitsuhisa Sato. “Multi-accelerator extension in
OpenMP based on PGAS model.” In: Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region. 2019, pp. 18–25 (see p. 36)

[210] Andreas Kurth, Koen Wolters, Björn Forsberg, Alessandro Capotondi, Andrea Marongiu,
Tobias Grosser, and Luca Benini. “Mixed-data-model heterogeneous compilation and
OpenMP offloading.” In: Proceedings of the 29th International Conference on Compiler Con-
struction. 2020, pp. 119–131 (see p. 36)

[211] Rob Farber. Parallel programming with OpenACC. Newnes, 2016 (see p. 36)

[212] Kohei Fujita, Takuma Yamaguchi, Tsuyoshi Ichimura, Muneo Hori, and Lalith Mad-
degedara. “Acceleration of element-by-element kernel in unstructured implicit low-order
finite-element earthquake simulation using openacc on pascal gpus.” In: 2016 Third Work-
shop on Accelerator Programming Using Directives (WACCPD). IEEE. 2016, pp. 1–12 (see
p. 36)

[213] Marco Kupiainen, Jing Gong, Lilit Axner, Erwin Laure, and Jan Nordström. “GPU-
acceleration of A High Order Finite Difference Code Using Curvilinear Coordinates.”
In: Proceedings of the 2020 International Conference on Computing, Networks and Internet of
Things. 2020, pp. 41–47 (see p. 36)

198

Bibliography

[214] Akihiro Tabuchi, Masahiro Nakao, Hitoshi Murai, Taisuke Boku, and Mitsuhisa Sato. “Per-
formance evaluation for a hydrodynamics application in XcalableACC PGAS language for
accelerated clusters.” In: Proceedings of Workshops of HPC Asia. 2018, pp. 1–10 (see p. 36)

[215] Ahmad Lashgar and Amirali Baniasadi. “Openacc cache directive: Opportunities and op-
timizations.” In: 2016 Third Workshop on Accelerator Programming Using Directives (WAC-
CPD). IEEE. 2016, pp. 46–56 (see p. 36)

[216] W Hwu Wen-mei. Heterogeneous System Architecture: A new compute platform infrastruc-
ture. Morgan Kaufmann, 2015 (see p. 37)

[217] Mohamed Zahran. Heterogeneous computing: Hardware and software perspectives. Morgan
& Claypool, 2019 (see pp. 37, 52)

[218] Philipp Holzinger, Marc Reichenbach, and Dietmar Fey. “A new generic HLS approach for
heterogeneous computing: on the feasibility of high-level synthesis in HSA-compatible sys-
tems.” In: Proceedings of the 18th International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation. 2018, pp. 18–27 (see p. 37)

[219] Michael .O Agbaje, Adekunle Bammeke, and Onome Blaise Ohwo. “Heterogeneous System
Architecture (HSA).” In: International Journal of Scientific Research in Computer Science, En-
gineering and Information Technology (IJSRCSEIT). Vol. 3. 3. 2018, pp. 539–546 (see p. 37)

[220] Nandinbaatar Tsog, Marielle Gallardo, Sweta Chakraborty, Torbjörn Martinson, Alexan-
dra Hengl, Magnus Moberg, Adem Sen, Mobyen Uddin Ahmed, Shahina Begum, Moris
Behnam, et al. “Supporting Autonomous Vehicle Applications on the Heterogeneous Sys-
tem Architecture.” In: 7th Conference on the Engineering of Computer Based Systems. 2021,
pp. 1–8 (see p. 37)

[221] Hao-Che Hsu, Chih-Wei Yeh, Shih-Hao Hung, Wei-Chung Hsu, Chung-Ta King, and Yeh-
Ching Chung. “Hsaemu 2.0: full system emulation for hsa platforms with soft-mmu.” In:
Proceedings of the international conference on research in adaptive and convergent systems.
2016, pp. 230–235 (see p. 37)

[222] Yuan-Ming Chang, Shao-Chung Wang, Chun-Chieh Yang, Yuan-Shin Hwang, and Jenq-
Kuen Lee. “Enabling PoCL-based runtime frameworks on the HSA for OpenCL 2.0 support.”
In: Journal of Systems Architecture 81 (2017), pp. 71–82 (see p. 37)

[223] James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor paral-
lelism. ” O’Reilly Media, Inc.”, 2007 (see p. 37)

[224] Michael Voss, Rafael Asenjo, and James Reinders. Pro TBB: C++ parallel programming with
threading building blocks. Apress, 2019 (see p. 37)

[225] Abhishek Bhattacharjee, Gilberto Contreras, and Margaret Martonosi. “Parallelization li-
braries: Characterizing and reducing overheads.” In: ACM Transactions on Architecture and
Code Optimization (TACO) 8.1 (2011), pp. 1–29 (see p. 37)

[226] Aditya Prakash and Parag Chaudhuri. “Comparing performance of parallelizing frameworks
for grid-based fluid simulation on the cpu.” In: Proceedings of the 8th Annual ACM India
Conference. 2015, pp. 1–7 (see p. 37)

199

Bibliography

[227] Ammar Ahmad Awan, Hari Subramoni, and Dhabaleswar K Panda. “An in-depth perfor-
mance characterization of CPU-and GPU-based DNN training on modern architectures.”
In: Proceedings of the Machine Learning on HPC Environments. 2017, pp. 1–8 (see p. 37)

[228] Wenli Xu, Hao Cha, and Mo Zhou. “Research and Realization of Software Radar Signal Pro-
cessing Based on Intel MKL.” In: 2011 International Conference on Computer and Manage-
ment (CAMAN). IEEE. 2011, pp. 1–6 (see p. 37)

[229] Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, and Zizhong Chen. “FT-BLAS:
a high performance BLAS implementation with online fault tolerance.” In: Proceedings of the
ACM International Conference on Supercomputing. 2021, pp. 127–138 (see p. 37)

[230] Wu Zheng, An Hong, Jin Xu, Chi Mengxian, Lü Guofeng, Wen Ke, and Zhou Xin. “Research
and Optimization of Fast Convolution Algorithm Winograd on Intel Platform.” In: Journal
of Computer Research and Development 56.4 (2019), p. 825 (see p. 37)

[231] Denisa-Andreea Constantinescu, Angeles Navarro, Francisco Corbera, Juan-Antonio
Fernández-Madrigal, and Rafael Asenjo. “Efficiency and productivity for decision making
on low-power heterogeneous CPU+ GPU SoCs.” In: Journal of Supercomputing 77.1 (2021)
(see p. 37)

[232] Peter Pirkelbauer, Amalee Wilson, Christina Peterson, and Damian Dechev. “Blaze-tasks: A
framework for computing parallel reductions over tasks.” In: ACMTransactions on Architec-
ture and Code Optimization (TACO) 15.4 (2019), pp. 1–25 (see p. 37)

[233] Tobias Baumann, Matthias Noack, and Thomas Steinke. “Performance Evaluation and Im-
provements of the PoCL Open-Source OpenCL Implementation on Intel CPUs.” In: Inter-
national Workshop on OpenCL. 2021, pp. 1–12 (see pp. 37, 41)

[234] Adarsh Yoga and Santosh Nagarakatte. “A fast causal profiler for task parallel programs.”
In: Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. 2017,
pp. 15–26 (see p. 37)

[235] Intel. oneAPI Level Zero. Last accessed Nov 2021. url: https://spec.oneapi.io/level-
zero/latest/index.html (see p. 38)

[236] Yinan Ke, Mulya Agung, and Hiroyuki Takizawa. “neoSYCL: a SYCL implementation for
SX-Aurora TSUBASA.” In: The International Conference on High Performance Computing in
Asia-Pacific Region. 2021, pp. 50–57 (see p. 38)

[237] Peter Thoman, Daniel Gogl, and Thomas Fahringer. “Sylkan: Towards a Vulkan Compute
Target Platform for SYCL.” In: InternationalWorkshop on OpenCL. 2021, pp. 1–12 (see p. 38)

[238] Gábor Dániel Balogh and István Reguly. “Automatic Parallelisation of Sturctured Mesh
Computations with SYCL.” In: 2021 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE. 2021, pp. 821–822 (see p. 38)

[239] Vladyslav Kucher, Florian Fey, and Sergei Gorlatch. “Unified Cross-Platform Profiling of
Parallel C++ Applications.” In: 2018 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS). IEEE. 2018, pp. 57–62 (see p. 38)

200

https://spec.oneapi.io/level-zero/latest/index.html
https://spec.oneapi.io/level-zero/latest/index.html

Bibliography

[240] Biagio Peccerillo and Sandro Bartolini. “PHAST-A portable high-level modern C++ pro-
gramming library for GPUs and multi-cores.” In: IEEE Transactions on Parallel and Dis-
tributed Systems 30.1 (2018), pp. 174–189 (see p. 38)

[241] Grigore Lupescu and Nicolae Ţăpuş. “Design of hashtable for heterogeneous architectures.”
In: 2021 23rd International Conference on Control Systems and Computer Science (CSCS).
IEEE. 2021, pp. 172–177 (see p. 38)

[242] Raúl Nozal and Jose Luis Bosque. “Exploiting Co-execution with OneAPI: Heterogeneity
from a Modern Perspective.” In: Euro-Par 2021: Parallel Processing. Ed. by Leonel Sousa,
Nuno Roma, and Pedro Tomás. Cham: Springer International Publishing, 2021, pp. 501–
516 (see pp. 38, 150)

[243] Ben Ashbaugh, Alexey Bader, James Brodman, Jeff Hammond, Michael Kinsner, John Pen-
nycook, Roland Schulz, and Jason Sewall. “Data Parallel C++ Enhancing SYCL Through
Extensions for Productivity and Performance.” In: Proceedings of the InternationalWorkshop
on OpenCL. 2020, pp. 1–2 (see p. 38)

[244] Kate Gregory and Ade Miller. C++ AMP: accelerated massive parallelism with Microsoft Vi-
sual C++. Microsoft Press, 2012 (see p. 38)

[245] K Shyamala, K Raj Kiran, and D Rajeshwari. “Design and implementation of GPU-based
matrix chain multiplication using C++ AMP.” In: 2017 Second International Conference on
Electrical, Computer and Communication Technologies (ICECCT). IEEE. 2017, pp. 1–6 (see
p. 38)

[246] Lingze Zhang, Yongxing Du, and Daocheng Wu. “GPU-Accelerated FDTD simulation of
human tissue using C++ AMP.” In: 2015 31st International Review of Progress in Applied
Computational Electromagnetics (ACES). IEEE. 2015, pp. 1–2 (see p. 38)

[247] Ru Zhu. “Speedup of Micromagnetic Simulations with C++ AMP On Graphics Processing
Units.” In: Computing in Science & Engineering 18.4 (2015), pp. 53–59 (see p. 38)

[248] Erik Wynters. “C++ amp makes it easy to explore parallel processing on GPUs in a college
course or research project.” In: Journal of Computing Sciences inColleges 33.6 (2018), pp. 197–
199 (see p. 38)

[249] M Graham Lopez, Christopher Bergstrom, Ying Wai Li, Wael Elwasif, and Oscar Hernandez.
“Using C++ AMP to Accelerate HPC Applications on Multiple Platforms.” In: International
Conference on High Performance Computing. Springer. 2016, pp. 563–576 (see p. 38)

[250] Stefan Mocanu, Gabriel Munteanu, and Daniela Saru. “GPGPU optimized parallel imple-
mentation of AES using C++ AMP.” In: Journal of Control Engineering and Applied Infor-
matics 17.2 (2015), pp. 73–81 (see p. 38)

[251] Florentino Sainz, Sergi Mateo, Vicenç Beltran, Jose L Bosque, Xavier Martorell, and Eduard
Ayguadé. “Leveraging ompss to exploit hardware accelerators.” In: 2014 IEEE 26th Interna-
tional Symposium on Computer Architecture and High Performance Computing. IEEE. 2014,
pp. 112–119 (see p. 38)

201

Bibliography

[252] Borja Pérez, Esteban Stafford, Jose Luis Bosque, Ramon Beivide, Sergi Mateo, Xavier Teruel,
Xavier Martorell, and Eduard Ayguadé. “Extending OmpSs for OpenCL kernel co-execution
in heterogeneous systems.” In: 2017 29th International Symposium on Computer Architecture
and High Performance Computing (SBAC-PAD). IEEE. 2017, pp. 1–8 (see pp. 38, 39, 72)

[253] Alejandro Fernández, Vicenç Beltran, Xavier Martorell, Rosa M Badia, Eduard Ayguadé,
and Jesus Labarta. “Task-based programming with ompss and its application.” In: European
Conference on Parallel Processing. Springer. 2014, pp. 601–612 (see p. 39)

[254] Joseph Schuchart, Christoph Niethammer, and José Gracia. “Fibers are not (P) Threads: The
Case for Loose Coupling of Asynchronous Programming Models and MPI Through Con-
tinuations.” In: 27th European MPI Users’ Group Meeting. 2020, pp. 39–50 (see p. 39)

[255] Robin Kumar Sharma and Marc Casas. “Wavefront parallelization of recurrent neural net-
works on multi-core architectures.” In: Proceedings of the 34th ACM International Conference
on Supercomputing. 2020, pp. 1–12 (see p. 39)

[256] Antoni Navarro Muñoz, Arthur F. Lorenzon, Eduard Ayguadé Parra, and Vicenç Beltran
Querol. “Combining Dynamic Concurrency Throttling with Voltage and Frequency Scaling
on Task-based Programming Models.” In: 50th International Conference on Parallel Process-
ing. 2021, pp. 1–11 (see p. 39)

[257] Evgeny Kuznetsov and Vladimir Stegailov. “Porting CUDA-based molecular dynamics al-
gorithms to AMD ROCm platform using hip framework: performance analysis.” In: Russian
Supercomputing Days. Springer. 2019, pp. 121–130 (see p. 39)

[258] Kawthar Shafie Khorassani, Jahanzeb Hashmi, Ching-Hsiang Chu, Chen-Chun Chen, Hari
Subramoni, and Dhabaleswar K Panda. “Designing a ROCm-Aware MPI Library for AMD
GPUs: Early Experiences.” In: International Conference on High Performance Computing.
Springer. 2021, pp. 118–136 (see p. 39)

[259] Nathan Otterness and James H Anderson. “Amd gpus as an alternative to nvidia for sup-
porting real-time workloads.” In: 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik. 2020 (see p. 39)

[260] Nikolay Kondratyuk, Vsevolod Nikolskiy, Daniil Pavlov, and Vladimir Stegailov. “GPU-
accelerated molecular dynamics: State-of-art software performance and porting from Nvidia
CUDA to AMD HIP.” In: The International Journal of High Performance Computing Applica-
tions 35.4 (2021), pp. 312–324 (see p. 39)

[261] Jianbin Fang, Chun Huang, Tao Tang, and Zheng Wang. “Parallel programming models for
heterogeneous many-cores: a comprehensive survey.” In: CCF Transactions on High Perfor-
mance Computing 2.4 (2020), pp. 382–400 (see pp. 39, 52)

[262] Yifan Sun, Saoni Mukherjee, Trinayan Baruah, Shi Dong, Julian Gutierrez, Prannoy Mohan,
and David Kaeli. “Evaluating performance tradeoffs on the radeon open compute platform.”
In: 2018 IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS). IEEE. 2018, pp. 209–218 (see p. 39)

202

Bibliography

[263] Tianji Wu, Bo Wang, Yi Shan, Feng Yan, Yu Wang, and Ningyi Xu. “Efficient pagerank and
spmv computation on amd gpus.” In: 2010 39th International Conference on Parallel Process-
ing. IEEE. 2010, pp. 81–89 (see p. 39)

[264] Takuma Nomizu, Daisuke Takahashi, Jinpil Lee, Taisuke Boku, and Mitsuhisa Sato. “Im-
plementation of xcalablemp device acceleration extention with opencl.” In: 2012 IEEE 26th
International Parallel andDistributed Processing SymposiumWorkshops&PhDForum. IEEE.
2012, pp. 2394–2403 (see p. 39)

[265] B Neelima and Prakash S Raghavendra. “Recent trends in software and hardware for GPGPU
computing: a comprehensive survey.” In: 2010 5th International Conference on Industrial and
Information Systems. IEEE. 2010, pp. 319–324 (see pp. 39, 52)

[266] Ben Sander, Greg Stoner, Siu-chi Chan, WH Chung, and Robin Maffeo. “HCC: A C++ Com-
piler For Heterogeneous Computing.” In: HSA Foundation, Tech. Rep. (2015) (see p. 39)

[267] Thomas Heller, Hartmut Kaiser, Patrick Diehl, Dietmar Fey, and Marc Alexander Schweitzer.
“Closing the performance gap with modern c++.” In: International Conference on High Per-
formance Computing. Springer. 2016, pp. 18–31 (see p. 39)

[268] Dave Turner, Dan Andresen, Kyle Hutson, and Adam Tygart. “Application performance on
the newest processors and GPUs.” In: Proceedings of the Practice and Experience on Advanced
Research Computing. 2018, pp. 1–7 (see p. 39)

[269] Michael Wong and Hal Finkel. “Distributed & Heterogeneous Programming in C++ for
HPC at SC17.” In: Proceedings of the International Workshop on OpenCL. 2018, pp. 1–7 (see
p. 39)

[270] Michal Babej and Pekka Jääskeläinen. “HIPCL: Tool for Porting CUDA Applications to Ad-
vanced OpenCL Platforms Through HIP.” In: Proceedings of the International Workshop on
OpenCL. 2020, pp. 1–3 (see p. 39)

[271] Alexey Borisov and Evgeny Myasnikov. “Implementation of ” Magma” and” Kuznyechik”
ciphers using HIP.” In: 2020 International Conference on Information Technology and Nan-
otechnology (ITNT). IEEE. 2020, pp. 1–5 (see p. 39)

[272] Seyyed Salar Latifi Oskouei, Hossein Golestani, Matin Hashemi, and Soheil Ghiasi. “Cn-
ndroid: Gpu-accelerated execution of trained deep convolutional neural networks on an-
droid.” In: Proceedings of the 24th ACM international conference on Multimedia. 2016,
pp. 1201–1205 (see p. 40)

[273] Hervé Guihot. “RenderScript.” In: Pro Android Apps Performance Optimization. Springer,
2012, pp. 231–263 (see p. 40)

[274] Alejandro Acosta and Francisco Almeida. “Towards the optimal execution of Renderscript
applications in Android devices.” In: Simulation Modelling Practice and Theory 58 (2015),
pp. 55–64 (see p. 40)

[275] Sebastian Kuckuk, Tobias Preclik, and Harald Köstler. “Interactive particle dynamics using
opencl and kinect.” In: International Journal of Parallel, Emergent and Distributed Systems
28.6 (2013), pp. 519–536 (see p. 40)

203

Bibliography

[276] Arturo Garcia, Jose Omar Alvizo Flores, Ulises Olivares Pinto, and Felix Ramos. “Fast Data
Parallel Radix Sort Implementation in DirectX 11 Compute Shader to Accelerate Ray Trac-
ing Algorithms.” In: EURASIA GRAPHICS: International Conference on Computer Graphics,
Animation and Gaming Technologies. 2014, pp. 27–36 (see p. 40)

[277] Gregory Gutmann, Daisuke Inoue, Akira Kakugo, and Akihiko Konagaya. “Parallel inter-
action detection algorithms for a particle-based live controlled real-time microtubule glid-
ing simulation system accelerated by GPGPU.” In: New Generation Computing 35.2 (2017),
pp. 157–180 (see p. 40)

[278] Nicola Capodieci, Roberto Cavicchioli, and Andrea Marongiu. “A Taxonomy of Modern
GPGPU Programming Methods: On the Benefits of a Unified Specification.” In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems (2021) (see pp. 40, 52)

[279] Benedict Gaster, Lee Howes, David R Kaeli, Perhaad Mistry, and Dana Schaa. Heterogeneous
computing with openCL: revised openCL 1. Newnes, 2012 (see p. 40)

[280] Sangmin Seo, Jun Lee, Gangwon Jo, and Jaejin Lee. “Automatic OpenCL work-group size
selection for multicore CPUs.” In: Proceedings of the 22nd international conference on Parallel
architectures and compilation techniques. IEEE. 2013, pp. 387–397 (see p. 41)

[281] Thanh Tuan Dao, Jungwon Kim, Sangmin Seo, Bernhard Egger, and Jaejin Lee. “A perfor-
mance model for GPUs with caches.” In: IEEE Transactions on Parallel and Distributed Sys-
tems 26.7 (2014), pp. 1800–1813 (see p. 41)

[282] Andrew SD Lee and Tarek S Abdelrahman. “Launch-time optimization of OpenCL GPU
kernels.” In: Proceedings of the General Purpose GPUs. 2017, pp. 32–41 (see p. 41)

[283] Zheng Wang, Dominik Grewe, and Michael FP O’boyle. “Automatic and portable mapping
of data parallel programs to opencl for gpu-based heterogeneous systems.” In: ACM Trans-
actions on Architecture and Code Optimization (TACO) 11.4 (2014), pp. 1–26 (see p. 41)

[284] Paul Harvey, Saji Hameed, and Wim Vanderbauwhede. “Accelerating Lagrangian particle
dispersion in the atmosphere with OpenCL across multiple platforms.” In: Proceedings of the
International Workshop on OpenCL 2013 & 2014. 2014, pp. 1–8 (see p. 41)

[285] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrud-
hula, Jae-sun Seo, and Yu Cao. “Throughput-optimized OpenCL-based FPGA accelerator
for large-scale convolutional neural networks.” In: Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate Arrays. 2016, pp. 16–25 (see p. 41)

[286] Tanner Young-Schultz, Lothar Lilge, Stephen Brown, and Vaughn Betz. “Using OpenCL to
enable software-like development of an FPGA-accelerated biophotonic cancer treatment
simulator.” In: Proceedings of the 2020 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. 2020, pp. 86–96 (see p. 41)

[287] Nagendra Gulur and Narayanan L Suriya. “Understanding the Performance Benefit of Asyn-
chronous Data Transfers in OpenCL Programs Executing on Media Processors.” In: 2015
IEEE 22nd International Conference on High Performance Computing (HiPC). IEEE. 2015,
pp. 135–144 (see p. 41)

204

Bibliography

[288] Heikki Kultala, Timo Viitanen, Heikki Berg, Pekka Jääskeläinen, Joonas Multanen, Mikko
Kokkonen, Kalle Raiskila, Tommi Zetterman, and Jarmo Takala. “LordCore: Energy-
efficient OpenCL-programmable software-defined radio coprocessor.” In: IEEETransactions
on Very Large Scale Integration (VLSI) Systems 27.5 (2019), pp. 1029–1042 (see p. 41)

[289] Saoni Mukherjee, Yifan Sun, Paul Blinzer, Amir Kavyan Ziabari, and David Kaeli. “A com-
prehensive performance analysis of HSA and OpenCL 2.0.” In: 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS). IEEE. 2016, pp. 183–193
(see p. 43)

[290] Benedict R Gaster and Lee Howes. “OpenCL C++.” In: Proceedings of the 6th Workshop on
General Purpose Processor Using Graphics Processing Units. 2013, pp. 86–95 (see p. 43)

[291] Borja Pérez, José Luis Bosque, and Ramón Beivide. “Simplifying programming and load bal-
ancing of data parallel applications on heterogeneous systems.” In: Proceedings of the 9th An-
nual Workshop on General Purpose Processing using Graphics Processing Unit. 2016, pp. 42–
51 (see pp. 48, 54, 61–63, 72)

[292] Javier Diaz, Camelia Munoz-Caro, and Alfonso Nino. “A survey of parallel programming
models and tools in the multi and many-core era.” In: IEEE Transactions on parallel and
distributed systems 23.8 (2012), pp. 1369–1386 (see p. 52)

[293] Sparsh Mittal and Jeffrey S Vetter. “A survey of CPU-GPU heterogeneous computing tech-
niques.” In: ACM Computing Surveys (CSUR) 47.4 (2015), pp. 1–35 (see p. 52)

[294] Branimir Pervan and Josip Knezović. “A Survey on Parallel Architectures and Programming
Models.” In: 2020 43rd International Convention on Information, Communication and Elec-
tronic Technology (MIPRO). IEEE. 2020, pp. 999–1005 (see p. 52)

[295] Roger D Chamberlain. “Architecturally truly diverse systems: A review.” In: Future Genera-
tion Computer Systems 110 (2020), pp. 33–44 (see p. 52)

[296] Yuxiang Li and Zhiyong Zhang. “Parallel computing: review and perspective.” In: 2018 5th
International Conference on Information Science and Control Engineering (ICISCE). IEEE.
2018, pp. 365–369 (see p. 52)

[297] Nachiket Kapre and Samuel Bayliss. “Survey of domain-specific languages for FPGA com-
puting.” In: 2016 26th International Conference on Field Programmable Logic andApplications
(FPL). IEEE. 2016, pp. 1–12 (see p. 52)

[298] Chengbin Fan, Hui Deng, Feng Wang, Shoulin Wei, Wei Dai, and Bo Liang. “A survey on task
scheduling method in heterogeneous computing system.” In: 2015 8th International Con-
ference on Intelligent Networks and Intelligent Systems (ICINIS). IEEE. 2015, pp. 90–93 (see
p. 52)

[299] Christoforos Kachris and Dimitrios Soudris. “A survey on reconfigurable accelerators for
cloud computing.” In: 2016 26th International conference on field programmable logic and
applications (FPL). IEEE. 2016, pp. 1–10 (see p. 52)

205

Bibliography

[300] Michael Haidl, Michel Steuwer, Tim Humernbrum, and Sergei Gorlatch. “Multi-stage pro-
gramming for GPUs in C++ using PACXX.” In: Proceedings of the 9th Annual Workshop on
General Purpose Processing using Graphics Processing Unit. 2016, pp. 32–41 (see p. 53)

[301] Michael Haidl and Sergei Gorlatch. “High-level programming for many-cores using C++ 14
and the STL.” In: International Journal of Parallel Programming 46.1 (2018), pp. 23–41 (see
p. 53)

[302] J. Szuppe. “Boost.Compute: A Parallel Computing Library for C++ Based on OpenCL.” In:
Int. Workshop on OpenCL. IWOCL ’16. Vienna, Austria: ACM, 2016 (see p. 53)

[303] Moisés Viñas, Basilio B Fraguela, Diego Andrade, and Ramón Doallo. “Heterogeneous dis-
tributed computing based on high-level abstractions.” In: Concurrency and Computation:
Practice and Experience 30.17 (2018), e4664 (see p. 53)

[304] Johannes de Fine Licht, Michaela Blott, and Torsten Hoefler. “Designing scalable FPGA ar-
chitectures using high-level synthesis.” In: Proceedings of the 23rd ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming. 2018, pp. 403–404 (see p. 53)

[305] Erik Zenker, Benjamin Worpitz, René Widera, Axel Huebl, Guido Juckeland, Andreas
Knüpfer, Wolfgang E Nagel, and Michael Bussmann. “Alpaka–An Abstraction Library for
Parallel Kernel Acceleration.” In: 2016 IEEE International Parallel and Distributed Processing
SymposiumWorkshops (IPDPSW). IEEE. 2016, pp. 631–640 (see p. 53)

[306] Eric Holk, Milinda Pathirage, Arun Chauhan, Andrew Lumsdaine, and Nicholas D Matsakis.
“GPU programming in rust: Implementing high-level abstractions in a systems-level lan-
guage.” In: 2013 IEEE International Symposium on Parallel & Distributed Processing, Work-
shops and Phd Forum. IEEE. 2013, pp. 315–324 (see p. 53)

[307] Kazuaki Ishizaki, Akihiro Hayashi, Gita Koblents, and Vivek Sarkar. “Compiling and Opti-
mizing Java 8 Programs for GPU Execution.” In: 2015 International Conference on Parallel
Architecture and Compilation (PACT). 2015, pp. 419–431 (see p. 53)

[308] Michail Papadimitriou, Eleni Markou, Juan Fumero, Athanasios Stratikopoulos, Florin Bla-
naru, and Christos Kotselidis. “Multiple-tasks on multiple-devices (MTMD): exploiting
concurrency in heterogeneous managed runtimes.” In: Proceedings of the 17th ACM SIG-
PLAN/SIGOPS international conference on virtual execution environments. 2021, pp. 125–
138 (see p. 53)

[309] Ioana Dogaru and Radu Dogaru. “Using Python and Julia for Efficient Implementation of
Natural Computing and Complexity Related Algorithms.” In: 2015 20th International Con-
ference on Control Systems and Computer Science. 2015, pp. 599–604 (see p. 53)

[310] Jae-Ho Lee, Hyun-Woo Cho, Chang-Hoon Jung, Dong-Hyun Kim, and Cheol-Hoon Lee.
“WebCL prototype for high performance browser running on Android-powered mobile de-
vice.” In: 2016 International Conference on Information and Communication Technology Con-
vergence (ICTC). 2016, pp. 1039–1041 (see p. 53)

[311] Håvard H Holm, André R Brodtkorb, and Martin L Sætra. “GPU computing with Python:
Performance, energy efficiency and usability.” In: Computation 8.1 (2020), p. 4 (see p. 53)

206

Bibliography

[312] Martín Abadi. “TensorFlow: learning functions at scale.” In: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming. 2016, pp. 1–1 (see p. 53)

[313] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. “Pytorch: An imperative
style, high-performance deep learning library.” In: Advances in neural information processing
systems 32 (2019), pp. 8026–8037 (see p. 53)

[314] Thomas Heller, Patrick Diehl, Polytechnique Montreal Montreal, Canada Zachary Byerly,
John Biddiscombe, Hartmut Kaiser, Zachary Byerly, and Hart-Mut Kaiser. “HPX – An open
source C++ Standard Library for Parallelism and Concurrency.” In: 2017Workshop on Open
Source Supercomputing (2017) (see pp. 53, 54)

[315] Marcin Copik and Hartmut Kaiser. “Using sycl as an implementation framework for hpx.
compute.” In: Proceedings of the 5th International Workshop on OpenCL. 2017, pp. 1–7 (see
pp. 53, 54)

[316] Patrick Daleiden, Andreas Stefik, and Philip Merlin Uesbeck. “GPU programming produc-
tivity in different abstraction paradigms: a randomized controlled trial comparing CUDA
and thrust.” In: ACM Transactions on Computing Education (TOCE) 20.4 (2020), pp. 1–27
(see p. 53)

[317] H Carter Edwards, Christian R Trott, and Daniel Sunderland. “Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns.” In: Journal of par-
allel and distributed computing 74.12 (2014), pp. 3202–3216 (see p. 53)

[318] David Beckingsale, Richard Hornung, Tom Scogland, and Arturo Vargas. “Performance
portable C++ programming with RAJA.” In: Proceedings of the 24th Symposium on Principles
and Practice of Parallel Programming. 2019, pp. 455–456 (see p. 53)

[319] J. Enmyren and C. W. Kessler. “SkePU: A multi-backend skeleton programming library for
multi-gpu systems.” In: Proc. 4th Int. Workshop on High-Level Parallel Programming and Ap-
plications (Sept. 2010) (see pp. 53, 54)

[320] August Ernstsson, Lu Li, and Christoph Kessler. “SkePU 2: Flexible and type-safe skeleton
programming for heterogeneous parallel systems.” In: International Journal of Parallel Pro-
gramming 46.1 (2018), pp. 62–80 (see pp. 53, 54)

[321] M. Steuwer, P. Kegel, and S. Gorlatch. “SkelCL - A portable skeleton library for high-level
GPU programming.” In: IEEE International Symposium on Parallel and Distributed Process-
ing Workshops and Phd Forum May 2011 (2011), pp. 1176–1182 (see pp. 53, 54)

[322] Guilherme Andrade, Wilson de Carvalho, Renato Utsch, Pedro Caldeira, Alberto Albur-
querque, Fabricio Ferracioli, Leonardo Rocha, Michael Frank, Dorgival Guedes, and Renato
Ferreira. “ParallelME: A parallel mobile engine to explore heterogeneity in mobile comput-
ing architectures.” In: European Conference on Parallel Processing. Springer. 2016, pp. 447–
459 (see p. 53)

207

Bibliography

[323] Wilson de Carvalho, Guilherme Andrade, Pedro Caldeira, Renato Utsch, Renato Antônio
Celso Ferreira, Leonardo Rocha, Renan Carvalho, and Millas Násser. “Exploring heteroge-
neous mobile architectures with a high-level programming model.” In: 2017 29th Interna-
tional Symposium on Computer Architecture andHigh Performance Computing (SBAC-PAD).
IEEE. 2017, pp. 25–32 (see pp. 53, 54)

[324] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jesús Labarta, Luis Martinell, Xavier
Martorell, and Judit Planas. “OmpSs: A proposal for programming heterogeneous multi-
core architectures.” In: Parallel Processing Letters 21.02 (2011), pp. 173–193 (see p. 53)

[325] Akihiro Tabuchi, Hitoshi Murai, Masahiro Nakao, Tetsuya Odajima, and Taisuke Boku.
“XcalableACC: An Integration of XcalableMP and OpenACC.” In: XcalableMP PGAS Pro-
gramming Language. Springer, Singapore, 2021, pp. 123–146 (see p. 53)

[326] Didem Unat, Xing Cai, and Scott B Baden. “Mint: realizing CUDA performance in 3D stencil
methods with annotated C.” In: Proceedings of the international conference on Supercomput-
ing. 2011, pp. 214–224 (see p. 53)

[327] Jiang-Zhou He, Wen-Guang Chen, Guang-Ri Chen, Wei-Min Zheng, Zhi-Zhong Tang, and
Han-Dong Ye. “OpenMDSP: Extending OpenMP to Program Multi-Core DSPs.” In: Journal
of Computer Science and Technology 29.2 (2014), pp. 316–331 (see p. 53)

[328] Satya P Jammy, Gihan R Mudalige, Istvan Z Reguly, Neil D Sandham, and Mike Giles.
“Block-structured compressible Navier–Stokes solution using the OPS high-level abstrac-
tion.” In: International Journal of Computational Fluid Dynamics 30.6 (2016), pp. 450–454
(see p. 53)

[329] Denis Demidov. “AMGCL: An efficient, flexible, and extensible algebraic multigrid imple-
mentation.” In: Lobachevskii Journal of Mathematics 40.5 (2019), pp. 535–546 (see p. 53)

[330] Patricia Suriana, Andrew Adams, and Shoaib Kamil. “Parallel associative reductions in
halide.” In: 2017 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO). IEEE. 2017, pp. 281–291 (see p. 53)

[331] Bradford L Chamberlain, Steve Deitz, Mary Beth Hribar, and Wayne Wong. “Chapel.” In:
Programming Models for Parallel Computing (2015), pp. 129–159 (see p. 53)

[332] Anchu Rajendran and V Krishna Nandivada. “DisGCo: A Compiler for Distributed Graph
Analytics.” In: ACM Transactions on Architecture and Code Optimization (TACO) 17.4
(2020), pp. 1–26 (see p. 53)

[333] Richard Membarth, Oliver Reiche, Frank Hannig, Jürgen Teich, Mario Körner, and Wieland
Eckert. “Hipa cc: A domain-specific language and compiler for image processing.” In: IEEE
Transactions on Parallel and Distributed Systems 27.1 (2015), pp. 210–224 (see p. 54)

[334] Joshua Auerbach, David F Bacon, Perry Cheng, and Rodric Rabbah. “Lime: a java-
compatible and synthesizable language for heterogeneous architectures.” In: Proceedings
of the ACM international conference on Object oriented programming systems languages and
applications. 2010, pp. 89–108 (see p. 54)

208

Bibliography

[335] Christophe Dubach, Perry Cheng, Rodric Rabbah, David F Bacon, and Stephen J Fink.
“Compiling a high-level language for GPUs: (via language support for architectures and
compilers).” In: ACM SIGPLAN Notices 47.6 (2012), pp. 1–12 (see p. 54)

[336] Jungwon Kim, Sangmin Seo, Jun Lee, Jeongho Nah, Gangwon Jo, and Jaejin Lee. “SnuCL:
an OpenCL framework for heterogeneous CPU/GPU clusters.” In: Proceedings of the 26th
ACM international conference on Supercomputing. 2012, pp. 341–352 (see p. 54)

[337] Yi-Ping You, Hen-Jung Wu, Yeh-Ning Tsai, and Yen-Ting Chao. “VirtCL: a framework for
OpenCL device abstraction and management.” In: Proceedings of the 20th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. 2015, pp. 161–172 (see pp. 54,
55)

[338] Jaehoon Jung, Daeyoung Park, Gangwon Jo, Jungho Park, and Jaejin Lee. “SnuRHAC: A
Runtime for Heterogeneous Accelerator Clusters with CUDA Unified Memory.” In: Pro-
ceedings of the 30th International Symposium on High-Performance Parallel and Distributed
Computing. 2021, pp. 107–120 (see p. 54)

[339] Ashwin M Aji, Antonio J Peña, Pavan Balaji, and Wu-chun Feng. “MultiCL: Enabling auto-
matic scheduling for task-parallel workloads in OpenCL.” In: Parallel Computing 58 (2016),
pp. 37–55 (see pp. 54, 55)

[340] Pierre Huchant. “Static Analysis and Dynamic Adaptation of Parallelism.” PhD thesis. Uni-
versité de Bordeaux, 2019 (see p. 54)

[341] Sylvain Henry, Alexandre Denis, Denis Barthou, Marie-Christine Counilh, and Raymond
Namyst. “Toward OpenCL automatic multi-device support.” In: European Conference on
Parallel Processing. Springer. 2014, pp. 776–787 (see p. 54)

[342] Prasanna Pandit and R Govindarajan. “Fluidic kernels: Cooperative execution of opencl pro-
grams on multiple heterogeneous devices.” In: Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization. 2014, pp. 273–283 (see pp. 54, 55,
61)

[343] Azzam Haidar, Chongxiao Cao, Asim Yarkhan, Piotr Luszczek, Stanimire Tomov, Khairul
Kabir, and Jack Dongarra. “Unified development for mixed multi-gpu and multi-
coprocessor environments using a lightweight runtime environment.” In: 2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE. 2014, pp. 491–500 (see
pp. 54, 55)

[344] Lanjun Wan, Weihua Zheng, and Xinpan Yuan. “HCE: A Runtime System for Efficiently
Supporting Heterogeneous Cooperative Execution.” In: IEEE Access 9 (2021), pp. 147264–
147279 (see p. 54)

[345] Bryan Donyanavard, Tiago Mück, Santanu Sarma, and Nikil Dutt. “SPARTA: Runtime task
allocation for energy efficient heterogeneous manycores.” In: 2016 International Conference
on Hardware/Software Codesign and System Synthesis (CODES+ ISSS). IEEE. 2016, pp. 1–10
(see p. 54)

209

Bibliography

[346] Tarun Beri, Sorav Bansal, and Subodh Kumar. “The Unicorn Runtime: Efficient distributed
shared memory programming for hybrid CPU-GPU clusters.” In: IEEE Transactions on Par-
allel and Distributed Systems 28.5 (2016), pp. 1518–1534 (see pp. 54, 55)

[347] Thierry Gautier, Joao VF Lima, Nicolas Maillard, and Bruno Raffin. “Xkaapi: A runtime
system for data-flow task programming on heterogeneous architectures.” In: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing. IEEE. 2013, pp. 1299–1308
(see pp. 54, 55)

[348] Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. “Orchestrating multiple data-parallel
kernels on multiple devices.” In: 2015 International Conference on Parallel Architecture and
Compilation (PACT). IEEE. 2015, pp. 355–366 (see pp. 54, 55)

[349] Jianlong Zhong and Bingsheng He. “Kernelet: High-throughput GPU kernel executions with
dynamic slicing and scheduling.” In: IEEE Transactions on Parallel and Distributed Systems
25.6 (2013), pp. 1522–1532 (see pp. 54, 55)

[350] Javier Cabezas, Isaac Gelado, John E Stone, Nacho Navarro, David B Kirk, and Wen-mei
Hwu. “Runtime and architecture support for efficient data exchange in multi-accelerator ap-
plications.” In: IEEE Transactions on Parallel and Distributed Systems 26.5 (2014), pp. 1405–
1418 (see p. 54)

[351] Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. “Achieving a single compute
device image in OpenCL for multiple GPUs.” In: ACM Sigplan Notices 46.8 (2011), pp. 277–
288 (see pp. 54, 55, 61)

[352] Pierre Huchant, Marie-Christine Counilh, and Denis Barthou. “Automatic opencl task
adaptation for heterogeneous architectures.” In: European conference on parallel processing.
Springer. 2016, pp. 684–696 (see pp. 54, 55, 61)

[353] Deives Kist, Bruno Pinto, Rodrigo Bazo, Andre Rauber Du Bois, and Gerson Geraldo H
Cavalheiro. “Kanga: a skeleton-based generic interface for parallel programming.” In: 2015
International Symposium on Computer Architecture andHigh Performance ComputingWork-
shop (SBAC-PADW). IEEE. 2015, pp. 68–72 (see p. 54)

[354] Luciano Baresi, Giovanni Quattrocchi, and Nicholas Rasi. “Resource Management for Ten-
sorFlow Inference.” In: International Conference on Service-Oriented Computing. Springer.
2021, pp. 238–253 (see p. 54)

[355] Pekka Jääskeläinen, John Glossner, Martin Jambor, Aleksi Tervo, and Matti Rintala. “Of-
floading C++ 17 Parallel STL on System Shared Virtual Memory Platforms.” In: International
Conference on High Performance Computing. Springer. 2018, pp. 637–647 (see p. 54)

[356] Jakub Szuppe. “Boost. Compute: A parallel computing library for C++ based on OpenCL.”
In: Proceedings of the 4th International Workshop on OpenCL. 2016, pp. 1–39 (see p. 54)

[357] Ajai V George, Sankar Manoj, Sanket R Gupte, Sayantan Mitra, and Santonu Sarkar.
“Thrust++: Extending thrust framework for better abstraction and performance.” In: 2017
IEEE 24th International Conference on High Performance Computing (HiPC). IEEE. 2017,
pp. 368–377 (see p. 54)

210

Bibliography

[358] Jeff R Hammond, Michael Kinsner, and James Brodman. “A comparative analysis of Kokkos
and SYCL as heterogeneous, parallel programming models for C++ applications.” In: Pro-
ceedings of the International Workshop on OpenCL. 2019, pp. 1–2 (see p. 54)

[359] Marcin Copik and Hartmut Kaiser. “Using SYCL As an Implementation Framework for
HPX.Compute.” In: Proceedings of the 5th InternationalWorkshop onOpenCL. IWOCL 2017.
New York, NY, USA: ACM, 2017, 30:1–30:7 (see p. 54)

[360] David del Rio Astorga, Manuel F Dolz, Javier Fernández, and J Daniel García. “A generic
parallel pattern interface for stream and data processing.” In:Concurrency and Computation:
Practice and Experience 29.24 (2017), e4175 (see p. 54)

[361] Michel Steuwer, Malte Friese, Sebastian Albers, and Sergei Gorlatch. “Introducing and im-
plementing the allpairs skeleton for programming multi-GPU systems.” In: International
Journal of Parallel Programming 42.4 (2014), pp. 601–618 (see p. 54)

[362] Ana Moreton-Fernandez, Arturo Gonzalez-Escribano, and Diego R Llanos. “Multi-device
controllers: a library to simplify parallel heterogeneous programming.” In: International
Journal of Parallel Programming 47.1 (2019), pp. 94–113 (see p. 54)

[363] Gabriel Rodriguez-Canal, Yuri Torres, Francisco J Andújar, and Arturo Gonzalez-Escribano.
“Efficient heterogeneous programming with FPGAs using the Controller model.” In: The
Journal of Supercomputing (2021), pp. 1–16 (see p. 54)

[364] Kai Ma, Xue Li, Wei Chen, Chi Zhang, and Xiaorui Wang. “Greengpu: A holistic approach to
energy efficiency in gpu-cpu heterogeneous architectures.” In: 2012 41st international con-
ference on parallel processing. IEEE. 2012, pp. 48–57 (see p. 54)

[365] Guibin Wang and Xiaoguang Ren. “Power-efficient work distribution method for cpu-gpu
heterogeneous system.” In: International symposium on parallel and distributed processing
with applications. IEEE. 2010, pp. 122–129 (see p. 54)

[366] Lanjun Wan, Weihua Zheng, and Xinpan Yuan. “Efficient inter-device task scheduling
schemes for multi-device co-processing of data-parallel kernels on heterogeneous systems.”
In: IEEE Access 9 (2021), pp. 59968–59978 (see p. 55)

[367] Jiajian Xiao, Philipp Andelfinger, Wentong Cai, Paul Richmond, Alois Knoll, and David Eck-
hoff. “OpenABLext: An automatic code generation framework for agent-based simulations
on CPU-GPU-FPGA heterogeneous platforms.” In: Concurrency and Computation: Practice
and Experience 32.21 (2020), e5807 (see p. 55)

[368] Mr Yasir Noman Khalid. “Load-Balanced Multi-Job Scheduling For Heterogeneous CPU-
GPU Systems.” PhD thesis. CAPITAL UNIVERSITY, 2020 (see p. 55)

[369] Anes Abdennebi, Anıl Elakaş, Fatih Taşyaran, Erdinç Öztürk, Kamer Kaya, and Sinan
Yıldırım. “Machine learning-based load distribution and balancing in heterogeneous
database management systems.” In: Concurrency and Computation: Practice and Experience
(2021), e6641 (see p. 55)

[370] Asad Hayat. “A Load-Balanced Task Scheduler for Heterogeneous Systems based on Ma-
chine Learning.” PhD thesis. CAPITAL UNIVERSITY, 2021 (see p. 55)

211

Bibliography

[371] Anuj Vaishnav. Modular FPGA Systems with Support for Dynamic Workloads and Virtuali-
sation. The University of Manchester (United Kingdom), 2020 (see p. 55)

[372] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. “Heterogeneous resource-elastic schedul-
ing for CPU+ FPGA architectures.” In: Proceedings of the 10th International Symposium on
Highly-Efficient Accelerators and Reconfigurable Technologies. 2019, pp. 1–6 (see p. 55)

[373] S Carlos, Pablo Toharia, Jose Luis Bosque, and Oscar D Robles. “Static multi-device load bal-
ancing for opencl.” In: 2012 IEEE 10th International Symposium on Parallel and Distributed
Processing with Applications. IEEE. 2012, pp. 675–682 (see p. 55)

[374] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. “An automatic input-
sensitive approach for heterogeneous task partitioning.” In: Proceedings of the 27th interna-
tional ACM conference on International conference on supercomputing. 2013, pp. 149–160
(see p. 55)

[375] Kyle Spafford, Jeremy Meredith, and Jeffrey Vetter. “Maestro: data orchestration and tuning
for opencl devices.” In: European Conference on Parallel Processing. Springer. 2010, pp. 275–
286 (see p. 55)

[376] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. “Qilin: exploiting parallelism on hetero-
geneous multiprocessors with adaptive mapping.” In: 2009 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO). IEEE. 2009, pp. 45–55 (see p. 55)

[377] Siham Tabik, G Ortega, Ester M Garzón, and D Suárez. “A data partitioning model for
highly heterogeneous systems.” In: European Conference on Parallel Processing. Springer.
2016, pp. 468–479 (see p. 55)

[378] Angeles Navarro, Antonio Vilches, Francisco Corbera, and Rafael Asenjo. “Strategies for
maximizing utilization on multi-CPU and multi-GPU heterogeneous architectures.” In: The
Journal of Supercomputing 70.2 (2014), pp. 756–771 (see p. 55)

[379] Alberto Cabrera, Alejandro Acosta, Francisco Almeida, and Vicente Blanco. “A heuristic
technique to improve energy efficiency with dynamic load balancing.” In: The Journal of
Supercomputing 75.3 (2019), pp. 1610–1624 (see p. 55)

[380] Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, John Vlissides, et al. Design
patterns: elements of reusable object-oriented software. Pearson Deutschland GmbH, 1995
(see pp. 66, 104, 120, 123)

[381] Maria Angelica Davila Guzman, Ruben Gran Tejero, Maria Villarroya Gaudo, and Dario
Suarez Gracia. “Towards the inclusion of FPGAs on commodity heterogeneous systems.” In:
2018 International Conference on High Performance Computing & Simulation (HPCS). IEEE.
2018, pp. 554–556 (see pp. 70, 159)

[382] Cleidson R.B. De Souza and David L.M. Bentolila. “Automatic evaluation of API usability
using complexity metrics and visualizations.” In: 2009 31st International Conference on Soft-
ware Engineering - Companion Volume, ICSE 2009 (2009), pp. 299–302 (see p. 79)

212

Bibliography

[383] Rajendra K. Bandi, Vijay K. Vaishnavi, and Daniel E. Turk. “Predicting maintenance perfor-
mance using object-oriented design complexity metrics.” In: IEEE Transactions on Software
Engineering 29.1 (2003), pp. 77–87 (see p. 79)

[384] Girish Maskeri Rama and Avinash Kak. “Some structural measures of API usability.” In:
Software - Practice and Experience (2013) (see p. 79)

[385] Thomas Scheller and Eva Kühn. “Automated measurement of API usability: The API Con-
cepts Framework.” In: Information and Software Technology 61 (2015), pp. 145–162 (see
p. 79)

[386] Alejandro Acosta and Francisco Almeida. “Paralldroid: Performance analysis of gpu exe-
cutions.” In: European Conference on Parallel Processing. Springer. 2014, pp. 387–399 (see
p. 131)

[387] Alejandro Acosta and Francisco Almeida. “Android TM development and performance
analysis.” In: The Journal of Supercomputing 70.2 (2014), pp. 649–659 (see p. 131)

[388] Sergio Afonso, Alejandro Acosta, and Francisco Almeida. “Automatic Generation of
OpenCL Code for ARM Architectures.” In: European Conference on Parallel Processing.
Springer. 2016, pp. 96–107 (see p. 131)

[389] Daniel Stadelmann, M. Teßmann, and Ch. Schiedermeier. “Entwicklung einer OpenCL-
Implementierung für die VideoCore IV GPU des Raspberry Pi.” (”Development of an
OpenCL implementation for the VideoCore IV GPU of the Raspberry Pi”) Bachelor’s Thesis.
TH Nürnberg Georg Simon Ohm, Nürnberg, Germany, 2017 (see p. 131)

[390] Diego García Cosío, Jose Luis Bosque, and Raúl Nozal. “Herramienta para el procesamiento
de audio en tiempo real mediante OpenCL.” (”Tool for real-time audio processing using
OpenCL”) Bachelor’s Thesis. Universidad de Cantabria, Santander, Spain, 2020 (see p. 132)

[391] Daniel Torre Miguel, Raúl Nozal, and Jose Luis Bosque. “Procesamiento de vídeo en dis-
positivos embebidos mediante OpenCL.” (”Video processing on embedded devices using
OpenCL”) Bachelor’s Thesis. Universidad de Cantabria, Santander, Spain, 2020 (see p. 132)

[392] Raúl Nozal and Jose Luis Bosque. “Straightforward Heterogeneous Computing with the
oneAPI Coexecutor Runtime.” In: Electronics 10.19 (2021) (see p. 150)

213

List of top citations

List of the most influential journals and conferences in this dissertation, based on the number of dis-
tinct papers cited throughout the document. Only those containing at least three relevant citations
are shown.

[16] The Journal of Supercomputing (JoS)

[16] International Workshop on OpenCL and SYCL Conference (IWOCL & SYCLcon)

[12] IEEE Transactions on Parallel & Distributed Systems (TPDS)

[12] European Conference on Parallel Processing (Euro-Par)

[8] IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW)

[7] ACM Transactions on Architecture & Code Optimization (TACO)

[6] IEEE/ACM International Symposium on Microarchitecture (MICRO)

[6] Journal of Parallel & Distributed Computing (JPDC)

[6] International Conference on Parallel Processing (ICPP)

[6] IEEE International Conference on High Performance Computing (HiPC)

[5] International Conference on Parallel Architecture & Compilation Techniques (PACT)

[5] ACM International Conference on Supercomputing (ICS)

[4] ACM/IEEE International Symposium on Computer Architecture (ISCA)

[4] IEEE International Parallel & Distributed Processing Symposium (IPDPS)

[4] IEEE Int. Symposium on Computer Architecture & High Performance Computing (SBAC-PAD)

[4] Concurrency and Computation: Practice and Experience (CCPE)

[4] International Journal of Parallel Programming (IJPP)

[3] Future Generation Computer Systems (FGCS)

[3] International Conference on High Performance Computing & Simulation (HPCS)

[3] IEEE International Symposium on Performance Analysis of Systems & Software (ISPASS)

[3] ACM SIGPLAN Symposium on Principles & Practice of Parallel Programming (PPoPP)

[3] International Conference on High Performance Computing in Asia-Pacific Region (HPC Asia)

[3] ACM SIGPLAN Notices

[3] International Conference for High Performance Computing, Networking, Storage & Analysis (SC)

215

Optimizing Performance and Energy Efficiency in
Massively Parallel Systems

byRaúl Nozal González
is licensed under a

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

KEYWORDS

Heterogeneous Computing Co-execution HPC Parallel Programming Performance Portability

Accelerators Runtime Systems Usability Maintainability Load Balancing Scheduling C++

OpenCL Intel oneAPI SYCL API Design Software Architecture Programming Languages

COLOPHON

This document is typeset using Donald E. Knuth’s TEX typesetting system, through LuaTex1

engine by Taco Hoekwater et al. implemented in Christian Schenk’s MiKTeX2. Its template is
developed over KOMA-Script srcbook3 document class maintained by Markus Kohm. The
bibliography is organized with Oliver Kopp’s JabRef4 and processed by BibLaTeX5 using
Biber6 as its backend, which are mainly maintained by Philip Kime and François Charette
respectively. The typeface used for regular text is Robert Slimbach’s Minion Pro.7 Sans-serif

text is written in Slimbach and Carol Twombly’s Myriad Pro.8 Jim Lyles’s Vera Mono9 and
Claudio Beccari’s 𝐴𝑠𝑎𝑛𝑎 𝑀𝑎𝑡ℎ10 fonts are used for monospaced and 𝑚𝑎𝑡ℎ𝑒𝑚𝑎𝑡𝑖𝑐𝑎𝑙 text re-
spectively.

All the graphics and schemes are self-made, designed using Inkscape11, Draw.io12 and
Gimp13. Charts are created with a custom self-made low-level library on top of d314, although
manual post-processing is applied to improve the overall quality and comprehensibility.

1http://www.luatex.org
2https://miktex.org
3https://www.ctan.org/pkg/koma-script
4https://www.jabref.org
5https://www.ctan.org/pkg/biblatex
6https://www.ctan.org/pkg/biber
7https://fonts.adobe.com/fonts/minion
8https://fonts.adobe.com/fonts/myriad
9https://www.dafont.com/es/bitstream-vera-mono.font

10https://www.ctan.org/tex-archive/fonts/Asana-Math
11https://inkscape.org
12https://draw.io; https://app.diagrams.net
13https://www.gimp.org
14https://d3js.org

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.luatex.org
https://miktex.org
https://www.ctan.org/pkg/koma-script
https://www.jabref.org
https://www.ctan.org/pkg/biblatex
https://www.ctan.org/pkg/biber
https://fonts.adobe.com/fonts/minion
https://fonts.adobe.com/fonts/myriad
https://www.dafont.com/es/bitstream-vera-mono.font
https://www.ctan.org/tex-archive/fonts/Asana-Math
https://inkscape.org
https://draw.io
https://app.diagrams.net
https://www.gimp.org
https://d3js.org

FUNDING ACKNOWLEDGEMENTS

This PhD has been supported by the Spanish Ministry of Education (FPU16/03299 grant),
the Spanish Science and Technology Commission under contracts TIN2016-76635-C2-2-R
and PID2019-105660RB-C22.

This work has also been partially supported by the Mont-Blanc 3: European Scalable and
Power Efficient HPC Platform based on Low-Power Embedded Technology project (G.A. No.

671697) from the European Union’s Horizon 2020 Research and Innovation Programme
(H2020 Programme). Some activities have also been funded by the Spanish Science and Tech-
nology Commission under contract TIN2016-81840-REDT (CAPAP-H6 network).

The Integration II: Hybrid programming models of Chapter 4 has been partially performed
under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC
Research Innovation Action under the H2020 Programme. In particular, the author grate-
fully acknowledges the support of the SPMT Department of the High Performance Com-
puting Center Stuttgart (HLRS).

Raúl Nozal is a Computer Engineer and Topography Engineer, expert in

Software Architecture. He obtained these degrees by three different uni-

versities, Universidad de Cantabria (UNICAN), Universidad del País Vasco

(UPV/EHU) andUniversidad a Distancia de Madrid (UDIMA), achieving ex-

traordinary awards for the best record in all of them. His professional ex-

perience ranges from Senior Developer to Software Architect and CTO, as a

result of working in the industry for more than 9 years. He has mentored var-

ious business projects and R&D software, being co-founder of three innova-

tive and technology companies, currently acting as advisor for some of them.

For the last 5-years he has been working on his PhD with the Computer Ar-

chitecture and Technology Group of the Department of Computer Engineer-

ing and Electronics, part of the University of Cantabria. He enjoys guiding

projects and master theses, as well as teaching parallel programming to com-

puter science students. His research has a multi-objective approach, com-

bining optimization and performance with software engineering. His main

research interests include programming languages, heterogeneous systems,

high performance computing, web technologies and software architecture.

A tribute to Joe Armstrong

In memory of one of the main designers of the Erlang programming language and its Erlang/OTP runtime system.

His ambitious PhD has fostered one of the most important platforms to develop scalable, concurrent and fault-tolerant

distributed systems.

UNIVERSITY OF CANTABRIA

Doctoral Thesis

Optimizing Performance and Energy
Efficiency in Massively Parallel Systems

Raúl Nozal

supervised by
José Luis Bosque

Doctor of Philosophy
Computer Architecture and Technology Group

Department of Computer Engineering and Electronics
Santander

January 2017 – November 2021

	 ⌘ Cover
	 ☘ ︎︎Presentation
	 ☆ Dedicatoria
	 ★ ︎︎Dedication
	 ❦ ︎︎Agradecimientos
	 ♦ ︎︎Abstract
	 ♢︎ Resumen
	 ☰︎ Contents
	 ⋮ List of Figures
	 ⋮ List of Tables
	 ⋮ List of Equations
	 ⋮ List of Code Listings
	1 Introduction
	 ♦︎ Abstract
	1.1 Heterogeneous Systems
	1.2 Programming Models & Languages
	1.3 Co-execution
	1.4 Abstraction & Load balancing
	1.5 Hypothesis
	1.6 Major dissertation contributions
	1.7 Methodology
	1.7.1 Platforms & Devices
	1.7.2 Benchmarks
	1.7.3 Metrics
	1.7.4 Tools

	1.8 Document structure

	2 Background & Related Work
	 ♦︎ Abstract
	2.1 Technologies & Programming languages
	2.1.1 Overview
	2.1.2 OpenCL
	2.1.2.1 Platform model
	2.1.2.2 Execution model
	2.1.2.3 Programming model
	2.1.2.4 Compilation model
	2.1.2.5 Memory model

	2.1.3 Intel oneAPI
	2.1.3.1 Platform model
	2.1.3.2 Execution model
	2.1.3.3 Memory model
	2.1.3.4 Kernel programming model

	2.2 Load Balancing Algorithms
	2.2.1 Static algorithm
	2.2.2 Dynamic algorithm
	2.2.3 HGuided algorithm

	2.3 Related Work
	2.3.1 Programming models
	2.3.2 Abstraction
	2.3.3 Load balancing

	3 EngineCL
	 ♦︎ Abstract
	3.1 Motivation
	3.2 Overview of EngineCL
	3.3 EngineCL
	3.3.1 Principles of design
	3.3.2 Architecture
	3.3.3 OpenCL Abstractions
	3.3.4 Schedulers

	3.4 API Design
	3.4.1 Case 1: Using only one device
	3.4.2 Case 2: Using several devices

	3.5 Methodology
	3.6 Validation
	3.6.1 Usability
	3.6.2 Overhead of EngineCL
	3.6.3 Load Balancing
	3.6.4 Performance
	3.6.5 Energy

	3.7 Conclusions

	4 EngineCL Integrations
	 ♦︎ Abstract
	4.1 Integration I: time-constrained scenarios
	4.1.1 Motivation
	4.1.2 Optimizations
	4.1.2.1 Execution & Platform models
	4.1.2.2 Memory model
	4.1.2.3 Algorithmic optimizations

	4.1.3 Methodology
	4.1.4 Results
	4.1.4.1 Performance Results
	4.1.4.2 Optimizations Evaluation

	4.1.5 Conclusions

	4.2 Integration II: hybrid programming models
	4.2.1 Motivation
	4.2.2 Overview
	4.2.3 Optimizations
	4.2.3.1 Architecture
	4.2.3.2 Execution model
	4.2.3.3 Memory model

	4.2.4 API Design
	4.2.5 Methodology
	4.2.6 Validation
	4.2.7 Conclusions

	4.3 Discussion

	5 Coexecutor Runtime
	 ♦︎ Abstract
	5.1 Motivation
	5.2 Coexecutor Runtime
	5.2.1 Synchronous static co-execution
	5.2.2 Asynchronous dynamic co-execution
	5.2.2.1 Execution model
	5.2.2.2 Memory model
	5.2.2.3 Runtimes interaction

	5.2.3 Load balancing algorithms

	5.3 API Design
	5.4 Methodology
	5.5 Validation
	5.5.1 Performance
	5.5.2 Scalability
	5.5.3 Energy
	5.5.4 NBody Benchmark

	5.6 Conclusions

	6 Conclusions & Future Work
	 ♦︎ Abstract
	6.1 Conclusions
	6.2 Future Work

	Publications and Contributions
	Bibliography
	 ⋮ List of top citations

	Appendix
	  §︎    License
	  #   Keywords
	 ♣ ︎︎ Funding Acknowledgements
	 ♜ ︎︎ Biography

