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Abstract

High performance computing is approaching a potentially significant change

in architectural design. With pressures on the cost and sheer amount of power,

additional architectural features are emerging which require a re-think to the

programming models deployed over the last two decades.

Today’s emerging high performance computing (HPC) systems are maximis-

ing performance per unit of power consumed resulting in the constituent parts of

the system to be made up of a range of different specialised building blocks, each

with their own purpose. This heterogeneity is not just limited to the hardware

components but also in the mechanisms that exploit the hardware components.

These multiple levels of parallelism, instruction sets and memory hierarchies,

result in truly heterogeneous computing in all aspects of the global system.

These emerging architectural solutions will require the software to exploit

tremendous amounts of on-node parallelism and indeed programming models

to address this are emerging. In theory, the application developer can design

new software using these models to exploit emerging low power architectures.

However, in practice, real industrial scale applications last the lifetimes of many

architectural generations and therefore require a migration path to these next

generation supercomputing platforms.

Identifying that migration path is non-trivial: With applications spanning

many decades, consisting of many millions of lines of code and multiple sci-

entific algorithms, any changes to the programming model will be extensive

and invasive and may turn out to be the incorrect model for the application in

question.

This makes exploration of these emerging architectures and programming

models using the applications themselves problematic. Additionally, the source

code of many industrial applications is not available either due to commercial
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or security sensitivity constraints.

This thesis highlights this problem by assessing current and emerging hard-

ware with an industrial strength code, and demonstrating those issues described.

In turn it looks at the methodology of using proxy applications in place of real

industry applications, to assess their suitability on the next generation of low

power HPC offerings. It shows there are significant benefits to be realised in

using proxy applications, in that fundamental issues inhibiting exploration of a

particular architecture are easier to identify and hence address.

Evaluations of the maturity and performance portability are explored for a

number of alternative programming methodologies, on a number of architectures

and highlighting the broader adoption of these proxy applications, both within

the authors own organisation, and across the industry as a whole.
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AIX Advanced Interactive eXecutive

ALU Arithmetic Logic Unit

AMD Advanced Micro Devices R©

ANL Argonne National Laboratory

APEX Alliance for application Performance at EXtreme scale

API Application Programming Interface

APU Accelerated Processing Unit

ARC Advanced Research Computing

ARM Advanced RISC Machines

ASCI Accelerated Strategic Computing Initiative

ASC Advanced Simulation and Computing Program

AVX Advanced Vector eXtensions

AWE Atomic Weapons Establishment
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CCE Cray Compiling Environment

CEA Commissariat á l’énergie atomique et aux énergies alternatives
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CORAL Collaboration of Oak Ridge, Argonne, and Lawrence Livermore
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CPU Central Processing Unit

CSCS Centro Svizzero di Calcolo Scientifico

CTBT Comprehensive Test Ban Treaty

CUDA Compute Unified Device Architecture

DARPA Defence Advanced Research Projects Agency

DoE Department of Energy

DDR Double Data Rate

DP Double Precision

DRAM Dynamic Random Access Memory

DSL Domain Specific Language

ECC Error Correcting Code

EDR Enhanced Data Rate (InfiniBand)

ECP Exascale Computing Plan

EFLOP/s 1018 FLOP/s

FLC Federal Laboratory Consortium
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FDR Fourteen Data Rate (InfiniBand)

FLOP/s Floating-Point Operations per Second

FMA Fused Multiply Add

FPU Floating-Point-Unit

FSB Front Side Bus

FYP Five-Year Plan

GFLOP/s 109 FLOP/s

GPC Graphics Processing Cluster

GPGPU General Purpose GPU

GPU Graphics Processing Unit

GTC GPU Technology Conference

GT/s gigatransfers per second

HAAPs Heterogeneous Advanced Architecture Platforms
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HMW High Memory Watermark

HPC High-Performance Computing

HSA Heterogeneous System Architecture
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IB InfiniBand

IBM International Business Machines R©

ISC International Supercomputing Conference

IDE Integrated Development Environment

ILP Instruction-Level Parallelism

ISA Instruction Set Architecture

ISV Independent Software Vendor

IWOCL International Workshop on OpenCL

KNC Knights Corner: 1st generation MIC architecture

KNF Knights Ferry: prototype MIC architecture

KNH Knights Hill: 3rd generation MIC architecture

KNL Knights Landing: 2nd generation MIC architecture

LANL Los Alamos National Laboratory

LEO Language Extensions for Offload

LLNL Lawrence Livermore National Laboratory

LOC Lines of Code

MCDRAM Multi-Channel DRAM

MEXT Ministry of Education, Culture, Sports, Science and Technology

MIC Many-Integrated Core

MMX Multimedia Extension

MPI Message Passing Interface
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MPP Massively Parallel Programming

NAS NASA Advanced Supercomputing

NASA National Aeronautics and Space Administration

NCSA National Centre for Supercomputing Applications

NERSC National Energy Research Scientific Computing Center

NNSA National Nuclear Security Administration

NPB NAS Parallel Benchmarks

NRE Non-Recurring Engineering

NSCI National Strategic Computing Initiative

NUMA Non-Uniform Memory Access

NVRAM Non-Volatile Random Access Memory

OO Object Oriented

ORNL Oak Ridge National Laboratory

OS Operating System

PCI Peripheral Component Interconnect

PCIe PCI Express
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PGAS Partitioned Global Address Space

PGI The Portland Group R©

PGO Profile Guided Optimisation

POWER Performance Optimized With Enhanced RISC

PRACE Partnership for Advanced Computing in Europe

PtAC Path to Agile Coding

PtMC Path to Many Core

PTX Parallel Thread eXecution

QDR Quad Data Rate (InfiniBand)

QCD Quantum Chromodynamics

QCM Quad Chip Module

QPI QuickPath Interconnect

QPX Quad Processing eXtension

QUDA QCD on CUDA

RAM Random Access Memory

RISC Reduced Instruction Set Computer

SAMRAI Structured Adaptive Mesh Refinement Application

SCC Single-chip Cloud Computer

SDK Software Development Kit

SDRAM Synchronous Dynamic Random Access Memory

SIMD Single Instruction, Multiple Data
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SPH Smoothed Particle Hydrodynamics

SKU Stock Keeping Unit

SM Streaming Multiprocessor

SMP Symmetric Multi Processor

SMT Simultaneous Multi-Threading

SNL Sandia National Laboratories

SoC System-on-a-Chip

SP Single Precision

SRAM Static Random Access Memory

SSE Streaming SIMD Extensions

STL Standard Template Library

TBB Thread Building Blocks

TDP Thermal Design Power
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TLP Thread-Level Parallelism
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UPC Unified Parallel C
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Definitions

Amdahl’s Law

Amdahl’s Law [47] states the theoretical limit for the speedup of a fixed, strong

scaling problem, as the number of executing processors is increased.

Shown in Equation 1 where S is the speedup of the whole problem, s is the

speedup of the parallel section of the task, p is the proportion of the parallel

section (or none serial section)of the problem.

S =
1

(1− p) + p
s

(1)

It shows that the theoretical speedup of the whole problem increases with

processors and that regardless of the magnitude of the improvement, the theo-

retical speedup is always limited by the serial part of the task.

Bandwidth Bound

A bandwidth bound algorithm is one that has reached the physical limits of the

underlying hardware in terms of access to global memory.

Computational Kernel

A collection of application program code, such as multiple loop-block struc-

tures, which has been logically co-located within the same program function or

subroutine, and collectively performs a particular well-defined task or operation.

Concurrency

A system consisting of multiple streams of independent operations active at one

time.

Compute Bound

A computational operation whose time is primarily decided by the time taken

to operate on the data, rather than the time to load the data into memory. In

such a scenario the use of a faster processor will afford a proportional gain in

overall performance.
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Data Parallel

The distribution of data across multiple hardware processing elements, enabling

the same task to be carried out in unison on multiple data points.

Deep Copy

A copy of a data structure duplicating not only the structure itself, but all

associated sub-structures.

ECC RAM

Error-Correcting Code (ECC) RAM is a type of memory with built in error

detection and correction, through the use of parity bits. This makes the memory

immune to single bit errors, increasing reliability.

Front Side Bus

A Front Side Bus (FSB) is a legacy communication interface that was used in

Intel processors, carrying data between the central processing unit (CPU) and

the memory controller.

Ghost/Halo Cells

With parallel grid based computations it is frequently necessary to access data

which resides in another processor’s memory space. Such a situation usually

occurs at the boundary of a processor’s computational region. To improve the

performance of fetching the data, a buffer is used to replicate the whole boundary

region on the local processor. This data is rarely computed, but used as input

to the computation of other cells.

Hackathon

An event, in which a large number of people meet to engage in collaborative

computer programming, focusing on a particular problem, platform, application

or language.

Heterogeneous Computing

The description a computer system consisting of one or more of the following:

multiple instruction set architectures (ISA), multiple processor types, multiple

mechanisms to exploit system parallelism, multiple memory or data hierarchies.
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Latency Bound

A latency bound algorithm is one whose performance is inhibited due to the

time to carry out memory fetches on dependent data.

Memory Bound

A computational operation whose time is primarily governed by the rate at

which data can be moved from memory to the processor, rather than the actual

computational operation. There are two distinct classes of memory bound

algorithms: latency bound and bandwidth bound. In both scenarios the use of

a faster processor will not afford a gain in overall performance. Improvements

in performance will only be afforded be improvements to the memory system,

such as faster RAM, more memory bandwidth, or enhancements in cache within

the processor.

Memory Wall

The much faster improvement of processor speed as compared with dynamic

random access memory (DRAM) speed, resulting in processor speed improve-

ments being masked for particular classes of algorithms by the relatively slow

improvements to DRAM speed [202].

Moore’s Law

A prediction, rather than a fundamental law; Gordon Moore of Intel predicted

a doubling in the number of a microchips components every two years. As this

increase in components was directly proportional to the speed of a chip, this

was frequently expressed as a doubling in the performance of a chip/processor.

Although the original prediction by Moore is still realised, the increase in

processor frequency, or clock speed is not.

Power Wall

The significant increasing loss of efficiency due to overheating as the clock

frequency of a CPU increases.

Ragged Array

An array with rows of non-uniform length.
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Stencil Framework

A framework that performs cyclic updates to data according to a predefined

pattern. Usually a particular stencil is associated with a particular algorithmic

domain.

Stride One

Also known as “unit stride”, is an array with a stride of exactly the same size

as the size of each of its elements.

Strong Scaling

The act of increasing the processing resources used to solve a problem of the

same size, with the resultant performance continuing to scale.

Task Parallel

The enablement of each hardware processing element to execute a different

execution thread on the same, or different data.

Thread

An independent process, with associated data and instructions.

Thread Safe

A property of a library or programme component, which can have multiple

threads executing simultaneously in a manner which still produces correct re-

sults.

Turnover

The point, in Strong Scaling, where increasing the number of processors to

solve a problem results in a slower solution time; that is the problem no long

demonstrates Strong Scaling.

Weak Scaling

The act of increasing the processing resources used to solve a problem of in-

creasing size, where the processing resources remains the same with the time to

solution remaining the same, or decreasing.
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CHAPTER 1
Introduction

The drivers for ever increasing levels of compute performance are many. From

the scientific view point, pushing the boundaries of discovery in the fields of

health, finance, science, industry and military, to a purely commercial view

point with the attraction of the worlds best students and technical minds to the

industrial infrastructure of a nation.

Internationally, strategic drives from China, USA, Japan and the European

Union are striving to be the first to design and deploy exascale class machines,

namely systems capable of performing one billion billion floating point opera-

tions (FLOP) per second (EFLOP/s).

China first laid claim to the world’s fastest supercomputer: the NVIDIA R©

Tesla R©GPU accelerated Intel R©Xeon R©, Tianhe-1A [144], in November 2010 and

re-laid the claim in November of 2015 with the Intel Xeon / Intel R©Xeon Phi
TM

based, 54.9 petaFLOP (PFLOP) Tianhe-2 [133]. However, with embargoes from

the US restricting future imports of these processor technologies to the home

of Tianhe-2, the National Supercomputer Center and also China’s Jiangnan

Institute of Computer Technology, the country is actively pursuing it’s own

micro-processor development via its ShenWei, FeiTeng and Loongson micro-

processor technology [112]. Announced in June 2016, eclipsing Tianhe-2 at the

top of the Top500 list, was Sunway TaihuLight. The building blocks of the

system are the ShenWei SW26010 processor. With 40,960 nodes, comprising of

10,649,600 computing cores, it is twice the speed and three times as efficient

as Tianhe-2 [85]. China’s social, economic and political strategy is described

in successive “Five-Year Plans” (FYP), the 12th of which (2011-2015) [72]

instigated the programme resulting in Sunway TaihuLight. The subsequent

13th FYP (2016-2020) sets out the delivery of an exascale machine by the end

of the decade.

Japan’s SPARC64
TM

based Fujitsu manufactured K-computer [203], still one

of the top ten fastest machines in the world, debuting as the fastest in June of

2011 [148], with a peak performance of 11.3 PFLOPs. The country’s Ministry

of Education, Culture, Sports, Science and Technology (MEXT) announced the

Flagship2020 project in April 2014. Flagship2020’s goal is to deploy a machine

with “100 times more application performance” than the K-computer at the

RIKEN Advanced Institute for Computational Science by 2020. As announced

at ISC 2016 [116] this platform will utilise ARM R©based, rather than SPARC64,

from Fujitsu [170].
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Chapter 1. Introduction

A high level policy from the Office of Science and Technology Policy in

the United States, resulted in the US National Strategic Computing Initiative

(NSCI) [108] to “create a cohesive, multi-agency strategic vision and investment

strategy that assures the United States sustains or extends its historical lead

and strategic advantage in High Performance Computing (HPC) technology

for national security, economic prosperity and scientific discovery” that has

the goal of deploying an exascale class system by 2023 within the Depart-

ment of Energy (DoE). The Exascale Computing Plan (ECP) is the delivery

mechanism for this strategy setting out the PathForward program to oversee

hardware development, funding a range of vendors to carry out research and

development towards a deployable exascale system. A number of pre-exascale

systems have been announced from the DoE under a phased Non-Recurring

Engineering (NRE) route, which includes the Advanced Technology Systems

(ATS). The first phase consists of the Trinity (ATS-1) [128] and Cori [151]

systems at Los Alamos National Laboratory (LANL) and the National Energy

Research Scientific Computing Center (NERSC) respectively. The second phase

is under the auspices of the CORAL (Collaboration of Oak Ridge, Argonne, and

Lawrence Livermore) project, consisting of two IBM R©POWER9 R©with NVIDIA

GPUs based systems to be deployed at Lawrence Livermore National Laboratory

(LLNL), Sierra (ATS-2) [136] and Oak Ridge National Laboratory (ORNL),

Summit [156] and a Cray R©, Intel Xeon Phi based system, Aurora [50], to be

located at Argonne national Laboratory (ANL). A third phase, APEX (Alliance

for application Performance at EXtreme scale) will consist of systems at LANL

(ATS-3, Crossroads [127]) and at NERSC (NERSC-9).

Under PRACE (Partnership for Advanced Computing in Europe) there are a

large range of exascale research and development activities under way [52], with

a number of national Tier-0 Class systems in production [171]. However, the

only committed plans specifically targeting an exascale machine are from Atos R©,

through its technology brand Bull, based on its Sequana supercomputer [69].

An exascale machine is targeted for the Commissariat á l’énergie atomique et

aux énergies alternatives (CEA) by the end of the decade, with a pre-exascale

Intel Xeon Phi based machine, the TERA-1000, in construction at present.

Irrespective of whichever nation succeeds in the race to become the first

to reach the exascle landmark; there is a significant potential for the architec-

tures of the first exascale platforms from ShenWei, ARM, Intel R©, IBM R©to be

considerably different to those deployed in today’s supercomputers.
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1.1 Architectural Changes

The increasing number of transistors on a micro-processor, as predicted by

Moore’s law [184], has provided a continuous, dependable improvement in pro-

cessor performance for several decades. As a prediction of the increase in the

number of chip’s components as a function of time, it initially predicted a

doubling of a chip’s components every year, and later revised to every two

years. As this increase in components was directly proportional to the speed

of a chip, this was frequently expressed as a doubling of a chip’s performance.

Although the original prediction by Moore is still realised, the increase in a

processors frequency, or clock speed is not; this stopped for two main reasons.

Firstly the “memory wall”: the relative increase in processor frequency and

that of the memory to “feed” the processing unit began to diverge. Irrespective

of the speed a CPU can process data, if no data is present to be processed, then

striving for ever faster processor speeds is a redundant exercise.

Secondly the “power wall”: The thermal power, namely heat, that is gener-

ated in an active CPU needs to be dissipated. The power (P) generated by a

CPU is directly proportional to the capacitance (C ), clock frequency (f ), and

the square of the supply voltage (V ), as expressed in Equation 1.1.

P ∝ fCV 2 (1.1)

As any increase in clock frequency also requires an increase in the supply

voltage, there is essentially a resultant cubic increase in power from increasing

the clock frequency; this is evidently unsustainable.

1.1.1 Emergence of Multi-Core

Because of these two contributing factors, from around 2003, instead of increas-

ing the clock frequency of a single uni-processor, an increase in the number

of processing cores became a dominant trend, resulting in over 20 cores in a

current CPU micro-architecture. With the individual clock frequencies of these

multiple cores plateauing, the only increase in the power envelope in the system

is that of capacitance, which as Equation 1.1 shows, results in a linear increase

in power.

Although this strategy of increasing core counts looks to continue, in iso-

lation it will not meet the performance demands of future HPC whilst still

operating within an acceptable power envelope. By design a modern core of

a CPU is a general purpose execution engine; that is it is designed to do a

wide range of tasks in a performant manner. However, there are a number of

processors that have very specific, or specialised, purpose at which they excel.

3
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One such example is the Graphics Processing Unit (GPU), whose original design

specification was that of manipulating the pixels that go to make up display

screen images. Analogous to the methodology of making an individual CPU’s

core less complex, by adding complexity to the cores of a GPU the ability

to enable general purpose execution becomes a possibility. This was achieved

through the addition of error correction codes (ECC), adding increasing floating

point execution units and the ability through new languages to program these

floating point unit’s capabilities.

It is predicted that as core count increases, the cores themselves will not only

reduce in individual clock frequency but also in complexity, plus the possibility of

heterogeneous systems with not just multiple cores, but with multiple different

cores. Ultimately this will result in systems comprised of a much larger number

of lower-power, lower-performance cores than seen today.

1.1.2 Instruction Level Parallelism

Heterogeneity is also present in the parallelism models required to maximise the

utilisation of these multi-core systems.

Instruction level parallelism (ILP) describes the numerous mechanisms de-

ployed in a modern microprocessor to implicitly execute machine instructions

simultaneously, hence achieving a level of instruction parallelisation. By con-

sidering the order and repeatability of the instructions usually associated with

a particular program’s flow, a “production line” of instructions can be created.

Referred to as pipelining, staggered instructions can be overlapped to achieve

parallelism. Coupled with pipelining is branch prediction, where the processor

makes an educated guess as to the outcome of a branch and begins to carry out

subsequent instructions in advance. The trade-offs between pipeline depth, com-

plexity of branch prediction algorithms and penalties for miss-predictions im-

prove with each generation of micro architecture [90] increasing the throughput

of generated instructions. However, with a greater number of simpler processing

cores per CPU, the trend is for individual core’s piplines to become shallower and

for branch prediction to become less speculative, hence moving the exploitation

of parallelism from an implicit compiler-based approach, or hardware design, to

one of explicit implementation from the application developer.

Analogous to achieving ILP through pipelineing, today’s micro-architectures

are also able to partition and duplicate their resources resulting in the ability to

issue multiple instructions at the same time. Known as superscalar architectures

they also require an aware compiler to generate an instruction mix amenable to

the hardware. This type of hardware multithreading is extended in the concept

of simultaneous multi-threading (SMT) which enables multiple threads to issue
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instructions per clock cycle with the desired result being greater utilisation

of pipelines. Implemented examples of this technology includes Intel’s hyper-

threading and IBM’s SMT.

1.1.3 Data Parallelism

Exploiting parallelism from data can be achieved in a number of ways and to an

extent, all of them need to be utilised to fully exploit hardware which provides

a significant amount of its on node parallelism through each mechanism.

Single instruction, multiple data (SIMD) is a technique which describes tak-

ing a block, or vector, of data and applying the same instruction to all data en-

tries in the vector. Beginning with multimedia extension (MMX
TM

technology)

dedicated integer instructions could be executed on such vector registers. This

was extended to cover floating point instructions with Streaming SIMD Exten-

tions (SSE) and also a doubling in size of the vector to a 128-bit register. Over

a number of SSE generations, additional new vector instructions were added.

Advanced Vector Instructions (AVX) again doubled the register size to 256-bit

with new instructions, and available today in Intel’s Xeon Phi architecture is

AVX-512, which provides 512-bit registers.

There is an obvious trend towards increasing the vector sizes and the in-

structions that can be applied to data residing in these registers. To fully

exploit these architectural features, an application’s data needs to be stored

in appropriate structures to enable the compiler to recognise the potential to

apply such vector instructions. The implementation of specialist gather/scatter

operations have assisted with this issue, in that vector operations can now be

applied to non-contiguous data, but there is still an onus on the application

developer to be aware of how their application’s data is structured.

Data parallelism can also be applied to exploit the shared memory na-

ture of hardware. Chapter 3 details a range of programming methodologies

(OpenCL
TM

(Open Compute Language) software [125], OpenMP
TM

[21], Ope-

nACC [23], pthreads [153]), that can be used to target such shared memory

multi-processors. Through the use of these constructs the application program-

mer can split the workload within their application across physical cores within

an SMT region of the underlying hardware.

Indeed, although Hardware Multi-threading, as described in Section 1.1.2,

was conceived to exploit ILP by increasing the number of instructions carried

out per clock cycle, it can also be targeted explicitly in the same way with a high-

level directive approach. However, as multi-threading’s primary design is to cope

with lightweight ILP instructions, the overheads of heavyweight threading such

as Message Passing Interface (MPI) or OpenMP, plus the additional overhead
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of the MPI/OpenMP management and runtime, utilising all available hardware

threads usually leads to a detrimental impact on performance, so requires careful

deployment.

Data parallelism can also be used to reduce overheads associated with dis-

tributed parallelism. Although an MPI distributed application can execute on a

multi-core CPU, by replacing the on-node parallelism with a data parallel model

the overall memory footprint may be reduced by negating the need for memory

hungry message passing buffers. Additionally, as detailed in Section 1.1.4, the

overheads in moving data will become a significant contributor to the overall

energy consumption of a system, hence a shared memory model capitalising on

the locality of the data is desirable.

1.1.4 Deeper Memory Hierarchies

Keeping power consumption under control is not only a problem for compu-

tation. Although dynamic memory technology has improved, indeed memory

density has increased at a faster rate than that of the processors speed; however,

the speed of the memory has not. This has resulted in what is termed the

“Memory Wall”; that is the limitation in an application’s ability to utilise the

benefits available from the increases in the processors speed due to the relative

slow speeds to obtain the data from memory to process.

Indeed the relative gap between the energy used in computation of data to

that of moving the same data is increasing. Forecasts for exascale predict the

cost to move a double-precision data object from memory to the floating-point

unit (FPU) to be two orders of magnitude higher than the cost of performing a

floating point operation on the same data [124].

One approach to hide the impact of the “Memory Wall”, is the introduction

of memory hierarchies. Here, varying levels of memory technology are deployed

ranging from small, expensive but fast, memory to larger cheaper slower mem-

ory. Consequently the temporal locality of data is becoming crucial, implying a

trade off for increasing FLOP/s whilst reducing memory accesses.

Not only are technological improvements in the capacity and bandwidth

of memory increasing at slower rates than those in compute, those memory

improvements are manifesting themselves through more than one technical so-

lution.

A number of new high bandwidth memory standards are emerging that

ultimately aim to embed high bandwidth memory on the chip realising over five

times the memory bandwidth of current Double Data Rate (DDR) Synchronous

Dynamic Random Access Memory (SDRAM) memory. High Bandwidth Mem-

ory (HBM) and High Memory Cube (HMC) are two such current proposed stan-
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dards, examples of which have already appeared in the NVIDIA R©Pascal
TM

GPU

and as Multi-Channel DRAM (MCDRAM) in Intel’s 2nd generation MIC archi-

tecture the Knight’s Landing (KNL) Xeon Phi.

Similar developments in non-volatile memory (NVRAM) are enabling fast

access to relatively small amounts of persistent memory. Primarily being consid-

ered as mechanisms to enable large HPC systems to checkpoint applications in

acceptable times, the nature of such memory matches the requirement of writing

large “bursts” of data and a slower constant write to traditional persistent

memory on disk.

The outcome is a complex heterogeneous memory system. Such systems

have a hierarchy structure, with cache-based static random access memory

(SRAM), high memory bandwidth on chip, off-chip dynamic random access

memory (DRAM), and NVRAM sitting between remote disk.

Where in the past, most memory performance gains were implicitly handled

by the system (in the hardware or software, at runtime or through the com-

piler) parts of the hierarchy will need explicit management from the application

developer to obtain the significant performance gains available.

1.1.5 System Interconnects

Analogous to reducing the operating frequency of a processing core when not

in use, energy saving strategies are under consideration for current interconnect

networks to disable or reduce power in links that are not being utilised [106]. For

next generation interconnects, the move from copper-based electrical connectors

to optical fibres (silicon photonics) aims to significantly increase density and

performance (in terms of bandwidth) of connections, while also reducing the

power required. Although it is not currently known whether these technologies

will directly impact the application, the possibility of reduced reliability could

indicate the requirement to build in greater resilience awareness into applica-

tions.

Off chip, the network is the backbone of the modern supercomputer. The

issue of power at large scale is resulting in methods such as dynamic throttling,

mapping point to point messaging to network and dynamic routing of messages

to avoid congestion on the network. Optimisation for communication operations

to enable the mapping of an application’s communication pattern to that of a

changing network architecture [107], is a growing research area.

This highlights the growing importance for an application to take advantage

of such architectural features.

In summary, although tomorrow’s HPC is striving to attain ever increasing

performance, the basic hardware building blocks are no longer contributing
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to this by increases in speed, but by increasing power efficiency, resulting in

heterogeneity throughout all levels of the system, from hardware to software.

The net result is greater levels of parallelism are required to exploit future

machines potential. Where as once the techniques to exploit these levels of

parallelism were implicitly utilised by the underlying hardware, or its compiler,

these concepts are increasingly being required to be understood by an appli-

cation developer. The developer needs to explicitly ensure their application is

programmed in away that that exposes concurrency in their algorithms to be

able to exploit these hardware implementations.

1.2 Impact of Architectural Changes

With such a diverse range of heterogeneous architectures coming to the fore,

the challenge for HPC is complex; not only in the range of possible hardware

and software options, but also due to the huge range of application domains.

More often than not, simulation of the natural world involves a combination

of these algorithmic domains. Colella [74] identified and characterised the seven

most prolific of these in relation to the then contemporary Defence Advanced

Research Projects Agency (DARPA) program: Dense linear algebra, Sparse

linear algebra, Spectral methods, N-body methods, Structured grids, Unstruc-

tured grids and Monte Carlo methods. With the emerging computational

requirements to apply high-level abstractions to large data sets, algorithmic

areas such as Graph Traversal, Map Reduce, Combinational Logic, Machine

Learning and Finite State Machines are also growing in their use.

The field of Life Sciences encompasses drug development, DNA sequencing.

Material Science research depends heavily on the concept of molecular dynamics,

a simulation method developed with the emergence of HPC computational

capabilities. The Oil and Gas Industry, along with vehicle and aircraft manu-

factures, needing to simulate the operability space of their engines through 3D

unstructured fluid dynamic studies, depend on numerical algorithms to model

the flow of fluids through a range of mediums, primarily falling into the field of

Computational Fluid dynamics (CFD).

1.3 Sphere of Study and Research Questions

The Atomic Weapons Establishment (AWE) has played a central role in the de-

fence of the United Kingdom for more than 60 years, providing and maintaining

nuclear warheads for the United Kingdom’s (UK) Continuous At Sea Deterrent.

In the absence of nuclear testing and the Comprehensive Test Ban Treaty
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(CTBT), work to maintain and support a nuclear deterrent relies on cutting-

edge science and computational methodologies to verify the safety and effective-

ness of the warhead stockpile.

AWE’s ability to understand the performance of a warhead and underwrite

its safety depends crucially on numerical simulations for modelling both physics

and engineering aspects. Information from hydrodynamics, laser experiments

and data from material ageing studies plus previous nuclear test results are used

in mathematical modelling.

Hydrodynamic computational models, described by the compressible Euler

equations, simulate the flow of fluids by describing their properties in terms of

pressure, velocity, temperature and density as functions of space and time.

To explore the use of HPC for hydrodynamics a suitable application was

identified and its amenability was explored. Taking an industrial strength

benchmark code, Shamrock (detailed in Section 4), an exploration to ascertain

if its use case could be extended beyond that of a machine upgrade/procurement

tool was carried out. This resulted in highlighting a number of shortcomings

in the agility of a large benchmarking application for rapid turnaround to the

questions of amenability of the hydrodynamic algorithm to a range of emerging

architectures and programming paradigms.

The concept of the mini-application, or “mini-app” is a compact, self–

contained application that embodies the essential performance characteristics

of the main application it aims to be a proxy for. In Chapter 5 the process of

developing an OpenACC-based performant version of the hydrodynamic mini-

app CloverLeaf is described, detailing stage-by-stage the process required to

enable the mini-app to utilise a Cray XK6, GPU-based supercomputer.

It has been demonstrated that a range of emerging hardware and software

options can be explored with their relative performance and efforts highlighted.

With recognition of such changes in architectural designs and the subsequent

implications to the applications that utilise HPC, this thesis aims to document

a bounded study into this area (see Section 1.3). Each chapter in this thesis

answers a set of research questions that guide its flow.

Chapter 1 describes the “state-of-the-nation” of HPC and covers why and

how HPC architectures are changing, highlighting the increasing onus on the

application developer to be architecturally aware and the need for applications

to adapt to meet the changing HPC landscape.

Chapter 2 details those emerging hardware architectures that are beginning

to exhibit such architectural changes. It considers these architectures in turn

and then looks to identify commonalities in these emerging candidates.

Chapter 3 looks at the wide range of programming options available to the

developer to exploit emerging hardware and (as with hardware) looks to see if
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there is any commonality across the programming choices.

Chapter 4 looks to assess the suitability of emerging hardware and pro-

gramming paradigms, for a particular algorithmic domain through the use of

existing software. By addressing the question “is it feasible to extend the use

of an existing benchmark application to explore such suitability?”, it indicates

a new approach is required.

Chapter 5 introduces the idea of the mini-app and, by highlighting the

step-by-step approach required to develop a particular variant of the mini-app,

assesses if it is a feasible approach for an emerging technology assessment.

Chapters 6 and 7 then respectively demonstrate how both hardware and

software comparisons can be made using such a mini-app based approach.

Finally, Chapter 8 details how the research undertaken as part of this study

has further extended to other academic research opportunities, how it has been

applied in practice in industrial environments and summarises the research and

provides some thought provoking speculative ideas of possible future directions

in the field of study, concluding the thesis.

Appendix A provides a dedicated, standalone description of all of the hard-

ware systems utilised throughout this study.

The research contained in this thesis spans multiple years: 2010 until early

2017; with chapters written throughout this period. By the nature of such a

relatively long period coupled with a fast changing high performance computing

industry, by specifying when a chapter was composed and (in Appendix A when

HPC systems were commissioned, the author aims to put the research into the

context as the particular time of writing.

1.4 Thesis Contributions

As part of this research, this thesis describes the following novel contributions

from the author:

1.4.1 Impracticalities of Using Production-Class Codes to

Explore Architectures and Programming Models

Demonstrates lack of flexibility of an industrial-class bench-

mark code as a tool for the rapid exploration of emerging

architectures and their associated programming models.

The standard practice of using benchmark codes to assess system upgrades

to an incumbent platform and for comparisons for procurement of new platforms
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was demonstrated using a representative, industrial-class, benchmark applica-

tion. This was utilised for exploring the feasibility of using such a benchmark to

assess emerging technologies and reached the conclusion, due to time constraints

and its practicality, that such an assessment requires a different approach.

The benchmark chosen is representative of all such benchmark applications,

in that it contains non-localised compute sections of code, lack of good data

parallelism, loop carried dependencies and non-optimised memory access pat-

terns.

This work was published in the following research paper: Herdman, J. A.,

et al. “Benchmarking and Modelling of POWER7, Westmere, BG/P, and

GPUs: An Industry Case Study.”; which was presented at the 1st Interna-

tional Workshop on Performance Modeling, Benchmarking and Simulation of

High Performance Computing Systems (PMBS 10) held in conjunction with

IEEE/ACM Supercomputing 2010 (SC’10) New Orleans, LA, USA, and subse-

quently published in ACM SIGMETRICS Performance Evaluation Review 38.4

(2011): 16-22 [103]

1.4.2 Introduction and Extension of the Mini-Application

Approach

Introduction of the CloverLeaf mini-application with devel-

opment details to achieve a fully functional and portable

OpenACC implementation.

This work introduced the concept of the mini-app, and described CloverLeaf,

an explicit Eulerian hydrodynamics mini-app. The study detailed the step-by-

step development process that produced a fully functional and portable version

using a newly emerging standard OpenACC.

The resultant OpenACC versions of the mini-app were a subset of those

versions of CloverLeaf which were accepted as part of the R&D 100 [172] award

winning Mantevo test suite [104].

The development process detailed was also the subject of a Cray hosted, two

day, XK6 programming workshop at Oak Ridge National Laboratory (ORNL)

in October 2012 bringing together users of XK6 systems around the world to

share experiences [77].

More recently the step-by-step approach was selected as a dedicated chapter

in the technical book: “Parallel Programming with OpenACC” [88].
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1.4.3 Demonstrating Performance Portability

Demonstration of the suitability of the mini-app as a tool for

exploration of emerging architectures in the particular case

of a GPU using three programming methodologies, namely

OpenACC, OpenCL and CUDA.

The mini-application was demonstrated fully utilising a GPU-based archi-

tecture, with direct comparisons of performance, development time and “words

of code” (WoC) when compared to the equivalent OpenCL and CUDA imple-

mentations.

This work was presented at SC’12 and subsequently published in the IEEE

Companion: Herdman, J. A., et al. “Accelerating hydrocodes with OpenACC,

OpenCL and CUDA.” High Performance Computing, Networking, Storage and

Analysis (SCC), 2012 SC Companion: IEEE, 2012 [101].

1.4.4 Exploring Emerging Architectures

Extending the use of the CloverLeaf mini-app to explore

a range of emerging architectures namely: GPUs, co-

processor, APUs and current CPUs using OpenACC as a

common baseline to compare against the performance of

the best alternative programming models on each of the

platforms analysed.

Contribution 1.4.3 was extended to further programming methodologies,

enabling direct comparisons with regards to development time, maintenance

effort, portability and performance on a GPU architecture. Subsequently, using

OpenACC as a common baseline, further emerging hardware was assessed (co-

processors, AMD APUs, GPUs) which enabled the optimal native programming

methodology to be compared and contrasted against the OpenACC baseline.

This work was accepted and presented at the “First Workshop on Acceler-

ator Programming using Directives” as part of SC14, winning the Best Paper

award: Herdman, J. A., et al. “Achieving portability and performance through

OpenACC.” Proceedings of the First Workshop on Accelerator Programming

using Directives. IEEE Press, 2014 [102].
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CHAPTER 2
Existing and Emerging Hardware

This chapter discusses those architectures that are at the forefront in today’s

HPC marketplace, and how they are beginning to evolve to address the power

challenges of tomorrow. Additionally, it introduces those contending emerging

technologies that can be thought of as a more disruptive solution to power

constraints.

2.1 Established Hardware

This section discuses a number of the most prolific High Performance Computing

(HPC) architecture options available to high-end HPC customers today. These

have evolved over the years with x86 currently holding dominance.

2.1.1 x86-64

The x86-based architecture instruction set has existed since the late 1970s. Orig-

inating from Intel, but implemented by many manufacturers of microprocessors

since. The first HPC machines to emerge based on x86 were clusters running the

then emerging Linux operating system (OS). Spawning from the 1994 Beowulf

project at NASA [57], to build a gigaflop (GFLOP/s) for under $ 50,000, Beowulf

systems, reflecting the low cost, commodity component build of that original

project began to emerge. These were more often than not based on standard

building blocks connected together with a commodity interconnect. Typically

these were modest sized platforms to fit a specific need and budget.

Sandia National Laboratory’s (SNL) ASCI Red became the first true x86

based supercomputer based on commodity-off-the-shelf (COTS) components in

1997 and the first machine of any architecture to break the 1 TFLOP/s barrier.

Since this landmark, the x86 architecture has seen a dramatic increase and today

is a dominant presence in the list of the worlds top 500 supercomputers.

Addressing the unsustainable increase in power demanded by increasing uni-

core processor clock speeds, the x86 micro-architecture design evolved to multi-

core processors. The first of these available in dual-core, server form, appeared

in 2005 with Intel’s first Xeon branded dual-core processor Paxville [4], and

AMD’s first dual-core Opteron, the Opteron 875 [1]. This multi-core strategy

naturally evolved from dual-core to quad, hexa, octo, and deca-core CPUs.
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In 2011 AMD released the 16-core Opteron 6272 Interlagos processors. How-

ever, these cores differed significantly to its predecessor the 12-core Magny Cours

processor, in that they shared a subset of resources on the micro-architecture.

Cores are paired into “modules” where each core shares a single FPU.

As of early 2017 the highest core count found in a server class processor is

in the Broadwell generation Intel R©Xeon R©E7-8894 v4 [9], where a CPU has up

to 24 cores.

These multi-core processors also support two-way simultaneous multi thread-

ing (SMT). This is essentially a mechanism that aims to keep as many of the

processors functional and arithmetic logical units (ALUs) busy, by exploiting

thread level parallelism (TLP) through the use of multiple hardware threads;

and also has the potential to hide memory access latency. Figure 2.1 is a node

diagram of Shepard (Appendix A.1.3) a 16 core Intel Xeon E5-2698 v3 [7]

Haswell system based at SNL, which depicts the node-level complexity of a

contemporary x86 processor.

2.1.2 IBM R©POWER R©

Once the dominant supercomputing processor, accounting for a quarter of the

Top 500 supercomputers in November 2003 [146], the IBM R©POWER R©

(Performance Optimized With Enhanced RISC) architecture emerged in 1990.

The first supercomputer built from the POWER architecture was the SP2,

based on the IBM R©POWER2 Architecture
TM

. The IBM R©POWER3 R©then saw

the emergence of the SMP (Symmetric Multi Processor), with up to 16 proces-

sors on the Knighthawk2 node variant: the heart of the then number 1 system

on the November 2000 Top 500 list ASCI White [145]. IBM R©POWER4 R©had

the distinction of being the first multi-core processor of any micro-architecture,

to have two cores on a single die, in 2001. However, the relative gains in price to

performance of mainstream x86 multiprocessors compared to the niche market of

the POWER architecture, saw its dominance wane as the main supercomputing

processor.

IBM R©POWER5 R©introduced 2-way SMT (simultaneous multi-threading),

the largest machine build from this generation of POWER was LLNL’s ASC

Purple in 2005 [135]. IBM R©POWER6 R©again had 2-way SMT in a dual core

format, but computed in-order rather than out-of-order instructions like previ-

ous POWER generations. The POWER6 also reached the highest clock speeds

of any generation before or since, with variants available up to 5.0 GHz [71].

IBM R©POWER7 R©, released in the last quarter of 2009 in its server variant,

saw an increase in on die cores from 2 to 8, an increase in SMT from 2 to 4 and

a switch back to out-of-order execution. However, the collapse of the planned
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2011, 10 PetaFlop (PFLOP) POWER7 based p775 Blue Waters system at the

National Center for Supercomputing (NCSA) [13] struck a blow for the POWER

PC architecture.

Today IBM offers the IBM R©POWER8 R©processor; it is available with up to

12 cores and can run in 2, 4, or 8-way SMT mode. Figure 2.2 (Appendix A.2.5)

is a node diagram of “White”, a dual socket, 10 core POWER8, based at SNL.

By comparing with the x86 nodes in Figure 2.1 it show the differences in

architecture are primarily down to core count, balance of memory hierarchies

and levels of hardware multi-threading. These differences are contrasted in

further detail in Section 2.5 with additional comparisons to today’s “many-core”

architectures. Despite the relative differences, there is also commonality in the

levels of complexity found in such established hardware..

The architecture choices so far described can be thought of as mature,

traditional, multi-core architectures.

2.2 The first “Many-Core” Architectures

2.2.1 IBM R©Blue Gene R©

The IBM R©Blue Gene R©architecture spans three generations: Blue Gene/L, Blue

Gene/P and Blue Gene/Q. Blue Gene/Q is at the heart of the 1.6 million

core Sequoia platform, a 20 PFLOP/s platform based at Lawrence Livermore

National Laboratory (LLNL) which was qualified for production in 2012. Using

the 1.6 GHz IBM R©PowerPC R©A2 processor, it has 4-way multi threading and a

quad vector double precision (DP) fused multiply add (FMA), that IBM refer

to as QPX (Quad Processing eXtension). Each chip has 18 cores, including

one redunant core and one core which is used for OS functions, this presents

itself to the end user as a 16 core processor. Blue Gene/Q follows the first

and second Blue Gene generations: Blue Gene/L which had two 700 MHz

IBM R©PowerPC 440
TM

, cache incoherent cores and Blue Gene/P with four

850 MHz IBM R©PowerPC 450
TM

, and 4-way SMT, now with cache coherency

between cores. Initially the Blue Gene architecture was developed to target

the specific field of protein folding but also with a secondary purpose to study

extreme scale architectures to move towards incorporating many more parallel

processing elements with a reduced power footprint compared to traditional

CPUs. With the release of systems in 2012, Blue Gene/Q had the distinction

of topping all three recognised supercomputing rating lists: Top500 (fastest

floating point), Green500 (energy efficient: FLOP/s/Watt) and the Graph500

(for data intensive loads).
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2.2.2 IBM R©“Roadrunner”

The first true hybrid, or accelerated supercomputer where applications executed

on all the heterogeneous components, was IBM’s Roadrunner platform [48],

installed at LANL.

It combined two different kinds of processors: 6,563 dual-core general pur-

pose AMD LS21 Opteron blades, with each Opteron blade linked to two IBM

BladeCenter QS22 PowerXCell 8i “Cell/B.E.” blades.

This resulted in 12,960 “Cell” processors, each an enhanced / adapted ver-

sion, of the specialised processor at the heart of the Sony Playstation 3.

Although a “one-off”, the hybrid nature of Roadrunner was a forerunner to

the hybrid systems, albeit not “Cell” based, that are emerging today.

2.3 Today’s “Many-Core” Architectures

Today’s conventional multi-core processors as described in Section 2.1 could be

scaled up to build the exascale class machines that HPC is demanding. However,

even when taking into account the predicted increases in technology, power

demands on such a system would be in the region of 200 MW which equates to

around $300M in annual operational electricity costs [84]; clearly this is not a

feasible solution. To address this, the emergence of more simplistic, lower power

highly parallel many-core processors are coming to the fore.

These manifest themselves in various ways depending on the type of paral-

lelism they seek to exploit. However, they broadly fall into the two categories

that were observed in the pioneering systems in Section 2.2: namely systems

with lots of relatively slow low power cores (Blue Gene) or traditional CPU

based systems with some form of attached “accelerator” (Roadrunner).

In many cases this results in a full system solution that contains different

many-core devices resulting in heterogeneous architectures in which all hardware

components are available to execute an application are not identical.

This section describes these architectures that are emerging into the HPC

market.

2.3.1 Graphics Processing Units (GPUs)

As their name suggests, a Graphics Processing Units (GPUs) primary role is to

process vast numbers of individual pixels extremely quickly. However, during

their evolution from fixed function devices, to configurable devices, to pro-

grammable devices for graphics, and ultimately to enable the programmability of

their floating point capabilities via NVIDIA R©CUDA R©(Compute Unified Device
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Architecture) [78], the ability to utilise the GPUs computational resources can

be now be realised for today’s scientific computing demands.

Indeed, as attached devices via a PCIe (Peripheral Component Interconnect

Express) interface, GPUs offer a way to build extremely large hybrid HPC

platforms, with an increased FLOP/s/Watts ratio over a CPU only solution.

Notable multi petaflop GPU-based HPC machines are Oak Ridge National

Laboratory’s (ORNL) Titan, Centro Svizzero di Calcolo Scientifico’s (CSCS)

Piz Daint, the Tokyo Institute of Technology’s TSUBAME 2.5, and Tianjin’s

National Supercomputing Center’s Tianhe-1A.

Essentially GPUs are a large (relative to a CPU) collection of multi-threaded

SIMD processors that use their multi-threading capability to hide the latencies

of accessing memory, rather than the cache hierarchy used for the same means

on a CPU.

Although having significantly less memory than a traditional CPU; the

GPU’s memory has a much higher memory bandwidth. This is made possible,

in part, due to the lack of constraints in its design that are required by the more

general purpose memory found in the traditional CPU. A CPU needs to be able

to access memory arbitrarily, while a GPU’s memory can be laid out in simpler

way with direct mapping of chunks of memory to blocks of ALUs. Furthermore,

the CPU needs to manage OS interrupts, whilst the GPU does not. This results

in wider memory buses and faster memory cycle than found on a CPU.

The most prevalent GPUs to be utilised in production level HPC architec-

tures, aimed at scientific computing, with the necessary ECC (error correcting

code) memory protection support, are NVIDIA’s GPU cards.

The first generation of these GPU’s was based on NVIDIA R©Tesla R©micro-

architecture, consisting of a number (dependent on model) of what NVIDIA

term its Streaming MultiProcessor (SM).

As hinted in the name: Streaming MultiProcessor, the SM is exactly that;

issuing instructions to be executed and managing the data common to those

instructions. In the case of the Tesla micro-architecture, each SM consisted of

8 GPU cores, where each GPU core is essentially a single precision Arithmetic

Logic Unit (ALU).

The next generation was based on NVIDIA R©Fermi R©architecture, where a

GPU could have (depending on model) between 7 to 16 SMs; where each SM has

32 GPU cores each which can configure its 64k local memory between shared

memory or an L1 cache; all 32 GPU cores on the SM share a unified L2 cache.

The NVIDIA R©Kepler R©micro-architecture followed Fermi in the NVIDIA

GPU range, introducing a new SM, known as the SMX. Here a high end Tesla

GPU could have up to 15 SMX, where each of these contained 192 GPU cores.

In addition to retaining the configurable 64k local memory as found in Fermi, a
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48k read only data cache is utilised. Also the shared L2 cache was double over

what was available with the Fermi.

Following Kepler the next micro-architectures with HPC variants planed are

NVIDIA R©Pascal R©and NVIDIA R©Volta R©. In the case of the latter, machines

are already planned for operation in the 2018 time frame; these will be in the

region of 150 PFLOP/s. [136,156].

2.3.2 Intel R©Xeon Phi
TM

Intel Xeon Phi is a many-core multiprocessor system on-a-chip design. It evolved

from an initial research project at Intel to investigate improved performance and

power efficiency using x86 cores, which led to the Larrabee processor [185], aimed

at graphics applications. Intel’s “TeraScale” processor program looked at the

feasibility and resultant issues from packing many-cores onto a die, this resulted

in the 80-core Teraflops “Polaris” concept processor [193], which realised over

1 TFLOP/s from a single chip and the “Rock Creek” SCC (Single-chip Cloud

Computer) concept [111], a processor containing 48 Intel iA cores connected via

an on-chip mesh network, produced to explore the software needed to exploit

such a many-core architecture.

These research activities ultimately led to the Intel Many Integrated Core

(MIC) Architecture: in-order x86 cores, with wide vector units and greater SMT

than the familiar Intel Xeon CPU, running a stripped down version of the Linux

operating system (OS).

The first, proof of concept, device using the MIC architecture was known

as Knights Ferry (KNF). This prototype contained 32 in-order, 1.2 GHz cores

with 4-way SMT, but only supported single precision instructions.

The second generation based on the MIC architecture Knights Corner (KNC)

was also the first to be branded under the Intel Xeon Phi name, and made

commercially available in three variants the 3120, 5110, and 7120 with 1.1 GHz

57-cores, 1.05 GHz 60-cores, and 1.24 GHz 61-cores respectively. All three

variants are available in either passive or actively cooled attached PCIe co-

processor cards.

Each core has a 32KB L1 data cache and a local 512KB L2 cache, with access

to all other core’s L2 caches; unlike an Intel Xeon there is no shared L3 on the

Intel Xeon Phi. At 512-bit, the vector instructions on the Xeon Phi are double

that on the latest Intel Xeon CPUs. All cores are connected on the coprocessors

via an on-chip bidirectional ring interconnect providing cache coherency.

As the Intel Xeon Phi is an x86-based co-processor, running a Linux OS,

applications that compile and run under the standard x86 architecture will

run “out-of-the-box” on the Intel Xeon Phi, requiring only a re-compilation to
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account for the instruction incompatibility with Intel Xeon.

Released in 2016, the second generation Intel Xeon Phi, Knights Landing

(KNL), comes in a self bootable variant, in addition to an attached co-processor

variant. Both variants have an increased core count over the KNC.

Already there are confirmed large system procurements that will utilise the

KNL: Trinity at Los Alamos National Laboratory (LANL), Cori at the National

Energy Research Scientific Computing Center (NERSC).

Additionally, the third generation Knights Hill (KNH) will be the basis for

the “Aurora” machine, due to be delivered to the Argonne National Laboratory

(ANL) in 2018.

2.3.3 Accelerated Processing Units (APU)

Initially known as the Fusion Accelerated Processing Unit (APU) architecture,

AMD’s on-chip combined CPU and GPU architecture aims to integrate the two

more closely enabling the sharing of data between the CPU and GPU by way

of a unified coherent memory space. Primarily aimed at the graphics market,

these are analogous to the Intel R©Core
TM

CPUs (rather than HPC’s server class,

Intel Xeon, building block), introduced in their Sandy Bridge generation, these

also contain their own integrated GPUs.

Although more tightly coupled than discrete GPUs linked via a PCIe, this

is at the expense of losing the high memory bandwidth available from those

discrete devices.

However, AMD’s plans for future HPC architectures are via the building

blocks of future generation APUs, hence there is merit in understanding their

architectural characteristics, and the mapping of scientific applications to them.

Beginning with the Kaveri generation, support for the Heterogeneous System

Architecture (HSA) is adopted. This aims to make the heterogeneous nature

of the APU opaque to the scientific programmer, allowing those traditional

applications using high level programming languages such as Fortran and C to

utilise both CPU and GPU cores, without the necessity to re-code in CUDA or

OpenCL.

The four generations of AMD’s APUs are compared and contrasted in Table

2.1.

2.4 Emerging Technologies

2.4.1 ARM R©

Although the most prevalent Instruction Set Architecture (ISA), running in

billions of embedded devices world wide, it is only the current, 64-bit ARMv8,
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Generation Llano Trinity Richland Kaveri
CPU A8-3850 A10-5800K A10-6800K A10-7850K

Clock Speed 2.9 3.8 4.1 3.7
(Turbo) (N/A) (4.2) (4.4) (4.0)

No. Cores 4 2 2 2
GPU HD 6550 HD 7660D HD 8670D R7

No GPU “cores” 400 384 384 512
Released Aug 2011 Oct 2012 Jan 2013 Jan 2014

Table 2.1: AMD’s APU Comparisons

instruction set that will enable ARM’s potential emergence into the server and

HPC market.

At the time of writing, 64-bit ARM SoC’s (system-on-a-chip) are being

touted from AMD, Applied Micro, Cavium Newtworks, Qualcomm and Texas

Instruments, although to be successful, full system and software eco-systems

need to be developed in order to enable the adoption from scientific applications.

2.4.2 OpenPOWER R©

The OpenPOWER R©Foundation, formed in 2013, is a group of technology mem-

bers to which IBM have made available their POWER technology. The aim is to

foster collaboration in the development of future systems based on the POWER

CPU.

The first of these technologies targeting HPC is the Firestone server, released

at the end of 2015. This incorporates two POWER8 processors alongside two

NVIDIA Kepler K80 GPUs. These 2U servers have the ability to be scaled out

via Mellanox IB.

It is this technology which will deliver the Leadership Class HPC platforms

based on GPU acceleration discussed in Section 2.3.1, [136,156].

2.5 Common Architectural Traits

Although Section 2.3 details a diverse range of emerging technologies, in an

HPC context, these technologies all aim to achieve the same goal, which is to use

their technology as the building blocks to deliver a high performing architecture,

capable of enabling the largest scientific problems to be solved.

Although, each technology proposes a different solution to achieve this goal,

each solution is essentially using different levels of components and parameters

from a common design space.

This section breaks down, into their constituent components each of the

architectures which were previously discussed. This helps to provide an under-
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standing of the balance placed on underlying hardware solutions. It introduces

some common “language” to describe characteristics, which are not consistent,

and often conflicting between architectures.

This has previously been addressed by Gaster et al. [93] who describe the

diverse range of hardware that OpenCL can operate on by describing the various

methods to achieve performance on these architectures, and the trade-offs taken

in the design space for each. Patterson and Hennessy [161] give a “GPU Rosetta

Stone” which provides a quick guide to “translate” GPU terminology to that of

CPUs, and vice versa. From a compiler point of view, the article from Leback

et al. [130], presents the architectural aspects of an Intel Xeon CPU, NVIDIA

Kepler GPU, Intel Xeon Phi, and an AMD Radeon
TM

, firstly in their native

terminology, and subsequently in that of a CPU or GPU. AMD [46] introduces

the concept of a “compute core” irrespective of whether it is a CPU or GPU

core, defining it as: “any core capable of running at least one process in its own

context and virtual memory space, independently from other cores”.

As the focus of this thesis is from the point of view of an application developer

wishing to understand how best to exploit a given architecture, the comparison

in design space choices for hardware solutions is mapped to the varying levels

of parallelism required from an application to exploit such features.

One of the main issues when trying to compare and contrast different un-

derlying hardware, is the inconsistency in terminology. For instance in GPU

parlance a “core” is effectively a single precision SIMD processor, which in

CPU terms is equivalent to a 32-bit vector lane in a modern CPU. While a

core in CPU terms is a single processor, part of a microprocessor, made up

of a control unit which issues instructions to integer and floating point vector

(SIMD) processing units in order to execute these instructions. So, at a high

level of abstraction it can be seen that a CPU core can be thought of as an

equivalent to a GPU’s SM.

If architectures are considered in terms of an integrated circuit or chip,

broken down into multiple processing cores, or for brevity: cores. These cores

consist of a control unit able to issue instructions; some vector, integer, and float-

ing point processing units, capable of carrying out the instructions along with

some memory hierarchy; effectively defining a core as an individual compute

engine. When considered in this simplistic way, architectures can be compared

and contrasted to show how their performance is achieved by using these basic

building blocks in differing levels of degree. Although not drawn to scale, in

the following Figures these building blocks are indicative of the sizes relative to

each architectural technology.

Table 2.2 summarises the trade-off in the architectural design space. Ulti-

mately, they are trade-offs in performance to power and what can physically
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Table 2.2: Relative Architecture Design Dimensions

Architecture Clock Instruction LLC VPU SMT
Frequency Cycle (Shared)

Intel 16 out-of L3 8 2
x86 CPU order
NVIDIA 16 in L2 32 N/A

Fermi GPU order
NVIDIA 15 in L2 192 N/A

Kepler GPU order
Intel 60 in N/A 16 4

Xeon Phi order
IBM 12 out-of L3 4 8

POWER8 order

fit into the finite space on the underlying silicon. However, there is also the

trade off in productivity: can the end user of the hardware make good use of

the architectural feature to make it worth while including.

Figure 2.3 shows a generic 16-core variant of an Intel Xeon Haswell CPU.

Figure 2.3a shows each Haswell chip has 16 out-of-order cores with a shared

L3 cache, where each core is depicted in Figure 2.3b with two hyper-threads

targeting a complex control unit which issues instructions that can be carried out

by a 256-wide (advanced vector extension (AVX) supported) vector processing

unit (VPU), an integer ALU, and a floating point ALU. Where the former is

essentially eight 32-bit ALUs. For each processor, the data associated with these

instructions has its own L1 and L2 cache.

Compare this with Figures 2.4 and 2.5, depicting an NVIDIA Fermi 16 SM

M2090 and an NVIDIA Kepler 15 SMX GK110 generations of GPU respectively.

Although displaying a similar number of cores per chip (where “core” is the local

definition above of processing core, not to be confused with the GPU terminology

of “core”), the cores themselves are very different to that of the Intel Xeon in

Figure 2.3b. With a clock frequency of 1.1 GHz, around one third of that of

the Intel Xeon, each core’s computational units are primarily VPUs, on a much

larger scale (192 32-bit ALUs in the case of the NVIDIA Kepler in Figure 2.5b)

than in the Intel Xeon.

Figure 2.6 shows this concept for the Intel Xeon Phi 5110P, a 1st generation

Intel Xeon Phi, familiarly called the “Knights Corner” or KNC. Comparing

Figure 2.6a with the x86 Intel Xeon in Figure 2.3a, it is immediately apparent

that the number of cores per KNC chip, is much higher. Although the 60

cores are simpler in-order and lower frequency, (1.0 GHz) than the Intel Xeon

equivalent; they are also different in the balance of the computational units.

Figure 2.6b show that the VPUs on the KNC are twice that of the Intel
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Xeon, equating to 16 32-bit ALUs. Also each core supports four hyperthreads,

analogous to the two supported in the Intel Xeon.

A 12-core IBM POWER8 is depicted in Figure 2.7. Here the 12 cores on

a chip (Figure 2.7a), share a comparatively large L3 cache. Each core, shown

in Figure 2.7b can store the state of up to 8 way SMT (simultaneous multi-

threads) (cf. with the two in the Intel Xeon and the four in the Intel Xeon

Phi in Figures 2.3b and 2.6b respectively), where computational units consist

of complex floating point and integer units. There is also support for 128-bit

vector multimedia extension (VMX) instructions, that is a POWER8 core can

process four single precision floating point operations, depicted in Figure 2.7b,

as a VPU with four 32-bit ALUs.

This diverse range of heterogeneous architectures represents a complex chal-

lenge for HPC. Understanding which hardware is best suited for an application

mix involves a range of mitigating factors including application performance

and application re-coding, to effective scheduling and running costs (e.g. power

and cooling).

These diagrams notionally show the relative balance in the design space

between the various “many-core” architectures previously described. With

these conceptual comparisons in mind, Chapter 3 considers the alternative

programming models available to the application developer and their potential

suitability.
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CHAPTER 3
Programming Methodologies

Chapter 2 discussed the range of emerging technologies and their architectural

traits. HPC application developers wishing to utilise these architectures, are

faced with a dilemma relating to how they should develop application software

for these competing hardware devices whilst still maintaining scientific produc-

tivity.

This is an important question, as outside the area of pure research, the goal

is to reduce time to solution for production level applications. This implies that

there needs to be a balance between the time taken to port and maintain an

application in addition to any gains made in the solution time of the application.

This problem is compounded in that there is not a single emerging hardware

architecture, but multiple. Porting and maintaining a different version of a pro-

duction level application for different targeted platforms is not only undesirable,

but impractical.

Programming for the large number of lightweight cores and vector units

offered by these devices means departing from the traditional distributed MPI

approach, to a tiered programming model which is designed to harness both

coarse and fine grained parallelism.

Accelerated programming platforms and application interfaces like NVIDIA

CUDA [78] and the Khronos Group’s OpenCL [125] require explicit parallel

programming using library calls and specially written compute kernels. While

directive-based solutions like the OpenACC Application Programming Interface

[23] offers a directive-based approach, similar to that found in OpenMP [21],

for describing how to manage data and execute sections of code on the device.

These two approaches of exposing multi-level node parallelism within appli-

cation programs have different effects on factors such as programmer productiv-

ity, the time required for modifying the code, programming language of choice,

required application performance, and portability.

Runtime environments such as SGPU2 [159] and XKAAPI [95] aim to im-

plicitly manage the resources available in heterogeneous node systems.

Additionally, there is the emergence of a myriad of “portability layer li-

braries” such as RAJA [109] from LLNL, Kokkos [87] from SNL, Bolt [183]

from AMD, NVIDIA R©Thrust R© [105], University of Illinois’s Charm++ [121]

and Intel R©Threading Building Blocks (TBB). All of which are primarily aimed

at a specific problem of porting monolithic C/C++ legacy applications in a non-

disruptive manner whilst maintaining performance portability. This is achieved
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by essentially providing a common interface to an application developer, while

enabling the use of a range of programming abstractions within their lower level

implementations or back-ends.

3.1 Low-Level Languages

Existing procedural structure applications need to be restructured or broken

down into computationally distinct, self contained kernels and written in the

low-level language of choice. Some, like CUDA, are only viable for specific

architectures, whilst others, such as OpenCL are architecture agnostic but

require architecture specific tuning to ensure performance portability.

3.1.1 NVIDIA R©CUDA R©

CUDA (Compute Unified Device Architecture) [78] is NVIDIA’s parallel plat-

form and programming model, and provides support for general purpose com-

puting on NVIDIA GPUs [30]. It is based on the concept of a host and a

device, where each, CUDA-based, computational kernel can be accelerated by

being executed on the highly parallel device. This is achieved by treating the

CUDA kernels as distinct entities to non-CUDA code, and compiling them using

CUDA’s C-based compiler, nvcc, for execution on the device, with non-CUDA

code compiled for the host using its native compiler.

At runtime, the procedural code begins execution on the host and as each

CUDA-based computational kernel is encountered, it is launched, moving its

data and program code/instructions onto the device or devices attached to the

host. Conversely, once computation of the kernel is completed, the associated

data and program code/instruction are transferred back to the host.

In practice a host is usually a traditional x86 or ARM-based CPU, while

a device is almost exclusively an NVIDIA-based GPU. This NVIDIA exclu-

siveness, results in the need to maintain duplicate code paths for applications:

one for GPU and another for another architecture. An additional restriction is

that CUDA is implemented by extending the C language’s function declaration

syntax, and hence is heavily dependent on the use of the C language. For non-C

based applications to use CUDA, such as Fortran, then those computational

kernels need to be C based, resulting in a Fortran host code calling C-based

compute kernels. Although, there is a CUDA Fortran compiler [35] available

exclusively from the Portland Group (PGI), who are in turn part of the NVIDIA

Corporation.
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3.1.2 OpenCL
TM

OpenCL is an open standard enabling parallel programming of heterogeneous

architectures. Managed by the Khronos group and implemented by over ten

vendors including AMD [25], Intel [29], IBM [33], and NVIDIA [34]; OpenCL

code can be run on many architectures without recompilation. Emerging devel-

opments such as pocl (a Performance-portable OpenCL Implementation) [117],

aspire to an architectural independent kernel-level compiler for OpenCL.

With such support it is possible to develop a single source that is hardware

agnostic (CPU, GPU, coprocessors, APU) and can utilise all parts of a het-

erogeneous system that contains a mixture of such hardware, although support

may be dropped for future generations of some of these architectures.

Also, the application developer is required to explicitly define the hardware

and where to move the data, which requires programs to be explicitly developed

for each architecture in order to achieve optimal performance portability. This

results in a significant amount of boilerplate coding to do even a relatively

simplistic program, albeit this boilerplate code can be re-used between programs

so it only needs to be written once.

On inspection, OpenCL is simply an API to the C programming language,

however this restricts direct interaction to applications which are Fortran based.

3.1.3 Intel R©Cilk
TM

Plus

Intel R©Cilk
TM

Plus is a language extension for C and C++ codes to handle task-

based parallelism and vectorisation, through parallel loops, array notation and

vectorised loops; it is also coupled with the Cilk Plus runtime.

Introduced in 2010 in version 12.0 of the Intel compiler, it consists of three

main keywords (cilk for, cilk spawn and cilk sync) which, respectively, enable

loop iterations to execute in parallel, state that a function’s caller can continue

to execute without the need to wait for the function to return, and a synchroni-

sation statement (cf. to MPI’s MPI WAITALL) that synchronises on all locally

spawned functions.

Array notation enables sections of specified arrays to be vectorised; in a

similar manner to vectorisation of computational loops, this is enforced via the

#pragma simd directive (c.f. OpenMP 4.0’s #pragma omp simd).

3.1.4 C++ AMP (Accelerated Massive Parallelism)

C++ AMP (Accelerated Massive Parallelism) [97] is a programming model

from Microsoft R©explicitly targeting GPUs for C++ applications running under

Microsoft R©Windows R©OS. Available as of Version 2012 of Microsoft R©Visual
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Studio
TM

, it contains extensions to C++ to enable the data movement between

CPU and GPU hardware, and expressing parallelism through the parallel for -

each function. Additionally, a parallel maths function library is also part of the

model.

3.1.5 Pthreads

Pthreads (POSIX Threads) [153] is a portable threading standard available

through a library for most C implementations. It provides a low level threading

model, giving fine grained control over when tasks should fork or join via sub-

routine calls. Primarily aimed at managing system resources and carrying out

individual tasks, it puts full responsibility onto the programmer to implement

their own atomics and controls, hence it is not particularly applicable to an

industrial strength scientific application.

3.2 High-level target-based directives

Directive-based solutions empower the application developer to explicitly paral-

lelise their application through the introduction of directives, or pragmas, into

their existing source code. Primarily, this is in the form of identifying suitably

computationally intensive loops and parallelising each in turn by splitting their

computation among the threads available on the targeted hardware.

When heterogeneous hardware platforms are being targeted, directives are

used to transfer the relevant codes loops/sections, and their associated data,

between the different processors from which the system is comprised.

For over two decades, the industry standard directive-based OpenMP [24],

has dominated. However, with the emergence of heterogeneous hardware of

a number of alternative solutions, from OpenHMPP (Hybrid Multicore Par-

allel Programming) [70], OpenACC R©and Intel R©Language Extensions for Of-

fload [152] are coming to the fore. Although convergence between these models

is beginning to occur. OpenMP 4.0 introduces new directives to target hetero-

geneous platforms, and OpenACC, in the latest PGI invocation, providing the

ability to execute on the cores of a CPU.

Additionally, there are a number of niche solutions which extend the ideas

developed in the previous models. StarSs [62] and OmpSs [86], for example,

hide the synchronisation operations which are usually required to be carried

out explicitly by the developer, by inferring when these operations should take

place from the data dependencies inherent in the application code.
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3.2.1 OpenMP

From the mid-1990’s, OpenMP [24] has become the industry accepted paradigm

for a directive-based parallel programming model. By inserting these directives

into existing Fortran or C/C++ applications, primarily targeting computational

intensive loops, the code developer can express the sharing of resources within

the system and is thus able to express a shared memory parallel application.

By its nature, its main target has been shared memory, CPU-based systems,

taking advantage of the shared memory available within CPU nodes. With the

4.0 release [21] support has been added to specifically target attached accel-

erated devices. Although supported in nearly all commercial and open-source

compilers, the features which specifically relate to accelerated devices have only

been implemented by a smaller subset of compiler vendor’s offerings at the time

of writing.

OpenMP allows an application to be implemented in a gradual manner and

does not require the whole application to be parallelised. However, care is

needed to ensure any OpenMP regions are thread safe (i.e. data independent),

that is that modifications to global variables are appropriately synchronised and

controlled. Limitations exist relating to the nesting of OpenMP directives, and

issues in using OpenMP in some object oriented (OO) C++ applications. Lack

of interoperability in a thread safe manner with the C++ standard template

library (STL), has seen the emergence of some dedicated abstraction libraries

(see Section 3.3) to support such applications via OpenMP.

3.2.2 OpenACC R©

The OpenACC Application Program Interface (API) [23] is a high level pro-

gramming model based on the use of directives. By applying directives to

original Fortran, C or C++ source code it aims to provide increased architecture

portability with minimal code modification. This increase in portability is

offered without compromising code maintainability, a key consideration for

existing complex industrial applications. At the time of writing three compiler

vendors: CAPS1 [26], Cray [31], and PGI2 [131] support the initial OpenACC

release.

Prior to the support of a common OpenACC Standard, Cray, PGI and

CAPS each had their own bespoke set of accelerator directives from which their

implementations of OpenACC is derived. A brief overview of each vendor’s

implementation, along with limitations, follows.

1As of June 27, 2014 CAPS Enterprise ceased trading, and the CAPS Compiler is no longer
available.

2As of July 2013, PGI was acquired by NVIDIA.
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Cray originally proposed accelerator extensions to the OpenMP standard

[21] to target GPGPUs, through their Cray Compiling Environment (CCE)

compiler suite. These evolved into the “parallel” construct in the OpenACC

standard. Rather than creating a CUDA source for the kernels, CCE translates

them directly to NVIDIA’s low-level Parallel Thread Execution (PTX) [155],

a pseudo-assembly language subsequently compiled by the graphics driver into

binary code. CCE is currently only available on Cray architectures, restricting

portability.

As of version 10.4 of their compiler, PGI supported the PGI Accelerator

model [19] for NVIDIA GPUs. This provided their own bespoke directives for

the acceleration of regions of source code. In particular their “region” construct

evolved into their implementation of the OpenACC “kernel” construct.

Initially, CAPS (Compiler and Architecture for Embedded and Superscalar

Processors) provided support for the OpenHMPP directive model [70], which

served as the basis for their implementation of the OpenACC standard. A

major difference with CAPS is the necessity to use a host compiler. Here code

is directly translated into the application developer’s choice of either CUDA or

OpenCL [125]. In the case of the latter, this increases the range of architectures

which can be targeted.

3.2.3 Intel R©Language Extensions for Offload (LEO)

Intels Language Extensions for Offload (LEO) [152] consist of directive-based

pragmas for use in C/C++ and Fortran based applications. These constructs

are Intel specific and were introduced into the Intel compilers in order to target

the Intel Xeon Phi as a way to run source code on a host Xeon CPU and

“offload” marked sections, through the used of the offload pragma directive,

onto the Xeon Phi co-processor.

3.3 Abstraction Libraries

Abstraction libraries, as their name suggests, are software layers, which through

a one time implementation of their API aids in the detachment of software

applications and the hardware platforms which they execute on. Ultimately the

goal is to “future proof” an application irrespective of future hardware platforms.

3.3.1 Intel R©Threading Building Blocks (TBB)

Aimed solely at enabling task based parallelism in C++ applications; Intel

Threading Building Blocks (TBB) [177] is a template library extension to C++
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that includes a global task scheduler and the ability to handle memory alloca-

tions and local thread storage. TBB consists of work-sharing expressions where

everything is modelled as tasks, rather than using the fork/join paradigm preva-

lent in target-based directives or low-level programming language approaches.

3.3.2 RAJA

Developed at LLNL, RAJA aims to enable fine grained multi–threading to their

legacy, multi-physics, MPI-distributed C++ applications, in order to enable

the rapid transition and adaptation to the emerging architectural trends as

described in Chapter 2. RAJA acts as an interface to the application code

through the insertion of RAJA’s forall loop template in place of C’s traditional

for loop. The RAJA form incorporates information regarding the execution

policy and abstractions of the loop bounds to encapsulate loop execution details,

thus decoupling specific hardware dependencies. With current back-end support

for OpenMP and Cilk, RAJA is therefore able to interface with these back-end

programming models transparently to the code developer.

To enable this via C++, RAJA needs to utilise C++ lambda functions,

which enable the creation of anonymous objects which resemble functions. Al-

beit part of the C++ 11 standard, lambda functions are not supported fully by

all vendor compilers, hence currently limiting the portability of RAJA enabled

code.

3.3.3 Kokkos

Like RAJA, Kokkos is a library solution for C++ applications from SNL. Its

back-end implementation allows mapping of existing C++ applications to a

variety of alternative programming models. The choice of which programming

model is to be enabled is based on the suitability of the model to the target

architecture. Currently Kokkos supports OpenMP, CUDA and pthreads [153].

It also has the option to use the “hwloc” library [68] to assist with optimal

mapping of threads to hardware cores.

Kokkos’s interface to an application is through its library’s API, which

defines execution and memory spaces via a dedicated C++ class, which is

imposed at compile time. Hence, an array and its layout in memory can be

determined depending upon the hardware it is built on.

3.3.4 AMD R©Bolt

Bolt [183] is a C++ standard template library (STL) designed to target GPUs.

Developed by AMD, it contains a range of parallel primitive algorithms that
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can be customised by the code developer using C++ function objects. These

objects are ultimately written in an OpenCL back-end to exploit the underlying

targeted GPU hardware, yet abstracted away from the developer thus enabling

a single source C++ to be targeted at either CPU or GPU.

3.3.5 NVIDIA R©Thrust

Thrust [105] is template library from NVIDIA, for C++ CUDA enabled ap-

plications. Analogous to Bolt (see 3.3.4 above), it provides the application

developer with a host of parallel primitives with which to abstractly describe

their application.

3.3.6 Charm++

From the University of Illinois, Charm++ [121] extends C++, to provide an

abstraction layer to application developers, hence hiding the underlying archi-

tecture.

3.3.7 OP2 / OPS

The OP2 stencil based framework from University of Oxford [96], provides an

abstraction layer for the specific domain of unstructured mesh-based applica-

tions. Through the use of the OP2 API an application can utilise the numerous

back-ends which the OP2 developers have implemented. OP2 currently supports

OpenCL CUDA, OpenMP, MPI and OpenACC. OPS [176] is analogous to OP2

and is aimed at block structured mesh applications.
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CHAPTER 4
An Industry Case Study: Benchmarking and Modelling

Part I detailed the evolutionary trends driving the development of HPC hard-

ware technology (Chapter 2) and described the main programming methodolo-

gies emerging to exploit them (Chapter 3).

By considering a current, production class application, this chapter examines

the hurdles that are faced in determining the best way to migrate such an

application to these emerging technologies.

An industrial strength benchmark, Shamrock, is introduced. Developed at

the Atomic Weapons Establishment (AWE), Shamrock is a two dimensional

(2D) structured hydrocode. One of its aims is to assess the impact of a change

in underlying compute hardware, and (in conjunction with a larger HPC Bench-

mark Suite) to provide guidance in the procurement of future systems.

A representative test case and problem size is discussed, and subsequently

executed on a local, high-end, workstation for a range of compilers and MPI

implementations. Based on these observations, specific configurations are built

and executed on a selection of HPC processor generations. These include

Intel Xeon “Nehalem” and “Westmere” micro-architectures, IBM POWER5,

POWER6, POWER7, Blue Gene/L, Blue Gene/P, and the AMD Opteron chip

set. Comparisons are made between these architectures, for the Shamrock

benchmark, and relative compute resources are specified that deliver similar

time to solution, along with their associated power budgets.

Additionally, performance comparisons are made for a port of the benchmark

to an Intel Xeon X5550 “Nehalem” based cluster, accelerated with NVIDIA

Tesla C1060 GPUs. In addition to details of this port, this work also includes

extrapolations to possible performance exploitation of the GPU.

The remainder of this chapter is organised as follows: Section 4.1 provides

background information on the Shamrock benchmark, the purpose of the bench-

mark, a description of the test case examined in this work, a description of

related work, and identifies the uniqueness of the benchmarking and predictions

of this study. Section 4.2 introduces the performance of the benchmark on a

local, high-end, workstation, which is followed by a description of the HPC

platforms the code has been ported to. Section 4.3 examines the performance

characteristics on these HPC platforms, and also covers the port of the bench-

mark to a GPU cluster, and its relative performance.

It concludes with a justification that the exploration of low power, emerging

heterogeneous technologies via a traditional benchmarking application is time
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consuming and hence productivity limiting. It reaches the conclusion that to

assess a range of architectures and associated programming methodologies a

new approach is required.

In its original research paper form: Herdman, J. A., et al. “Benchmark-

ing and Modelling of POWER7, Westmere, BG/P, and GPUs: An Industry

Case Study.”; this chapter was presented at the 1st International Workshop

on Performance Modeling, Benchmarking and Simulation of High Performance

Computing Systems (PMBS 10) held in conjunction with IEEE/ACM Super-

computing 2010 (SC’10) New Orleans, LA, USA, and subsequently published in

ACM SIGMETRICS Performance Evaluation Review 38.4 (2011): 16-22 [103].

4.1 Shamrock

Prediction of the dynamic behaviour of materials as they flow under the influence

of high pressure and stress is a key field of investigation at AWE. As a result,

hydrodynamic simulations account for a large proportion of compute cycles on

AWE’s HPC systems. Representative benchmarks have existed for many years:

two dimensional (2D) hydrodynamic code fragments were part of the original

Livermore Loops [143], and have been used in earlier performance studies [201].

More recently, and primarily, due to the large HPC resources required to execute

them, the focus has been on three dimensional (3D) benchmark codes, such as

SAGE from LANL [122] and Hydra from AWE [79]. However, although not in

the capability regime, 2D hydrodynamics accounts for a significant amount of

capacity computing, with finer resolution and growth in the number of CPU

hours continually increasing.

To reflect this, Shamrock was developed at AWE as an industrial-strength,

domain decomposed, multi purpose benchmark. It is a 2D structured hy-

drocode, written predominantly in Fortran 90, using the Message Passing In-

terface (MPI) as its means of communication between sub-domains. The code

has been designed for a number of purposes: (i) the assessment of the impact

on code performance of system upgrades to an incumbent architecture; (ii)

to be utilised as part of a larger HPC Benchmark Suite to assess application

performance differences between alternative vendor offerings, primarily during

machine procurement cycles, and (iii) to be used to assess current and emerging

technologies. This chapter addresses each of these three categories of use and

identifies problematic aspects in the use of a benchmark application for the

latter category.

At the time of writing, the benchmarking and predictive modelling docu-

mented in this chapter differed significantly from earlier studies in that it was the

first benchmarking presented in academic literature of the POWER7 platform
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using a 2D hydrodynamics benchmark. It encompassed the most diverse range

of current architectures, compilers, and MPI invocations for such a benchmark,

and is distinct in its comparison of these. Several studies have investigated the

use of GPUs as accelerators in the field of 2D hydrodynamics , and have reported

speed-ups of factors of 70 over a single threaded CPU [98, 123]. However, this

chapter not only looks at speed-ups of the GPU over a single threaded CPU,

but presents comparisons of running in an accelerated distributed MPI mode.

A representative, test case for this code is an interacting shock wave problem.

Consisting of square inner, middle, and outer regions of ideal gas at differing

initial densities and energies that cause the inner and outer regions to compress

the middle region. This gives rise to shock fronts which collide and create a

Rayleigh-Taylor instability [186].

Typical problem sizes are in the range of 300k to 5M cells. A representative

problem of approximately 1.05M cells (1024 x 1024) was chosen as a problem

size in the middle of this typical range, and by measuring the time to solution for

10 iteration time steps a workable turnaround time for benchmarking purposes

was achieved.

It is known that, as with many hydrodynamics applications, as the cell

quantities are updated each timestep, data reuse is limited and therefore the

code is predominately memory bound, rather than CPU bound.

4.2 Architectures

Initially the code was developed and tested on a local, high-end, workstation for

a range of compilers and MPI implementations. Based on these observations,

specific configurations were subsequently built and executed on a selection of

HPC architectures, including Intel Xeon “Nehalem” and “Westmere” micro-

architectures; IBM POWER5, POWER6, POWER7, Blue Gene/P and Blue

Gene/L, plus the AMD Opteron “Barcelona” chip sets. The following sections

describe these architectures, and observations from benchmarking.

4.2.1 Assessment of System Upgrades and Software

Environmental Changes

An initial performance assessment was carried out on an Intel Xeon E5405

[8], dual socket, quad core desktop workstation. The hardware has 12MB L2

cache, a 2.00 GHz clock speed, and a Front Side Bus (FSB) speed of 1333 MHz.

Numerous compiler and MPI combinations were chosen to represent possible

system changes. These included four diverse compilers: SUN’s SUN Studio

12.1 [18], Portland Groups PGI 10.1.0 [22], Intel R©Fortran 11.0.073 [20], and
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Table 4.1: Local Compiler and MPI Build Versions

Compiler MPI
Sun Studio 12.1 MPICH2 1.1.1
Sun Studio 12.1 OpenMPI 1.3.3

g95 3.0.4 MPICH2 1.1.1
PGI 10.0.1 MPICH2 1.0.7

Intel 11.1.046 MPICH2 1.1.1
Intel 11.1.046 OpenMPI 1.3.3

Table 4.2: Local Compiler Build Flags

Compiler Flags
Sun Studio -g -fast2 -xtypemap=real:64

-xipo=2 -fsimple=0 -fns=no
g95 -g -O3 -march=native -fdefault-real-8

-ffloat-store -funroll-loops
PGI -gopt -fast3 -r8 -Kieee
Intel -g -O3 -ip -xhost -r8 -fp-model strict

-fp-model source -prec-div -prec-sqrt
XLF (Blue Gene) -g -O4 -qunroll=yes -qipa=inline=auto

-qipa=level=2 -qrealsize=8 -qfloat=nomaf -qstrict
XLF (Power) -g -qfullpath -O3 -Q -qrealsize=8

-qfloat=nomaf -qstrict

GNU’s g95 4.0.3 [3]; and two MPI variants: MPICH2 [2] and OpenMPI [17].

Although builds were not available for all compiler and MPI permutations.

Those that were available, and their respective versions, can be found in Table

4.1.

The Shamrock build has some self imposed restrictions on compilation op-

tions. These are in place to ensure that the results between architectures and

compilers are as numerically comparable as possible. A full list of compiler

options used in this study is specified in Table 4.2.

Comparing the compilers, with the same MPI implementation, Figure 4.1

shows that the GNU compiler gives the poorest performance, 83.9% slower than

the fastest compiler, the Sun Studio, for a single core run. Between these two,

the Intel and PGI compilers are 26.5% and 15.1% slower than the Sun Studio

respectively.

The discrepancies in compiler performance is due to how the restrictions,

imposed through the build flags, affect how aggressive a particular compiler is

2With the Sun Studio complier, -fast is an alias for the following compiler options:
-xtarget=native -O5 -libmil -fsimple=2 -dalign -xlibmopt -depend=yes -fns -ftrap=common

-pad=local -xvector=yes -xprefetch=yes -xprefetch-level=2 -nofstore.
Those in italics invalidate the IEEE Standard [189] and hence are manually disabled.
3-fast with the PGI compiler is an alias for: -O2 -Munroll=c:1 -Mnoframe -Mlre
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in its level of optimisation. This can be seen if the restrictions are lifted with the

Sun and Intel compilers. Removing the -fp-model strict, -prec-div and -prec-sqrt

options from the Intel compiler, (by which enables more aggressive floating-

point optimisations) and with the addition of the -prof-gen and subsequent

-prof-use Profile-Guided Optimisation (PGO) options, the Intel compiler sees

an 25% runtime improvement.

A performance metric, often overlooked, is the resultant memory footprint

at runtime. Figure 4.2 shows the high memory watermark (HMW) of the

application during its execution, for the four compilers tested. Sun and GNU

show a 5.26% increase in memory over the PGI compiler, however it would appear

that Intel’s optimisations require a greater amount of memory to be executed,

with a memory footprint 36.84% greater at 418MB, a not insignificant difference.

When considering the same compiler, but with a different MPI implementa-

tion, in both cases where this is possible: Sun and Intel, the OpenMPI build out

performs the equivalent MPICH2 build, by 4.5% and 8.5% respectively, when av-

eraged over multi-core runs. To gain best performance, an MPI implementation

should be optimality tuned for the system in question, this can be achieved by

disabling error checking in the MPI builds, or setting configuration options for

a specific system. However, in this study both MPI implementations are default

builds, so it would appear that, OpenMPI is able to outperform MPICH2, in

handling the shared-message MPI queue that will be being used, for Shamrock,

when running locally on the workstation.

The study shows significant differences are observed depending upon which

compiler and MPI are used, indicating a benchmark application, such as Sham-

rock, is a suitable tool for tracking and exploring systems software upgrades and

environmental changes.

4.2.2 HPC Benchmarking Platforms

At the time of this study, a range of HPC platforms were available for the

benchmarking of the Shamrock code:

• Intel Xeon (Details Table A.1)

– Nehalem (Willow A.1.1),

– Westmere (Blackthorn A.1.2)

• IBM POWER (Details Table A.2):

– POWER5 (Gollum A.2.1),

– POWER6 (Milano A.2.2),

– POWER6 (v60 A.2.3),
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– POWER7 (p90 A.2.4)

• IBM BlueGene (Details Table A.3):

– Blue Gene/L (uBG/L A.3.1)

– Blue Gene/P (DawnDev A.3.2)

• AMD Opteron (Details Table A.1):

– Barcelona (Hera A.1.4)

Details of each platform, along with the compiler and MPI implementation

of choice is given in the relevant sections of Appendix A. Based on performance

gains observed with the Sun Studio and OpenMPI implementations on the

E5405, where possible the same compiler and MPI implementation has been

installed on the HPC platform. For future reference, each platform, its compiler

and MPI implementation adopts the nomenclature: Platform:Compiler:MPI.

4.3 HPC Benchmark Performance

The problem set which was executed locally on the Intel Xeon E5405 workstation

was run on the HPC architectures with compiler and MPI configurations as

detailed in Section 4.2.2. As with the local builds, to ensure equality of results,

restrictions were applied to the compilations. Table 4.2 again contains the

compiler specific details which were employed in this part of the study.

4.3.1 Platform Comparisons

Figure 4.3 shows the runtimes, on a logarithmic scale, for all of the systems

previously described. A number of observations can be deduced from this chart:

• The improvement seen, on the E5405, for the Sun Studio compiler over

that of the Intel compiler, is also present on the Nehalem L5530. Single

core runtimes for the L5530:Intel:BullX are 18.8% slower than the equiv-

alent run on the L5530:Sun:OpenMPI.

• The use of IBM’s SMT is demonstrated on the Pwr6(4.2GHz):XL:IBM.

Using all 16 of the possible SMT threads gives little gain over an 8 core,

no SMT, run. However, enabling the SMT, but only utilising a sub-set

of the total SMT threads, a factor speedup of 1.42 over 8 threads on 12

cores, is close to a 1.5 maximum.
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Figure 4.3: Comparative runtimes for Shamrock 10242-cells
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Table 4.3: Relative Number of Cores and Power Consumption, for Equal Time
to Solution

Equivalent Architecture Power
# Cores Consumption (kW)

10 POWER7 0.61
20 Nehalem 0.72
20 Westmere 0.59
30 POWER6 4.79
64 Barcelona 3.52
160 Blue Gene/P 1.23

• Of most interest to the end-user, is the fastest time to solution for the

problem. In the case of all the architectures benchmarked in this study,

this is achieved for the X5660:Intel:BullX Westmere, on 128 cores for the

10242 cell problem size.

To enable additional platform comparisons a time to solution of 8.24 s was

selected. This matches the execution time on 64 cores running on the 8356:In-

tel:OpenMPI. The equivalent number of cores required from each of the archi-

tectures benchmarked, to match this 8.24 second turnaround can be inferred

from Figure 4.3. This is captured in Table 4.3, together with the respective

power consumption for that number of cores on a given architecture.

The power consumption figures given are extrapolations based on full system

runs of LINPACK [166] for the systems specified in the (contemporary at time

of study) June 2010 Top500 [147]. In the case of the POWER7 this figure is

based on the maximum possible power draw for a system, as specified in IBM’s

p755 Redbook specification sheet [194]. This figure will be most certainly higher

than an equivalent LINPACK run.

The power consumption figures clearly show an improvement from those ar-

chitectures of an older generation (e.g. POWER6 and Barcelona, to a Westmere

or POWER7) with the BlueGene solution sitting between these two ranges.

The Shamrock benchmark shows and allows comparison between currently

available, production ready HPC machines. It enables assessments to be made

on raw performance, time to solution, and with the availability of power con-

sumption figures, the option to provide an overall cost to solution.

4.3.2 Assessing Emerging Technologies: GPU Compar-

isons

AWE has a modest GPU test bed architecture, codenamed “Dexter”. Consisting

of four nodes: one master, and three compute. Full specification details are given
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in Appendix A, under Section A.4.1, but essentially it provides access to a small

number of NVIDIA R©GeForce
TM

GTX 285 [14] GPUs.

To enable a port of the Shamrock benchmark to the GPU, compute intense

sections of the code were identified and subsequently turned into kernels. In

total eight such kernels were identified, accounting for approximately 95% of

compute time.

4.3.3 The “Re-Structure”

The process of kernelising the computationally intense code sections required a

level of re-structuring within each of the identified code sections. As described

by Gaudin [190], this consisted of exposing the inherent concurrency in the

algorithm and optimising memory access.

In Shamrock, this was a case of finding concurrency at the loop level by

re-factoring conditional heavy coding, which became a time consuming effort due

to the requirement to identify variable scoping information. This was especially

so, when variables were contained in shared data modules. Additionally, it was

also found that objectives such as coding to save memory, heavy logic error

checking and bookkeeping activities although well intentioned, were restrictive

and resulted in artificially sequential code. Removing a number of Fortran90

features, such as derived types and the removal of ragged arrays and linked

lists resulted in less elegant but simplified Fortran coding, enabling greater

concurrency than the original implementation.

Once these issues were resolved the kernels were then optimised for memory

bandwidth, floating point performance and memory access patterns.

The next step used the F2C utility, based on Feldman’s Fortran to C con-

verter [89], to convert the simplified Fortran kernels into C. Finally, through the

use of AWE’s Acrylic wrapper code parser, data management and placeholder

code for the ported C routines were generated. This enabled the fast utilisation

of the OpenCL [125] framework, to create GPU executable kernels from the C

routines.

Even with this structured approach, the process was time consuming, taking

a number of months to achieve. Particularly the kernelisation of the existing

compute intense code sections identified areas that would require major re-

factoring of the entire code structure to obtain. However, a subset of the eight

identified code regions were amenable to kernelisation in an incremental fashion.

As part of this work, four of these potential kernels were developed:

(i) lagren calculates adiabatic heating on a cell, based on the volume change

in the cell and its pressure, using a predictor/corrector method
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(ii) lagrac calculates nodal accelerations due to pressure gradients and subse-

quently updates the nodal velocities

(iii) lagrqq calculates an artificial viscous pressure around shock waves, smooth-

ing out discontinuities and reduce oscillations

(iv) lagrvf which calculates the volume fluxes across cell faces, which are later

used to carry out the advective remap

These four kernels account for 13.55%, 8.06%, 10.78%, and 1.5% of total run-

time respectively. Although this gives 33.89% of the code resident on the CPU,

there are some caveats which restrict claiming a fully distributed GPU enabled

version of the code. Currently, for each kernel call, all data associated with the

kernel is transferred to and from the accelerator device. Although, logic has been

added enabling data to be shared between kernels there still exits a significant

overhead from the data copies. Additionally, a number of boundary conditions

are assumed for GPU execution, this severely restricts the problem range that

Shamrock is capable of running. However, due to careful problem selection, the

test case described in Section 4.1, and subsequently analysed is unaffected by

this restriction. Hence some direct comparisons between non-accelerated and

accelerated executions of the code can be made.

Figure 4.4 compares the average iteration time for each of the kernels when

run in their original (Orig), simplified Fortran (F) and C versions on a single

core of Dexter’s X5550 Xeon, and the OpenCL version on the hosted GTX285

GPU. By re-writing the original Fortran, performance gains are apparent for

each of the kernels, with the C versions demonstrating similar performance

gains. For the OpenCL version, despite no optimisations being implemented,

further performance gains are observed for the same three kernels over the C

equivalents. In the case of the OpenCL kernels, two average iteration times are

given for each kernel, the former (OpenCL(1)) includes data transfer to and

from the device, the latter (OpenCL(2)) for compute time only of the kernel on

the device. Comparing the compute-only OpenCL kernels against the original,

yields an average increase in performance of 18.97x, with speedups of 25.24x,

16.53x, 14.63x, and 19.47x respectively for lagren, lagrac, lagrqq, and lagrvf

routines.

The benchmark was run using MPI in a distributed fashion, in its entirety, in

a non-accelerated and accelerated mode on Dexter, using the Intel 11.0 compiler.

In the case of the accelerated mode, this includes all the data transfer times to

and from the GPU and CPU host. The resultant figures are captured in Figure

4.5 as X5550 and X5550 Acc CT where the former refers to the non-accelerated

mode and the latter to the accelerated mode with CT denoting the “current

transfer scheme”.

51



Chapter 4. An Industry Case Study: Benchmarking and Modelling

Orig F C OpenCL(1) OpenCL(2)

0

20

40

60

80

100

120

140

160

180
A

ve
ra

g
e

It
er

a
ti

on
T

im
e

(m
s)

lagren lagrac lagrqq lagrvf

Figure 4.4: Kernel Performance

4 8 12 16 20

100

101

102

Cores

A
p

p
li

ca
ti

on
T

im
e

(s
)

X5550 X5550 Acc ST

X5550 Acc CT X5550 95 Acc ST

Figure 4.5: Comparison, including GPUs, of runtimes for Shamrock 10242-cells
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Table 4.4: Data Bandwidths for Shamrock Transfer Sizes

Cores Transfer Size Host to Device Device to Host
(MBs) (MB/s) (MB/s)

1 460.80 4370.7 3362.7
2 230.40 4373.8 3086.0
4 115.20 4545.8 3064.3
8 57.60 4518.0 3030.4
15 30.72 4459.9 3016.7

Also shown is the execution times were only a single data transfer, denoted

ST, to take place to and from the host. The assumptions taken to obtain these

ST results is explained in the following paragraphs.

These show no gain in performance from using the OpenCL kernels, and

indeed performance is worse for the GPU runs when more than 8 GPUs are

utilised. This is not unexpected; as previously stated, the data copies, to and

from the device each time a kernel is called, begin to dominate performance.

However when the remaining four kernels, of the original eight that were

identified for kernelisation, are developed and ported providing the are reused in

sequence and with no host processing in between) the need for the current data

transfers would be negated, and would be replaced with a one-off initial copy to

(and final copy from) the device. A worst case overhead for such a copy can be

calculated. The total amount of data necessary for the entire test case stands

at 0.45GB/N per processing core, where N is the number of processing cores

used. This is well within the memory constraints of today’s devices: NVIDIA’s

Tesla C2070 has 5.25GB of user available memory.1 The memory bandwidth

test, oclBandwithTest, which is shipped with NVIDIA’s CUDA Toolkit [78] can

be executed to measure the data transfer speeds for a range of transfer sizes.

Table 4.4 shows these transfer speeds, using direct access and paged memory2

averaged over ten runs.

Using these bandwidth figures, an estimate of the data transfer overheads

can be made for the code if the data transfer per kernel is replaced with an

initial copy to, and final copy from, the device. X5550 Acc, ST, in Figure 4.5,

shows the estimated distributed runtime for the benchmark with this change of

data transfer from the current transfer (CT) scheme, to a single transfer (ST)

scheme.

The four kernels already ported to the GPU, accounting for 33.89% of the

total code compute time, and their average speedup, over the original coding,

is a factor of 18.97. If it is assumed the remaining 61.11% of compute, contained

1The C2070 has 6GB in total, however 0.75GB is reserved for error checking and correcting
(ECC).

2It is possible to increased bandwidth using mapped access and pinned memory
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Figure 4.6: Comparison, including GPUs, of runtimes for Shamrock 10242-cells

in the remaining four kernels, achieves a similar average performance gain,

Amdahl’s law can be used to calculate an estimated speedup for a distributed,

95% GPU resident, version of the benchmark (Equation 4.1). Taking the 5% of

the application which is not accelerated, each of the kernels with their percentage

of compute and performance gains, and the estimated gain for the remaining

61.11%, an overall speedup of a 0.1006 is calculated.

0.05

1
+

0.1355

25.24
+

0.0806

16.53
+

0.1078

14.63
+

0.015

19.47
+

0.6111

18.97
= 0.1006 (4.1)

Shown in Figure 4.5 as X5550 95 Acc, ST ; this gives an estimated order of

magnitude gain over a non-accelerated x5550 run.

Figure 4.6 adds X5550 Acc CT and X5550 95 Acc ST to a subset of those

benchmark runs depicted in Figure 4.3. Based on the prior assumptions, this

shows that an equal time to solution of 8.24 s could be theoretically achieved

using two X5550 cores, each accelerated with an NVIDIA Tesla C1060 GPU

card. The resultant power consumption, as detailed in Table 4.5, shows savings

compared to alternative platforms.
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Table 4.5: Relative Number of Cores and Power Consumption, for Equal Time
to Solution; Including GPU

Equivalent Architecture Power
# Cores Consumption (kW)

10 POWER7 0.61
20 Nehalem 0.72
20 Westmere 0.59
30 POWER6 4.79
64 Barcelona 3.52
160 Blue Gene/P 1.23
2 Tesla Accelerated 0.44

Nehalem 2x(0.036+0.1878)

4.4 Summary

This chapter introduced the industrial strength, multi-purpose 2D benchmark

code Shamrock. Using a suitably defined test problem, it has been demon-

strated as a suitable vehicle for assessing code performance variations due to

system software changes, and also as a tool for benchmarking competing system

offerings as part of an HPC procurement cycle.

To consider its suitability for assessment of emerging hardware technologies

an OpenCL port to an NVIDIA Tesla C1060 accelerated Intel Xeon Nehalem

based cluster was described for four of eight possible kernels within the bench-

mark, accounting for 33.89% of the total code compute time. Running with

the accelerated kernels in a distributed mode, and comparing with the non-

accelerated distributed code, experimental data showed increasing overheads

due to the data transfer to and from the device. By applying an overhead

based on the theoretical maximum data required to be transferred to and from

an attached GPU device, a prediction was calculated for removing the current

data transfer scheme, and replacing with a larger, single data transfer scheme.

Additionally, by applying an average speedup factor of 18.97x on the remaining

four kernels (based on an assumed average speedup for the ported kernels) a

predicted execution time of a distributed, 95% resident version of the benchmark

was derived. This means that an equal time to solution of 8.24 s is achievable

with two C1060 accelerated Nehalem cores.

However, the removal of data transfer and speedup factors were artificial and

not experimentally validated, hence can be argued an unreasonable comparison

to the original application. For such verification in the Shamrock benchmark a

significant implementation and code restructuring would be required. Such an

effort was determined to be too time consuming to be profitable.

As Shamrock is representative of a typical procurement benchmarking tool,
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containing error handling, bookkeeping, I/O routines, loop carried dependencies

and non-optimised memory access patterns; this indicates that a benchmark

application is too unwieldy for the evaluation of an emerging architecture. To

address this aspect, so far the study has been of one emerging technology, namely

a GPU, and one programming methodology: OpenCL. If an industrial size

benchmark is unsuitable for this selective case, then it is certainly unsuitable

for the general case of interest: a rapid assessment of a range of programming

methodologies on a range of emerging hardware. For such assessments a new

approach is needed.
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CHAPTER 5
Mini-Applications: The OpenACC Development of

CloverLeaf

The previous chapter demonstrated the inefficiencies in using an industrial

benchmark code as a mechanism to explore the changing HPC landscape. Due

to the long turnaround time to assess just one programming model on one

possible architecture a different approach is needed.

This chapter introduces the concept of a mini-application or mini-app, which

is lighter-weight whilst still representative and are written with the concept of

keeping algorithms explicit in their nature and purpose.

By ensuring the mini-app is a small, self-contained program that embodies

essential performance characteristics of key applications, they provide a viable

way to trial new programming methodologies and new architectures.

Specifically, this chapter makes the following key contributions:

• It provides a detailed documentation of the CloverLeaf mini-application

which can be found as part of the Mantevo project [104], including its

hydrodynamics scheme as well as the features which make it amenable to

utilisation of many-core technologies.

• In particular, it describes the step-by-step development process to achieve

a fully distributed and accelerated hybrid MPI/OpenACC implementation

of the mini-app, using a Cray R©XK6
TM

as the development platform.

• Finally, it introduces the various other implementations of CloverLeaf that

are currently available and how they can be used in conjunction with the

OpenACC variant to begin to explore suitability of emerging many core

architectures.

This work was previously presented at the Cray Technical Workshop on

XK6 Programming, hosted at ORNL in October 2012 [77]. Additionally, it

was the focus for an OpenACC Standards Organisation White Paper and Case

Study [100]. It has also been replicated in a forthcoming contribution-based

book that will focus on teaching practical techniques for OpenACC parallel

computing [88].
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5.1 The Development of CloverLeaf

CloverLeaf, developed by the UK Mini-App Consortium (UK-MAC) [39], is part

of the R&D 100 [172] award winning Mantevo test suite [104].

CloverLeaf has been written with the purpose of assessing emerging hardware

and programming models. The simple hydrodynamics scheme is representative

of the Shamrock benchmark, described in Chapter 4, but is written in such

a way as to avoid unnecessary dependencies in key computational sections.

This was achieved by encapsulating all scientific computation in small kernel

functions, where the term “kernel” is used to refer to a self contained function

which carries out one specific aspect of the overall algorithm, thus making long,

complex loops containing many subroutine calls unnecessary. It incorporates

the lessons learnt from the kernelisation of the four routines in the Shamrock

benchmark application, as described in Chapter 4, Section 4.3.3. In particular,

loop carried dependencies and deep loop logic was avoided; the use of allocations

and print statements which cause synchronisation points within the kernels, were

minimised. Additionally, the kernels were written to optimise memory access

patterns and hence maximise the use of memory bandwidth. The resultant

computationally intensive sections of CloverLeaf are implemented via twelve

individual kernels.

5.1.1 Hydrodynamics Scheme

CloverLeaf is an explicit Eulerian hydrodynamic mini-app that solves the com-

pressible Euler equations, a series of equations describing the conservation of

energy, mass and momentum in a system. The equations are solved on a

cartesian grid in two dimensions. Each grid cell stores three quantities: energy,

density and pressure, and each cell corner, or node, stores a velocity vector.

CloverLeaf solves the equations with second-order accuracy, using an explicit

finite-volume method.

As depicted in Figure 5.1, each cycle of the application consists of two steps:

(i) a Lagrangian step advances the solution in time using a predictor-corrector

scheme, distorting the cells as they move with the fluid flow

(ii) an advection step is used to restore the cells to their original positions

The initial implementation of CloverLeaf, developed by Gaudin, was in

Fortran90 and was used to develop an optimised and highly vectorisable, hybrid

MPI/OpenMP code.

This chapter focuses on the step-by-step development, a joint effort by

Gaudin and the author, of an OpenACC implementation using the parallel
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flow

(a) Node movement during the Lagrangian
step.

flow

(b) Material movement during advective
remap.

Figure 5.1: Lagrangian-Eulerian hydrodynamics cycle

construct using Cray’s CCE compiler, on an NVIDIA GPU accelerated Cray

XK6.

5.1.2 Test Case

A simple yet representative asymmetric test problem is used throughout the

study, it consists of two regions of idealised gas; one of high density and energy,

adjacent to that of a lower density and energy region. As the simulation proceeds

a shock wave forms and penetrates the low density region.

Initially a simulation time of 0.5 µs, on a problem size of 0.25 million (5002

cells) was created. This gave a relatively quick turnaround time, yet still long

enough to see compute as the main work load. As the code was refined and

improved larger cell counts for the same simulation were used to maximise the

size able to fit onto a CPU core and subsequently a node. These are detailed at

the relevant points throughout the chapter.

5.2 Development Platform: Cray R©XK6
TM

As summarised in Appendix A.4.3, Chilean Pine is a Cray XK6 with 40 AMD,

16-core Opteron 6272 Interlagos processors. Each compute node has one of

these Opteron 6272 CPUs plus a companion NVIDIA X2090 GPU. Each node

has 32 GB of 1600 MHz DDR3 memory, supplying the CPUs. The XK6 utilises

the “Cray Gemini Network” (Gemini) as its interconnect. The Opteron 6272

CPU shares resources at the “Bulldozer module” level. That is the two cores

59



Chapter 5. Mini-Applications: The OpenACC Development of CloverLeaf

that make up a “Bulldozer module” both have access to the shared floating

point unit (FPU). This FPU has two 128-pipelines which can be combined

into one 265-bit pipeline that can then execute a single 256 AVX instruction.

This still only provides four double precision FLOP/s/clock cycle. However

the AMD does have a 256-bit fused multiply add (FMA) instruction, which can

theoretically double the floating point performance to eight FLOP/s/clock cycle.

The Opterons in Chilean Pine have a 2.1 GHz clock frequency, which equates to

a total CPU peak performance of 10.75 TFLOP/s. The default Fortran and C

compilers are the Cray Compiling Environment (CCE) version 8.0.7 (although

for this study, a then contemporary beta release of CCE, 8.1.0.157, was made

available from Cray) with the default MPI being MPICH2 via Cray’s xt-mpich2

version 5.5.1. Thermal design power (TDP) for the Opteron and X2090 are

115W and 225W respectively.

5.3 Development of OpenACC CloverLeaf

This section describes the step-by-step approach, together with the incremental

performance gains achieved as well as the issues which inhibit performance, of

applying the OpenACC directive model to the CloverLeaf mini-app, resulting

in a fully resident, multi-GPU version of the application.

CloverLeaf contains both C and Fortran implementations of the computa-

tionally intense code sections. The Fortran versions were targeted first and

foremost as the basis of this study; the C implementations were subsequently

produced once the fully optimal Fortran code was developed.

This was for two reasons: firstly the majority of applications developed

within AWE are Fortran based, hence insights regarding the issues and processes

required to take Fortran source code and accelerate it on a GPU architecture

was of highest interest from an industry view point.

Secondly, at the time of development, Cray had focused on the Fortran

implementation of OpenACC in their CCE programming environment which

was therefore more mature, with greater support, than their C implementation.

The implementation of the OpenACC directives was greatly helped by the

fact that the CloverLeaf code had an OpenMP based shared memory par-

allelisation scheme already implemented. This immediately identified those

areas requiring the application of OpenACC directives to achieve acceleration.

However, as will be demonstrated, this did not imply that simply adding or

replacing OpenMP directives with OpenACC gives a suitably accelerated code.

Ultimately, the number of kernels accelerated by applying the OpenACC direc-

tives to produce an efficient accelerated version are summarised as follows:
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Subroutine % Runtime
advec mom 41.79
advec cell 20.54

PdV 12.72
calc dt 9.06

accelerate 5.32
viscosity 5.24

Table 5.1: CloverLeaf CPU Profile

• 12 unique kernels

• 25 ACC DATA constructs

• 121 ACC PARALLEL + LOOP regions

• 4 REDUCTION LOOPS

• 12 ASYNC

• 4 UPDATE HOST

• 4 UPDATE DEVICE

The following sections detail the progressive approach applied to the code

to produce the efficient OpenACC accelerated version.

The first step was to identify those subroutines, or kernels, that are compu-

tationally intensive, or hot spots.

5.3.1 Hot Spots

Using a simple profiler, Table 5.1 shows a flat, single CPU core profile for

CloverLeaf.

These six computationally intense subroutines, or kernels, account for almost

95% of the code’s execution time. On this basis, these kernels were targeted for

initial acceleration.

5.3.2 Acceleration of Individual Kernels

Those six kernels identified were taken individually and OpenACC directives

were applied. This was implemented by taking the existing OpenMP version of

those kernels as a starting point, the advantage being that the development of

the OpenMP version necessitated the scoping of the kernels variables, something

also required for OpenACC implementation.
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In the first instance, the !$acc data and !$acc parallel loop, in conjunc-

tion with their matching end directives, are all that is required to accelerate a

particular computation loop within each kernel.

Figure 5.2: Pseudo Code: Individual Kernels Accelerated

Figure 5.2 schematically shows this applied to representative pseudo-code.

However, this approach would implicitly copy all of the data to the device for

execution, and subsequently copy all the data back to the host after completion

of the computation of the kernel. This can be rectified by adding clauses to the

OpenACC directives which describe the data dependencies between the CPU

and GPU. With these clauses added, the code can be executed with one kernel

running in its accelerated mode at a time. This approach was then repeated for

each of the six kernels in turn.

Figure 5.3 shows a stacked bar chart for the individual kernels, executing

the 5002 cell test case. Each bar in the plot depicts the totality of execution

time for that kernel, while each of the stacked segments represent the distinct

categories the kernels spend their time in during execution, namely:

• “No ACC’ed” (code exclusively running on the CPU),

• “Device Compute” (pure execution time on the GPU),

• “Data H2D” (time taken to transfer data from the host to the device),

• “Data D2H ” (data transfer time from device to host),

• “Sync” (synchronisation time on the device, that is time spent on the

device not including computation, (e.g. allocations and waiting)).
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Figure 5.3: Breakdown of Individual Kernel Times

Irrespective of the kernel in question, it can be seen that the kernel time

is dominated by the data transfer to the GPU from the CPU host. Also,

synchronisation time is relatively high for some kernels. In the case of the

latter, this will be addressed later in the optimisation steps. As for the former

this is not unexpected; each time the kernel is called, all the state data is copied

over for the kernel to execute.

5.3.3 Acceleration of Multiple Kernels

Once each kernel was checked for numerical correctness on the GPU, all the

kernels were executed in their accelerated mode.

Figure 5.4 shows the comparison between the original, non-accelerated, ver-

sion of the code executing on a single Opteron core and that with all the

six computationally “hot” kernels accelerated, broken down into the respective

categories of No ACC’ed, Device Compute, Data H2D, Data D2H and Sync.

Although now less than 5% of the code is executed on the CPU, the overall

execution time is significantly greater than that of the non-accelerated original;

and the data transfer effects are now even more apparent. Every timestep each

kernel copies data (multiple times in the case of some kernels) to the device

ready for computation. This data transfer can be reduced to a minimum by

making the entire application resident on the GPU.
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Figure 5.4: Breakdown of Multiple Kernel Times

5.3.4 Achieving Full Residency on the GPU

The pseudo-code in Figure 5.5 shows that by applying OpenACC data copy

clauses at the highest level of CloverLeaf’s call tree, namely the very start of

the main program, a one off data transfer can be carried out. Subsequently, by

use of the OpenACC present clause on the data construct of each kernel, it

can be indicated that data is already on the device and a copy is not required.

In addition to restricting the data transfer to an initial copy, for full code

residency to take place, additional kernels to the six identified, need to be placed

on the GPU. These are non-computationally intensive, but without placement

on the GPU, every time these sections of code are invoked, implicit data transfers

will occur to and from the host.

With the exception of the initial set-up routine, a total of twelve unique

kernels (including the previously identified six) are required to be accelerated.

Figure 5.6 shows the impact of accelerating these additional kernels and applying

an additional one off data transfer.

With the extra kernels now executing on the GPU there is virtually no com-

putation remaining to be carried out by the CPU. This is reflected in the visible

increase in device compute that is now observed. The most marked difference

is that the data transfer overhead is dramatically reduced by implementation of

the initial transfer.

As this data is a “one off” event, it would be reasonable to hypothesise that
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Figure 5.5: Pseudo Code: Achieving Residency with OpenACC

if the problem size were large enough, or computation long enough, this data

overhead would be a relatively smaller percentage of the overall execution time.

5.3.5 Increasing the Problem Size

The modest 5002 cell problem size realises a speedup factor of 3.01 when exe-

cuted on the GPU over the equivalent CPU run. Figure 5.7 shows this along

with problems sizes of 9602 cells, 20402 cells and 40962 cells. Where the relative

performance gains over the CPU are 4.91x, 5.82x and 5.76x respectively. As

expected, as the problem size is increased the percentage of runtime concerning

the data transfer is reduced. Indeed, as can be seen in Table 5.2, for the 40962

cell problem the data transfer accounts for only 5.07%, compared to 18.24% for

the 5002 cell.

For a sufficiently large problem, the GPU performance is approaching 6x the

performance of the non-accelerated, serial code on the Opteron CPU.

5.3.6 Comparison of Hybrid MPI/OpenMP

At face value, a factor of six improvement in the accelerated code over the

original non-accelerated code sounds like a significant gain. However, this is

comparing the performance of the entire X2090 GPU against that of a single

Opteron core. A more realistic comparison would be to compare against the

performance achievable by using all the cores available on the Opteron socket.

At the time of the study, using the hybrid MPI/OpenMP version of Clover-

Leaf, the optimal performance was achieved by using eight MPI tasks and one
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Figure 5.6: Breakdown of Resident Kernel Times

OpenMP thread and using one core per Bulldozer module. This gave a wall clock

time of 43.52 s, in comparison to the 58.03 s for the GPU; a speedup factor of

0.88x.

The factor of six over a serial implementation may have looked attractive,

but with a distributed parallel implementation on the CPU outperforming the

accelerated GPU variant, a GPU based architecture is no longer such an at-

tractive proposition. Before returning to and addressing this performance, the

OpenACC version of the code was extended to enable execution on multiple

GPUs.

5.3.7 Hybrid MPI/OpenACC

To enable the extension of CloverLeaf to execute on multiple GPUs, the Ope-

nACC build of CloverLeaf was extended to use MPI. This required each GPU

to be running fully resident on its section of the computational domain, with

a traditional halo data exchange scheme implemented between each distributed

sub-domain.

In practice this equates to first updating the host CPU with the latest

halo data from its associated GPU, then using MPI to communicate that data

between neighbouring CPUs, and finally each associated GPU obtaining the

updated halo data from its CPU host.

Figure 5.8 shows how this is implemented using the OpenACC update

67



Chapter 5. Mini-Applications: The OpenACC Development of CloverLeaf

No
Op
en
AC
C

Fu
ll
y
Re
si
de
nt

0

10

20

30

40

T
o
ta

l
R

u
n
ti

m
e

(s
)

(a) 5002 Cells

No
Op
en
AC
C

Fu
ll
y
Re
si
de
nt

0

100

200

300

T
o
ta

l
R

u
n
ti

m
e

(s
)

(b) 9602 Cells

No
Op
en
AC
C

Fu
ll
y
Re
si
de
nt

0

10

20

30

T
ot

al
R

u
n
ti

m
e

(x
10

2
s)

(c) 20482 Cells

No
Op
en
AC
C

Fu
ll
y
Re
si
de
nt

0

10

20

T
ot

al
R

u
n
ti

m
e

(x
10

3
s)

(d) 40962 Cells

−0.5 0 0.5 1 1.5
02 · 10−24 · 10−26 · 10−28 · 10−20.1

Non ACC’ed Device Compute Data H2D Data D2H Sync

Figure 5.7: Increase in Problem Size

68



Chapter 5. Mini-Applications: The OpenACC Development of CloverLeaf

Figure 5.8: Pseudo Code: Hybrid MPI/OpenACC

directive. This results in a fully distributed and accelerated version of the

CloverLeaf mini-app.

5.3.8 Version A: Initial Performance

Referred to as Version A, this initial, fully distributed and accelerated version

can be taken as a baseline for analysing performance. Figure 5.9 shows the

strong scaling performance characteristics of the initial multi-GPU version of

the code. Here it is executing the 9602 cell sized test case but with an increased

simulation time to 15.5 µs rather than 0.5 µs as originally depicted in Figure 5.7.

Increasing the simulation time allows the performance characteristics to be easily

observed, especially once the problem is distributed over multiple CPUs and

GPUs. Plots are for one Opteron CPU core, one Opteron socket, and one

through six GPUs.

As described in Section 5.3.6, the key points to take away are:

• One X2090 GPU is a factor of 5.97 faster than one Opteron CPU core

• One X2090 GPU is 0.88 times faster than one Opteron socket

• Multi-GPU scaling turns over1 once six GPU are utilised.

To see if these initial findings can be improved on, understanding these

performance figures is crucial.

1The point, where increasing the number of processors to solve a problem results in a
slower solution time;that is the problem no long demonstrates strong scaling.
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5.3.9 Version B: Inner Loop Dependencies

On the XK6, Cray’s analysis tool suite, Perftools, has been extended to measure

GPU performance, including that of a flat profile, which shows the total execu-

tion times for each function within the application. Figure 5.10 shows a profile

for Version A, that indicates advec cell and advec mom are the two routines

that dominated runtime. This is not entirely unexpected; indeed, running the

code exclusively on the CPU results in a not dissimilar profile.

Figure 5.10: Flat Profile Version A

However, understanding exactly how the underlying code is executing on the

GPU is vital to realise if this performance is optimal or not.

CCE provides, by way of the -r option, the generation of a listing file.

Depending on the sub-options invoked with this option, a set of compiler reports

are concatenated to the listing file, detailing compiler listings, loopmark listings,

source code listing and cross references. With the loopmark and source listing

enabled, an understanding of how the compiler has translated the application

can be ascertained.

Figure 5.11 shows the loopmark listing for Version A’s advec cell, but with

pseudo code in place of the actual source for clarity.

Figure 5.11: Compiler Listing advec cell Version A

The G indicates that the code block enclosed by the !$acc parallel loop

and the !$acc end parallel loop is accelerated, this is also detailed in the as-
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sociated dialogue: A region starting at line 93 and ending at 99 was

placed on the accelerator. Additionally, the outer loop has the g loop-

marking. This indicates that the loop has been distributed across the thread

blocks and subsequently the threads within those blocks. Again, the associ-

ated dialogue indicates this: A loop starting at line 94 was partitioned

across the threadblocks and the 128 threads within a threadblock.

Both of these statements and loopmarkings are the desired result, indicating

that each thread is working on its own instance of k. However, on inspection

of the inner loop the loopmarking specifies a numerical value (in this case “3”),

along with the optimisation message: “A loop starting at line 95 will

be serially executed”. This indicates that j is split among the threads and

all the threads are iterating the same value of j at the same time which is not

the intended result.

To remedy this, the dependencies, or at least the dependencies the compiler

perceives, in the code need to be addressed. In the case of advec cell for each

iteration of the inner loop a value is being calculated for pre and post mass,

energy and volume. These updated values are then used in the same loop. This

dependency is easily rectified by splitting the loop into two separate loops; one

to calculate the values and a second to use these updated values.

Figure 5.12: Compiler Listing advec cell Version B

Once implemented an updated listing file (Figure 5.12) shows that the inner

loop is now being correctly partitioned across the threads. The updated profile

in Figure 5.13 shows advec cell dropping from over 27 s to under 12 s.

This modified version of the code, denoted Version B, is compared to

Version A in Figure 5.14.

5.3.10 Version C: Nested Loops and Global Variables

Figure 5.13 shows that what is now dominating runtime is advec mom. Using

the loopmarking in the listing file shows that loops containing multiple levels

of nesting are not being accelerated. By removing these nested loops all but

one are now being partitioned as desired. In the case of this non-partitioned

loop, it can be forced to be scheduled across all the threads by addition of the
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Figure 5.13: Flat Profile Version B

OpenACC vector clause to the !$acc loop construct.

Figure 5.15 demonstrates the original nested loop structure along side its

re-factored accelerated pseudo code. With the re-factored code the advec mom

kernel time drops from 19 s to 8 s, as highlighted in the profile presented in

Figure 5.16.

What Figure 5.16 also shows is that the timestep routine is now dominating.

Consulting the associated listing file for timestep reveals that the kernel is only

executing on a single GPU thread.

The cause was traced to the use of global variables. As all threads have the

potential to write to these global variables, the compiler takes a conservative

approach and only allows the scheduling of the kernel on a single thread. The

global variables in question are used in the timestep kernel to return the (i,j)

coordinate of the cell which contains the minimum timestep values for the

iteration. This functionally can be retained, without the need of global variables,

by use of the Fortran intrinsic MINLOC.

Analysing the profile of Version C, (Figure 5.17) shows the timestep ker-

nel’s execution time is now reduced from 13 s to less than 1 s. Figure 5.18

shows the performance improvements delivered by Version C of the code, which

includes the re-factored nested loops and the removal of the global variables. In

comparison to Version B it can be seen that significant gains are now observed

on comparative executions using a single GPU. However, although some gains

are also observed on multiple GPU runs, it is still turning over once six GPUs

are being utilised.
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(a) Version B

(b) Version C

Figure 5.15: Nested and Re-factored Pseudo Code for advec mom

Figure 5.16: Flat Profile Version B with Re-factored advec mom

5.3.11 Version D: Multi GPUs, Reducing Hidden Trans-

fers

To understand why the scaling on the accelerator is limited to a few GPUs,

attention is needed on the bottleneck affecting multi-GPU execution. The first

area investigated was that of data transfers between the host CPU and GPU.

Depending on the variable in question, different depths of halo exchange cells

are required for spatial domain decomposition. By default, the MPI distributed

code sets the halo cell depth consistently for all variables. That default depth

matches the maximum depth required for the worst case variable. Although

implementation dependent, as MPI communication overheads are a stepping

function, rather than a linear progression, the overheads in communication of

one or two extra layers of data is negligible, if at all.
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Figure 5.17: Flat Profile Version C

However, any halo exchange data when running on distributed GPUs first

needs to be transferred from the GPU to the host prior to CPU to CPU MPI

communication and likewise the receiving CPU needs to transfer the new data

to its host GPU ready for computation. As previously detailed, PCIe data

transfers to and from the GPU are a major bottleneck, so any reduction should

prove beneficial.

With this in mind the code was modified to only exchange data genuinely

required. The CRAY ACC DEBUG runtime environment variable, documented

from version 8.1.0.165 of CCE, assisted in this analysis. The variable has three

informational setting levels, each providing increasing amounts of information

relating to what is being transferred, and how large data is that is transferred,

to and from the GPU, providing an informative runtime analysis.

Enabling this, showed unexpected data transfers in the accelerate kernel, not

associated to the halo exchange data. Although relatively small in size (2,376

bytes) it stated that a Fortran derived type was being transferred and allocated

on the GPU. On investigation, it became evident that scalar components of that

particular derived type were being utilised in the accelerate kernel, and hence an

implicit copy of the entire derived type was occurring to place it on the GPU.

By creating local scalars and copying the appropriate fields from the derived

type into these, resulted in the cessation of the implicit copy.

The resultant performance of Version D of the mini-app, with these two

changes implemented, is shown in Figure 5.19. Although this is a significant

improvement, multiple GPU scalability is still relatively modest, with two GPUs

taking 73.99 s, while six take 67.01 s
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Figure 5.19: Version D Performance Comparison
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5.3.12 Version E: “ACC SYNC WAITS”

A profile of Version D is shown in Figure 5.20. What is now dominating

are a number of routines, all with the overhead of ACC SYNC WAIT. On further

investigation, what all of these routines have in common is that they allocate

data on the GPU.

Figure 5.20: Version D: ACC SYNC WAIT Dominated Profile

By pre-allocating temporary arrays at the same high level of the calling

tree as described in Section 5.3.4, and carrying out an initial data copy to the

device, device memory can be re-used multiple times by passing the relevant

arrays through subroutine arguments. This removes the need to check if the

data is present and hence negates the need to create it on the device via an

allocation.

(a) Version D
(b) Version E

Figure 5.21: Pseudo Code for Pre and Post Pre-Allocations

Figure 5.21 shows pseudo code for both the original allocation method and

the pre-allocation implementation. A new code profile of Version E (containing

the implemented pre-allocations) is displayed in Figure 5.22. This shows the

implementation of the pre-allocation has removed the ACC SYNC WAIT overheads.

Adding Version E runtimes to the plot of previous versions (Figure 5.23)

79



Chapter 5. Mini-Applications: The OpenACC Development of CloverLeaf

Figure 5.22: Flat Profile Version E

shows a significantly improved accelerated version of the code. Indeed, Version

E gives a 67% improvement in total turnaround time over that of the initial

Version A on a single GPU.

It is also apparent, comparing Versions A and E in Figure 5.23, that the

described optimisations applied to achieve GPU performance have a significant

impact on CPU performance; these will be addressed in Section 5.3.13.

Recall from Section 5.3.8, the performance figures for Version A:

• One X2090 GPU is a factor of 5.97 faster than one Opteron CPU core

• One X2090 GPU is 0.88 times faster than one Opteron socket

• Multi-GPU scaling turns over once six GPU are utilised.

These same metrics for Version E are now:

• One X2090 GPU is a factor of 19.34 faster than one Opteron CPU core

• One X2090 GPU is 4.91 times faster than one Opteron socket

• Multi-GPU scaling is still scaling when six GPU are utilised.

With a TDP of 115W for the Opteron and 225W for the X2090, this implies

a performance increase of over 2.5 for the X2090, for the same power footprint.

5.3.13 Impact of GPU Optimisations on CPU

An interesting, yet relevant aside is to look at the relative performance of the

final, GPU optimal, incarnation of the code (Version E) against that of the

initial version (Version A) when running exclusively on the CPU. Recall, all

optimisations carried out between these two versions were aimed at improving

and fixing issues detrimental to performance on the GPU. Yet, comparing single

CPU-only performance Version E gives over a 17% improvement over that of

Version A.

The main contributors to this improvement are the optimisations to allo-

cate, deallocate and subsequently re-allocate the arrays as described in Section
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Figure 5.23: Version E Performance Comparison
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5.3.12. Additionally, this is further emphasised when the derived metrics for

each version’s performance are compared. Although Version A is realising

a respectable 652 MFLOP/s (Figure 5.24), this increases to over 1 GFLOP/s

for Version E (Figure 5.25). This increase comes from an increase in L1 cache

utilisation (up by a factor of 2.3), which is now averaging 4.164 uses per operand.

Figure 5.24: Derived Metrics: Version A

Figure 5.25: Derived Metrics: Version E

5.3.14 Multi-GPU Scalability

To better observe the strong scaling of the code, the 9602 cell test problem

executing on one Opteron core, was scaled out to all 16 cores resulting in a

test size of 38402 cells. To reduce wall clock times during experiments, the

simulation time of the system was also reduced back to 0.5 µs.

Results for scaling this larger case on the GPU are presented in Figure 5.26.

Utilising all 32 GPUs on Chilean Pine, parallel efficiency dips just under 50%

with a speed up of 15.42 over one GPU. This is not entirely unexpected, as the

data sizes per GPU at this point (as a fraction of GPU memory) are relatively

small. With a higher ratio of communications relative to computation, the

parallel efficiency would not be expected to be large.

Weak scaling figures based on average cell execution time (micro-seconds per

cell) are presented in Figure 5.27. Once nine GPUs are deployed, communication

is instigated in both directions, in both dimensional planes; that is to say there
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Figure 5.26: 0.5 µs, 38402 cells, Strong Scaled

is a “central” GPU which will communicate in all four directions. Once this

occurs, the cost per cell per timestep stays constant as the number of GPUs are

increased. At over 96% parallel efficiency, this shows good scaling on the whole

of the machine.

Comparing the strong and weak scaling performance, this demonstrates that

the GPU is very good at compute as long as it is kept “filled”, that is keeping

the ratio of computation to communication high.

5.4 Summary

Once identified, OpenACC was applied to each kernel on an individual basis,

and the breakdown of compute and data transfer to and from the CPU can be

assessed on a kernel by kernel basis.

Once all the main compute kernels were accelerated, they were then executed

in unison. This showed the overall performance being achieved from execution

on the GPU. However, as each kernel was still transferring data to and from the

host, it also highlighted the overhead of the data transfer.

To remove the impact of the data transfers, the code was made fully resident

on the GPU device. This removed all but an initial copy to the GPU, the copies

from the MPI communications and a final copy back to the host CPU.

However, to make fully resident, and run exclusively on the GPU, not only

did all of the data need to be identified for the initial transfer, but also those

parts of the code that were not necessarily computationally intense also needed

to be made to execute on the GPU; that is extra kernels needed to have
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Figure 5.27: 0.5 µs, 38402 cells, Weak Scaled

OpenACC applied.

Once the entire application was resident and running exclusively on the

GPU, the performance was then investigated. Firstly, the impact of increasing

the problem size was explored, and once a large enough case identified that

suitably occupied the GPU, the performance was compared against the best

CPU performance possible from the most optimal variant of the code (MPI,

OpenMP, MPI/OpenMP hybrid) available at the time of study. Based on these

comparisons, a range of optimisations were applied by analysing how each kernel

was utilising the GPU’s threads.

Finally, attaining a robust, optimal fully resident OpenACC version of the

code, the application was extended to use multiple GPUs by developing a hybrid

MPI/OpenACC implementation. This resulted in a performance increase of

5.82x over a single Opteron CPU core, but showed detrimental performance

compared to an entire CPU socket.

A study was subsequently carried out which identified those areas inhibiting

performance, as summarised in Table 5.3

Once rectified, a single GPU now realises a factor of 19.34 over a single

Opteron CPU core, and a factor of 4.91 over an entire socket.

These optimisations also benefited CPU only performance with an increase

from 652 MFLOP/s to in excess of 1 GFLOP/s.

Increasing the problem size, strong and weak scaling showed almost 50%

parallel efficiency for the former, and over 96% for the latter when executed

across the entirety of the Chilean Pine XK6 platform.
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Issue Remedy
Inner loop dependencies, Split loops into
“calculating and using” “calculating” and “use”

Multiple nested loops not Re-factor loops into own entity
accelerating due to and use of loop
outer loop fusion vector directive
Global variables, Remove

single thread execution
Hidden data Identified and

transfers removed/minimised
“ACC SYNC WAITS” Temporary array allocation

and reuse

Table 5.3: Summary of Performance Issues

5.5 Chapter Summary

OpenACC is a directive based programming model to allow the code developer

to identify areas of code to be accelerated on a hosted device. Adding direc-

tives to an existing code base is an attractive proposition when compared to

re-writing in a new language and realises some of the benefits from an open,

non-disruptive approach. Vendors are developing backends that can still utilise

their proposed methodology, yet have the OpenACC standard as a common

interface. By investigating the OpenACC programming model, through the

hydrodynamic mini-app CloverLeaf, an idea of the steps and understanding

needed to accelerate an application has been gained. It has been shown that it

is not just the case of working on the “hot spots” of an application and applying

directives, but that the time has to be taken to understand what is happening

at the hardware level in those targeted subroutines and kernels.

The re-factoring of compute kernels to be data parallel is key. As discussed in

Chapter 2, the number of processing elements on accelerated hardware can run

into the thousands, it is essential to make sure all kernels are scheduled across

all the device threads. In some cases this will be at the expense of additional

memory usage which can be required in order to remove dependencies.

Data transfers severely limit achievable performance; it has been shown that

this can even be true for the smallest pieces of data, which instigates a much

larger implicit data transfer.

Optimisations required for a performant GPU implementation can also give

rise to significant benefits when applied to a CPU implementation. These

optimisations enabled the kernels to be expressed in a data parallel manner,

which not only meant they threaded well on the GPU, but also when running

multi-threaded via OpenMP on a CPU. Additionally, the re-factoring of the
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code also allowed the compiler to perform better scale and vector optimisations.

A number of discoveries that were made through the process of develop-

ing a performant OpenACC mini-app are applicable to the physics domain of

structured 2D hydrodynamics applications in general. The technique utilised to

minimise the data communicated during halo cell updates makes a significant

difference on the GPU compared to the CPU, something that is commonplace

in all structured hydrodynamics schemes.

In the case of multiple nested loops not accelerating due to outer loop

fusion, this is a point of focus for all applications with similar loop structures,

not only restricted to the 2D hydrodynamics domain. This would indicate

the application developer should take the time to investigate that their code

is indeed behaving optimally in any nested loop regions when executing on

the GPU. Likewise, issues limiting performance issues were identified with the

allocation, deallocation and re-alloaction style of programming that is prevalent

in many applications. This should be a point of focus for any application that

uses this structure wishing to execute on a GPU.

This development of a performant OpenACC implementation has subse-

quently formed the basis for a number of further research activities. This

initial OpenACC version was used as the basis of an implementation that would

compile and perform under the PGI and CAPS OpenACC compilers. This

ultimately led to two OpenACC implementations, the “parallel” and “kernel”

versions.

The “kernel” version has been adopted by The PGI Compiler Group for in-

ternal regression testing of their compiler. Also as part of the inaugural release of

the Standard Performance Evaluation Corporation’s (SPEC) High-Performance

Group (HPG) SPEC ACCELTMbenchmark [44, 119], both the C and Fortran

OpenACC versions of CloverLeaf [43] are one of the 15 OpenACC benchmark

applications used to provide a comparative performance measure across a range

of accelerator hardware.

Work led by Mallinson [137] performed a number of MPI specific optimisa-

tions: pre-posting receives, MPI rank re-ordering and overlapping of communi-

cations and computation, resulting in weak scaling the MPI+OpenACC hybrid

CloverLeaf code to all 16,384 GPUs on ORNL’s Titan [65] supercomputer.

Although this chapter has demonstrated the development of an optimal

OpenACC version of the mini-app, it does not address the question of whether

there are better options for utilising accelerated hardware. How the performance

of alternative programming methodologies compares and what are the relative

costs in terms of development and intrusiveness are open questions.

The following chapters take alternative variants and begin to explore their

performance and productivity on a particular architecture, and their perfor-
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mance portability on a range of many-core architectures.

The current releases of CloverLeaf’s OpenACC versions discussed in this

chapter are available for download from dedicated GitHub web pages [75].
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Using mini-apps to Explore Performance Portability

6.1 Introduction

The previous chapter introduced the idea of the mini-app, in particular that of

CloverLeaf. The detailed step-by-step approach taken was highlighted resulting

in a performant OpenACC version of the code. Analysis of the code during the

creation of a performant version identified a number of key factors in achieving

such a performant version: re-factoring, data residency, local buffer packing,

minimal data transfer and focusing on code sections containing multiple nested

loops.

Reference was also made to the whole range of implementations of Clover-

Leaf in various programming models and paradigms. This chapter presents a

comparative study of the CloverLeaf hydrodynamics mini-app ported to GPUs

using three of those technologies: OpenACC, OpenCL and CUDA. Specifically,

it makes the following key contributions:

• In the context of the CloverLeaf mini-application, the first direct com-

parison between OpenACC, OpenCL and CUDA, the three dominant

programming models for GPU architectures, is given.

• A quantitative and qualitative comparison of these three approaches with

regard to code development, maintenance, portability and performance

on two problem sizes of interest on a GPU-based cluster (Cray XK6), is

given.

The remainder of this chapter is organised as follows: Section 6.2 discusses

related work in this field; Section 6.3 provides details on each of the three

implementations used in this study, as well as the changes needed to make the

overall algorithm more amenable to parallelisation on the GPU architecture.

The results of the study are then presented in Section 6.4 together with a

description of the experimental set-up and a description of the current ecosys-

tems for each of the programming paradigms covering tool support, developer

communities and the future directions of the standards is given in Section 6.5.

Finally, Section 6.6 concludes the chapter by discussing the relative merits of

the alternative programming methodologies in each of the categories described:

performance, development, maintenance and future.
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6.2 Related Work

NVIDIA CUDA is currently the most mature and widely used technology for

developing applications for GPUs. However, directive-based approaches such

as OpenACC, driven by the work from the Center for Application Accelera-

tion Readiness (CAAR) team at Oak Ridge National Laboratory (ORNL) are

becoming increasingly used [65]. Fewer studies have been carried out on the

assessment of OpenCL.

At the time of study, the only direct comparison between OpenACC and

OpenCL available was that of Wienke et al. [195]. Their work, however, is

focused on two applications from significantly different domains: the simulation

of bevel gear cutting, and a neuromagnetic inverse problem.

A number of studies have evaluated the applicability of non-mesh based

hydrodynamical methods (unlike CloverLeaf’s structured grid), to GPU accel-

erated hardware [92, 120, 169, 182]. Although these studies have limited their

scope to CUDA and not compared performance, productivity or portability with

alternative approaches such as OpenCL or OpenACC, which is a key focus of

this work.

An OpenCL implementation of a compressible gas dynamics code was devel-

oped and described by Bergen [63] and similarly an OpenCL version of a single

code-based structured library for multi-science applications by Shukla [188] have

been developed. However, these both solely focus on OpenCL implementations

and do not address performance or alternative approaches.

The port of a Euler-based solver application and a Boltzmann based solver

application were described by Brook [67]. Although there is some analogy

between the former application and that of CloverLeaf, Brook’s focus was exclu-

sively on an OpenMP implementation specifically targeting an Intel Xeon Phi

based architecture.

Lattice Quantum Chromodynamics (QCD) is an additional domain which

has seen numerous applications successfully ported to GPUs. However, a num-

ber of these studies employ the QUDA library [36, 53, 187]. This library is

based on NVIDIA CUDA technology and therefore these studies do not examine

alternative approaches such as OpenCL or OpenACC.

While all the above works primarily discuss the development of the appli-

cation in question, the work described in this chapter takes three alternative

programming methodologies and compares their relative merits.
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Figure 6.1: Key differences between implementations of the advection compu-
tational kernel in CloverLeaf.

6.3 Implementations

The profiling of CloverLeaf as described in Chapter 5, shows that approximately

95% of the execution time is contained in six computationally intense kernels

(Table 5.1). However, to achieve full GPU residency, i.e. the physics algorithm

executed exclusively on the GPU with necessary data residing in device rather

than host memory, all twelve unique kernels are required to be ported to the

accelerator device, leaving only control code to executed on the host CPU.

The “data-parallel” nature of the OpenMP implementation of the mini-

application was an ideal basis to create each of the new implementations. Expos-

ing the loop-level parallelism required by OpenMP required a combination of

loop splitting and adding extra temporary data storage to enable additional

temporary data to be reused. Whilst porting the code to the accelerator,

the data parallelism within each kernel was improved, and these changes were

applied back to the OpenMP version to increase CPU performance.

The development of the advection kernel in each of the three programming

models is shown in Figure 6.1; a similar approach was used for each of the

remaining kernels. The original Fortran code was first modified in order to

remove dependencies between loop iterations. The loops, however, must still be
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completed sequentially, as each loop uses data calculated by the previous loop.

6.3.1 OpenACC R©

As fully detailed in Chapter 5, in order for the author to convert the data-parallel

version of the kernel to OpenACC, loop-level pragmas were added to specify how

the loops should be run on the GPU, and to describe their data dependencies.

For effective use of the GPU, data transfers between the host processor and

the accelerator must be kept to a minimum. CloverLeaf is fully resident on the

device; this was achieved by applying OpenACC data “copy” clauses at the start

of the program, which results in a one-off initial data transfer to the device. The

computational kernels exist at the lowest level within the application’s call-tree

and therefore no data copies are required. This is achieved by employing the

OpenACC “present” clause to indicate that all input data is already available

on the device.

As in any block-structured, distributed MPI application, there is a require-

ment for halo data to be exchanged between MPI tasks. In the accelerated

versions, however, this data resides on the GPU local to the host CPU, hence

the data which is to be exchanged is transferred from the accelerator to the

host via the OpenACC “update host” clause. MPI send/receive pairs exchange

data in the usual manner, and then the updated data is transferred from the

host to its local accelerator using the OpenACC “update device” clause. A key

point to note is that the explicit data packing (for sending) and unpacking (for

receiving) is carried out on the device for maximum performance.

6.3.2 OpenCL
TM

An OpenCL [125] port of CloverLeaf was developed by Mallinson, then of

the University of Warwick. The C bindings that form the interface to the

functionality described by the OpenCL standard mean that integrating directly

with the Fortran codebase of CloverLeaf is difficult. To ease programmability,

a C++ header file is provided by the Khronos Group which allows access to

the OpenCL routines in a more object-oriented manner [32]. This header file

was used by a static C++ class to manage the interaction between the original

Fortran code and the new OpenCL kernels. The class holds details about all

the buffers and kernels used by the application, allowing C functions (which

are easily callable from Fortran) to be written that initiate kernels and transfer

data as needed.

As with the OpenACC version of the code, data transfers between the host

processor and the device must be minimised in order to maximise performance.

This is achieved by creating and initialising all data items on the device, and
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Figure 6.2: Total runtimes for 9602 and 38402-cell problems

allowing these to reside on the GPU throughout execution. Data is only copied

back to the host in order to write out visualisation files, and for MPI commu-

nications.

6.3.3 NVIDIA R©CUDA R©

Developed in conjunction with the University of Bristol (Michael Boulton

and Simon McIntosh-Smith) and the NVIDIA Corporation (Tom Bradley),

the CUDA [78] implementation of CloverLeaf is almost identical in design to

the OpenCL implementation. It was implemented using a global class that

coordinated data transfer and computation on the GPU, with helper functions

to handle interoperability between the CUDA and Fortran code.

6.4 Results

6.4.1 Experimental Setup

All experiments were conducted on Chilean Pine, a Cray XK6 hosted at the

Atomic Weapons Establishment (AWE) (see Appendix A Section A.4.3 for
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details). The default Fortran and C compilers are the Cray Compiling En-

vironment (CCE) and the choice of MPI is MPICH2. The OpenCL version,

however, was built with the GNU compiler environment, as utilisation of the

Cray compiler with the C++ OpenCL constructs, proved unsuccessful. The

CUDA kernels were compiled with the appropriate flags to enable double preci-

sion calculation capability on the Fermi architecture1. Cray’s CrayPAT profiling

tool was used to produce the timing profile for the OpenACC version, whereas

for the OpenCL and CUDA versions kernel timings were derived by subsequently

querying the event objects returned by each kernel invocation.

6.4.2 Performance Analysis

The performance of the three accelerated implementations of CloverLeaf was

tested using the test case described in Chapter 5, Section 5.1.2: a representative

asymmetric shock wave problem. Two test configurations, described in terms of

the number of cells in the computational mesh, were used in the experiments: a

smaller 9602-cell problem (introduced in Chapter 5, Section 5.3.5) and a large

38402-cell problem (introduced in Chapter 5, Section 5.3.14). The performance

of these two problems was analysed using one node of Chilean Pine containing

a single NVIDIA X2090 GPU.

Figure 6.2 shows the overall runtimes for the OpenACC, OpenCL and CUDA

versions for each problem set. Although a similar pattern for both test cases

is observed, in that the the CUDA outperforms the OpenCL, which in turn

outperforms the OpenACC, the relative differences are larger for the larger

problem. OpenCL is 6.5% faster than OpenACC for the 9602-cell problem and

16.1% for the 38402-cell problem, while CUDA is 14.19% and 24.11% faster than

the equivalent OpenACC for the 9602 and the 38402-cell problems respectively.

The CUDA version has been targeted for the specific Fermi hardware as part

of compilation and as such should be greater optimised for the architecture.

The increase in data in the larger problem set could be a contributing factor

in the different relative performance due to the reduction operations inherent

in each programming model. OpenACC reduction’s will be implemented within

Cray’s CCE compiler and expectations would be that this would have been

highly optimised. The CUDA version of the code uses a reduction coded par-

tially by hand, and partially provided by the Thrust library [105]. Meanwhile,

the OpenCL version of the code uses a hand-coded reduction. To investigate

this hypothesis, the runtime of the code would need to be broken down into its

kernel components. This enabled the relative performance differences on a per

kernel basis to be assessed to determine if there is a correlation to those kernels

1-gencode arch=compute 20,code=sm 21
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Version WOC Kernel Tools Portability

Total Device Host Language

OpenACC 1 510 - - Fortran Good Average

OpenCL 17 930 4 327 13 608 OpenCL C Poor Good

CUDA 13 628 5 830 7 798 CUDA C Average Poor

Table 6.1: Key development metrics for the three versions.

containing reduction operations. This is explored further in Chapter 7.

6.4.3 Productivity Analysis

In order to assess the programmer productivity offered by each approach a num-

ber of factors were taken into consideration: the number of words of code (WOC)

added for each version, considered whether computational kernels needed rewrit-

ing, and the tool support available for each version. By considering WOC

(not including symbols such as braces and parentheses) a metric was derived

that overcame the variations caused by different programming styles, something

which affects the lines of code (LOC) metric.

In terms of programmer productivity, OpenACC proved superior to both

OpenCL and CUDA, requiring the addition of only 184 OpenACC pragmas

(1,510 WOC). The OpenCL and CUDA versions of the code required an ad-

ditional 17,930 and 13,085 WOC respectively. However, of the 17,930 words

required by OpenCL, 3,958 can be attributed to the static class created to

manage the OpenCL objects. This static class could be used in other similar

applications with little modification, meaning the total amount of OpenCL

code unique to CloverLeaf is 13,972 words. Additionally, OpenCL and CUDA

both required extra work to re-write the computational kernels in C-style code.

However, the simple design of the Fortran kernels eliminated much of the work

that might be required in a legacy code.

Developing the OpenACC version in an incremental manner (i.e. one kernel

at a time) proved to be a straightforward process, which made validating and

debugging the code considerably easier. Whilst it was also possible to develop

the OpenCL and CUDA versions of the code in an incremental manner, the

significantly larger code volumes required for each increment and the immaturity

of the tool support, particularly for OpenCL, made debugging problems harder

and more time consuming.

CloverLeaf requires the use of several reduction operations. Under Ope-

nACC, reductions were described by pragmas, and implemented by the Ope-

nACC compiler. In CUDA, the reductions were implemented using a simple

two stage approach. The first stage reduces within each block (a block being
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the CUDA equivalent to an OpenCL work group), producing an array of partial

reductions (i.e. one per block). The second stage then combines the elements

of the resulting partial-reduction array; this was implemented using the Thrust

C++ library. At the time of the study an optimised library within the OpenCL

“ecosystem” which provided equivalent functionality was unavailable and there-

fore Mallinson implemented a hand-crafted reduction in a similar multi-stage

approach.

6.4.4 Portability Analysis

At the the time of study, the Cray OpenACC implementation, using OpenACC’s

“parallel” construct, is the only implementation to have been utilised extensively

in this work.

The experience at the time indicated that the full implementation of the Ope-

nACC standard was not present in all vendor compiler offerings, with different

vendors focused on implementing different aspects of the standard, resulting in

only Cray having a full “parallel” construct implemented.

Therefore, the then current implementation was constrained to the Cray

platform, under the CCE compiler environment, using OpenACC’s “parallel”

construct. This limitation is described further in Section 3.2.2 of Chapter 3.

Chapter 7 subsequently addresses this by developing a fully compiler ag-

nostic OpenACC code, for both OpenACC’s “parallel” and “kernel” constructs

following greater vendor compiler adoption of the standard.

Similarly, utilising CUDA as a mechanism to take advantage of accelerator

devices limits the choice of officially supported hardware platforms available to

an organisation, as NVIDIA only supports CUDA on their own hardware. The

Ocelot project [27], and PGI’s CUDA Fortran [35] compiler do however provide

alternatives for other languages and hardware.

The OpenCL version of the code exhibited the highest portability, and using

this version it was possible to execute the application on both AMD and NVIDIA

GPU devices, AMD and Intel CPUs and also a pre-production Intel Xeon Phi.

These observation are picked up and discussed in Chapter 7 with a more de-

tailed investigation into OpenACC and alternative programming methodologies

including a direct comparison with OpenCL on an Intel Xeon Phi.

6.5 Supporting Infrastructure

Another consideration of the relative merits of each implementation is the

supporting infrastructure and user communities that exist. Strong communities
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enable the development of supporting tools and ancillary software that can assist

in the development and subsequent maintainability of an application.

The two major commercial debugging platforms are Rougue Wave’s To-

talview and Allinea’s DDT. Both CUDA and OpenACC are supported in To-

talview; beginning with version 8.10 of the debugger, released mid 2012 [37],

support was limited to CUDA and OpenACC (only under Cray’s CCE) and only

on Cray’s XK6 architecture. Indeed, beta versions of v8.10 were instrumental in

the development stages detailed in Chapter 5. At the time of writing CUDA [41]

and OpenACC [42] support from PGI, in addition to CCE, is available on

Linux x86-64. Likewise, DDT fully supports CUDA and all OpenACC compiler

providers [40].

A CUDA debugger is one component of NVIDIA’s Nsight development plat-

form enabling debugging of CUDA code, albeit restricted to NVIDIA hardware.

To have similar levels of debugging for OpenCL, that is the ability to step

through source code, setting breakpoints and inspect variables, there are only

hardware specific tools available. For Intel hardware debugging is possible

through plug-ins to Intel’s Visual Studio IDE (Integrated Development Environ-

ment), while for AMD hardware there is AMD’s developer tool suite, CodeXL, of

which one of its component is a graphical debugger. At the time of writing there

is no equivalent available for debugging OpenCL code on NVIDIA hardware.

To profile the resulting code, with the aim of identifying code hot spots,

or areas of poor performance, there are a range of options depending on the

programming implementation. In the case of OpenCL, again the AMD specific

CodeXL developer tool suite offers a profile tool which will gather performance

data at runtime.

PGI’s OpenACC runtime 15.7 or later, contains the ability to profile Ope-

nACC code with GPROF, which allows a breakdown of performance of an Ope-

nACC instrumented application into its kernel components. Such a breakdown

can be tailored to give details on the number of calls to, and the min, max and

average and total time spent in the kernel. As demonstrated in Chapter 5, Cray’s

analysis tool suite, Perftools contains functionality to measure the performance

of OpenACC instrumented code giving profiles and information analogous to

GPROF. For the CAPS compiler, the environment variable HMPPRT LOG -

LEVEL is available which gives overall execution time on an accelerated region

basis; additionally the CUDA PROFILE environment variable will give execu-

tion time on a kernel by kernel basis.

The standard CUDA toolkit comes with a visual profiler (nvvp) plus the

command line driven nprof tool which is analogous to GPROF for OpenACC.

As with the debugger component, NVIDIA’s Nsight contains a profiler tool, plus

additional features such as a replay mode to gain finer profiling information, and
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the ability to visualise the concurrency of kernel execution on the device, which

provides a visual insight into the utilisation of a the device.

The user/developer communities also vary for each standard. Since 2013,

the International Workshop on OpenCL (IWOCL) [38] has been held annu-

ally, rotating between North America and Europe; a non-profit community

led workshop it consists of a technical program with peer reviewed research

papers. Supported by NVIDIA, the GPU Technology Conference (GTC) series

encompasses all related NVIDIA GPU activities, with a strong coverage of

developments in CUDA and OpenACC. Held annually in San Jose California

since 2009, with a European version beginning in 2016. In addition to GTC,

OpenACC Hackathons are held annually, allowing teams of developers to port

their applications to accelerated devices using OpenACC under the supervision

of industry and academic experts. These have been held in both North America:

Oak Ridge National Laboratory (ORNL), National Centre for Supercomputing

Applications (NCSA), University of Delaware (UDel) and Europe: Swiss Na-

tional Computing Centre (CSCS) and , Forschungszentrum Julich (Research

Centre Julich).

6.6 Chapter Summary

This chapter took the performant OpenACC version version of the CloverLeaf

mini-app, and performed a direct comparison with two alternative programming

methodologies (OpenCL and CUDA) on a GPU accelerated architecture (a Cray

XK6).

A quantitative and qualitative comparison was carried out assessing not

just raw performance, but portability, ease of maintenance, and respective

supporting environments.

In all cases the key to improving the performance of the code on the GPU

architecture was to maximise data parallelism within each of the main compu-

tational kernels, restructuring the loops to remove data dependencies between

iterations. Whilst time consuming, this activity was necessary regardless of

the programming model employed and was therefore constant across the three

implementations. Feedback from the Cray compiler (CCE) proved to be crucial

in understanding the partitioning of the threaded code on the accelerator. Use

of the generated listing files and runtime debugging options to capture which

data items were actually being transferred was also vital.

Producing functionally equivalent CUDA and OpenCL versions of Clover-

Leaf required considerably more programmer effort compared to the OpenACC

version, both having an order of magnitude increase in the “words of code”

over that of OpenACC, required to produce compliant implementations. This
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revealed OpenACC superior to both OpenCL and CUDA, requiring the addition

of only 184 OpenACC pragmas (1,510 words of code), compared to OpenCL and

CUDA versions of the code requiring an additional 17,930 and 13,085 words of

code respectively. However, of the 17,930 words required by OpenCL, 3,958

can be attributed to the static class created to manage OpenCL objects. This

static class could be reused in other similar applications with little modification,

meaning the total amount of OpenCL code unique to CloverLeaf is 13,972 words.

They also required the computational kernels to be in a C-style code which

required additional effort for a Fortran based application, while OpenACC could

be applied direct to the original Fortran.

In terms of performance the findings shown in Figure 6.2 show around a 10%

improvement in performance for OpenCL over that of the equivalent OpenACC

implementation and around 20% for CUDA.

Comparative levels of infrastructure exist for CUDA and OpenACC, both

having significant industry (NVIDIA) and National Laboratories (ORNL) sup-

port. Plus there is the availability of debugging / profiling tools available on

agnostic hardware platforms for both of these standards. OpenCL is more

community led and is restricted in its development tool support.

Although there is new adoption from NVIDIA for Kepler and AMD have

announced v3.0 of their SDK, other vendors are removing support; Intel have

indicated than OpenCL will not be supported on the 2nd generation Xeon Phi,

the Knights Landing.

The findings indicate that OpenACC is an extremely attractive and vi-

able programming model for accelerator devices going forward. It offers an

acceptable level of performance when traded off against a significant gain in

programmer productivity compared to both CUDA and OpenCL. It also has

a relatively active user community and acceptance from major tool providers

which see value in supporting the standard in their compiler, profiler, and

debugging offerings.

The future plans for OpenACC [157] look positive, with indications of grow-

ing tool support, adoption from academia with fee compiler access and plans for

features based on community requests. The question around whether OpenACC

will be made redundant should its key functionalities become implemented in

OpenMP is often muted. If this were the case then the efforts involved in

developing a fully performant OpenACC application would not have been in

vain, as the real difficulties, as demonstrated in Chapter 7, lie in understanding

the data parallelism inherent in the code. Thus replacing OpenACC directives

with OpenMP equivalents would be a relatively easy exercise.

However, there are limitations of this chapter’s study, in that the outcomes

are restricted to the use of one compiler: CCE, using one possible construct:
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“parallel”, and one architecture: NVIDIA GPU (Cray XK6). These are ad-

dressed in Chapter 7 which extends this work to include the OpenACC “kernel”

construct in addition to its “parallel” construct. It also compares compiler

portability via PGI, and extends the hardware architectures that execute the

resulting OpenACC code to more that just a GPU system. The latter of which

also allows comparison between not just OpenCL and CUDA, but also to the

most performant programming methodology available on each of the hardware

platforms.
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Chapter 5 introduced the concept of mini-applications and demonstrated the

development of a performant OpenACC mini-app deployed on a GPU based

system. Subsequently Chapter 6 assessed the alternative programming method-

ologies on the GPU architecture, namely CUDA and OpenCL, by comparing

metrics such as development, performance and supporting infrastructure with

OpenACC.

Chapter 7 extends analysis to examine the use of the mini-app for exploring

a range of emerging architectures using OpenACC as the baseline to compare

and contrast with the alternative methodologies available.

As detailed in Section 3.2.2, OpenACC is a directive-based programming

model designed to allow easy access to emerging advanced architecture systems

for existing production-class codes based on Fortran, C and C++. It also

provides an approach to utilising contemporary technologies without the need

to learn complex vendor specific languages, or understand the hardware at the

deepest level. Portability and performance are the key features of this program-

ming model, which are essential to productivity for real scientific applications.

OpenACC support is provided by a number of vendors and is defined by

an open standard. However, the standard is relatively new, and the imple-

mentations are relatively immature. This chapter experimentally evaluates the

currently available compilers by assessing two approaches to the OpenACC

programming model: the parallel and kernels constructs. The implemen-

tation of both of these constructs is compared, for each vendor implementation

which shows performance differences of up to 84%. Additionally, performance

differences of up to 13% between the best vendor implementations were ob-

served. OpenACC features which appear to cause performance issues in certain

compliers are identified and linked to differing default vector length clauses

between vendors. These studies are carried out over a range of hardware

including NVIDIA GPU, AMD APU, Intel Xeon and Intel Xeon Phi based

architectures. Finally, OpenACC performance, and productivity, is compared

against the alternative native programming approaches on each targeted plat-

form, including CUDA, OpenCL, OpenMP 4.0 and Intel Offload, in addition to

MPI and OpenMP.

In this chapter both a portability and performance study of OpenACC, using

the hydrodynamic mini-application (mini-app) CloverLeaf, is presented. To

study portability an evaluation of the relative performance across a wide range
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of supported architectural platforms for each OpenACC compliant compiler is

carried out. For the performance study, each compliant compilers implemen-

tation of the OpenACC parallel and kernels constructs are compared and

contrasted. Each vendors highest performing construct is in turn compared

against the highest performing construct from other vendors. Performance

differences are investigated by analysing the application at the kernel level.

Performance comparisons are presented and discussed, comparing the Ope-

nACC implementation against alternative programming methodologies for those

particular architectures. This is demonstrated on a kernel by kernel basis where

appropriate.

This work differs from other studies in open literature in that it provides

a comprehensive and objective evaluation of the current implementations of

commercially available OpenACC compilers, using both OpenACC’s parallel

and kernels constructs, these evaluations are carried out on a range of diverse

and competing hardware architectures. Additionally, the OpenACC implemen-

tations available are compared against the best established native programming

alternatives. No other studies have compared all such variations.

In addition performance portability is discussed; that is whether OpenACC

provides a level of abstraction that is essential for enabling existing large code

bases to exploit emerging many-core architectures, whilst being sufficiently

simple and non-intrusive to be viable in a production-class environment.

The remainder of this chapter is organised as follows; Section 7.1 discusses

related published work in this field. Section 7.2 gives a brief overview of

the CloverLeaf test utilised. Section 7.3 gives further details on the various

commercially available OpenACC implementations available and the differences

in the two compute OpenACC constructs, namely kernels and parallel.

Section 7.4 details the architectural specifics of the hardware platforms used

in the study. The results of the study are then presented in Section 7.5, and

finally, Section 7.6 concludes the chapter and outlines future research.

This work would not have been possible without the considerable assistance

from each of the three compiler vendors: Cray, PGI and CAPS. In particular

John Levesque and Alistair Hart from Cray Inc; Doug Miles, Craig Toepfer and

Michael Wolfe of The Portland Group (PGI) and Romain Dolbeau of CAPS

Enterprise.

This work was previously presented at WACCPD ’14, the first Workshop on

Accelerator Programming using Directives in conjunction with SC14: The In-

ternational Conference for High Performance Computing, Networking, Storage,

and Analysis [102], where it was awarded the best workshop paper.
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7.1 Related Work

Chapter 6 describes a first comparison between OpenACC, OpenCL and CUDA

for the CloverLeaf mini application in terms of its performance over multiple

GPUs. Productivity is also considered by analysing several development metrics

for the three programming models. However, the OpenACC comparison is only

made under a single vendor implementation: Cray’s CCE, and a single hardware

architecture: a Cray XK6 with NVIDIA X2090 “Fermi” GPUs.

This was extended in [137] to investigate extreme scale across four gener-

ations of Cray platforms, showing the utility of hybrid MPI with OpenMP,

CUDA, OpenCL and OpenACC under both PGI and Cray compilers.

An increasing number of application code developers are utilising the Ope-

nACC directive approach to allow established industrial codes to take advantage

of accelerator enabled architectures. Levesque et al. demonstrate the approach

employed with S3D, a current MPI application, and expose greater levels of

parallelism using OpenACC as the vehicle to exploit the GPUs on Oak Ridge

National Laboratory’s (ORNL) Titan supercomputer [132]. Whilst illustra-

tive of OpenACC’s capabilities they fail to provide a comparative performance

analysis of alternative OpenACC implementations or alternative approaches to

acceleration.

Baker et al. [54] look at a hybrid approach of OpenSHMEM and Ope-

nACC for the BT-MZ benchmark application. The focus of the research is

on hybridising the application rather than an assessment of the OpenACC

implementation used (a beta version of CAPS 3.3), and results are focused

on a single architecture, namely ORNL’s Titan.

There are a small number of case studies presenting direct comparisons of

OpenACC against alternative programming models. Reyes et al. present a

direct comparison between hiCUDA [191], PGI’s Accelerator model and Ope-

nACC using their own novel implementation of OpenACC: accULL [178]. Again,

this focuses on a single type of accelerator, and a single instance of an architec-

ture: the NVIDIA Tesla 2050.

Comparison of OpenCL against OpenACC can be found in [195] by Wienke

et al. The paper compares OpenACC against PGI Accelerator and OpenCL for

two real-world applications, demonstrating OpenACC can achieve 80% of the

performance of a best effort OpenCL for moderately complex kernels, dropping

to around 40% for more complex examples. The study only uses Cray’s CCE

compiler and OpenACC’s parallel construct. Additionally, it is also limited

to a single hardware architecture, an NVIDIA Tesla C2050 GPU.
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7.2 Test Cases

This study uses the same test case described in Chapter 5, Section 5.1.2, and

utilises the large 38402-cell problem introduced in Chapter 5, Section 5.3.14 and

a smaller 9602-cell problem introduced in Chapter 5, Section 5.3.5. The test

cases compute 2,955 and 87 iterations respectively, which for their respective

sizes, gives sufficient compute time to ensure reliable timing measurements.

Although CloverLeaf is capable of multiple accelerated node runs, the nature

of this study is focused on a single accelerator’s performance.

7.3 Implementations

The CUDA and OpenCL implementations of the code, as described in Sections

6.3.3 and 6.3.2, were used in this study.

OpenACC provides two constructs parallel and kernels to launch, or

execute, accelerated regions. The main differences are down to how they map

the parallelism in the region to be accelerated to the underlying hardware [197].

In the case of the parallel construct this is explicit, requiring the programmer

to additionally highlight loops within the region, while in the case of the kernels

construct parallelisation is carried out implicitly.

In the case of single loops, as in CloverLeaf’s kernels, the two constructs

are virtually interchangeable, although the compiler is able to automatically

generate vector code for the parallel construct variant. With the simple re-

structuring required for the PGI and CAPS implementations, this produced a

single source code capable of compilation with both the parallel and kernels

construct implementations with all three compiler vendors. This enabled the

additional comparison of how the two alternative constructs were implemented

by the different compiler vendors.

Additionally a version of the code using Intel’s Language Extensions for

Offload (LEO) [152], [114], developed by Victor Gamayunov and Stephen Blair-

Chappell of Intel [91], and an OpenMP variant (also by Gamayunov), using

the accelerator constructs as available in version 4.0 of the OpenMP standard

[115], enabled a further comparison on those architectures which supported this

standard.

7.4 Targeted Architectures

Five test architectures were deployed in this study: Chilean Pine a Cray XK6

with NVIDIA “Fermi” X2090 GPUs; Swan a Cray XK7 with NVIDIA Kepler

K20X GPUs; Shannon a cluster with both NVIDIA Kepler K20X and K40
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GPUs; Teller an AMD APU cluster and PillowB an Intel based cluster with 1st

generation MIC Intel Xeon Phi (KNC) coprocessors. Full architectural details

can be found in Appendix A, but for convenience the targeted architectures and

their system software stacks are summarised in Table 7.1.

7.5 Results

7.5.1 Experimental Studies

With the exception of the Teller AMD APU cluster (where memory constraints

prevented execution of the larger test case), platform results are presented for

both the 9602 cell and 3,8402 cell test cases.

For each OpenACC implementation available on the targeted platforms,

results are presented for both the OpenACC parallel and kernels construct.

This allows a comparison of not only each vendor’s best OpenACC implementa-

tion, but also any differences between a vendor’s best and worst implementation.

Additionally it highlights those implementations where collaborative develop-

ment efforts with vendors should be focused, or which implementations are to

be avoided.

For each alternative programming model available on the target architecture,

comparable performance figures are presented. This gives an OpenACC perfor-

mance baseline with which to compare alternative approaches. Additionally

comparative performance of hand-coded CUDA and OpenCL implementations

on the XK6, XK7, K20x and K40, and the AMD APU are presented.

Finally, performance at the compute kernel level is examined. The aim is to

identify under-performing kernels and determine if certain OpenACC features

have performance issues under a particular vendor’s implementation. The aim

is to identify if particular kernels exhibit good or poor performance rather than

the application as a whole. Subsequent analysis of these kernels will likely

identify particular OpenACC features that require vendor attention within their

respective implementations.

For all cases in this chapter, the hardware was run in dedicated mode; that

is the author has exclusive access to the hardware and its resources. This is

reflected in the resultant execution times showing insignificant differences in

the multiple runs measured (in the region of 10 to 100 depending on test case

and hardware device).

7.5.2 Analysis

Figures 7.1, through 7.7 show the comparative performance of each OpenACC

implementation, the alternative programming models available and the hand-
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coded CUDA and OpenCL implementations on the XK6, XK7, K20x & K40,

and the AMD APU respectively; these results are summarised in Table 7.2.

60 70 80 90 100 110 120

CCE “parallel”

CCE “kernels”

PGI “parallel”

PGI “kernels”

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

CAPS CUDA “parallel”

CAPS CUDA “kernels”

OpenCL

CUDA

Total Runtime (s)

Figure 7.1: 9602 cells, 2955 Timesteps: XK6 Runtimes (s)

With the exception of the XK6, which uses older compiler revisions from

each vendor, comparing each vendor’s best OpenACC implementations (be it

parallel or kernels constructs, with either the CUDA or OpenCL backends)

performance differences are within 13%. However, choosing the least optimal

OpenACC implementation can result in significant differences up to 84% when

using the parallel construct via the CAPS compiler on a K40.

The raw CUDA and OpenCL versions do out perform any OpenACC im-

plementation: by 15% to 20% for CUDA and by 10% to 20% for OpenCL. The

exception to this is raw OpenCL on the AMD APU, where differences are only

around 1%. This is attributed to the raw OpenCL not being optimised for

either the APU’s A10 CPU or HD-7600D GPU. When considered in the overall

context of productivity, portability, maintainability including the number of

words of code (WOC) metric, as devised in Chapter 6 and considering whether

computational kernels needed to be rewritten, 10% to 20% lower performance

from an OpenACC implementation is an acceptable trade off.

Figures 7.8 and 7.9 depict the same comparisons for the Intel Xeon E5-

2450 and the Intel Xeon Phi 5110P, for the 9602 cell and 3,8402 cell test cases

respectively. For both platforms a traditional MPI/OpenMP hybrid versions

of the code (running natively on the card in the case of the Intel Xeon Phi

5110P) is used as a baseline on this architecture. Additionally, in the case of
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25 30 35 40 45

CCE “parallel”

CCE “kernels”

PGI “parallel”

PGI “kernels”

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

CAPS CUDA “parallel”

CAPS CUDA “kernels”

OpenCL

CUDA

Total Runtime (s)

Figure 7.2: 38402 cells, 87 Timesteps: XK6 Runtimes (s)

35 40 45 50 55 60

CCE “parallel”

CCE “kernels”

PGI “parallel”

PGI “kernels”

OpenCL

CUDA

Total Runtime (s)

Figure 7.3: 9602 cells, 2955 Timesteps: XK7 Runtimes (s)
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13 14 15 16 17 18 19 20 21 22

CCE “parallel”

CCE “kernels”

PGI “parallel”

PGI “kernels”

OpenCL

CUDA

Total Runtime (s)

Figure 7.4: 38402 cells, 87 Timesteps: XK7 Runtimes (s)

40 50 60 70

PGI “parallel”

PGI “kernels”

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

CAPS CUDA “parallel”

CAPS CUDA “kernels”

OpenCL

CUDA

Total Runtime (s)

K20x K40

Figure 7.5: 9602 cells, 2955 Timesteps: K20x & K40 Runtimes (s)
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12 14 16 18 20 22 24 26 28 30

PGI “parallel”

PGI “kernels”

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

CAPS CUDA “parallel”

CAPS CUDA “kernels”

OpenCL

CUDA

Total Runtime (s)

K20x K40

Figure 7.6: 38402 cells, 87 Timesteps: K20x & K40 Runtimes (s)

650 700 750 800 850 900 950 1,000 1,050

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

OpenCL

Total Runtime (s)
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Figure 7.7: 9602 cells, 2955 Timesteps: A10 & HD-7600D Runtimes (s)
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0 200 400 600 800 1,000 1,200

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”
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MPI/OMP(F)

MPI/OMP(C)

Offload(F)

Offload(C)

OMP4(F)

OMP4(C)

Total Runtime (s)

Xeon Phi Xeon

Figure 7.8: 9602 cells, 2,955 Timesteps:
Intel Xeon E5-2450 & Intel Xeon Phi 5110P Runtimes (s)

the Intel Xeon Phi 5110P, offload models of OpenMP 4.0 and Intel’s LEO are

also presented.

Although the study focuses on OpenACC directives applied to Fortran source

code, the perceived poor performance observed on the Intel Xeon Phi 5110P of

the Fortran based MPI/OpenMP hybrid led to the development and comparison

of a C-based implementation. This showed significant differences between C and

Fortran which have been attributed to the fact that the Intel compiler was not

vectorising the Fortran source code when compiled for the Intel Xeon Phi 5110P,

despite accomplishing this when compiling for the Intel Xeon E5-2450. This is

also true for Intel’s LEO model when using Fortran, hence in the summary of

the results, the C implementations on the Intel Xeon Phi 5110P are taken as

reference points rather than the original Fortran implementations.1

Table 7.3 shows an overview of the results. The only OpenACC imple-

mentation available on the Intel chipsets is via CAPS using its OpenCL back-

end. Hence the only OpenACC-to-OpenACC comparison that can be made

is between the parallel and kernels constructs. This shows a significant

performance difference for both test cases, on both architectures. On the Intel

Xeon E5-2450 the CAPS OpenCL kernels version is 23% more performant for

the 9602 cell problem which rises to 30% for the 3,8402 cell case. On the Intel

1This issue has been reported as resolved in Intel 15.0
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20 40 60 80 100 120

CAPS OpenCL “parallel”

CAPS OpenCL “kernels”

OpenCL

MPI/OMP(F)

MPI/OMP(C)

Offload(F)

Offload(C)

OMP4(F)

OMP4(C)

Total Runtime (s)

Xeon Phi Xeon

Figure 7.9: 38402 cells, 87 Timesteps:
Intel Xeon E5-2450 & Intel Xeon 5110P Runtimes (s)

Xeon Phi 5110P the performance differences are 56% and 94% for the 9602 cell

and 3,8402 cell problems respectively. As previously observed on other platforms

the performance of CAPS parallel is significantly worse; as this is the only

comparison these differences are to be expected.

Comparing the optimal OpenACC implementation against the raw OpenCL

code on the Intel chipsets shows a very different pattern between the Intel Xeon

E5-2450 and the Intel Xeon Phi 5110P. On the Intel Xeon E5-2450 the raw

OpenCL gives a gain of either 26% to 34% depending on problem size, while

on the Intel Xeon Phi 5110P the OpenCL gives performance degradation of

over 60%. In the case of the Intel Xeon Phi 5110P this is attributable to the

performance portability of the hand-coded OpenCL, in that it has not been

optimised for the Xeon Phi. However, given that the OpenACC is a single

source and no code modifications have taken place here either, this points to

CAPS producing an efficient Intel Xeon Phi OpenCL backend.

All offload models perform poorly when compared against a hybrid MPI

/OpenMP implementation. On the Intel Xeon E5-2450 this is between 52%

and 57% more performant, depending on problem size, while the gains on the

Intel Xeon Phi 5110P are 52% to 72% when using the C implementation as a

reference point.

All of the above analysis considers the code as a whole; that is the overall
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execution time, with each of its twelve kernels accelerated. Further insight

is gained if the performance of each kernel is analysed in isolation. What

is observed is the relative performance of each kernel can vary substantially

depending on construct and vendor implementation.

The methods available to obtain a kernel by kernel breakdown are program-

ming paradigm dependent. As described in Section 6.5 of Chapter 6, for the

OpenACC implementations GPROF was used to measure the kernel times for

the PGI parallel and kernels constructs, Cray’s Perftool utility was used to

extract the same information from the CCE compiled kernels, while the CUDA -

PROFILE environment variable provided the information when executed under

the CAPS compiler builds. For CUDA, nprof which is provided as part of the

CUDA Toolkit was utilised to record the kernel breakdowns. Kernel by kernel

breakdown was not possible for the OpenCL builds; although AMD’s CodeXL

has the functionality to achieve this, it is only available on AMD hardware

and hence not compatible with the NVIDIA GPUs. Direct hand profiling was

implemented for the OpenCL kernels, however the timing routines adversely

affected the performance and hence rendered them useless.

Figures 7.12 and 7.13 show the percentage difference of cumulative run-

times of each of the twelve CloverLeaf kernels: Timestep, IdealGas, Viscosity,

PdV, Revert, Accelerate, Fluxes, CellAdvection, MomAdvection, Reset, Halo,

and Summary. These are recorded on the 9602 cell problem running on one of

Chilean Pine’s X2090 GPUs and are normalised against the performance of the

Cray CCE parallel construct time for that particular kernel. Hence, a positive

percentage value indicates a shorter time spent in the kernel, and a negative a

longer execution time for that particular compiler / construct combination.

Data is also available for the larger 3,8402 cell problem, which is presented

in Figures 7.14 and 7.15, which show similar behaviour.

This closer analysis backs up some of the previous observations. In par-

ticular CAPS implementation of the parallel construct underperforms on all

twelve kernels irrespective of whether it is a CUDA or OpenCL backend, Cray’s

parallel implementation is almost always equal to or outperforms its kernels

construct for all CloverLeaf kernels. However it also reveals that the CAPS

kernels implementation, which is the best performing OpenACC on all of the

non-Cray architectures, makes these gains as it performs well on the following

computationally intense kernels: MomAdvection, PdV, CellAdvection, and Ac-

celerate, which account for 60% overall execution time, while underperforming

on those with a lesser contribution.

PGI kernels outperforms all implementations in seven of the twelve kernels

on the 9602 test case, and six on the 3,8402 cell problem. However, these

kernels: Timestep, IdealGas, Revert, Fluxes, CellAdvection, Reset, Halo and
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Summary account for less than a quarter of execution time. There are a subset

of kernels where PGI performs badly: viscosity, PdV, Accelerate, mom advec,

which account for over 85% of overall execution time, hence showing PGI’s

underperformance when comparing the code as a whole. Indeed, on some

of these kernels the relative performance is surprisingly low. In particular

the viscosity kernel, where PGI’s kernels construct shows more than a 180%

decrease compared to CCE’s parallel implementation.

Such a disparity warrants further investigation. Both PGI and CCE provide

a means to provide information regarding what the compiler has generated for

the OpenACC accelerated regions of code. By use of the -Minfo=accel compile

time flag with PGI and the -ra flag with CCE, information is sent to stderr,

and a source listing file respectively.

Figures 7.10 and 7.11 present output snippets from both PGI and CCE

compilers respectively for CloverLeaf’s viscosity kernel.

Figure 7.10: PGI OpenACC Source Listing

Figure 7.11: Cray OpenACC Source Listing

It indicates a difference in the maximum vector length which the loop it-

erations are executed over. The vector clause is one such optional clause

that is allowable on the OpenACC kernels construct, however in the case
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of the CloverLeaf kernels this clause is absent, hence the values reported by

the compilers are default /assumed values. In the case of the viscosity kernel,

the compiler information indicated a difference in the assignment of vector

length. Further investigation across all of the twelve kernels gives a similar

account for the six kernels for which the PGI compiler has disproportionate

performance. Explicitly adding the vector clause to the kernels construct in

these cases delivers a match between the compiler outputs, although this change

only delivers improvement in kernel execution time.

7.6 Chapter Summary

This chapter set out to evaluate the performance and portability of OpenACC.

This was achieved by comparing OpenACC’s parallel and kernels constructs

in each vendor’s implementation which enabled performance comparison be-

tween vendors as well as how OpenACC compares with alternative programming

methodologies whilst balancing performance against programmer productivity.

By evaluating both the parallel and kernels constructs the results indicate

that each vendor has primarily focused efforts on one of the two constructs. This

is most apparent in CAPS implementation of the parallel construct, with an

84% difference in runtime over the kernels implementation.

When comparing each vendor’s quickest construct, differences in execution

time are within 13% when the latest compiler versions are invoked. This

indicates, as long as the application developer is aware of a vendor’s relative

performance on the parallel and kernels construct, the choice of a vendor is

not particularly crucial.

Each vendor does however have their relative merits: the CAPS’s implemen-

tation of the parallel construct is deficient, and their focus has concentrated

on the kernels construct. However, the CAPS compiler is the most widely

supported on the diverse range of architectures tested, and in some cases is the

only available option to compile and execute OpenACC applications. CCE is

the best performing compiler, in all but one case, on all architectures where it is

available. However, it is only available on Cray systems, limiting its accessibility.

Looking at overall runtimes PGI trails the other vendor’s compilers. However,

when broken down into the individual kernels, PGI’s kernels construct out-

performs the rest on more occasions than any other implementation. This is

counterbalanced by its significant poor performance for one particular kernel

(viscosity) in CloverLeaf which is 175% and 225%, for the 9602 cell problem

and the 3,8402 cell problem respectively, slower than the best implementation

which severely impacts the code when it is considered as a whole.

At the time of writing, the “deep copy” required to support Fortran 90
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derived types was not supported in either the PGI or CAPS compilers. Hence

some minor code reconstruction was required to remove derived types and

explicitly pass data through the relevant Fortran routines. This also required

relocating the directives to locations higher up in the call tree to reflect this

reconstruction. Also under the PGI compiler, compile time for the parallel

construct variant is significantly longer than that for the kernels construct.

The different basis of each vendor implementation manifested itself most

notably in the varying levels of support for OpenACC’s two compute constructs

kernels and parallel. Cray targeted the parallel construct with a direct

mapping from its OpenMP parallel extension, while PGI and CAPS targeted

the kernels construct with a direct mapping from the PGI Accelerator region

construct.

It is worthy of note that the two constructs are not mutually exclusive,

and can be mixed and matched depending on individual accelerator region

performance, and optimal constructs could be used depending on the compiler

and architecture as part of an optimisation strategy.

Although a caveat exists that automatic compiler analysis and compilation

of the parallel construct is only applicable for non-nested loops.

An artefact of this study highlighted issues with the Intel Fortran compiler

on the Intel Xeon Phi, which required the use of a C-based implementation to

give a more realistic comparison. Also, all Xeon Phi offload models perform

poorly when compared to hybrid MPI/OpenMP.

When compared to alternative offload models on the Intel Xeon Phi and

Intel Xeon architectures, OpenACC outperforms both Intel’s Heterogeneous

LEO model and their current OpenMP 4.0 implementations in all but the large

3,8402 cell test case when using the former. Although in the case of these two

architectures, a hybrid MPI/OpenMP implementation outperforms all offload

based programming models. On the three NVIDIA GPU based architectures a

native CUDA implementation outperforms the best OpenACC by 15% to 20%.

OpenCL is the only alternative programming model to OpenACC that spans

all the target architectures in this study. Comparing performance, OpenCL

outperforms OpenACC by 10% to 20% with the exception of the AMD APU

and the Intel Xeon Phi where performance is on par with the former and it

delivers a significant under-performance of over 60% against OpenACC on the

latter.

Empirically, these performances differences are more than acceptable when

offset against programmer productivity measured in the number of words of

code. While performance is important, for a new programming standard like

OpenACC, the convergence of the standard on a range of compilers is the most

important factor for portability.
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CloverLeaf now has a portable single source for both the parallel and the

kernels construct versions, that works without modification on all compilers

and across a diverse range of architectures. Indeed, PGI have adopted the

kernels OpenACC version of CloverLeaf as part of their compiler regression

testing suit, and it has been accepted as one of the OpenACC applications [43]

that make up the SPEC ACCEL
TM

benchmark [44]. This is major step forward

and would indicate that OpenACC provides a good level of abstraction.

CAPS Enterprise announced that as of June 27, 2014 they are to cease

trading. This loss of one of the three vendors, and hence future CAPS OpenACC

compiler support, reduces the options for OpenACC developers. However,

OpenACC v1.0 support has been implemented into a branch of GCC Fortran

[168], which as an open source compiler, bodes well for the standard.

Irrespective of OpenACC’s future, the development effort expended in pro-

ducing a portable OpenACC implementation of an application is easily trans-

lated into alternative pragma based offload models such as OpenMP 4.0’s ac-

celerator offload support constructs, should this become the de facto standard.

OpenACC has matured significantly in both its portability and performance.

The ability to use a higher level language like C, C++, or Fortran on CPUs,

attached co-processors, GPUs and APUs is a major step forward in future

proofing production-class scientific applications.
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Part III

Theory into Practice
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CHAPTER 8
Conclusions and Further Developments

This chapter concludes this thesis with the lessons learnt through this research

and how these have been applied in practice within an industrial setting; both

within the author’s own institution as well as with similar independent ap-

proaches elsewhere across the HPC industry and academia.

It shows the independent adoption of mini-apps as the tool of choice not just

for exploring emerging HPC architectures and programming languages, but also

how they are beginning to play their part in future architectural design.

The numerous collaborative research activities that have been spawned as a

result of this research work are also highlighted.

An overview of some of the architectures which are at present becoming

available to the market are detailed. An emphasis is placed on the changes

relative to those utilised throughout this study. Additionally, a hypothesis on

how potential longer term systems may look is provided.

Finally, in conclusion, a re-cap of the main contributions which this research

has delivered is presented.

8.1 Lessons Learnt

With the constraints on the lack of accessibility to suitably large disruptive sys-

tems and their inflexibility to experiment with applications due to commercial

or proliferation reasons, an alternative approach is needed to assess emerging

HPC architectures.

Chapter 4 investigated the hypothesis that an existing procurement bench-

mark application could be used to explore emerging architectures and the range

of associated programming methodologies. It demonstrated that the time re-

quired for substantial code restructuring to explore one programming method-

ology, on one potential emerging architecture, was not efficient or cost effective

and hence a new approach was required.

Chapter 5 introduced the concept of the mini-app: a lightweight, but repre-

sentative application written with a particular focus on algorithmic solutions. It

demonstrated, through a step-by-step approach, how a directive-based version

of the mini-app which is able to execute on a GPU accelerated system, could

be developed.

Chapter 6 examined how performant the resultant directive-based mini-app

was compared to the alternative approaches on the GPU accelerator, and holis-
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tically considered the benefits when taking into account relative development

time and the supporting infrastructures of alternative methods.

Chapter 7 then expanded the mini-app with an additional OpenACC direc-

tive construct and compared both OpenACC construct implementations across

a range of emerging architectures. This demonstrated acceptable levels of

trade-off between performance and having the portability of a single source

code capable of execution on multiple hardware environments. This indicated

that a directive-based solution is amenable for a hydrodynamic computational

model.

It also demonstrated the usefulness of the mini-app based approach in en-

abling rapid prototyping and assessment of an algorithm’s ability to map onto

emerging hardware. As part of this process, a number of key lessons have been

learnt that are not limited to hydrodynamic schemes, but generalise across a

large number of scientific domains. These key lessons are listed below.

8.1.1 Kernelisation

Those areas of the application doing computation need to be appropriately

broken down and isolated. These need to be placed at the lowest level, and

dedicated solely to compute. Ensuring that they do not call subroutines or

perform additional functions, minimising pointers, excluding the use of derived

types and Fortran array syntax generally makes everything as explicit as possible

for the compiler. This also structures the application for any architectures

requiring the launch of independent chunks of work such as for the GPU.

8.1.2 Data Parallelism and Thread Safety

Achieving good data parallelism is helped by striving for stride-one data ac-

cesses, or at least data accesses in a regular pattern which is recognisable

by the compiler, enabling optimised gather/scatter operations to be deployed.

Even moderately computationally intense kernels need good data parallelism

and threading when executed on accelerated devices otherwise they become the

bottlenecks for performance. Good data parallel code needs to be thread safe,

that is, the actions or order of execution of one thread should not impact that of

another. Data parallel regions of kernels which can show different results when

executed in threaded mode will need to be restructured, or re-factored, in order

to make them thread safe.

Care is also needed when implicit synchronisation activities occur in data

parallel models. This can have little impact, and hence go undetected, on

familiar hardware, such as a CPU; however, when executed on highly parallel

devices, these soon become bottlenecks.
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8.1.3 Data Residency

Achieving optimal computation on an attached device is one concern, however

for computation to take place it needs data on which to operate. The mech-

anisms for transferring data to and from an attached device are significantly

slower than passing data within a device and slower still relative to the com-

putation itself. Hence, the continued passing of data to and from any hosted

device becomes a significant bottleneck, quickly swamping any computational

gains that are achieved. Ensuring that as much of the data that is necessary

for the compute to take place always resides on the computing device, enables

the data transfers to be minimised. An ideal situation would be for all of the

data to be fully resident on a device for the duration of all the computation.

However, this would only occur if a single device was being utilised. In practice

an application needs to span multiple devices, in this case limiting the transfer of

data to that of the neighbouring device’s boundary data is an optimal minimum.

Although this is in the context of minimising data transfers to an attached

device, it is equally applicable to the changes in the memory hierarchy appearing

on emerging many-core self hosted devices. That is, to achieve optimal perfor-

mance, data needs to reside in high bandwidth memory; which is analogous to

keeping data resident on an attached processor.

8.1.4 Halo Data Transfer and Local Buffer Packing

In the case of halo exchange, a common approach in distributed algorithms,

minimising the data which needs to be transferred between any device is crucial.

Whilst this is good practice for a distributed algorithm which executes on a MPP

(Massively Parallel Processing) system, even small excesses can have significant

impacts on performance on systems utilising attached accelerator devices. Small

accesses in a MPP distributed mode may still keep MPI messages within the

same MPI protocol boundary, while due to the overhead of the data transfers,

even small excesses soon become the bottleneck on hosted devices.

Additionally, the process of packing MPI halo buffers ready for exchange

should be carried out locally on the device, rather than transferring the data

back to the host to perform the operation together with the exchange itself.

8.1.5 Limited Device Memory Capacity

Although memory capacity is increasing, the high bandwidth memory necessary

for performance, is in limited supply on accelerated devices. This requires

careful management by the developer to ensure it is utilised effectively. If a

particular simulation demands more than exists, then the application needs to
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be able to scale over a greater number of devices, hence reducing the memory

requirements needed per device.

8.1.6 Memory Allocation Overheads

The cycle of memory allocation and deallocation, familiar in many applications,

was traced to the cause of synchronisation overheads that were detrimental

to performance. Effectively these were serialised memory allocation operating

system calls in which one thread was able to allocate memory whilst the remain-

ing threads had to wait until the original thread had completed its operation.

Although the solution which was devised in the CloverLeaf mini-app employed

the creation of temporary arrays that were subsequently re-used for multiple

purposes, this may not be applicable in all situations. Such allocation/deallo-

cation cycles should be a point of investigation in any application aiming to

achieve performance on an accelerated device.

8.1.7 Use of Global Variables

The presence of globally addressable variables in computational kernels implies

an atomic update as the compiler is forced to protect these data values from

concurrent accesses from different threads. A solution to this problem is to

create separate instances which are private to each thread and contain a separate

reduction operation on those variables.

8.2 Putting these Lessons into Practice

Although these lessons were discovered through the examination of a hydrody-

namics application, they are equally valid for any algorithmic domain. Whilst

this has been extremely useful as a research investigation, it is also of interest

how this relates back to the practical problem facing institutions with industrial

strength HPC applications.

As a direct result of this research a new application design strategy has

been developed at AWE to explore and make ready applications for emerging

architectures and as a means to explore suitable programming paradigms.

The “Path to Many Core” (PtMC) is the resultant project to meet this

strategy. At its heart is the concept of mini-apps, proven through this research

as a suitable methodology for hydrodynamical computational models, it expands

the method to cover a range of algorithmic areas of interest. These algorithmic

areas are broken down into dedicated workstreams and resourced appropriately:

assigning a mix of computer scientists, specific domain specialists and mathe-

maticians.

127



Chapter 8. Conclusions and Further Developments

The research contained herein has evolved from assessing those methods

and rapidly exploring emerging HPC hardware and programming methods, to

a formal strategy with an associated programme of work. The PtMC project

has identified a number algorithmic areas on which to focus efforts in order to

enable their performant use on emerging many-core architectures. The strategy

is to explore these areas through the development of, or the use of existing,

mini-apps.

Complementing the PtMC is the “Path to Agile Coding” (PtAC), this

provides the means, by way of restructuring real applications into a framework,

which make the application of the lessons learnt in PtMC amenable.

Following the success of CloverLeaf, the UK Mini-App consortium (UK

MAC) [39] has grouped together a number of mini-apps, developed as part

of collaborations with a number of UK based institutions. Although a non-

exhaustive list, a number of the complementary mini-apps to CloverLeaf are:

8.2.1 CloverLeaf3D

CloverLeaf3D is a 3D implementation of CloverLeaf, solving the compressible

Euler equations in three dimensions, using an explicit, second-order method.

Released into Version 3.0 of the Mantevo Suite, it has been extended beyond

its original use and has been the focal tool to “roadtest” a batch-based in-situ

visualisation infrastructure for multi-physics simulation codes [129].

8.2.2 CleverLeaf

CleverLeaf [61] is an adaptive mesh refinement implementation of CloverLeaf

using the Structured Adaptive Mesh Refinement Application (SAMRAI) [110]

toolkit library. Developed and extensively used as part of Beckingsale’s PhD

Thesis assessing the scalability of AMR on future parallel architectures [60]. It

was introduced as a mini-driver as part of the Version 2.0 release of the Mantevo

Suite.

8.2.3 TeaLeaf

TeaLeaf is a mini-app that solves the linear heat conduction equation on a

spatially decomposed regularly grid using a five point stencil with implicit

solvers. Released into Version 3.0 of the Mantevo project, it is been used as a

research vehicle by the University Bristol to evaluate its suitability for emerging

programming models such as Kokkos, RAJA, OpenACC, OpenMP, CUDA and

OpenCL [140], [141].
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8.2.4 BookLeaf

Bookleaf is an unstructured Lagrangian Hydro mini-app to which the University

of Oxford have applied their stencil based framework OP2 to [174]. The resul-

tant version has been used to perform one of the first assessments of performance

on IBM POWER8 CPUs using the software toolchain: Little-Endian Ubuntu,

the GNU and the XL compilers and OpenMP runtimes, on IBMs POWER8

CPUs [173].

It has also been taken as a proxy, with added I/O patterns, to be used as a

tool for investigating I/O library paradigms [83].

8.2.5 MINIO

Developed by Dickson at the University of Warwick, MINIO [81] is a mini-

app to enable the investigation of the overheads of high-level IO libraries. By

inputting representative IO patterns of production-class scientific applications

it can explore the relative benefits and/or inefficiencies of a range of common

IO data format libraries.

8.3 The Spread of Mini Apps

The idea of isolating the dominant numerical kernels contained in a multi-million

line source code application has emerged independently across the spectrum

of HPC research. Whether as described in this study, or for the purpose of

hardware co-design with hardware vendors, their purpose is varied and growing.

The drivers for exascale systems, as detailed in Chapter 1, has seen nearly

all of the international states which are developing an exascale strategy include

the idea of the mini-app: RIKEN’s Application Development Team [179] from

Japan, Europe’s CEA Hydrobench [28], and the US led Mantevo [104] suite.

8.4 Collaborative Research

Although initially independent, some of these efforts are pooling resources.

Mantevo pioneered the idea of an integrated collection of mini-apps. Its initial

Version 1.0 contained seven mini-apps, including CloverLeaf, from the three US

National Laboratories: SNL, LANL and LLNL, plus NVIDIA and AWE (in

collaboration with the University of Bristol and the University of Warwick).

A common format, size of code, build procedure and collection of results is

stipulated for all mini-apps wishing to be part of Mantevo. This has delivered

the HPC user community a tool with which to be able to track and predict
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application performance on existing and emerging hardware with minimal time

and effort.

This cooperative effort saw Mantevo receive a 2013 R&D 100 award [172]

and an FLC (Federal Laboratory Consortium) Regional Technology Transfer

award. The project puts out annual releases of the suite prior to each US

Supercomputing Conference in November.

At the time of writing there are over 250 papers related to Mantevo, with

over 20 specifically referencing CloverLeaf [142], [94], [101], [139], [56], [102], [49],

[204], [175], [140], [192], [137], [76], [126], [149], [150], [59], [58], [60], [160], [55].

8.5 Beneficiaries and Future Work

Subsequent to the programming models and architectures explored through

CloverLeaf, additional models of the code have been developed and explored.

Work led by Mallinson [137] performed a number of MPI specific optimisa-

tions: Pre-posting receives, MPI rank re-ordering and overlapping of communi-

cations and computation, resulting in weak scaling the MPI+OpenACC hybrid

CloverLeaf code to all 16,384 GPUs on ORNL’s Titan [65] supercomputer.

Additionally, a Co-Array Fortran (CAF) version of CloverLeaf was developed

and compared against the MPI+OpenACC version.

In addition to the OpenMP and OpenACC variants, Gaudin’s original For-

tran / MPI parallel mini-app, now boasts numerous instances covering a wide

range of programming models and paradigms, developed by a wide range of

collaborators: CUDA (Boulton and McIntosh-Smith (University of Bristol) and

Bradley (NVIDIA)), CUDAFortran [181] (Toepfer, Miles and Wolfe of The Port-

land Group (PGI)), Partitioned Global Address Space (PGAS) Programming

Models [167]: CAF, SHMEM (Mallinson formally of the University of Warwick

and now at Intel), OpenCL (Mallinson), LEO (Gamayunov and Blair-Chappell

(Intel)), and OpenMP4 (Gamayunov).

8.6 External Industry Take Up

In addition to collaborative efforts with similar research activities, the research

has been an enabler for building collaborations with HPC hardware and software

industrial partners.

8.6.1 Intel R©

The porting and performance optimisations implemented in CloverLeaf when

targeting Intel’s second generation Intel Xeon Phi, the KNC (Appendix A.5.1
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and A.5.2) resulted in collaborations with Intel resulting in requests to present

and showcase the work. The Intel Xeon Phi performance details of Chapter 7

were presented at SC12 in November 2012 and subsequently at an invitation

event from Intel in March 2013: “Intel Xeon Phi Programming Methods and

Tools” [154]. This was followed in issue 14 of Intel’s “The Parallel Universe”,

June 2013, which featured an article on the development and results CloverLeaf

achieved on their Intel Xeon Phi coprocessor [73].

8.6.2 ARM R©

The readiness and potential of Cavium R©ThunderX R©ARM based platforms for

High Performance Computing, in particular CFD, has been explored, on behalf

of ARM, in a White Paper from the University of Cambridge [51]. CloverLeaf

was chosen as one of two computational fluid dynamics applications that demon-

strated scalability and competitive performance using the open-source toolchain

based on GCC.

8.6.3 OpenACC R©Organisation

In addition to presenting at ORNL [77], an OpenACC Standards Organisa-

tion White Paper and Case Study [100] from the OpenACC Standards were

developed. These documented the step-by-step development process to achieve

a fully distributed and accelerated hybrid MPI/OpenACC implementation of

CloverLeaf, as documented in Chapter 5, and was adapted by the author as a

chapter in the book Parallel Programming With OpenACC [88]. This aims to

be used as a practical guide to show how to use OpenACC with CPUs, GPUs

and other accelerators to improve application performance without significant

programming effort.

8.6.4 PGI R©

Following introductions during the ORNL workshop [77] with PGI, efforts to

produce a single source OpenACC version of the CloverLeaf mini-app were

carried out resulting in error free compilation under all OpenACC commercially

available compilers. Subsequently, PGI have adopted the OpenACC version

of CloverLeaf as part of their compiler regression testing suit and a common

benchmark comparison when discussing their OpenACC enabled compiler [198].

With the only CUDA Fortran compiler, PGI were keen to have applications

demonstrating a performant implementation. With a number of alternative

reference versions available, they chose to develop a CUDA Fortran version of

the mini-app and make it generally available [180].
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8.6.5 International Supercomputing Conference (ISC)

The 2016 ISC Student Cluster competition [163] used CloverLeaf as the mystery

application in its 2016 edition of its annual challenge [196]. The goal was to

run the application using the lowest peak power, but achieving completion to

solution within one hour.

8.6.6 SPEC ACCEL
TM

The SPEC ACCEL benchmark suite contains 19 application benchmarks run-

ning under OpenCL and 15 under OpenACC [119]. The OpenCL suite is

derived from the well-respected Parboil benchmark from the IMPACT Research

Group of the University of Illinois at Urbana-Champaign and the Rodinia

benchmark from the University of Virginia. The OpenACC suite includes tests

from NAS Parallel Benchmarks (NPB), SPEC OMP2012, and others derived

from high-performance computing (HPC) applications.

The OpenACC kernels construct version of CloverLeaf’s Fortran imple-

mentation has been accepted as one of the initial 15 OpenACC applications [43]

that make up the Standard Performance Evaluation Corporation’s (SPEC)

High-Performance Group (HPG) SPEC ACCELTMbenchmark [44].

8.7 Evolution of Architectures and their Pro-

gramming Models

Heterogeneous computing is changing the HPC architecture landscape; indeed

a number of those emerging technologies introduced in Chapter 2 are now

becoming established.

Bottlenecks currently associated with the attached accelerator model include

data transfers, via PCIe, between the host and device; however this is being

addressed in a number of ways depending on the accelerated system in question.

Through the OpenPOWER Foundation [158] NVIDIA and IBM have cou-

pled their respective technologies with the release of the S822LC for the HPC

“Minsky” system [113]. Two POWER8 CPUs and up to four NVIDIA Tesla

P100 GPUs are connected via NVIDIA’s bespoke NVLink interconnect. This

significantly reduces the time required for data transfers by enabling over five

times faster data transfers compared to PCIe.

As documented in Chapter 2, Section 2.3.2 Intel have also released the second

generation Intel Xeon Phi, Knights Landing (KNL) as a self bootable processor

no longer requiring a “host”, hence entirely removing the attached co-processor

bottleneck. However, the addition of high memory bandwidth, in the form
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of MCDRAM, brings with it the additional complication of a more complex

memory hierarchy. The MCDRAM can be utilised in a number of different

ways depending on the memory mode the system is configured to, however

fully exploiting this technology will place an additional burden on application

developers.

The OpenMP standard has been further extended since the OpenMP work

presented in Chapter 7, with directives enabling accelerator devices to be tar-

geted. This provides greater control for mapping and unmapping variables

to and from a device’s data environment. This includes unstructured data

mapping functionality as well as enabling the specification of the private and

firstprivate clauses. Although this increase in accelerator device support is

welcomed, OpenMP still relies heavily on the developer to describe the specific

details for the device in question.

Meanwhile OpenACC now has extended its support to cover more architec-

tures, including ARM CPUs, Sunway CPUs and OpenPOWER CPUs. Addi-

tionally, following the demise of CAPS, support returns for x86 CPUs and Intel

Xeon Phi processors; although, not all of these architectures are as yet supported

by all OpenACC compilers. Additional compiler support is now available from

PathScale (ENZO 2015) and full OpenACC 2.0 support will be available in GCC

6. New features which have been added to OpenACC since this research was

undertaken include nested parallelism, the ability to target multiple devices and

asynchronous data movement. Future plans for OpenACC include a manual

deep copy to assist with moving deeply nested data structures, routine error

callback, array reductions and unstructured data regions. (The latter directly

addressing the deep copy issue observed in section 7.6).

OpenCL is no longer supported on the 2nd generation Intel Xeon Phi, (the

KNL), reducing its main benefit, that of portability.

New features in existing high-level programming languages offer some of the

functionality found in the low-level languages and directive based approaches.

As of Fortran 2008 the DO CONCURRENT construct enables the developer

to specify that individual loop iterations have no interdependencies, hence in

theory providing enough information to expose loop parallelism to the compiler.

Looking beyond what is available today, both hardware and software con-

tinue to evolve, with the trends outlined in Chapter 1 persisting. The core count

which is available on Intel’s latest generation of x86 processors has increased to

a 24 core variant [9]. Whilst the latest GPU from NVIDIA, the P100 [15], based

on the “Pascal” micro-architecture consists of 6 Graphics Processing Clusters

(GPC) each with 10 SMs, where with 384 GPU cores per SM, an overall 3,840

GPU cores is delivered, up from the 2,880 found in “Kepler”.

While these different aspects of many-core devices still exist as separate
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entities, future heterogeneous systems will most likely have a mixture of these

“large” and “small” cores on the same silicon. They will also be able to

dynamically adjust their clock speeds, depending on workload and possess the

ability to reconfigure the system on-the-fly, keeping the power required to a

minimum will increasingly become an important goal. Although research efforts

and proof of concept devices already exist such as the 1,000 core KilioCore,

from University of California Davis [66], in which each of the one thousand

cores can be independently clocked and is able to shut down completely when

idle. The overall mix of these cores will likely not be all general purpose, with

specialist types becoming available, catering for bespoke tasks which sections of

an algorithm, or application will map on to.

Further developments in hardware design will see greater integration within

the die, with optical fabrics driving down the costs of interconnects. Addition-

ally, on-package high bandwidth memory with sufficient capacities to provide

greatly improved performance for applications that can utilise it, will become

common on a range of hardware, not just those seen today.

Power consumption costs for moving data to the sites of computation will

become increasingly dominant compared to the costs of actual computations

themselves. This will drive the need to co-locate the computation and the data

potentially bringing the compute to the data rather than the common methods

today for moving the data to the compute engine.

Looking even further into the future will likely see revolutionary changes

rather than evolutionary. Different materials which complement silicon together

with more flexible materials such as those which can stretch whilst still con-

ducting, will enable advances in micro-architecture design. The 3D stacking of

processors is also proposed, which will reduce power consumption for multiple

chips, whilst making them more dense.

Non-traditional Turing/Von-Neumann machines may emerge, such as Neu-

romorphic Computing systems where the system is presented with training

data from which it ultimately learns from that data to be able to identify

and classify new data it is presented with. Quantum computing which has

been muted for many years is beginning to become more than theory with

experimental hardware existing in the laboratories of IBM [45] and University

of Maryland [80]. Together with a small but growing number of identified

quantum algorithms [118], [118], enabling early comparisons of the two different

technologies [134]. Although unlikely to fully replace Turing/Von-Neumann

based machines, they may emerge as systems that can significantly reduce

problems spaces prior to processing on traditional computer systems. Currently,

these are speculative designs and would most likely require complete rethinks

on algorithmic inputs and languages to program such systems.
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8.8 Thesis Contributions

To conclude, this research has focused on a study of the impact on legacy

scientific applications, and potential mitigation options, of the emerging changes

in high performance computing architectural design. It has set out the drivers

for technological hardware change, discussed the prominent architectures that

are emerging and, by identifying common architectural traits, enabled a high

level conceptual comparison between those architectures. Similarly from a

software point of view, those nascent programming methodologies have been

categorised and their relative status and maturity assessed. In particular, this

thesis makes the following contributions:

8.8.1 Impracticalities of Using Production-Class Codes to

Explore Architectures and Programming Models

Demonstrates lack of flexibility of an industrial-class bench-

mark code as a tool for the rapid exploration of emerging

architectures and their associated programming models.

Chapter 4 demonstrated, via the use of a representative, industrial-class,

benchmark application, the standard practice of using benchmark codes to as-

sess system upgrades to an incumbent platform and for comparisons for procure-

ment of new platforms. It subsequently showed the shortcomings of development

time and practicalities, that a different approach is needed for the assessment

of emerging technologies.

8.8.2 Introduction and Extension of the Mini-Application

Approach

Introduction of the CloverLeaf mini-application with devel-

opment details to achieve a fully functional and portable

OpenACC implementation.

Chapter 5 introduced the concept of the mini-app, and described CloverLeaf,

an explicit Eulerian hydrodynamics mini-app. The study detailed the step-by-

step development process that produced a fully functional and portable version

using a newly emerging standard, OpenACC.
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8.8.3 Demonstrating Performance Portability

Demonstration of the suitability of the mini-app as a tool for

exploration of emerging architectures in the particular case

of a GPU using three programming methodologies, namely

OpenACC, OpenCL and CUDA.

In Chapter 6 the mini-application was demonstrated fully utilising a GPU-

based architecture, with direct comparisons of performance, development time

and “words of code” (WoC) when compared to the equivalent OpenCL and

CUDA implementations. It’s finding indicated that a directive based approach,

such as OpenACC, is an attractive programming model for accelerator devices

both from a productivity and performance perspective.

8.8.4 Exploring Emerging Architectures

Extending the use of the CloverLeaf mini-app to explore

a range of emerging architectures namely: GPUs, co-

processor, APUs and current CPUs using OpenACC as a

common baseline to compare against the performance of

the best alternative programming models on each of the

platforms analysed.

Contribution 8.8.3 was extended in Chapter 7 to assess further programming

methodologies, enabling direct comparisons with regards to development time,

maintenance effort, portability and performance on a GPU architecture. Sub-

sequently, using OpenACC as a common baseline, further emerging hardware

was assessed (coprocessors, AMD APUs, GPUs) which enabled the optimal

native programming methodology to be compared and contrasted against the

OpenACC baseline. This work showed the good portability of the directive

based method with acceptable levels of performance, but highlighted the need

for wariness in variances in compiler implementations.

136



References

[1] AMD R©Opteron 875. http://www.cpu-world.com/CPUs/K8/AMD-

Dual-Core%20Opteron%20875%20-%20OST875FAA6CC.html.

[2] Argonne National Laboratory: MPICH2. http://www.mcs.anl.gov/

research/projects/mpich2/.

[3] GNU Fortran. http://gcc.gnu.org/fortran/.

[4] Intel R©Xeon R©Paxville. http://ark.intel.com/products/codename/6191/

Paxville?q=Paxville.

[5] Intel R©Xeon R©Processor E5-2450. http://ark.intel.com/products/64611/

Intel-Xeon-Processor-E5-2450-20M-Cache-2 10-GHz-8 00-GTs-Intel-

QPI.

[6] Intel R©Xeon R©Processor E5-2670. http://ark.intel.com/products/64595/

Intel-Xeon-Processor-E5-2670-20M-Cache-2 60-GHz-8 00-GTs-Intel-

QPI.

[7] Intel R©Xeon R©Processor E5-2698v3. https://ark.intel.com/products/

81060/Intel-Xeon-Processor-E5-2698-v3-40M-Cache-2 30-GHz.

[8] Intel R©Xeon R©Processor E5405. http://ark.intel.com/Product.aspx?id=

33079.

[9] Intel R©Xeon R©Processor E7-8894v4. https://ark.intel.com/products/

96900/Intel-Xeon-Processor-E7-8894-v4-60M-Cache-2 40-GHz.

[10] Intel R©Xeon R©Processor L5530. http://ark.intel.com/Product.aspx?id=

41755.

[11] Intel R©Xeon R©Processor X5550. http://ark.intel.com/Product.aspx?id=

37106.

[12] Intel R©Xeon R©Processor X5660. http://ark.intel.com/Product.aspx?id=

47921.

[13] National Center for Supercomputing Applications (NCSA) at the

University of Iiinois. http://www.ncsa.illinois.edu/.

[14] NVIDIA R©GeForce
TM

GTX 285. http://www.nvidia.com/object/product-

geforce-gtx-285-us.html.

[15] NVIDIA R©Tesla P100. http://www.nvidia.com/object/tesla-p100.html.

137



REFERENCES

[16] NVIDIA R©Tesla
TM

C1060 Computing Processor. http://www.nvidia.com/

object/product-tesla-c1060-us.html.

[17] OpenMPI: OpenSource High Performance Computing. http://

www.open-mpi.org/.

[18] Oracle Solaris Studio. http://www.oracle.com/technetwork/server-

storage/solarisstudio/documentation/ss12u1-241645.html.

[19] PGI Fortran & C Accelerator Compilers and Programming Model. http:

//www.pgroup.com/lit/pgiwhitepaperaccpre.pdf.

[20] The Intel Fortran Compiler. http://software.intel.com/en-us/articles/

intel-fortran-compiler-professional-edition-for-linux-documentation/.

[21] The OpenMP API Specification for Parallel Programming. http:

//openmp.org/wp/.

[22] The Portland Group Fortran Compiler. http://www.pgroup.com/

resources.

[23] The OpenACC Application Programming Interface version 1.0. http:

//www.openacc.org/sites/default/files/OpenACC.1.0 0.pdf, November

2011.

[24] The OpenMP Application Program Interface version 3.1. http://

www.openmp.org/mp-documents/OpenMP3.1.pdf, July 2011.

[25] AMD OpenCL Accelerated Parallel Processing (APP) SDK. http://

developer.amd.com/tools/heterogeneous-computing/amd-accelerated-

parallel-processing-app-sdk/, November 2012.

[26] CAPS OpenACC Compiler The fastest way to many-core programming.

http://www.caps-entreprise.com, November 2012.

[27] gpuocelot - A dynamic compilation framework for PTX. http://

code.google.com/p/gpuocelot/, November 2012.

[28] hydrobench. https://github.com/HydroBench/Hydro, Oct 2012.

[29] Intel SDK for OpenCL Applications 2012. http://software.intel.com/en-

us/vcsource/tools/opencl-sdk, November 2012.

[30] NVIDIA R© CUDA API Reference Manual version 4.2. https://

developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/

CUDA Toolkit Reference Manual.pdf, April 2012.

138



REFERENCES

[31] OpenACC accelerator directives. http://www.training.prace-ri.eu/

uploads/tx pracetmo/OpenACC.pdf, November 2012.

[32] OpenCL 1.1 C++ Bindings Header File. http://www.khronos.org/

registry/cl/api/1.2/cl.hpp, November 2012.

[33] OpenCL Lounge. https://www.ibm.com/developerworks/community/

alphaworks/tech/opencl, November 2012.

[34] OpenCL NVIDIA Developer Zone. https://developer.nvidia.com/opencl,

November 2012.

[35] PGI — Resources — CUDA Fortran. http://www.pgroup.com/

resources/cudafortran.htm, November 2012.

[36] QUDA: A library for QCD on GPUs. http://lattice.github.com/quda/,

Oct 2012.

[37] RougeWave Releases TotalView 8.10. http://www.roguewave.com/

company/news/2012/rogue-wave-releases-totalview-8-10, May 2012.

[38] The OpenCL Conference. http://www.iwocl.org/, May 2013.

[39] UK Mini-App consortium. http://uk-mac.github.io/, October 2013.

[40] CUDA Debugger and Profiler - Advanced Debugging and Perfor-

mance Optimization Tools for CUDA and OpenACC. https://

www.allinea.com/cuda-debugger-and-profiler-advanced-debugging-and-

performance-optimization-tools-cuda-and-openacc#features, March

2014.

[41] RougeWave CUDA Debugger. http://www.roguewave.com/products-

services/totalview/features/cuda-debugging, March 2014.

[42] RougeWave OpenACC Debugger. http://www.roguewave.com/

products-services/totalview/features/openacc-debugging, March 2014.

[43] SPEC ACCEL: 353.clvrleaf. https://www.spec.org/auto/accel/Docs/

353.clvrleaf.html, March 2014.

[44] SPEC ACCEL Benchmark Suite. https://www.spec.org/accel/, March

2014.

[45] IBM Q: Building the first universal quantum computers for business and

science. http://www.research.ibm.com/ibm-q/, March 2017.

[46] Advanced Micro Devices Inc. AMD white Paper: Compute Cores. https:

//www.amd.com/Documents/Compute Cores Whitepaper.pdf, 2014.

139



REFERENCES

[47] G. M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20,

1967, spring joint computer conference, pages 483–485. ACM, 1967.

[48] D. L. Andrew Komornicki, Gary Mullen-Schulz. Roadrunner: Hardware

and Software Overview. IBM Redbooks, 2009.

[49] J. A. Ang, R. F. Barrett, S. D. Hammond, and A. F. Rodrigues.

Emerging high performance computing systems and next generation

engineering analysis applications. SAND-2013-0054P, 2013.

[50] ANL. Aurora. http://aurora.alcf.anl.gov/.

[51] ARM. HPC Case Study: CFD Applications on ARM. https://

community.arm.com/processors/b/blog/posts/arm-hpc-case-study-

university-of-cambridge/, 2017.

[52] N. Attig, P. Gibbon, and T. Lippert. Trends in supercomputing:

The european path to exascale. Computer Physics Communications,

182(9):2041–2046, 2011.

[53] R. Babich, M. Clark, and B. Joo. Parallelizing the QUDA Library for

Multi-GPU Calculations in Lattice Quantum Chromodynamics. IEEE,

2010.

[54] M. Baker, S. Pophale, J.-C. Vasnier, H. Jin, and O. Hernandez. Hybrid

Programming using OpenSHMEM and OpenACC. OpenSHMEM,

Annapolis, Maryland. March 4-6, 2014, 2014.

[55] D. W. Barnette, R. F. Barrett, S. D. Hammond, J. Jayaraj, and J. H.

Laros III. Using miniapplications in a mantevo framework for optimizing

sandias sparc cfd code on multi-core many-core and gpu-accelerated

compute platforms. In 51st AIAA Aerospace Sciences Meeting including

the New Horizons Forum and Aerospace Exposition, page 1126, 2012.

[56] R. F. Barrett, P. S. Crozier, D. Doerfler, M. A. Heroux, P. T. Lin,

H. Thornquist, T. Trucano, and C. T. Vaughan. Assessing the role

of mini-applications in predicting key performance characteristics

of scientific and engineering applications. Journal of Parallel and

Distributed Computing, 75:107–122, 2015.

[57] D. J. Becker, T. Sterling, D. Savarese, J. E. Dorband, U. A. Ranawak,

and C. V. Packer. Beowulf: A parallel workstation for scientific

computation. In Proceedings, International Conference on Parallel

Processing, volume 95, pages 11–14, 1995.

140



REFERENCES

[58] D. Beckingsale, W. Gaudin, J. A. Herdman, and S. Jarvis. Resident

block-structured adaptive mesh refinement on thousands of graphics

processing units. In Parallel Processing (ICPP), 2015 44th International

Conference on, pages 61–70. IEEE, 2015.

[59] D. Beckingsale, W. Gaudin, R. Hornung, B. Gunney, T. Gamblin,

J. Herdman, and S. Jarvis. Parallel block structured adaptive mesh

refinement on graphics processing units. Technical report, Lawrence

Livermore National Laboratory (LLNL), Livermore, CA (United States),

2014.

[60] D. A. Beckingsale. Towards scalable adaptive mesh refinement on future

parallel architectures. PhD thesis, University of Warwick, 2015.

[61] D. A. Beckingsale, O. Perks, W. Gaudin, J. Herdman, and S. A. Jarvis.

Optimisation of patch distribution strategies for amr applications.

In Tribastone, Mirco and Gilmore, Stephen, 1962-, (eds.) Computer

Performance Engineering. Lecture Notes in Computer Science , Volume

7587 ., pages 210–223. Springer, 2013.

[62] P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta. Cellss: a

programming model for the cell be architecture. In SC 2006 Conference,

Proceedings of the ACM/IEEE, pages 5–5. IEEE, 2006.

[63] B. Bergen, M. Daniels, and P. Weber. A Hybrid Programming Model

for Compressible Gas Dynamics using OpenCL. 39th International

Conference on Parallel Processing Workshops, 2010.

[64] R. F. Bird, P. Gillies, M. Bareford, J. Herdman, and S. A. Jarvis. Mini-

app driven optimisation of inertial confinement fusion codes. In Cluster

Computing (CLUSTER), 2015 IEEE International Conference on, pages

768–776. IEEE, 2015.

[65] A. Bland, J. Wells, O. Messer, O. Hernandez, and J. Rogers. Titan:

Early experience with the Cray XK6 at Oak Ridge National Laboratory.

In Cray User Group, 2012.

[66] B. Bohnenstiehl, A. Stillmaker, J. Pimentel, T. Andreas, B. Liu,

A. Tran, E. Adeagbo, and B. Baas. A 5.8 pj/op 115 billion ops/sec,

to 1.78 trillion ops/sec 32nm 1000-processor array. In VLSI Circuits

(VLSI-Circuits), 2016 IEEE Symposium on, pages 1–2. IEEE, 2016.

[67] R. Brook, B. Hadri, V. Betro, R. Hulguin, and R. Braby. Early

Application Experiences with the Intel MIC Architecture in a Cray

CX1. In Cray User Group, 2012.

141



REFERENCES

[68] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,

G. Mercier, S. Thibault, and R. Namyst. hwloc: A Generic Framework

for Managing Hardware Affinities in HPC Applications. In 2010 18th

Euromicro Conference on Parallel, Distributed and Network-based

Processing, pages 180–186. IEEE, 2010.

[69] BULL. Bull sequana supercomputers. http://www.bull.com/sequana.

[70] CAPS Enterprise. HMPP: A Hybrid Multicore Parallel Programming

Platform. http://www.caps-entreprise.com/en/documentation/caps

hmpp product brief.pdf.

[71] C. C. Charlie Cler. IBM Power 595 Technical Overview and Introduc-

tion. IBM Redbooks, 2008.

[72] K. China. Chinas 12th five-year plan: overview. China: KPMG

Advisory, 2011.

[73] N. Clemons. A complete development solution for intelligent systems,

2013.

[74] P. Colella. Defining software requirements for scientific computing, 2004.

[75] P. Computing and U. Visulisation Group, University of Warwick.

CloverLeaf: A Lagrangian-Eulerian hydrodynamics mini-app. http:

//warwick-pcav.github.io/CloverLeaf.

[76] J. Cownie and S. McIntosh-Smith. Leverage your opencl investment on

intel R© architectures. Graduate from MIT to GCC Mainline, page 42,

2014.

[77] Cray Technical Workshop on XK6 Programming. XK6 Workshop. https:

//www.olcf.ornl.gov/training-event/cray-technical-workshop-on-xk6-

programming/, 2012.

[78] C. CUDA. Programming Guide v5.5. NVIDIA Corporation, July, 2013.

[79] J. Davis, G. R. Mudalige, S. D. Hammond, J. Herdman, I. Miller, and

S. A. Jarvis. Predictive analysis of a hydrodynamics application on

large-scale CMP clusters. Computer Science-Research and Development,

26(3-4):175–185, 2011.

[80] S. Debnath, N. Linke, C. Figgatt, K. Landsman, K. Wright, and

C. Monroe. Demonstration of a small programmable quantum computer

with atomic qubits. Nature, 536(7614):63–66, 2016.

142



REFERENCES

[81] J. Dickson, S. Maheswaran, S. A. Wright, J. Herdman, and S. A. Jarvis.

Minio: an i/o benchmark for investigating high level parallel libraries.

27th ACM/IEEE International Conference for High Performance

Computing, Networking, Storage and Analysis (SC15), Austin, Texas,

USA, Nov. 2015.

[82] J. Dickson, S. A. Wright, S. Maheswaran, J. Herdman, D. Harris, M. C.

Miller, and S. A. Jarvis. Enabling portable i/o analysis of commercially

sensitive hpc applications through workload replication. Cray User

Group 2017 Proceedings, 2017.

[83] J. Dickson, S. A. Wright, S. Maheswaran, J. Herdman, M. C. Miller,

and S. A. Jarvis. Replicating hpc i/o workloads with proxy applications.

1st Joint International Workshop on Parallel Data Storage & Data

Intensive Scalable Computing Systems (PDSW-DISCS’16), Salt Lake

City, Utah, USA, Nov. 2016.

[84] DOE. Exascale Strategy: Report to Congress June 2013. Technical

report, Department of Energy , 2013.

[85] J. Dongarra. Report on the Sunway TaihuLight System. http:

//www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-

2016.pdf, June 2016.
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APPENDIX A
Hardware Platforms and Architectures

Chapter 2 gave an overview of the current HPC architecture options available,

or becoming available, to the high-end HPC application user. In this Appendix,

specifics are provided of the supercomputing resources utilised throughout this

thesis. These have ranged from local Linux based workstations to some of the

largest distributed supercomputers in the world. This chapter categorises and

describes these resources. As this work has spanned a number of years, the rapid

pace of HPC technological progress is reflected in the numerous generations of

hardware utilised in each category; to assist the reader, the year of commission

of the system is supplied.

A.1 x86-64

A.1.1 Willow (AWE, Bull Distributed Commodity

Capacity Cluster)

Commissioned: 2010

“Willow” is an Intel based cluster from Bull, based at the Atomic Weapons

Establishment (AWE). It is built on Bull’s BullX B500 Extreme Computing

blade technology. “Willow” is actually two distinct platforms: “WillowA” and

“Willow B” each of which consist of 468 blades, or nodes, housed in 26 chassis.

Each node contains two quad-core Intel Xeon Nehalem processors. This gives a

total of 3,744 cores. Willow employs the Nehalem L5530 [10]. This has a clock

speed of 2.4 GHz, with 8 MB cache and a theoretical peak of four floating point

operations (FLOP/s) per clock cycle. As is common with the Nehalem micro

architecture, it utilises Intel’s QuickPath Interconnect (QPI). The L5530 has a
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QPI speed of 5.86 GigaTransfers per second (GT/s). Willow’s interconnect is

Quad Data Rate (QDR) InfiniBand (IB), with 40 Gb/s full-duplex bandwidth,

providing an MPI bisectional bandwidth of 748.8 GB/s. Each node has 24GB

of DDR3 memory, which equates to 3GB/core. The total peak performance

of each Willow platform is 35.942 TeraFlops (TFLOP/s). The default Fortran

compiler and MPI implementation of choice on the system is Intel 11.0.073 and

BullXMPI 1.0.1 respectively. Test builds of SunStudio12u1 and OpenMPI 1.4.1,

for SunStudio, have also been installed on the “Willow” systems.

A.1.2 Blackthorn (AWE, Bull Distributed Commodity

Capability Cluster)

Commissioned: 2010

“Blackthorn” is a large, capability, platform based at AWE. The cluster is a

Bull platform consisting of 1,080 compute nodes. Each node consists of two

Intel Xeon X5660 hex-core “Westmere” processors. The X5660 [12] has a 2.8

GHz clock1, with 12 MB of cache, and a QPI speed of 6.40 GT/s. Each node has

48GB of DDR3 memory, which equates to 4GB/core. Blackthorn’s interconnect

is QDR IB, with 40 Gb/s full-duplex bandwidth, providing 1728 GB/s MPI

bisectional bandwidth. With each of the X5660 cores providing a theoretical

four FLOP/s per clock cycle; Blackthorn has a peak of 145.1 TFLOP/s. Intel

11.0.073 is the default Fortran compiler, with BullXMPI 1.0.2 the default MPI

implementation.

A.1.3 Shepard (SNL, Penguin TestBed Cluster)

Commissioned: 2014

“Shepard” is a Penguin R©integrated testbed based at SNL. It consists of 36 Dual

Intel Xeon Haswell E5-2698 v3 [7] @ 2.30GHz, 16 cores, 2 SMT HW threads

per socket. 128 GB DDR4-2133 MHz (split at 64 GB per socket). Mellanox

1It is possible to increase this to 3.2 GHz via Intel’s TurboBoost, but this is currently
disabled on this platform
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Willow Blackthorn PillowB Hera

Integrator BULL BULL BULL Appro

Processor Intel Intel Intel AMD

Type L5530 X5660 E5-2450 Opteron 8356

Clock

Speed GHz 2.4 2.8 2.1 2.3

(Turbo Freq) (2.66) (3.2) (2.9) N/A

Compute

Nodes 486 1,080 40 847

CPUs/ 1xNehalem 1xWestmere 2xSandyBridge 4xBarcelona

Node 8-core 12-core 8-core 4-core

Interconnect IB IB IB IB

Compilers Intel 11.0 Intel 11.0 Intel 13.1 Intel 11.0

Sun 12.1 PGI 8.0.1

BullX 1.0.1

MPI OpenMPI BullX 1.0.2 IntelMPI 5.0.3 OpenMPI

1.4.1 1.3.2

Table A.1: x86 Platform Resources

FDR IB. Red Hat 6.5.

A.1.4 Hera (LLNL, Appro Distributed Commodity

Capacity Cluster)

Commissioned: 2009

“Hera” is an Appro integrated cluster based at LLNL. Consisting of 790 nodes

of AMD quad-core Opteron 8356 (Barcelona) processors, it contains 13,824

cores, with a clock speed of 2.3 GHz, and 32 GB/node, or 2 GB/core. Hera’s

peak performance equates to 127.2 TFLOP/s. MPI is provided by a build of

OpenMPI 1.3.2 A choice of Fortran compilers are Intel 11.1 and PGI 8.0-1.

All x86 based platforms utilised during this research are detailed in Table

A.1
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A.2 IBM R©POWER R©

A.2.1 Gollum (AWE, IBM POWER5)

Commissioned: 2006

“Gollum” is an IBM 550 POWER5 based server. It consists of a single node

with 4 processors clocked at 1.65 GHz. Fortran is provided by XL Fortran

13.1.0.2.

A.2.2 Milano (IBM, IBM POWER6)

Commissioned: 2008

“Milano” is an IBM Power 550 Express system. The four socket system is

populated with dual-core POWER6 processors. Each core has a clock speed

of 4.2 GHz. The system is running AIX (Advanced Interactive eXecutive) 5.3

ML11, and the Fortran compiler is IBM’s XL Fortran, Version 12.1.0.6. Milano

has two-way simultaneous multithreading (SMT) enabled.

A.2.3 v60 (IBM, IBM POWER6)

Commissioned: 2006

“V60” an IBM Power 575. With 16 dual-core sockets this gives rise to 32 cores,

each clocked at 4.7 GHz, and 128 GB memory. The operating system (OS)

is AIX 5.3 ML10, and the XL Fortran compiler is Version 12.1.0.4. As with

“Milano”, two-way simultaneous multithreading (SMT) enabled.

A.2.4 p90 (IBM, IBM POWER7)

Commissioned: 2010

“p90”, is an IBM POWER7, p755 server; it is packaged as a 4-way quad-chip-

module (QCM) with 32 physical cores and 128 SMTs. Each core has a clock

speed of 3.3 GHz and 128 GB of accessible memory. The system has 4-way

SMT enabled by default.
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Gollum Milano v60 p90 White

Processor POWER5 POWER6 POWER6 POWER7 POWER8

Type p550 p550 Express p575 p755 SL822L

SL824L

Clock

Speed 1.65 4.2 4.7 3.6 3.42

(GHz)

Compute 1 1 1 1 8

9

CPUs/ 2x 4x 16x 4x 2x

Node 2-core 2-core 2-core 8-core 8-core

10-core

Compilers XLF 13.1 XLF 12.1 XLF 12.1 XLF 13.1 XLF 13.1.3

MPI IBM MPI IBM MPI IBM MPI IBM MPI OpenMPI

Table A.2: POWER Platform Resources

For all the above POWER platforms, MPI is provided via IBM MPI.

A.2.5 White (SNL, IBM POWER8)

Commissioned: 2015

“White” is a POWER8 based system consisting of one S822L and nine S824L

two socket servers. Each socket is subdivided into two NUMA (Non-Uniform

Memory Access) regions, each with their own memory controller. MPI is served

via OpenMPI.

All POWER based platforms utilised during this research are detailed in

Table A.2

A.3 IBM R©Blue Gene R©

Results in this thesis were obtained on examples of first and second generation

IBM Blue Gene supercomputers: Blue Gene/L and Blue Gene/P respectively.

The instances of these machines were located at LLNL. Table A.3 displays the

characteristics detailed below.
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uBG/L DawnDev

Processor PowerPC PowerPC

Type 450 450(d)

Clock Speed (MHz) 700 850

Compute Nodes 40,960 1,024

Cores/Node 2 4

Total Cores 81,920 4,096

Memory/Node (GB) 0.5 4

Interconnect Proprietary Proprietary

Peak TFLOPS 229.4 13.9

Compilers XLF 11.0 XLF 11.0

MPI IBM BlueGene MPI IBM BlueGene MPI

Table A.3: BlueGene Platform Summary

A.3.1 uBG/L (LLNL, IBM BlueGene/L)

Commissioned: 2007

“uBG/L” is based at the Lawrence Livermore National Laboratory (LLNL), its

building block is the 700 MHz, 32-bit PowerPC (450). 40,960 dual core compute

nodes combine to provide 81,920 cores, each with 256 MB / core. This gives

“uBG/L” a peak performance of 229.4 TFLOP/s. Fortran is provided by XL

Fortran 10.1.0.4.

A.3.2 DawnDev (LLNL, IBM BlueGene/P)

Commissioned: 2009

“DawnDev” is a BG/P architecture, again based at LLNL. BG/P is built from

the 850 MHz 32-bit PowerPC (450d) processor, with four cores per node, and

1 GB/core. As a test system, DawnDev contains 1,024 nodes, giving a peak of

13.9 TFLOP/s. Fortran is provided by XL Fortran 11.1.0.5. For both BlueGene

systems, IBM BlueGene MPI is the MPI implementation.
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A.4 Graphics Processing Units (GPUs)

A.4.1 Dexter (AWE, NVIDIA GPU Testbed)

Commissioned: 2010

AWE has a modest GPU test bed architecture, codenamed “Dexter”. Consisting

of four nodes: one master, and three compute. The master node contains two

quad core Nehalem X5550 [11] 2.67 GHz processors, and four NVIDIA Tesla

C1060 [16] GPUs. Where each C1060 contains 240 streaming processor cores

with a frequency of 1.3 GHz. The compute nodes consist of one quad core

X5550, two of the three with four NVIDIA GeForce GTX 285 [14] GPUs and

the third with three GTX 285’s and one AMD Radeon
TM

HD5870. For the

purposes of this study, only the NVIDIA cards were considered, and the C1060

and GTX 285’s treated as one. Dexter is running OpenSUSE as its OS and

the GNU compiler and OpenMPI provide the Fortran and MPI environments

respectively.

A.4.2 Shannon (SNL, NVIDIA GPU Cluster)

Commissioned: 2013

“Shannon” is a 32 node, dual socket oct-core Intel Xeon E5-2670 with either 2

NVIDIA Kepler K20X per node, each with 2,688 cores clocked at 732 MHz, or

2 NVIDIA K40 per node, each with 2,880 cores clocked at 745 MHz. As part

of NNSA’s Advanced Simulation and Computing (ASC) project, it is one of a

number of advanced test-bed architectures based at Sandia National Labora-

tories (SNL). OpenACC implementations available on Shannon are PGI 13.9.0

and CAPS 3.3.4. Alternative approaches available to application acceleration

on the system are native implementations in CUDA.

A.4.3 Chilean Pine (AWE, Cray NVIDIA GPU Cluster)

Commissioned: 2011

“Chilean Pine” is a 40 node Cray XK6 hosted at the Atomic Weapons Estab-
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Dexter Chilean Pine Shannon Swan

GPU GeForce Tesla Tesla Tesla

GTX 285 X2090 K20x K20x

Architecture Fermi Fermi Kepler Kepler

GPU Chip GT200B GF110 GK110 GK110

GPU Clock (MHz) 648 1,150 732 732

# Active SMs 30 16 14 14

# SPs 8 32 192 192

Total CUDA Cores 240 512 2,688 2,688

Memory/Node (GB) 4 6 6 6

Table A.4: GPU Platform Summary

lishment (AWE). Each node consisting of one 16-core AMD Opteron 6272 CPU

and one NVIDIA “Fermi” X2090 GPU, with 512 cores clocked at 1.15 GHz.

Although an earlier technology generation to the contemporary systems detailed

in the rest of this Appendex, “Chilean Pine” is the only Cray architecture

available to the author containing a full range of OpenACC compilers.

A.4.4 Swan (Cray, NVIDIA GPU Cluster)

Commissioned: 2013

“Swan” is primarily a Cray XC series system, provided by Cray’s Marketing

Partner Network. A subset is configured as an XK7 consisting of 8 nodes, each

with an 8 core Intel Xeon E5-2670 and an attached NVIDIA Kepler K20X, with

2,688 732 MHz cores and 6 GB of memory. OpenACC is available on Swan

via CCE 8.3.0 and PGI 13.10. Alternative approaches available to application

acceleration on the system are native implementations in OpenCL and CUDA.

A.5 Intel R©Xeon Phi
TM

A.5.1 PillowB (AWE, Intel Xeon Phi Cluster)

Commissioned: 2010

Hosted at AWE, “PillowB” consists of 40 nodes of dual 2.1 GHz Intel Xeon

E5-2450 [5] processors, each node having two Intel Xeon Phi 5110P cards.
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PillowB Compton

Integrator BULL Intel

Chip Intel Intel

Manufacturer

Processor E5-2450 E5-2670

Type

Clock 2.1 2.6

Speed (GHz) (2.9) (3.3)

CPUs/ 2xSandyBridge 2xSandyBridge

Node 8-core 8-core

Compute Nodes 40 42

Accelerator KNC 60 core 5110P KNC 57 core C0

Interconnect IB IB

Intel Intel Intel

Compilers 13.1 13.1

MPI IntelMPI 5.0.3 IntelMPI 5.1.0

Table A.5: Xeon Phi Platform Summary

OpenACC can be used on both the Intel Xeon and the Intel Xeon Phi via

CAPS 3.3.2, using Intel OpenCL SDK v1.2.3.0. Likewise both Intel Xeon

and Intel Xeon Phi have support for OpenCL, MPI and OpenMP. Specifically

on the Intel Xeon Phi, with the release of Intel’s Fortran Composer XE 2013

Update 2 (compiler version 13.1), Intel’s Heterogeneous LEO model and Intel’s

implementation of OpenMP 4.0’s new features for controlling execution on

coprocessors can also be assessed.

A.5.2 Compton (SNL, Intel Xeon Phi Cluster)

Commissioned: 2012

Part of SNL’s Heterogeneous Advanced Architecture Platforms (HAAPs), is a

42 node Intel Xeon Sandy Bridge based cluster where each compute node addi-

tionally contains two, pre-production (stepping C0) Intel Xeon Phi co-processor

cards. The Sandy Bridge SKUs (Stock Keeping Units) are dual 2.6 GHz Intel

Xeon E5-2670 [6] processors.
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Teller

Integrator Penguin

CPU AMD

A10-5800K

CPU: # cores 1 x quad

CPU: Clock Speed (GHz) 3.8

GPU Radion HD-7660D

GPU: Clock Speed (MHz) 800

GPU: # Active Compute Units 6

GPU: # SPs 64

GPU: Total cores 384

Compute Nodes 104

Memory/Node (GB) 16

Interconnect Qlogic QSFP QDR IB

PGI 13.4.0

Compilers CAPS 3.3.3

GNU 4.8.1

OpenCL AMD APP SDK 2.8.0

MPI OpenMPI 1.6.4

Table A.6: APU Platform Summary

A.6 AMD APU

A.6.1 Teller (SNL, AMD APU Cluster)

Commissioned: 2012

Also based at SNL is “Teller”: a cluster of AMD, second generation “Trinity”,

AMD Fusion Accelerated Processing Unit (APU) processors. Each APU consists

of an AMD A10-5800K (Piledriver) 3.8GHz Quad-core with one Radeon HD-

7660D (Northern Islands) with on-die integration containing 384 x 800MHz

cores. OpenACC is provided via CAPS 3.3.3, the only alternative for exploiting

the Radeon is via raw OpenCL using AMD’s APP SDK 2.8.0.
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