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Abstract

Accelerator-enhanced computing platforms have drawn a lot of attention due to

their massive peak computational capacity. Heterogeneous systems equipped with

accelerators such as GPUs have become the most prominent components of High

Performance Computing (HPC) systems. Even at the node level the significant

heterogeneity of CPU and GPU, i.e. hardware and memory space differences, leads

to challenges for fully exploiting such complex architectures. Extending outside the

node scope, only escalate such challenges.

Conventional programming models such as data-flow and message passing have

been widely adopted in HPC communities. When moving towards heterogeneous

systems, the lack of GPU integration causes such programming models to struggle

in handling the heterogeneity of different computing units, leading to sub-optimal

performance and drastic decrease in developer productivity. To bridge the gap

between underlying heterogeneous architectures and current programming paradigms,

we propose to extend such programming paradigms with architecture awareness

optimization.

Two programming models are used to demonstrate the impact of heterogeneous

architecture awareness. The PaRSEC task-based runtime, an adopter of the data-flow

model, provides opportunities for overlapping communications with computations and

minimizing data movements, as well as dynamically adapting the work granularity to

the capability of the hardware.

vii



To fulfill the demand of an efficient and portable Message Passing Interface (MPI)

implementation to communicate GPU data, a GPU-aware design is presented based

on the Open MPI infrastructure supporting efficient point-to-point and collective

communications of GPU-residential data, for both contiguous and non-contiguous

memory layouts, by leveraging GPU network topology and hardware capabilities such

as GPUDirect. The tight integration of GPU support in a widely used programming

environment, free the developers from manually move data into/out of host memory

before/after relying on MPI routines for communications, allowing them to focus

instead on algorithmic optimizations.

Experimental results have confirmed that supported by such a tight and transpar-

ent integration, conventional programming models can once again take advantage of

the state-of-the-art hardware and exhibit performance at the levels expected by the

underlying hardware capabilities.
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Chapter 1

Introduction

1.1 Motivations and Contributions

Throughput-oriented architectures, such as GPUs, are becoming ubiquitous assistants

for computationally intensive tasks in scientific applications. Compared with

traditional CPU, GPU has much higher peak performance and memory bandwidth.

For example, the peak double precision floating point performance and memory

bandwidth of the Nvidia Kepler K40 is approximately 1.43 Tflop/s and 288 GB/s,

dwarfing the performance of any existing CPU family. As a consequence, an increasing

number of production systems feature GPUs. In Top500 Top500 (2016) list, 20% of

the top 500 machines and 40% of the top 10 machines are equipped with GPUs.

Such trend is expected to persist in the future towards ex-scale machine: the coming

machine, Oak Ridge National Laboratory’s ”Summit” and Lawrence Livermore

National Laboratory’s ”Sierra”, will both use GPUs as accelerators.

The hardware of CPU and GPU are significant different: GPU features thousands

of light-weight cores while CPU features much less heavy-weight cores, and the cost

of thread context switch of GPU is lower than CPU, but the latency of issuing

instructions of GPU is relevantly higher than CPU, so the way of efficiently program-

ming in GPU and CPU are different. Typically, GPU programs launch thousands of

1



threads and switch contexts frequently to hide the latency of instructions. While CPU

programs run on less threads and need minimal thread context switch. Therefore,

GPU programming model extracts parallelism by operating on large granularity of

data to achieve optimal occupancy of GPU. In contrast, CPU programming model is

much more flexible with less restriction, hence less data granularity is able to feed a

modern CPU. To fully exploit the resources of CPU and GPU, it is expected to select

the proper execution unit for programs based on their degrees of available parallelism.

Machines equipped with accelerators, such as GPUs, are called heterogeneous

systems, in which GPUs are connect to host machine as peripheral devices via PCI-

Express. More recent advances, CPUs are connecting these GPUs with their own

dedicated network, NVLink, allowing for a notable increase in the data movement

capabilities, especially between accelerators. However, for a long time, GPUs have a

separate memory space than the host. Explicit memory copy directives are necessary

to move data between host and GPU, before being available to computations or

communication on CPU/GPU. This memory separation has been fused with the

introduction of the Unified Memory Architecture (UMA), allowing the host memory

to be directly accessed from GPUs, and inversely, GPU memory to be directly accessed

from CPUs. However, the connection between CPU and GPUs is bandwidth oriented

not latency oriented, data parallel programs which involves frequently memory access

of small independent data, is not able to fully utilize bandwidth. Therefore, it is

always better to explicitly move data into GPU memory prior execution on GPU

for such programs. Limited by CPU-GPU link bandwidth even with NVLink, such

data transfers are expensive, hence, in order utilize both CPUs and GPUs efficiently,

developers have to carefully overlap data movements between host and GPU with

computations, as well as to minimize data movement and reuse data in GPU memory

if available, in order to fully exploit the performance of both CPU and GPU.

Satisfying the increasing demand for computation from the scientific computing

community, led to the trends of super large scale clusters. A typical large scale

heterogeneous cluster usually is consisted of thousands of computer nodes. Computer

2



node, the building block of super computers, usually contains multiple CPU sockets

connected by high speed inter-socket connection (e.g. Intel QPI or AMD Hyper-

transport), and multiple GPUs. Scaling up, several computer nodes are coupled

together through high performance network and form a computer blade, which

are organized in racks and then finally large scale, super-computers. All these

advances at the hardware level, cause a drastic increase in the hierarchization

of different components, with wild differences between the different levels of the

hierarchy. Communication cost between GPUs are dramatically different depending

on location of GPUs: intra-socket communication is able to use CUDA Inter-process

communication (CUDA IPC) NVIDIA (2016b) to achieve RDMA between two GPUs;

inter-socket communication has to fall back to stage through CPU memory; inter-

node communication can either use GPUDirect RDMA NVIDIA (2015) or go through

intermediate CPU memory, Hence, maintaining good network performance requires

efficiently utilization of all different networks and taking care of GPU locality as well

as network topology.

Programming models such as data-flow and message-passing have been proved

efficient for conventional distributed homogeneous systems. When moving towards

distributed heterogeneous systems, the straight forward approach to port such

programming models is to explicitly move data from GPU to host memory prior

engaging CPU-based conventional programming model and move data back to

GPU memory afterwards. However, such directly porting can not efficiently utilize

resources of both CPU and GPU due to the lacking of architecture awareness

optimization. Therefore, modifications of traditional programming models must

take account of the characteristic of heterogeneous systems (significant hardware

differences between CPU and GPU, different memory space of CPU and GPU, and

complicated network topology of entire system). In the dissertation, we focus on

two widely used programming models: data-flow programming model and message-

passing model.
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1.1.1 Data-flow Programming Model

Data-flow programming model has seen a revival, with the emergence of numerous

task-based programming frameworks, where an algorithm is divided into computa-

tions entities (tasks) connected by data dependencies, and forms a Direct Acyclic

Graph (DAG) (nodes and edges represent tasks and data dependencies of tasks

respectively). This programming paradigm has been successfully used in different

projects to depart from tightly coupled or fork-join programming paradigms, and

express the parallelism in a form that allows for more execution flexibility and

portability across many types of hardware resources. One of the early adopters of

this programming paradigm is the PaRSEC Bosilca et al. (2012) framework, which

encompasses a toolbox to help express algorithms in the data-flow programming

paradigm, and a task runtime component whose role is to efficiently schedule the

resultant DAG, on large scale distributed heterogeneous systems.

Tiled linear algebra algorithm is one of the beneficiaries of data-flow programming

model Agullo et al. (2009). With tiled linear algebra, a matrix is divided into square

tiles and each task operates on tiles. In heterogeneous systems, execution union of

tasks can be either a CPU core or GPU. Lack of GPU knowledge, when deploying

tasks, there are two common issues in traditional task-based runtime that could slow

down performance. First, the size of tiles is one of the critical tuning parameters that

impacts the efficiency of kernels, the degree of parallelism and the communication

volume. As discussed before, due to different architectures of CPU and GPU, optimal

data granularities (represented as tile size in the context of linear algebra) of GPU

and CPU tasks are different: usually GPUs require large data set while CPUs benefit

from smaller ones. Traditional tiled linear algebra algorithms Bosilca et al. (2011),

which require all tasks to have a unique tile size to reach reasonable performance, but

fail to provide the runtime with the means to achieve an adapted load-distribution on

heterogeneous systems. Second, data dependencies indicate data transfers between

tasks if they are executed in different execution units. As CPU and GPU have
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different memory space, most linear algebra GPU kernels are not able to beneficial

from UMA because of their memory access pattern, therefore, it requires developers

to explicitly move data into/out of GPU memory prior/after GPU tasks. Limited

by the PCI-Express bandwidth, such data movement is expensive, hence serialization

of the data movement and GPU kennels is not able to deliver optimal performance.

Therefore, it is desired to overlap communication with computation. Application

developers without rich experience in GPU programming are unlikely to efficiently

handle such overlapping, which calls for task runtime to automatically infer data

transfers between CPU and GPU, and provide better overlapping of communications

with computations to fully exploit the resources of both CPU and GPU.

In this dissertation, we integrate the GPU knowledge including architecture and

memory space into task runtime and achieve the following contributions:

• We propose a method called “hierarchical DAG” to adapt the granularity of

tasks with a multi-level approach, where tiles of different sizes coexist in the

runtime. In the hierarchical DAG approach, tasks operated on large granularity

data (large tile size) are organized in an outer DAG level, which are executed on

GPUs. When executed on CPU, each large granularity task can be dynamically

subdivided into a finer granularity inner DAG, operating on smaller tiles, so that

the larger number of finer granularity tasks increases the available parallelism

to levels adequate for multi-core processors.

• We design a data coherence protocol to track the data copies in CPU and GPU

memory With the help of coherence protocol, data is cached in GPU memory

to reduce data movement. Later, data movement and GPU kernel execution

are overlapped with each other by offloading them to different CUDA streams.

• We develop a multi-level GPU memory management, which reuses GPU

memory based on Least Recent Used (LRU) strategy when running out of

memory, and therefore, it support out of core execution (problem size larger

than GPU memory size).
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• We showcase a popular linear algebra algorithms - Cholesky factorization to

motivate the need for “hierarchical DAG” design to adjust task granularity and

integration the knowledge of separated memory space of CPU and GPU into

task runtime to overlap communication with computation and minimize data

movement.

1.1.2 Message Passing Programming Model

In data-flow model, data flows from one task to another. There are several ways

to implement the underlying data movement. One of the popular approach is to

use message passing. Message passing model is another traditional programming

paradigm used in distributed system. Processes communicate with each other by

messages without resorting to shared variables. Message Passing Interface (MPI)

is a standard, which defines a set of communication pattern with message passing.

Since the MPI standard MPI Forum (1995) does not define interactions with GPU-

based data, it is expected that application developers have to explicitly initiate data

movements between host and device memory prior to use MPI to move data across

node boundaries. Such approach imposes a significant complexity on programmers,

renders explicit management of hierarchies which defeats performance portability, In

heterogeneous system, it is expected MPI implementations to provide GPU-aware

capability by unifying MPI routines for both CPU and GPU data, and freeing

programmers from explicit CPU-GPU data movements. However, the current MPI

implementations obviously can not satisfy the requirement of high efficiency and

portability in communication of GPU-resident data. In this dissertation, we adapt

Open MPI, one of the state-of-the-art MPI implementations, to heterogeneous system

to provide efficient point-to-point and collective communication of GPU data.
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Point-to-point Communication

Since point-to-point is the basic building block routines of MPI, the performance

of point-to-point communication is critical. As many scientific applications operate

on multi-dimensional data, manipulating parts of these data becomes complicated

because the underlying memory layout is not-contiguous. The MPI standard proposes

a rich set of interfaces to define regular and irregular memory patterns, the so

called Derived Datatypes (DDT). The DDTs provide a general and flexible solution

to describe any collections of contiguous and non-contiguous data with a compact

format. Once constructed and committed, an MPI datatype can be used as an

argument for any MPI communication routines. Thus, the scientific application

developers do not have to manually pack and unpack data in order to optimize non-

contiguous data transfers, but instead they can safely rely on the MPI runtime to

make such operations trivial and portable. To improve point-to-point communication

between GPUs, the GPUDirect technique are proposed to enable RDMA-like data

movement between GPUs without staging through host memory. Recent state-of-

the-art implementations of MPI, such as MVAPICH and Open MPI already utilize

GPUDirect to provide the capability of direct GPU data movement between processes.

Unfortunately, these optimizations were designed with a focus on contiguous data,

leaving the most difficult operations, the packing and unpacking of non-contiguous

memory patterns, in the charge of developers. There are effective packing/unpacking

implementations for datatypes in host memory Ross et al. (2003). However, exposing

the same level of support for a non-contiguous MPI datatype based on GPU memory

remains an open challenge.

Since MPI collective operations are based on point-to-point communication,

DDT support is usually integrated in point-to-point level, and then collective

communications are automatically able to support non-contiguous data layout. In

this dissertation, we achieve the following contributions on non-contiguous point-to-

point communication of GPU data:
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• We present the design of a datatype engine for non-contiguous GPU-resident

data, which is able to take advantage of the embarrassingly parallel nature of

the pack and unpack operations and efficiently map them onto GPU threads.

• We incorporate the GPU datatype engine into the Open MPI infrastructure, and

takes advantage of the latest NVIDIA hardware capabilities, such as GPUDirect,

not only to minimize the overheads but also to decrease the overall energy

consumption. For contexts where GPUDirect is not available, we provide a

copy-in/copy-out protocol using host memory as an intermediary buffer.

• We present a light-weight pipeline protocol to allow pack and unpack operations

to work simultaneously.

• We demonstrate the performance improvement of point-to-point communication

of non-contiguous GPU data by comparing with state-of-the-art MVAPICH

library via variety of benchmarks.

Collective Communication

Collective communications are another set of communication patterns, which mes-

sages are exchanged within a group of processors. Since collective communications

are widely used in scientific and deep learning application, it is crucial for MPI

libraries to sustain the parallel applications by providing the most optimal collective

routines. According to underlying link properties between GPUs, a collective

operation in heterogeneous systems includes inter-node, inter-socket and intra-socket

communications, whose bandwidth and latency are different. Therefore, a smart

collective algorithm should be able to utilize the knowledge of GPU network topology

to rearrange the processes involved in the collective pattern, in order to shift the

burden from low performance networks and minimize communications on these slow

channels. However, traditional collective algorithms do not worry about hierarchical

networks, resulting in sub-optimal performance when mapping of MPI processes
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does not strictly follow the hardware hierarchy of processors and topology of GPUs

participated in collective communications. Indeed, recent advances in MPI collective

communications have already demonstrated that such performance issues can be

solved by integration of network topology information into collective operations

Graham et al. (2011) Kandalla et al. (2010). However, insufficient cooperation

of communications of different topology levels (i.e. intra-socket, inter-socket and

inter-node levels) leads to sub-optimal overlapping and pipelining of different levels‘

communications, and to algorithms that are not adaptable to the fluctuating network

conditions. This calls for a collaborative approach between multiple levels of collective

algorithms, dedicated to holistically managing all levels of the network hierarchies.

In this dissertation, we propose a new GPU-aware collective framework by taking

account of GPU network topology and achieve the following contributions:

• We present a topology-aware collective framework in Open MPI, which

orchestrates collaborations between multiple levels of network, toward a

common goal. Instead of creating isolated communicators for different levels,

we incorporate all processes into process groups based on their closeness, build

communication tree based on network topology. In such way, we eliminate

all topology levels boundaries and allow for fine grain pipelining between

the different communications. Also since network of different topology levels

are independent, we allow for more concurrent communications, eventually

providing more opportunities for offloaded communications to overlap.

• We minimize communications over PCI-Express by caching data in CPU

memory, so that inter-node and inter-socket communications are directly use

the cached data instead of pulling data from GPU memory. One directional

of PCI-Express is used for intra-socket GPU RDMA communication, and the

other is used for update cached data from CPU memory back to GPU memory,

therefore, PCI-Express is fully utilized but no congestion.
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• As a side-effect of using GPUs, we also have the opportunity minimize the cost

of the reduction operations by offloading them on the accelerators.

• We showcase two popular collective operations - broadcast and reduce - to prove

the advantage of our topology-aware collective framework over the state-of-the-

art MVAPICH.

1.2 Dissertation Outline

The rest of this dissertation is organized as follows: Chapter ?? introduces task-

based runtime with an application of dense linear algebra and GPU-aware MPI, as

well as a survey of the literature of these two aspects. Chapter 3 discusses the

approaches developed for PaRSEC to optimal utilization of resources in heterogeneous

systems for computational tasks, including “hierarchical DAG” for optimal occupancy

of both CPU and GPU, data coherence protocol for minimize data movement and

multi-level GPU memory management for out of core execution. Chapter 4 presents

the implementation of non-contiguous point-to-point communication of GPU data

with benchmarks to demonstrate the performance improvement over other MPI

implementations. Next, Chapter 5 describes the design of GPU-aware collective

communication by integrating the knowledge of GPU network topology and locality

with MPI. Two collective operations, broadcast and reduce, are use as example to

prove the higher performance obtained compared with other MPI implementations

under any process placement. Finally, Chapter 6 concludes the dissertation and

outlines the future work.
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Chapter 2

Background and Literature Review

of Related Works

2.1 Data-flow Programming Model

2.1.1 DAG-Based Representation

Different from traditional control-flow programming model, data-flow programming

paradigm emphasizes the movement of data and models programs as a series of

connections. Explicitly defined inputs and outputs data connect different tasks. A

task runs as soon as all of its inputs become valid. Thus, data-flow programming

paradigm are inherently parallel and can work well in large, decentralized systems.

With data-flow programming model, applications are divided into a set of different

type of tasks, and described as a DAG D = (V,E). Tasks, also called kernels,

are a set of sequential computations, which is fundamental of an application. In a

DAG representation, a vertex v ∈ V represent a task and a edge represents data

dependencies between a task v1 and its predecessor task v2. If an edge (v1, v2) exists

in E, then the output data of task v1 should be transferred to the execution location

of task v2 as its input data, and task v2 can not start until its all input data is ready.
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2.1.2 Parallel Runtime Scheduling and Execution Controller

In order to deploy tasks in DAGs efficiently to a proper execution unit including CPU

and GPUs, it is desired to provide a task-based runtime system. The Parallel Runtime

Scheduling and Execution Controller (PaRSEC) Bosilca et al. (2012), developed

by Innovative Computing Laboratory, is a generic framework for architecture-aware

scheduling and management of micro-tasks on distributed many-core heterogeneous

architectures. PaRSEC is an adoption of data-flow program paradigm, which takes

this DAG-based representation and assigns tasks to the computing resources, and

uses a dynamic, fully-distributed scheduler based on cache awareness, data-locality

and task priority.

Figure 2.1 presents the detailed framework of PaRSEC, which is consisted of

3 levels. The first level is hardware level, which interacts with different hardware

architecture, including multi-core CPUs, memory hierarchies and accelerators. The

middle level is the functionalities of the parallel runtime in PaRSEC, including

distributed scheduling, data distribution and movement, task management and

creating specialized kernels. The third level is the extension for domain specific

applications, including a concise format of representing tasks called Parameterized

Task Graph (PTG) Cosnard et al. (1999), and a dynamic representation of tasks

called Dynamic Task Discovery (DTD) Haidar et al. (2011).

2.1.3 Tiled Dense Linear Algebra

In the area of dense linear algebra, DAGs have been demonstrated to be an extremely

effective way to describe tiled linear algebra algorithms Agullo et al. (2009). In tiled

linear algebra algorithms, an N ×N matrix is split into NT ×NT tiles, each of size

B (dN/Be = NT ). A “tile” can be considered a sub-matrix of the original matrix.

Therefore, instead of computing element by element, each computation task/kernel

executes on tiles.
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Figure 2.1: The Framework of PaRSEC.
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Figure 2.2: Cholesky factorization on matrix of 4× 4 tiles.

Cholesky factorizations is a classic linear algebra algorithms that are widely used

for solving linear systems Ax = b, and as basic blocks in computing eigenvalues

and singular values. It is composed of four kernels (POTRF, TRSM, SYRK and

GEMM) Ltaief et al. (2011) that are successively applied on the trailing sub-matrix

at each step, as illustrated in Figure 2.2 for matrices of 4× 4 tiles.
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Figure 2.3: DAG representation of Cholesky factorization on matrix of 4× 4 tiles

• POTRF performs the untiled Cholesky factorization of a diagonal tile of the

input matrix and overrides it with the final elements of the output matrix.

• SYRK is a symmetric rank-k update, which updates to a diagonal tile of the

input matrix.

• TRSM is a triangular system solve, which applies transformation computed by

POTRF to an off-diagonal tile below the diagonal tile operated by the last

POTRF of the same column.

• GEMM is a matrix-matrix multiplication, used to update tiles in trailing matrix.

14



Figure 2.3 is the DAG representation of the Cholesky factorization shown on

Figure 2.2. Usually, the execution location of a kernel is dynamic, which can be

either a CPU core or an accelerator. With the help of task-based runtime such

as PaRSEC, application developers only focus on translation of application into

DAG representation; PaRSEC take care of data distribution and task scheduling:

it automatically deploy tasks to a proper execution unit based on load balance and

data locality. In this dissertation, Cholesky factorization is used to demonstrate the

performance of GPU-aware design of PaRSEC.

2.1.4 Literature Review

Dense Linear Algebra on Heterogeneous System

Dense linear algebra is one of the computing fields most likely to benefit early from

any increase in the computational power of the hardware such as GPUs. Thus, it

is not unexpected that every evolution at the hardware level is rapidly reflected in

dense linear algebra libraries. MAGMA Agullo et al. (2009) Cao et al. (2013) is a

linear algebra library designed for GPUs. It harnesses the power of both the GPU

and the CPU by invoking CUDA, OpenCL, or multi-threaded BLAS kernels. Fogue

et al. ported the existing PLAPACK library to GPU-accelerated clusters Fogue et al.

(2010). However, both libraries are not driven by runtimes, their static scheduler

distributes tasks equally among GPUs, resulting in potential load imbalance and

poor portability. Beside, the current version of the MAGMA library doesn’t support

distributed memory systems.

Runtime Driven Dense Linear Algebra on Heterogeneous System

When towards heterogeneous system, more and more dense linear algebra libraries

trend to transit to DAG-based representation and rely on runtime because of their

better portability and load balance management. Quintana-Orti et al. extended

the SuperMatrix runtime to shared-memory machines with GPUs Quintana-Ort́ı
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et al. (2009). LibFLAME is a another library for dense matrix computations in

heterogeneous system Zee et al. (2009). However, in these solutions, only a particular

type of computational kernel can execute on the CPU (the less compute-intensive

diagonal blocks), which produces a load imbalance between CPUs and GPUs. As

discussed in Chapter 1, because of hardware differences of CPU and GPUs, optimal

data granularity (described as tile size in dense linear algebra) of CPU and GPU

tasks are dramatically different. all these prior works mandate the use of an identical

tile size, thereby preventing the adaptation of the task granularity to the considered

execution resource.

There are a few prior works trying to resolve the tile size mismatch between

CPUs and GPUs. Song et al. presented a heterogeneous tile algorithm Song et al.

(2012) which divides square tiles into a skinny tall rectangle tile for the CPU and

places the remainder on the GPU. It uses a non-uniform 1D partitioning, and data

is statically distributed between GPUs, hence, it is likely to cause imbalance in the

Cholesky factorization. Kim et al. adapted the libFLAME library to support different

block sizes on different devices in a shared memory environment Kim et al. (2012).

However, its write-through GPU data caching policy may incur too many unnecessary

data movements between the host and the GPU. Lima et al. presented similar work

for Intel Xeon Phi Lima et al. (2013). However, the decision to recursively split a

task is made statically at submission time, without runtime insight. Furthermore, in

their Cholesky factorization, only the POTRF kernel is recursively split.

Our approach uses a 2D block cyclic data distribution for each host, and data

is dynamically assigned to GPUs to maintain good load balance. We maximize the

throughput by allowing all operations with the GPU to be asynchronous, overlapping

data movements and task submission to the GPU, and allowing threads to migrate

between GPU management and CPU execution. Thanks to the parameterized DAG

of our solution, the decision is taken dynamically at runtime and is not limited to

a single kernel, an important distinction as several kernels can compose the critical

path of an application. Moreover, our approach supports multiple node deployments
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with automatic network transfers and a distributed scheduler suited for large scale

systems.

2.2 GPU-aware MPI

The message passing model has emerged as an expressive, efficient, and well-

understood paradigm for parallel programming. The process of creating a standard

to enable portability of using message passing for application began at Message

Passing Interface (MPI) Forum MPI Forum (1995). MPI is a message passing library

standard, together with protocol and semantic specifications for how its features

must behave in any implementation. Point-to-point and collective communications

are two important and frequently used communication patterns in MPI Gropp

et al. (1996). MPI is now already widely used for solving significant scientific

and engineering problems on parallel computers. There are several state-of-the-

art MPI implementations such as Open MPI Gabriel et al. (2004), MPICH2 Gropp

(2002), MVAPICH2 Huang et al. (2007) and Intel MPI. When towards heterogeneous

systems, MPI implementations such as Open MPI and MVAPICH2 already provide

some levels of support for data residing in GPU memory. With GPU-aware MPI,

users can use MPI communication routine to transmit GPU data without hand-made

moving data from GPU memory to host memory and vice versa. In this dissertation,

we integrate GPU knowledge into Open MPI on both point-to-point and collective

communications.

2.2.1 MPI Derived Datatype

MPI provides a powerful and general way to describe arbitrary collections of data

in memory. MPI Standard MPI Forum (1995) predefines its primitive data types

such as MPI INT, MPI CHAR, MPI DOUBLE and so on, respecting to data type of

int, char and double in C or Fortran language. Based on primitive data types, MPI
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also provides facilities for users to define their data structures, which is called MPI

derived datatypes (DDT). MPI DDTs provide a flexible and general mechanism for

working with arbitrary layouts (contiguous or non-contiguous) of data in memory.

MPI defines data layouts of varying complexity:

• Contiguous: a number of repetitions of the same datatype without gaps in-

between

• Vector: defines a non-contiguous data layout that consists of equally spaced

blocks of the same datatype.

• Indexed: specifies a noncontiguous data layout where neither the size of each

block nor the displacements between successive blocks are equal.

• Struct: consists of location-blocklength-datatype tuples, allowing for the most

flexible type of non-contiguous datatype construction.

Once constructed and committed, an MPI DDTs can be used as an argument for

any point-to-point, collective, I/O, and one-sided functions. MPI DDTs allow users

to treat non-contiguous data in a convenient manner as though it was contiguous in

memory. Because current network is bandwidth-oriented instead of latency-oriented,

large messages delivers better bytes per second transfer rates (network bandwidth).

Without MPI DDTs, users must manually copy any data to be sent to a contiguous

buffer, pass that to the send routine, and then unpack the data when it is received.

With MPI DDTs, users can safely rely on MPI runtime to make such pack/unpack

operations trivial and portable. Internally, the MPI datatype engine automatically

packs and unpacks data based on the type of operation to be realized, in an efficient

way while hiding the low-level details from users.

MPI DDTs provide a solution to avoid intermediate packing and unpacking of

communication data that might otherwise be necessary when working with non-

contiguous data manually, therefore, it is widely adopted by scientific applications.

In the 2D stencil application of the Scalable HeterOgeneous Computing benchmark

18



(SHOC) Danalis et al. (2010), two of the four boundaries are contiguous, and the

other two are non-contiguous, which can be defined by a vector type. In the LAMMPS

application from the molecular dynamics domain Schneider et al. (2012), each process

keeps an array of indices of local particles that need to be communicated; such an

access pattern can be captured by an indexed type. Hence, MPI datatypes help

application developers alleviate the burden of manually packing and unpacking non-

contiguous data. Recent MPI implementations have exhibited significant performance

improvement for the handling of non-contiguous datatypes when handling CPU-based

data Ross et al. (2003); Schneider et al. (2012). Therefore, it is urgent to extend the

MPI DDTs support to GPU data for efficient programming in heterogeneous systems.

2.2.2 MPI Point-to-point Communications

MPI point-to-point communications typically involve message exchanges between

two MPI processes. One process is performing a send operation and the other

process is performing a matching receive operation. As early as 1994, point-to-point

communications have been included into the first MPI standard (MPI-1.1) MPI Forum

(1995). MPI point-to-point communication is the basic communication routines, other

communication patterns such as collective communication are build on top of point-

to-point operations. Therefore, it is very important to deliver high performance

point-to-point operations. MPI point-to-point operations can be categorized into two

types based on the number of send and receive operations:

• Single send/receive: these types of routines issues only one send/receive

operations at once, such as MPI Send and MPI Recv.

• Combined send/receive: these types of routines combine in one call the sending

of a message to one destination and the receiving of another message, from

another process, such as MPI Sendrecv.

Single send/receive routines support blocking and non-blocking mode. In blocking

model, routines only return after it is safe to modify the users’ data buffer for reuse. In
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non-blocking model, routines return immediately without any communication events

to complete, such as message copying from user memory to system buffer space or the

actual arrival of message; actual communications are progressed only after the call to

routine MPI Wait/MPI Waitall. Combined send/receive routines does not have

non-blocking model since it force the sequence of receive after send, while non-blocking

send/receive do not guarantee such sequence. No matter blocking or non-blocking

model, the progressing of communications are the same; the only difference is the

moment of progress (immediate or delayed). In this dissertation, we work on the layer

of progressing point-to-point data transfer, hence, our work support both blocking

and non-blocking point-to-point communications. The data type that is sent/received

in MPI point-to-point routines can be either primitive or derived datatypes. The

following subsections describe the API definition of single and combined send/receive

operations in the MPI standard MPI Forum (1995)

Single Send/Receive

• Send

int MPI Send(const void *buf, int count, MPI Datatype datatype, int dest, int

tag, MPI Comm comm)

int MPI Isend(const void *buf, int count, MPI Datatype datatype, int dest, int

tag, MPI Comm comm, MPI Request *request)

MPI Send blocks until the message is sent to the destination. MPI Isend is

non-blocking; the sender should not modify any part of the send buffer after a

nonblocking send operation is called, until the send completes.

• Receive

int MPI Recv(void *buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Status *status)
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int MPI Irecv(void *buf, int count, MPI Datatype datatype, int source, int tag,

MPI Comm comm, MPI Request *request)

MPI Recv is blocking: it returns only after the receive buffer contains the

newly received message. A receive can complete before the matching send has

completed (of course, it can complete only after the matching send has started).

MPI Irecv is non-blocking; the receiver should not access any part of the receive

buffer after a nonblocking receive operation is called, until the receive completes.

Combined Send/Receive

• Send/Receive

int MPI Sendrecv(const void *sendbuf, int sendcount, MPI Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount, MPI Datatype recvtype, int

source, int recvtag, MPI Comm comm, MPI Status *status)

MPI Sendrecv executes a blocking send and receive operation. Both send and

receive use the same communicator, but possibly different tags. The send

buffer and receive buffers must be disjoint, and may have different lengths and

datatypes.

2.2.3 MPI Collective Communications

MPI collective communications are abstracted from a wide variation of distributed

parallel algorithms, which are another set of widely used communication patterns in

MPI applications. MPI collective communications involve message exchanges among

all processes in the scope of a communicator. Similar to point-to-point commu-

nications, collective communications are also included in the first MPI Standard

(MPI-1.1) MPI Forum (1995). As well as point-to-point communication, collective

communications are frequently used in all kinds of MPI applications. For example,

broadcast and reduce are often used in All-Pairs-Shortest-Path algorithm Plaat et al.

(1999) and deep learning applications Yu et al. (2014). In this dissertation, we focus
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on two types of widely used collective operations: broadcast and reduce, and the

performance of these operations are greatly threatened by increasing amounts of

data and hardware complexity especially when GPU is engaged. The performance of

applications are usually sensitive to quality of implementations of these operations.

The following subsections describe the API definition of single and combined

send/receive operations in the MPI standard MPI Forum (1995).

Broadcast

int MPI Bcast ( void buffer , int count , MPI Datatype datatype , int root ,

MPI Comm comm)

MPI Bcast sends a message from the root process to all processes within the

communicator. It is called by all processes of the communicator with the same

arguments for comm and root. Once returned, the contents of roots communication

buffer has been copied to all processes.

Reduce

int MPI Reduce(const void *sendbuf, void *recvbuf, int count, MPI Datatype

datatype, MPI Op op, int root, MPI Comm comm)

MPI Reduce performs a reduction operation “op” across all processes within the

communicator. Data is gathered from send buffer (sendbuf) and final result is in

receive buffer(recvbuf). This routine also support in-place mode, which converts the

receive buffer into a send-and-receive buffer.

2.2.4 Literature Review

GPU-aware MPI Point-to-point Communication

Heterogeneous systems equipped with both CPUs and GPUs are currently the most

popular platform in high performance computing. Writing efficient applications for

such heterogeneous systems is a challenging task as application developers need
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to explicitly manage two types of data movements: intra-process communications

(device to host) and inter-process communications. Recent versions of well-known

MPI libraries such as MVAPICH2 Wang et al. (2011b) and Open MPI already provide

some levels of GPU support for point-to-point communications. With these GPU-

Aware MPI libraries, application developers can use MPI constructs to transparently

move data, even if the data resides in GPU memory. Similar efforts have been made

to integrate GPU-awarness into other programming models. Aij et. al. propose

the MPI-ACC Aji et al. (2012), which seamlessly integrates OpenACC with the

MPI library, enabling OpenACC applications to perform end-to-end data movement.

Lawlor presents the cudaMPI Lawlor (2009) library for communication between

GPUs, which provides specialized data movement calls that translate to cudaMemcpy

followed by the corresponding MPI call. Even though the paper discusses non-

contiguous data support, the current implementation only includes support for vector

types. For the PGAS programming model, Potluri et. al Potluri et al. (2013) extend

OpenSHMEM to GPU clusters providing a unified memory space. However, as

OpenSHMEM has no support for non-contiguous types, this implementation does

not provide sufficient support to communicate non-contiguous GPU data. All these

works focus on providing GPU-awarness for parallel programming models, and have

been demonstrated to deliver good performance for contiguous data, but none of them

provide full and efficient support for non-contiguous data residing in GPU memory.

More recent works have focused on providing non-contiguous MPI datatype

functionality for GPU data. Wang et. al. have improved the MVAPICH MPI

implementation to provide the ability to transparently communicate non-contiguous

GPU memory that can be represented as a single vector, and therefore translated

into CUDA’s two-dimensional memory copy (cudaMemcpy2D) Wang et al. (2011a).

A subsequent paper by the same authors tries to extend this functionality to many

data-types by proposing a vectorization algorithm to convert any type of datatype

into a set of vector datatypes Wang et al. (2014). Unfortunately, indexed datatypes

such as triangular matrices, are difficult to convert into a compact vector type. Using
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Wang’s approach, each contiguous block in such an indexed datatype is considered as

a single vector type and packed/unpacked separately from other vectors by its own

call to cudaMemcpy2D, increasing the number of synchronizations and consequently

decreasing the performance. Moreover, no pipelining or overlap between the different

stages of the datatype conversion is provided, even further limiting the performance.

Jenkins et. al. integrated a GPU datatype extension into the MPICH

library Jenkins et al. (2014). His work focuses on the packing and unpacking of

GPU kernels, but without providing overlaps between data packing/unpacking and

other communication steps. Both Wang and Jenkins’s work require transitioning

the packed GPU data through host memory, increasing the load on the memory bus

and imposing a significant sequential overhead on the communications. All of these

approaches are drastically different from our proposed design, as in our work we favor

pipelining between GPU data packing/unpacking and data movements, and also take

advantage, when possible, of GPUDirect to bypass the host memory and therefore

decrease latency and improve bandwidth.

GPU-aware MPI Collective Communication

In heterogeneous system, according to underlying link properties between processes,

when data is residing in GPU memory, communications between any two processes

could use different networks depending on the location of GPUs (discussed in

Section 1.1). Therefore, message exchanges between processes involve different

networks (intra-socket, inter-socket and inter-node). To minimize the data movement

over the heavy channels, collective communication should be able to take care of GPU

localities, which is represented by GPU network topology.

For data in host memory, several previous works have been done to use

topology-aware idea for collective operations to take advantage of communication

cost differences at every level in network. MagPIe Kielmann et al. (1999) creates

hierarchical algorithms for clustered wide-area systems to avoid slow links. MPICH2

Zhu et al. (2009) implements several collective operations by exploits knowledge of
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the topology. But these works only consider two network layers. Karonis et. al.

Karonis et al. (2000) extends the previous work and presents a multi-level topology-

aware tree to support more network layers. Later, MVAPICH2 Kandalla et al. (2010)

Subramoni et al. (2012a) introduce Neighbor-Joining techniques to detect network

topology on switch level, and adds one more levels in the network hierarchy collective

operations. However, all these approaches focus on exploring more and more network

topology levels. While they provide interesting performance compared with a single-

level approaches, but their inter and intra levels communications do not cooperate

tightly, leading to non-communication overlap between different topology levels.

Other researchers try to take the benefit of shared memory and propose

hierarchical collective operations. Tipparaju et. al. Tipparaju et al. (2003) uses

shared memory as intermediate buffer to reduce number of memcpies. Cheetah

Graham et al. (2011) is a hierarchical collective communication framework. In

this framework, a Directed Acyclic Graph is constructed based on characteristics

of communication topology. It can take advantage of shared memory for intra-node

communications and point-to-point (p2p) or InfiniBand CORE-Direct for inter-node

communications. Parsons et. al. Parsons and Pai (2014) decouples the choice

of inter-node and intra-node communication algorithms. Similarly, all these work

do not have communiation overlap between levels. HierKNEM Ma et al. (2012)

enables tight collaboration between the collective algorithms pertaining to different

layers of the hierarchy. It combines KNEM(an Linux kernel for memcpy in shared

memory), pipelining and hierarchical idea to allow overlap of inter-node and intra-

node communication. But it only have two topology level and in each level the

tree is fixed. Our algorithm can support multiple topology levels and each level can

select different algorithms base on different characteristic of each group like number

of processes and message size. Also HierKNEM is bind to shared memory, but our

framework is much more flexible which supports different hardware like GPU.

State-of-the-art MPI libraries such as Open MPI and MVAPICH2 Singh et al.

(2011) have provided CUDA-aware collective communications. But they never
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integrate GPU knowledge into their MPI, which still move data from GPU memory to

host memory for reduction operations, without taking the parallelism feature of GPU

to handle large parallel reduction operations. Later, Chu et. al. Chu et al. (2016) and

Oden et. al. Oden et al. (2014) have proposed CUDA-aware reduce operations by

leveraging CUDA kernels to handle reduction operations. Similarly NVidia introduces

NCCL NVIDIA (2016), which is collective communication library targeted to shared

memory multi-GPU platform. Overall, non of them take care of network hierarchical

topology of GPU clusters. Awan et. al. Awan et al. (2016) have integrated NCCL

into MVAPICH2 to provide hierarchical broadcast operations by using NCCL to

handle intra-node communications. However, similar to MVAPICH2 in CPU clusters

discussed before, there is no communication overlap between different topology levels.

Moreover, they never consider the intra-node GPU locality (PCI-Express level). Our

design is the first MPI implementation who is integrated with inter- and intra-node

GPU network topology and allows communications overlap of inter and intra levels.
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Chapter 3

PaRSEC’s Support for

Heterogeneous System

The portion of this chapter is drawn from the following publication of mine:

• W Wu, A Bouteiller, G Bosilca, M Faverge, J Dongarra, “Hierarchical dag

scheduling for hybrid distributed systems”, Parallel and Distributed Processing

Symposium (IPDPS), 2015 IEEE International

3.1 Issues of PaRSEC in Heterogeneous System

Data-flow programming paradigm describes an application as a DAG where nodes

represent tasks and edges represent data dependencies between tasks. Deploying a

task promptly to a proper execution location is critical to performance of application,

therefore, it is preferred to apply a task-based runtime to schedule DAGs to achieve

fully exploiting of the computing resources in heterogeneous systems. In the context

of linear algebra, DAGs have been demonstrated to be an extremely effective way to

describe tiled linear algebra algorithms. PaRSEC, an adoption of data-flow program

paradigm, takes this DAG-based representation and schedule tasks efficiently in

homogeneous systems. However, when porting them to heterogeneous system to use
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both CPU and GPUs efficiently, there are several issues caused by the hardware

differences and separated memory space between GPU and CPU. This chapter

describes how we solve these issue and achieve high occupancy of both CPU and

GPUs.

3.1.1 Data Granularity of CPU/GPU Tasks

Tiled linear algebra is a representative class of algorithms that can be expressed

efficiently with a data-flow: the parallelism between operations is represented with a

DAG that symbolizes the flow of data between several tasks called kernels, which are

described as nodes in a DAG. As discussed in Chapter 2.1.3, in tiled linear algebra

algorithms, each kernel works on tiles instead of element of matrix. The tile size is

a key tuning parameter that affects the efficiency of kernels tremendously. In most

linear algebra algorithms, the tile size has been assumed to be constant for all kernels.

In most heterogeneous systems, a computing node features several CPU cores

and one or more GPUs. Kernels are executed on CPU cores or GPUs depending on

their performance profile and the occupancy on the target execution unit. Compared

with CPU cores, a GPU has many more lightweight computing units; hence GPU

tasks(kernels) usually require more data parallelism than CPU tasks to achieve high

occupancy of GPU as they need to dispatch computation on many individual cores.

The optimal data granularity of GPU tasks is larger than CPU. In tiled linear algebra

algorithm, such data granularity is described as tile size. Therefore, GPU kernels

reach their optimal efficiency when using larger tile sizes; on the other hand, CPU

cores often reach good efficiency when using moderate or small tile sizes. Figure 3.1

shows the performance of the SGEMM (real single precision general matrix-matrix

multiplication) kernel on different environments varies by tile size.

When running on a 8 cores Intel Nehalem Xeon E5520 CPU, the best CPU

implementation of SGEMM (Intel MKL) reaches its peak performance starting from

problem sizes larger than 200; while in the best GPU implementation of SGEMM
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Figure 3.1: Performance of compute kernels on CPU and GPU depending on
problem granularity

(cuBLAS), the optimal problem size is larger than 1000 on a Fermi C2070, and larger

than 1500 on a Kepler K40. When problem size (matrix size) is fixed, the total

number of tasks is directly depended on tile size. Therefore, in a heterogeneous

system, selecting a optimal tile size becomes a dilemma:

• If small tile size (optimal for CPU) is used, GPU kernels can not achieve fully

utilization of the GPU computing resources since the small problem size cannot

efficiently span over all GPU execution units.

• If large tile size (optimal for GPU) is used, given a certain matrix size N, the

amount of exploitable parallelism of a DAG is limited by the number of tiles,

directly depending on the tile size (N/B). Therefore, when problem size is fixed,

increasing the tile size proportionally decreases the parallelism. Furthermore,

certain kernels (especially memory bound kernels) are less efficient than their

functionally equivalent decomposition into smaller but more compute bound

kernels. Executing these large kernels is thereby adding synchronous choke

points that delay the execution of other dependent kernels, further decreasing

the occupancy of all compute resources.
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Traditional solutions used a trade-off approach Bosilca et al. (2011) by choosing

an intermediate tile size, larger than the CPU optimal, but smaller than the GPU

optimal. Clearly, this trade-off solution is not able to maximize the usage of both

the CPU and GPU computing resource. Another solution is to use small tile size

for all tasks, and batch execution of GPU tasks by using some batched libraries, i.e.

Nvidia introduces batched cuBLAS NVIDIA (2016a) which is able to batched launch

a group of GPU kernels of small sizes, to have better GPU occupancy than regular

cuBLAS library. However, as shown in Figure 3.1 , batched cuBLAS only performs

well for very small tasks, otherwise, no matter how many tasks are batched, it is

not able to get the best GPU utilization as regular cuBLAS. To address the issue of

tile size disagreement of tasks in CPU and GPU, we propose a new solution called

“hierarchical DAG”, in which the tile size decomposition varies depending on the

target unit executing the task, a decision taken dynamically based on the available

parallelism. We describe the details in Section 3.2.

3.1.2 Different Memory Spaces

Since GPU and CPU have different memory spaces, in order to execute a GPU task,

it requires developers to move data into GPU memory prior launching GPU kernels,

and later move data back to CPU memory after kernel is finished. A easy way to

port conventional task-based runtime to heterogeneous systems is to serialize data

transfer with GPU kernels. However, limited by the network bandwidth between

host and GPU, such data movement is expensive and would alleviate the advantage

of high performance GPU kernels. Therefore, the knowledge of different memory

space should be integrated into task runtime to provide the capability of overlapping

GPU kernels with data transfers, which is discussed in Section 3.3.

Some tasks such as matrix-matrix multiplications have high demand of data (it

requires pulling 3 input matrix from host memory, and pushing back a output matrix),

hence it is unlikely to perfectly overlap GPU kernels execution with data transfers,
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resulting sub-optimal performance. Further optimizations should be taken account

of to mitigate the traffic over PCI-Express. When deploying tasks in heterogeneous

system, tasks can be either run on CPU or GPUs. With the DAG representation, a

edge between two tasks represents data flows from one task to the other. However

such data-flow does not require physical data movements if tasks are running on the

same devices. Therefore, it is not necessary to move data in/out of GPU memory for

each tasks; Instead, data can be cached in GPU memory for reuse by other tasks to

minimize the traffic over PCI-Express. we propose a data coherence protocol to track

the data in both CPU and GPUs memory to reduce unnecessary data movement,

which is discussed in Section 3.4.

In the current design of GPU, GPU memory is usually built on graphic card.

Limited by the size of graphic card, it is not possible to integrate many memory chip

on graphic card, hence, the size of GPU memory is not larger than 12 GB, and is

much smaller than CPU memory whose size can be easily extended by adding more

pieces of memory or replacing existing memory with a larger piece. Therefore, it is

likely that entire data of an application can not be fit into GPU memory. When

towards exascale machines, the scale of application is larger and larger, hence, task-

based runtime should be able to support out of core execution, which allows larger

application size than GPU memory. To address this issue, we develop a memory

management policy to flush least used GPU data back to CPU memory and reuse

the memory for data of further tasks, which is discussed in Section 3.5.

3.2 Hierarchical DAG

To solve the data granularity disagreement of CPU and GPU tasks in heterogeneous

systems, we propose “hierarchical DAG” approach to allow tasks running on different

execution devices operate on data of different granularities. The hierarchical method

described below can be generalized to any number of hierarchies, but for the sake

of the explanation we will consider a two levels hierarchy, GPU and CPU. In this
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section, we use the case of tiled dense linear algebra to demonstrate it is a efficient

tasking model for heterogeneous systems. Meanwhile, we describe how to modify the

PaRSEC runtime to support “hierarchical DAG”.

3.2.1 Methodology

Assume the optimal tile size for a GPU is B, and the one for a CPU is a smaller tile

size b. B and b can be obtained by running a task operating on single tile in both

CPU and GPU and tuning the tile sizes. With “hierarchical DAG” method, the input

matrix is divided into NT×NT tiles of size B×B, and the linear algebra algorithm is

represented by a DAG whose data granularity of tasks is B. At the top level, all tasks

in the original DAG operate on large tiles, and the corresponding tasks are pushed

into queues for scheduling on CPUs or GPUs. When retrieving these tasks from the

scheduling queues, a decision algorithm (described in Algorithm 1) is executed. If a

task is going to be scheduled for GPU execution, then it is executed directly by calling

the GPU kernel functions (as a cuBLAS function). If a task does not map well on a

GPU, or GPUs are overloaded with other pending tasks, then the task is scheduled

on a CPU core. In such case, the CPU task is called only if the data granularity is

bellow b. Otherwise, instead of calling the CPU kernel functions directly on the large

tile, the CPU task is split into a finer granularity DAG operating on the smaller tiles

whose size is b.

Algorithm 1 Generic TASK X( A ) code in the “hierarchical DAG” approach
(b:small tile size).

if OnGPU ||((nbrows(A) < b)||(nbcols(A) < b)) then
GPUComputeTaskX( A ) // by calling kernel function
ReleaseDeps( Task X, A )

else
o = CreateDAG( Task X, A,

ReleaseDeps( Task X, A ) )
Submit(o)

end if
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When a large grain task is scheduled onto a CPU core, the “hierarchical DAG”

capable runtime decomposes the CPU workload into a finer grain parallelism that is

more adequate for this type of execution unit. The creation of fine grain DAGs happen

online; no preprocessing or static decomposition is required. The runtime engine

creates a local data descriptor, a different view of the input sub-matrix representing

the large tile divided into smaller tiles. A new DAG is created to represent the

fine grain decomposition of the task’s algorithm applied on these smaller tiles. Tasks

operating on large tiles that are scheduled for execution on CPU cores are divided into

finer grain tasks operating on nt×nt tiles of size b× b (B = nt× b). These fine grain

tasks are pushed into the scheduling queues and can be executed on any available CPU

core. Upon the completion of the final task in the finer grain DAG, the parent coarse

grain task is completed through a callback system added as extra-information to the

fine grain DAG: the metadata representing the fine grain DAG is released and the

dependent coarse grain tasks are pushed into the scheduling queues. Multiple coarse

grain tasks can be decomposed simultaneously and the resultant fine grain tasks

scheduled concurrently on the available CPU cores. Overall, the “hierarchical DAG”

method is based on a dynamic division of a data-flow into smaller flows, allowing for

an increase in the available parallelism (as this has the potential to generate more

local tasks), and for a decrease in the task execution time.

3.2.2 Case Study: Cholesky Factorization

As discussed in Chapter 2.1.3, Cholesky factorization is a widely used dense linear

algebra routine, which is consisted of 4 types of kernels: POTRF, TRSM, SYRK and

GEMM. Figure 2.3 is the DAG representation of Cholesky factorization on matrix

4 × 4 tiles. In heterogeneous systems, the developer determines which kernels are

offloaded onto GPUs. In practice, the implementation of these kernels rely on BLAS

libraries (MKL on Intel CPUs, cuBLAS for Nvidia GPUs). We made the choice of

offloading onto GPU only the most computationally intensive kernels, respectively
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Figure 3.2: DAG representation of Cholesky factorization on matrix of 4× 4 tiles

GEMM for the Cholesky factorization. GEMM kernel represents the bulk of the

computation time and experience a great speedup when executed on GPU, while the

outlook for other kernels is not as favorable. Therefore, in Cholesky factorization,

we make our decision to only execute GEMM tasks on GPU, while other tasks stay

on CPU. Figure 3.2 presents the DAG of Cholesky factorization in Figure 2.3 by

high-lighting GPU tasks. However, GEMM tasks also can be run on CPU cores when

GPU is overloaded, according to the load balance strategy discussed in Section 3.6.

We now discuss how the Cholesky factorization algorithm can be adapted to take

advantage of the adaptive task granularity.

As discussed in Section 3.1.1, tile size is a very important factor to achieve the

best performance. Using a large tile size decreases the total number of tasks, increases
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Figure 3.3: DAG of “hierarchical DAG” Cholesky factorization, whose size is 4× 4
large tiles and then each CPU task is split into 3× 3 small tiles.

the execution time of each CPU task, and therefore delays the release of dependent

tasks. The two effects combine to reduce the efficiency of the CPU and generate idle

time due to task starvation. When the “hierarchical DAG” approach is applied, the

original DAG is dynamically transformed into a new DAG (Figure 3.3) featuring an

adapted granularity for both CPU and GPU units. Ideally, all types of tasks should

have a fine grain decomposition. In the Cholesky factorization, all four kernels are

available in the DPLASMA library as tiled algorithms. When handling POTRF,

TRSM and SYRK tasks, a large tile is divided into an nt × nt tiled matrix whose

tile size is b × b, the regular Cholesky factorization kernels can be directly replaced

by tiled algorithms version represented by fine grain DAGs, as shown on Figure 3.3

where tiles in coarse DAG are divided into matrices of 3 × 3 small tiles. PaRSEC
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runtime selects a proper execution unit (CPU core or GPUs) for GEMM tasks based

on load balance. If a GEMM task stays on a CPU core, similar to other tasks running

on CPU, it is split and replaced by a fine grain DAG. If a GEMM task goes to GPU,

it is not split, and operates on large tiles. In such way, “hierarchical DAG” achieves

tasks running on different devices operate on tiles of optimal sizes, resulting better

utilization of both CPU and GPUs than traditional tiled algorithms with unique tile

size.

3.2.3 Hybrid Data Layout

In a regular tiled algorithm, data of each tile is stored in contiguous memory (the

so called tile layout). When the “hierarchical DAG” approach is applied, tiles used

by CPU kernels are treated as a full matrix and a finer grain algorithm is applied

on smaller sub-tiles. However, in these sub-tiles, the data layout is not contiguous

anymore. Instead, sub-tiles are in the LAPACK data layout, where iterating from one

column to the next jumps over a stride. Figure 3.4 shows the resultant hybrid data

layout in the “hierarchical DAG” algorithm. We have adapted our tile algorithms

to work indifferently on either tile or LAPACK layout, so that our algorithms can

be applied directly onto fine or coarse grain tasks. To support “hierarchical DAG”

in PaRSEC runtime, We have modified PaRSEC to enable it view data in different

layouts for tasks of different hierarchical levels of DAGs. It should be noted that this

versatility may come at a performance price since employing the LAPACK layout

on small tiles may decrease data locality, but we expect (and demonstrate in the

performance section) a profitable trade-off. Another approach would be to perform

in-place translation, but this carries a cost of its own, and in the light of the satisfying

performance results obtained when operating on LAPACK format directly, we did not

pursue such a speculative gain.
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Figure 3.4: Different data layout: tile and LAPACK. For sub-tiles in the fine grain
DAG (red), the data layout is the same as the LAPACK layout with interleaved data,
while tile layout (blue) is used for large tiles and permits a much more efficient data
transfer to/from the accelerators.

3.2.4 Hierarchical DAG Task Scheduler in PaRSEC

In a classical PaRSEC program, creating an instance of a DAG object, which

represents the data-flow dependencies of an algorithm, is a collective operation across

the entire distributed memory domain. The creation operation generates the local

handle that contains the metadata used to track the state of the progress in the data-

flow algorithm, but also allocates a unique identifier used to tag the internal messages

exchanged between nodes to perform the distributed scheduling and data transfer.

In contrast, the fine grain DAG object instances spawned from coarse grain tasks

span only the local domain, and do not need to be created collectively across the

entire distributed domain. This is an important property, because unlike the creation

of the coarse grain DAG object, which happens only once during the initiation, the

creation of a fine-grain DAG object happens multiple times asynchronously during

the computation. The scheduling between the distributed domains operates on the

coarse grain DAG, even without the knowledge of these sub-graphs; thus it can remain

unchanged. A new, thread-safe and non-collective DAG object creation operation has

been added. It allocates the instance identifier in a local range that never collides
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with the global identifiers used for collectively allocated DAG objects. Aside from

this initial difference, the local DAG object instances are similar and can be managed

concurrently by the same scheduler (with the exception that these tasks must all be

scheduled on a shared memory local domain).

3.3 Employing Multiple CUDA Streams

Data transfer between host and GPU memory are expensive, hence, in PaRSEC,

we offload data movements and GPU kernels to different CUDA streams to overlap

communications with computations. We define the execution of each GPU task as

three stages: moving data from the host memory into the GPU memory, kernel

execution, and moving data back to the host memory. In order to overlap data

movement and kernel execution, each operation type runs in a separate CUDA

stream. Since PCI-Express is bidirectional, we reserve one CUDA stream to handle

data movement from host to GPU memory and another CUDA stream to handle

the opposite direction. A single stream per direction is sufficient to saturate the

PCI-Express bandwidth and adding supplementary streams does not improve data

movement speed.

GPU streams are also employed to partially circumvent the issues stemming from

the conflicting goals of preserving parallelism with smaller tasks and improving per-

task GPU efficiency with larger tasks that can employ all execution units of a GPU.

By scheduling multiple GPU kernels simultaneously on multiple CUDA streams, the

PaRSEC runtime improves the occupancy of the GPU units when moderately sized

tasks are submitted: each task employs only a subset of the GPU processing units,

but concurrently submitted tasks can employ the unused units. Performance results

in Section 3.7.2 demonstrates that even this optimization is insufficient to achieve

maximum compute throughput without employing hierarchical DAG.
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3.4 Data Coherence between CPU and GPUs

As discussed before, in order to execute tasks on a GPU, data should be moved

from CPU to GPU memory, which is a expensive operation. Therefore, to efficiently

deploy tasks in heterogeneous systems, task-based runtime should be able to carefully

minimize such data movement. PaRSEC minimizes data movement with a careful

selection of the computational unit where a task is to be executed, based on the

current workload of the unit but also on the cost of moving the data needed for

the task execution into the unit memory. In PaRSEC program, data of a matrix

tile could have multiple copies, coexisting in different memory spaces of different

devices. We developed a data coherence protocol to track the location of these copies

by taking the idea of MOESI AMD (2010). A data copy has 5 status: Modified,

Owned, Exclusive, Shared and Invalid. Requirement of data movement is determined

by checking the transition of data copy status. When dispatching a task to a GPU,

PaRSEC runtime checks if data of the task is already available in the target GPU

memory, with the effect of reducing the amount of data transiting between the host

and GPUs. Figure 3.5 shows an example of using data coherence protocol to infer

data transfer between host and GPUs. This figure presents the first two steps of

Cholesky factorization of 4× 4 tiles. Assume the two GEMM tasks of step 0 run on

the same GPU and TRSM task of step 1 runs on CPU. Table 3.1 shows the transition

of data copy status of tiles on both host and GPU memory. By checking the status,

the second GEMM task does not need to move tile A since the data is already moved

in by the first GEMM task; tile C is required to be move back to host memory for

task TRSM since CPU does not have the most current version of C.

PaRSEC overlaps communication with computation by leveraging asynchronous

data movement, where data transfer is handled by underlying DMA engines. Hence,

when to change the status of data copies becomes a problem: if modifying the status

right after issuing a data movement, other tasks who also need this data would

consider data is already available in memory while the data could still in transition
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Figure 3.5: Step 0 and step 1 of cholesky factorization of 4× 4 tiles. RW refers to
Read and Write of data; R refers to Read data

Table 3.1: Status transition of data copies of tile A and C after each task.(Only
tiles A and C are presented as they are shared accessed by tasks)

Tasks host Mem GPU Mem
Init A:E, C:E A:I, C:I

GEMM 1 A:S, C:I A:S, C:M
GEMM 2 A:S, C:I A:S, C:M
TRSM A:S, C:M A:S, C:I

(i.e. the second GEMM could not get the correct tile A since its data movement is

issued by the first GEMM task, but may not be done yet); if not modifying the status

until the completion of data movement, future tasks who need data that is actually

under transfer see the invalid data status and would issue another data movement,

hence, it would bring unnecessary data movement and increase the traffic of PCI-

Express. To solve this issue, we modify the status of data copy right after issuing of

data movement, and use extra flags to track the status of the movement. Therefore,

in the example above, the second GEMM task can not step to kernel execution until

the fist GEMM marks the tile A as completion of data movement.

Regarding the qualitative aspect of the transfers, PaRSEC also prioritizes the

transfer for tasks closer to the critical path of the algorithm. This guarantees that

when the main PaRSEC scheduler follows the critical path of the algorithm as closely

as possible, the tasks offloaded to an accelerator adhere to the same imperatives.

40



Overall, with the help of data coherence protocol, PaRSEC infers automatic data

movements between host and GPUs, reducing traffics over PCI-Express.

3.5 Out of Core Execution

Allocation of GPU memory (cudaMalloc) involves GPU kernel calls, which is an

expensive operation. Hence, it is not efficient to use cudaMalloc to allocate memory

for data of each task; instead, the most common solution is to pre-allocate a large

chunk of GPU memory for applications. Some dense linear algebra libraries such

MAGMA allocates a large chunk of memory that entire matrix can be fit in. However,

limited by size of GPU memory, this method can not support problem size larger

than GPU memory, which is called out of core execution. PaRSEC pre-allocates

a chunk of GPU memory and manages it as a memory pool. To reduce memory

consumption, PaRSEC recycles memory that has been least recent touched for further

tasks. Therefore, the size of memory pool can be much smaller than actual problem

size. Figure 3.6 presents the GPU memory management strategy of PaRSEC. Based

on access mode, data copies of tasks are categorized as two groups: Read and Write,

which are managed with LRU (least recent used). Memory in Read LRU has higher

priority to be recycled than Write LRU, since data copies in Read LRU have not

been modified, hence, is not necessary to be updated back to host memory. In the

other side, data copies in Write LRU have to be moved back to host memory when

recycling, which is much more costly than recycling memory in Read LRU. To ensure

tasks are not delayed by memory recycle procedure, PaRSEC automatically recycles

Write LRU when ratio of Write LRU size to entire memory pool size hit to a pre-

defined threshold. To enable reusing of data among tasks, each data copies use

reference counter to record number of tasks concurrently accessing the data. Reference

counter is increased when a new task needs to access it and is decreased when a task

is done with the data. Memory recycle only happens to pieces of memory whose

reference counter is 0. When there is no memory that can be recycled, PaRSEC
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Figure 3.6: GPU memory management strategy in PaRSEC.

suspends tasks and tries to reschedule them in the future. With the GPU memory

management strategy, PaRSEC runtime is able to run applications of size much larger

than MAGMA, as observed in the Section 3.7.

3.6 CPU/GPU Load Balance

In a complex heterogeneous system, composed by CPUs and GPUs, one additional

constraint is to be taken into account. The tasks generated by the algorithm that are

distributed on the different computing resources should maintain a balance between

the load of the different computing units. Without a load-balance mechanism, the

overall computational throughput will decrease as some of the resources will become

overloaded while other will starve. In many solutions proposed in the literature, the

scheduler is either static with a predefined load distribution, or requires fine knowledge

of the duration of each task for each processor type, information we decided to ignore.

Instead, our mechanisms are simpler, close to a greedy approach in which we strive to

maintain all resources occupied simply based on the current workload of all computing

units (CPUs and GPUs).
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When scheduling a “hierarchical DAG” program, the runtime load balancing

mechanism has two separate levels. The first level separates the workload between

CPUs and GPUs at the coarse grain level. Based on the assumption that all tasks of a

particular type have a similar duration, and that the driving difference between them

is the cost of moving the required data to and from a device, the runtime computes

the inverse of the theoretical peak performance of a specified device, and uses it as

the weight of a task on this device; a device with a higher computing capacity will

have a smaller cost per task. When a new task is considered by the scheduler, its cost

is computed for each device, and the task is then assigned to the device which has

the lowest current workload. However, to minimize data movement, the selection of

the GPU execution device is also determined according to the current data locality:

we prioritize the placement of the computation on a GPU that already owns most

of the data that will be accessed by the task. The second level of load balancing is

realized between fine grain tasks executed on CPU cores, where job stealing according

to locality proximity is employed to equilibrate the fine grain tasks workload. Using

this simple yet efficient workload management, PaRSEC runtime can distribute tasks

on different heterogeneous devices and maintain good load balance, as observed in

the Section 3.7.

3.7 Performance Evaluation

In this section, we investigate the performance of PaRSEC runtime in heterogeneous

system. For a fair comparison, both the hierarchical DAG (shown as “h-PaRSEC in

the figures of results) and regular tiled (shown as “PaRSEC” in the figures of results)

factorizations are implemented using the PaRSEC framework We also compare our

implementation with the state-of-the-art implementation from MAGMA. All the

results presented in this chapter use the real double precision Cholesky factorization

(DPOTRF), respectively. Experiments are carried out on four systems:
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1. Bunsen is a machine with 3 NVIDIA Kepler K40 GPUs (12GB of memory per

GPU) and 2 Intel Xeon E5-2650v2 (16 cores total). We use CUDA 5.0.35 and

the Intel compiler 2013.4.183 (includes MKL BLAS).

2. Dancer is an FDR Infiniband small cluster. Each node is equipped with 1

NVIDIA Fermi C2050 GPUs (4GB of memory per GPU) and 2 Intel Xeon

E5520 (8 cores total). We use CUDA 5.5 and the Intel compiler 2013.4.183

(includes MKL BLAS).

3. Keeneland Full Scale (KFS) is an FDR Infiniband cluster. Each node is

equipped with 3 NVIDIA Fermi M2090 GPUs (6GB of memory per GPU) and

2 Intel Xeon E5-2670 (16 cores total). We use CUDA 5.5 and the Intel compiler

14.0.1 (includes MKL BLAS).

4. Titan is an FDR Infiniband cluster. Each node is equipped with 1 NVIDIA

Kepler K20 GPUs (6GB of memory per GPU) and 16 cores AMD Opterons (2

cores share a floating-point unit, so only 8 cores are used). We use CUDA 6.0

and the GNU compiler and BLAS from Cray libsci.

3.7.1 Overhead from Runtime Task Subdivision

In the hierarchical DAG approach, when a task of large data granularity (large tile size

B) needs to be executed on the CPU, the task workload is further split into several

finer grain tasks (small tile size b), and a temporary, finer grain DAG is created.

The initialization of internal PaRSEC objects representing this subdivision happens

online, as the execution unfolds, and therefore has a potential to induce management

overhead. Figure 3.7 presents the comparison between h-PaRSEC and standard

PaRSEC, when running on CPU only. Although an atypical use case scenario for

h-PaRSEC, the goal of such an experiment is to emphasize the overhead of DAG

subdivision management: in this setup without GPU accelerators, all B sized tasks

are subdivided, and all computational kernels eventually execute on tiles of size b;
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Figure 3.7: Overhead incurred from the hierarchical DAG subdivision management
(DPOTRF, CPU only). The h-PaRSEC version uses an big tiling of B=900, all tasks
are subdivided into small tiles of size b=180 (same as standard PaRSEC)

in essence, the only difference with a standard PaRSEC execution comes from the

creation and management of DAG subdivisions. As can be observed on the results,

both runs outline very similar performance. the h-PaRSEC version is about 4 Gflop/s

slower than the standard version. With respect to the overall performance of 260

Gflop/s, this translates into a marginal 1.5% performance overhead, which is easy to

overcome when the benefits from using an appropriate task granularity on both CPU

and GPU resources is factored in.

3.7.2 Number of CUDA Stream Tuning

CUDA Streams, which represent multiple available execution contexts mapped onto

the same physical GPU, can drastically improve the occupancy of GPU units by

allowing the device to overlap executions from different streams on all available
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Figure 3.8: Performance difference between hierarchical DAG and the standard
version on DPOTRF with a varying number of CUDA streams (Bunsen using 1 K40
GPU).

computational units. The potential for improvement is magnified when executing

multiple small grain tasks, as is the case when employing an improperly tuned tile

size.

Figure 3.8 presents the performance of the DPOTRF with 1 Kepler K40, when

employing a varied number of streams to submit GPU kernels. Employing several

CUDA streams improves drastically the throughput of the GPU for both the

standard PaRSEC and h-PaRSEC. Using multiple streams has an even greater

effect at improving the performance of standard PaRSEC. However, Even with

this optimization, the performance of standard PaRSEC can only match that of h-

PaRSEC without streams. When CUDA streams are also employed in h-PaRSEC, it

outperforms standard PaRSEC for all matrix sizes. Overall, these results outline

that multiple streams are not a sufficient optimization to alleviate the need for
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employing the hierarchical DAG approach. From the Figure 3.8, it can be observed

that the difference between employing 2 or 3 CUDA streams is low. Hence, in later

experiments, we always use 2 CUDA streams for kernel execution per GPU.

3.7.3 Tile Size Tuning

Tuning the tile size has traditionally been a difficult issue for linear algebra

software Sawa and Suda (2010). In the hierarchical DAG approach, tile sizes of both

coarse and fine grain DAGs need to be tuned. Figure 3.9 presents the performance

of DPOTRF on the Bunsen machine varies by both the inner (b, executed on CPU)

and outer (B, executed on GPU) tile sizes. In the experiment, different matrix sizes

(N=16K, 48K) are tested to emphasize the impact of the tile size on the amount of

available parallelism. Each curve represents a different value for b, for which B varies

(on the x-axis). In addition, the performance of standard PaRSEC is also presented

(then, the x-axis represents the single tile size used on both GPUs and CPUs). B

is set as a multiple of both b and 64 (due to the physical organization of the CUDA

warps on Nvidia cards).

On Bunsen, sequential BLAS kernels in Intel MKL executed on the CPU usually

obtain their peak performance when b is larger than 180. However, and although

GPU kernel performance remains sub-optimal for tile sizes smaller than 1K (see

Figure 3.1), the overall performance of standard PaRSEC (gray dash lines) on a

heterogeneous platform decreases when increasing the tile size. Two intermingled

effects are explaining this phenomenon. First, by increasing the tile size, the number

of GEMM tasks in the update of the trailing matrix is reduced, leading to reduced

parallelism. Second, the factorization of the panel itself becomes a bottleneck: the

associated operations apply to a single column of tiles, yet further progression is

conditioned on their completion. With large tiles, panel parallelism is drastically
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Figure 3.9: Performance for different tile size parameters (DPOTRF, using 1 GPU
on Bunsen).

reduced and the more parallel trailing matrix update is delayed, leading to under-

utilization of computing resources. As can be seen, this effect persists even for large

matrix sizes.

On the contrary, thanks to hierarchical subdivision of tasks into sub-DAGs,

h-PaRSEC is much less subject to starvation from lack of parallelism (the panel

factorization is divided into many small tasks whose data granularities are adapted

to reach peak performance on CPU). Obviously, if the GPU tile size B is set too

small (less than 512), the overall performance suffers from poor kernel efficiency.

Increasing the value of B delivers the expected performance boost from the compute

kernels’ efficiency improvement, without suffering as much from lack of parallelism

and poor performance on the CPU-executed panel factorization. Another interesting

note is, when using the hierarchical DAG approach, finding a value of B that delivers

acceptable performance is easier than when tuning for a single tile size. Even for
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small matrices that are prone to exacerbate lack of parallelism, the amplitude of

performance difference is reduced; while for larger matrices, a very wide band of

values deliver more than 90% of the best performing tuning. Developers can select

the smallest tile size that maximizes CPU performance as the value for b, and then pick

any reasonable multiple (around 1K) to set B. In the remainder of the experiments

of DPOTRF, we apply such a tuning, and b is set to 192, while B varies between 384

and 1152 depending on the matrix size.

3.7.4 Shared Memory

Figure 3.10 presents the performance of the DPOTRF on the Bunsen machine with

both h-PaRSEC and PaRSEC implementation. In both implementations, the tile size

is tuned to perform best for this particular matrix size (the sizes used by h-PaRSEC

are illustrated with a background color in the figure, the sizes employed in regular

PaRSEC are similarly tuned).

For all matrix sizes, h-PaRSEC always performs better than standard PaRSEC,

even for small matrices, when both employ the same tile size for kernels executed

on the GPU. In this case, the advantage comes from employing a smaller tile size

of 192 for computations executed on CPUs. For larger matrix sizes, h-PaRSEC

reaches 1.36Tflops/s for DPOTRF using 1 GPU, which is around 10% faster than

standard PaRSEC, demonstrating that when more parallelism is available, higher

kernel efficiency gives h-PaRSEC an extra boost.

Since the peak performance of cuBLAS DGEMM on 1 K40 is 1.2 Tflop/s, then

based on the performance result from the 1 GPU experiment (1.36 Tflop/s), it can be

inferred that CPUs contribute 160 Gflop/s on this platform. Based on these numbers,

a perfectly scalable implementation of Cholesky would achieve approximately 2.56

Tflop/s using 2 GPUs and 3.76 Tflop/s using 3 GPUs (the contribution of the CPUs

being accounted for only once). In practice, we obtain 2.5 Tflop/s with 2 GPUs and
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Figure 3.10: Performance of h-PaRSEC DPOTRF with regular PaRSEC and
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3.7 Gflop/s with 3 GPUs, which demonstrates the scalability up to 3 GPUs is almost

perfect.

Last, Figure 3.10 also presents the performance of the state-of-the-art MAGMA

GPU linear algebra package for reference (please note that the MAGMA results do

not include the cost of the initial transfer of the dataset to the GPU memory, whereas

this cost is implicitly included for h-PaRSEC, when the relevant data are transferred

in the background meanwhile computation is progressing). The comparison between

MAGMA and h-PaRSEC demonstrates that by retaining a dynamic distribution of

tasks, and dynamic load balancing between GPUs, while at the same time improving

the efficiency of compute kernels by employing hierarchical DAG subdivision, h-

PaRSEC can outperform (as seen for Cholesky) production quality software like

MAGMA, whose data distribution and load balancing are static. As discussed in
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Section 3.5, MAGMA requires matrix to be fit into GPU memory, while PaRSEC

runtime is able to recycle memory for future tasks. Therefore, as seen in Figure 3.10,

MAGMA runs out of GPU memory when matrix size is larger than 35K, 52K and

62K, respecting to 1 GPU, 2 GPUs and 3GPUs, and no results are plot.

3.7.5 Distributed Memory

Last, we investigate the performance affection of hierarchical DAG on distributed

memory machines. Figure 3.11 3.12 3.13 present the weak scalability performance of

h-PaRSEC and standard PaRSEC for the Cholesky factorizations on KFS, Titan and

Dancer. In a weak scalability experiment, the problem size is set in accordance to

the number of nodes, so that the workload per node keeps constant when increasing

the number of nodes. The experiment demonstrates a good weak scalability for both

standard PaRSEC and h-PaRSEC. However, as the number of nodes becomes larger,

the hierarchical DAG approach shows a better scalability. h-PaRSEC obtains 78% of

the ideal scalability on Cholesky factorization (performance at 1 node, multiplied by

number of nodes) on KFS, 65% on Titan and 88% on Dancer. When deploying

data over PxP nodes based on 2D block cyclic, for each task, the chance of a

particular input data being local is 1/P 2. When P is very small, many tasks

can execute without communications. When p becomes larger and larger, the

communication/computation ratio is much lower. Therefore the scalability curve

drops at first. However, the effect of varying P for large values of P is negligible.

Now, we investigate the ration of performance to practical peak performance.

KFS features 3 GPUs, whose practical GEMM peak performance is around 3 times

of its GPU peak. As seen in Figure 3.11, with 64 nodes, h-PaRSEC reaches 59

Tflop/s on DPOTRF, which represents 60.5% of the practical GEMM peak (GEMM

performance on 1 node, multiplied by 64). h-PaRSEC performs 10% faster than

standard PaRSEC. Although the overall efficiency is not as high as in the shared

memory machine, one has to consider that the execution platform is compute over
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Figure 3.11: Weak Scalability: DPOTRF performance as a function of the number
of nodes, with a problem size scaled accordingly (KFS, 3 M2090 GPUs and 16 cores
per node)

provisioned: Even for compute intensive algorithms such as Cholesky, the Infiniband

40G network is insufficient to feed 3 GPUs. This behavior is customary and can also

be observed when comparing the efficiency per core of ScaLAPACK versus LAPACK.

Dancer features only 1 GPU, but because its CPU is slow, so the ratio of GPU to CPU

performance is also 3. As seen in Figure 3.13, with 8 nodes, h-PaRSEC reaches 2.2

Tflop/s on FPOTRF, which represents 73% of the practical GEMM peak. h-PaRSEC

outperforms standard PaRSEC by 15%. The ratio on Dancer is much better then the

one on KFS, since there are only one Fermi GPU, and insufficient of network is less

significant . However, the number is still less than the one in shared memory. Titan

features a fast Kepler K20, but a slow CPU. The ration of CPU to GPU performance

is larger than 10. As seen in Figure 3.12, with 256 nodes, h-PaRSEC reaches 128

Tflop/s, which represents 50% of the practical GEMM peak. POTRF and SYRK
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Figure 3.12: Weak Scalability: DPOTRF performance as a function of the number
of nodes, with a problem size scaled accordingly (Titan, 1 K20 GPU and 8 cores per
node)

tasks in the diagonal of matrix are on the critical path of Cholesky factorization

algorithm, and are running on CPU. Since the CPU in Titan is much slower than

GPU, it is not sufficient to feed GPU tasks, leading to delay execution of GPU GEMM

tasks. Therefore, even without the insufficient of network (using 1 node), h-PaRSEC

only achieves 75% of practical GEMM peak. This phenomenon can also be observed

from the performance of regular PaRSEC. Without hierarchical subdivision of tasks

into sub-DAGs, such starvation is more significant in regular PaRSEC, resulting only

39% and 65% of practical GEMM peak performance on 256 nodes and 1 nodes. With

the help of hierarchical DAG, h-PaRSEC can split tasks into smaller tasks to provide

more parallelism, and somehow promote the execution of critical tasks, leading to

12% faster than regular PaRSEC. Overall the h-PaRSEC strategy better mitigates
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Figure 3.13: Weak Scalability: DPOTRF performance as a function of the number
of nodes, with a problem size scaled accordingly (Dancer, 1 C2050 GPU and 8 cores
per node)

the heterogeneity within nodes, which translates into a sizable gain on distributed

systems.

3.8 Summary

In this chapter, we have extended the PaRSEC runtime to heterogeneous system to

maximize the usage of both CPU and GPU resources by the following architecture

awareness optimizations. First, we have proposed a “hierarchical DAG” approach,

which is able to dynamically adjust the data granularity of tasks, leading to better

occupancy on GPU while providing enough parallelism for CPU execution. Second,

we have overlapped the data movement between CPU and GPU memory with task

executions on GPU by offloading communications and computations on multiple
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different CUDA streams. Third, we have presented a software data coherence protocol

to track the data copies on both CPU and GPU memory, in order to minimize the

data movement by reusing data in GPU memory. Last, we have designed a multi-level

GPU memory management strategy to support applications whose required data size

is larger than GPU memory size by reusing GPU memory. We have evaluated the

impacted of all the optimizations described above with an application called Cholesky

factorization on both shared and distributed memory machines. Experiment results

have demonstrated our optimizations are able to make PaRSEC to utilize both CPU

and GPU much more efficiently than previous work.
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Chapter 4

GPU-aware Point-to-point

Communication

The portion of this chapter is drawn from the following publication of mine:

• W Wu, G Bosilca, R Vandevaart, S Jeaugey, J Dongarra, “GPU-Aware

Non-contiguous Data Movement In Open MPI”, Proceedings of the 25th

ACM International Symposium on High-Performance Parallel and Distributed

Computing, 2016

4.1 Issues of Point-to-point Communication of

non-contiguous GPU Data in Open MPI

Message passing paradigm is another widely used program model in high performance

area, which is more generic than data-flow program paradigm. MPI point-to-point

(p2p) communication emphasizes transit a message between a pair of processes,

and is the basic building block of higher level communication routines such as

collective operations. Therefore, MPI p2p is critical to overall performance of MPI

applications. When towards heterogeneous system, p2p communications involve not

only data communication between CPU memory, but also between data of GPU
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memory. It is urgent to providing CUDA-aware MPI by integrating the knowledge

of GPU into MPI runtime to fully utilize GPU hardware feature and advanced

communication techniques such as GPUDirect RDMA. Recently, some state-of-the-

art MPI implementations such as Open MPI and MVAPICH already provide some

levels of GPU support to enable transparent data movement between processes even

if data is in GPU memory, avoiding explicitly data movement between host and GPU

memory prior to using MPI routines. However, none of them is able to efficiently

transit non-contiguous data. MPI derived datatype gives one the capability to define

contiguous and non-contiguous memory layouts, allowing developers to reason at a

higher level of abstraction, thinking about data instead of focusing on the memory

layout of the data (for the pack/unpack operations). Therefore, extending the same

datatype support to GPU data is extremely important for efficient programming in

heterogeneous systems.

Current networks are bandwidth-oriented instead of latency-oriented, and fewer

large messages provide better network bandwidth. Thus, in the context of non-

contiguous data transfers, instead of generating a network operation for each

individual contiguous block from the non-contiguous type, it is more efficient to

pack the non-contiguous data into a contiguous buffer, and send less – but larger

– messages. The same logic can be applied when data resides in GPU memory. In

heterogeneous system, GPU hardware features and memory space difference lead to

several possible solutions for non-contiguous GPU data communications; the four

solutions presented in Figure 4.1 are usually employed:

1. Copy the entire non-contiguous data including the gaps from device memory into

host memory. Accordingly, the data in host memory retains the same memory

layout as the original, and the traditional CPU datatype engine can handle the

pack/unpack operations. This solution provides good performance for memory

layouts with little gaps, but cannot be generalized since it wastes a large amount

of host memory for the intermediary copies, and has a potential degree of
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Figure 4.1: Four possible solutions for sending/receiving non-contiguous data
residing in GPU memory.

parallelism bounded by the CPU parallelism instead of taking advantage of

the computational power of the GPU.

2. The second solution is the one used in Open MPI, which issues one device-to-

host memory copy (cudaMemcpy) for each piece of contiguous data, packing

the data into a single, contiguous buffer. Once packed, the resulting contiguous

buffer is sent using a traditional approach. The receiver will also generate

the required host-to-device memory copies to scatter the temporary contiguous

buffer into the expected locations in device memory. The overhead of launching

lots of memory copies degrades performance. Moreover, a memory copy of each

small block of contiguous data is not able to utilize the bandwidth of PCI-

Express even with the help of multiple CUDA streams. Hence, the performance

of this approach is limited.

3. A small improvement upon the second solution, instead of going through host

memory, it issues one device-to-device memory copy for each piece of contiguous
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data, and directly copies data into the destination device memory. Similar to

the previous solution, this alternative suffers from the overhead of launching

too many memory copies and the low utilization of PCI-Express. Also, this

solution only works when the peers have identical memory layouts and the

hardware supports direct device-to-device copy.

4. The last solution is to utilize the GPU to pack and unpack non-contiguous data

directly into/from a contiguous GPU buffer. Then the contiguous GPU-based

buffer can either be moved between GPUs with hardware support, or – in the

worst case – through the host memory.

Among all of the above solutions, we believe the last to be the most promising.

From the hardware perspective, GPU has many light-weight cores and significantly

larger memory bandwidth than CPU, which might be beneficial for GPU pack-

ing/unpacking as these operations can be made embarrassingly parallel (discussed

in Section 4.2). Since the kernel is offloaded into the GPU while the CPU is mostly

idle (in an MPI call), it also provides the opportunity to pipeline pack/unpack with

send/receive (discussed in Section 4.3). From the memory space perspective, packed

GPU data is moved to destination process by either going through host memory or

not according to different hardware configurations. The 4th approach can be easily

adapted to any hardware configuration: if GPUDirect is supported, we can bypass the

host memory and use network RDMA capabilities, otherwise the copies to/from host

memory can also be integrated in the pipeline, providing end-to-end overlap between

pack/unpack and communications. In this chapter, we present the design of non-

contiguous GPU data communication based on the 4th approach, taking advantage

of CUDA’s many core capability and pipeline techniques to maximally the overlap

between pack/unpack operations and communications.
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4.2 Design of GPU Datatype Engine

In Open MPI, a datatype is described by a concise stack-based representation. Each

stack element records type-specific parameters for a block, such as the number

of contiguous elements in the block, the displacement of the first element from

the beginning of the corresponding stack frame, and the number of blocks to be

packed/unpacked. The most straightforward way to provide datatype support for

GPU data would be to port the original (CPU-based) datatype engine into the GPU.

However, porting the datatype stack to execute the pack/unpack operation on the

GPU generates too many conditional operations, which are not GPU friendly. Thus,

in order to minimize the branch operations executed by the GPU, we do not use

stack-based representations for GPU datatype, but design two representations (one

is for vector like shape, the other is more generic), which are suitable for parallel

processing in GPU.

4.2.1 Vector Type

Other than contiguous datatype, vector is the most regular and certainly the most

widely used MPI datatype constructor. A vector type is described by blocklengh

and stride, where blocklength refers to the number of primitive datatypes that a

block contains, and stride refers to the gaps between blocks. In our GPU datatype

engine, we developed optimized packing/unpacking kernels specialized for a vector-

like datatype. The pack/unpack is driven by CPU. The pack kernel takes the

address of the source and the destination buffers, blocklength, stride, and block

count as arguments, and is launched in a dedicated CUDA stream. The operation

is considered complete after a synchronization with the stream. The unpack kernel

behaves similarly to the pack kernel.

While accessing global memory, a GPU device coalesces loads and stores issued by

threads of a warp into as few transactions as possible to minimize DRAM bandwidth.

Figure 4.2 shows the memory access pattern of GPU packing and unpacking kernels,
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Figure 4.2: Access pattern of GPU pack/unpack kernels of vector type. The size of
a CUDA block is a multiple of the warp size.

forcing coalesced CUDA threads to access contiguous memory. Since device memory

is accessed via 32-, 64-, or 128-byte memory-wide transactions NVIDIA (2016b), in

order to minimize memory transactions, each thread theoretically should copy at least

4-bytes of data (128 bytes / 32 threads per warp). In our kernel, we force each thread

to copy 8-bytes of data to reduce the number of total loops of each thread. In the case

that data is not aligned with 8-bytes, the block is divided into 3 parts: the prologue

and epilogue sections follow the original alignment, while the middle one follows the

8-byte alignment.

4.2.2 Less Regular Memory Patterns

Datatypes other than vector are more complicated, and cannot be described in a

concise format using only blocklengh and stride, and instead require a more detailed

description including the displacement. However, one can imagine that any type can

be described as a collection of vectors, even if some of the vectors have a count

of a single element. Thus, it would be possible to fall back on a set of vector-

based descriptions, and launch a vector kernel (similar to 4.2.1) for each entry. This

design is unable to provide good performance as many kernels need to be launched,

overwhelming the CUDA runtime.

Instead, we propose a general solution by re-encoding a representation of any

complex datatype into a set of work units with similar sizes as shown in Figure 4.3 by

picking a reasonable work unit size. As described above, each entry is identified by a
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tuple <source displacement, destination displacement, length> named cuda dev dist.

Together with the source and destination buffers, these entries are independent and

can be treated in parallel. When entries work on the same length they provide a

good occupancy. The incomplete entries can either be delegated into another stream

with a lower priority, or treated the same as all the other entries. We choose to treat

them equally to the other entries, allowing us to launch a single kernel and therefore

minimize launching overhead. In a word, this generic solution can be divided into two

stages: first, the host simulates the pack/unpack and generates a list of tuples <source

displacement, destination displacement, length>; the second stage, represented by a

kernel executing on a GPU, is using this list to execute – in parallel – as many of these

pack/unpack operations as possible. A more detailed procedure for the pack/unpack

operations is as follows:

• First, convert the representation of the datatype from stack-based into a

collection of Datatype Engine Vectors (DEVs), where each DEV contains

the displacement of a block from the contiguous buffer, the displacement of

the corresponding block from the non-contiguous data and the corresponding

blocklength (the contiguous buffer is the destination for the pack operation, and

the source for the unpack).

• The second step is to compute a more balanced work distribution for each

CUDA thread. Limited by the number of threads allowed per CUDA block,

a contiguous block of data could be too large to use a single CUDA block,

resulting in reduced parallelism. To improve parallelism, a DEV is assigned to

multiple CUDA blocks. Instead of copying the entire DEV into GPU memory

and letting each CUDA block compute its working range, we take advantage

of the sequentiality of this operation to execute it on CPU, where each DEV

is divided into several cuda dev dist (called CUDA DEV) of the same size S –

plus a residue if needed – and each one is assigned to a CUDA WARP. Similar

to the vector approach, each CUDA thread accesses 8-bytes of data each time;
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Figure 4.3: Access pattern of GPU pack/unpack kernels using the DEV
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to fully utilize all threads of a WARP, the size S must be a multiple of 8 times

the CUDA WARP size (32). Thus, the lower bound of S is 256 bytes; but since

CUDA provides loop unrolling capability, we set the size S to 1KB, 2KB or

4KB to reduce the branch penalties and increase opportunities for instruction

level parallelism (ILP).

• Last, once the array of CUDA DEVs is generated, it is copied into device

memory and the corresponding GPU kernel is launched. When a CUDA block

finishes its work, it would jump N (total number of CUDA blocks) on the CUDA

DEVs array to retrieve its next unit of work.

Since any datatype can be converted into DEV, this approach is capable of

handling any MPI datatype. However, without a careful orchestration of the different

operations, the GPU idles when the CPU is preparing the CUDA DEVs array. To

improve the utilization of both GPU and CPU, we pipeline the preparation of the

array and the execution of the GPU kernel: instead of traversing the entire datatype,

the CPU converts only a part of the datatype, then a GPU kernel is launched to
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pack/unpack the converted part into a dedicated CUDA stream. The CPU can then

continue converting while the GPU is executing the pack/unpack kernel. As the

CUDA DEV is tied to the data representation and is independent of the location

of the source and destination buffers, it can be cached, either in the main or GPU

memory, thereby minimizing the overheads of future pack/unpack operations.

4.3 Integration of GPU Datatype Engine into

Open MPI

This section describes how we integrated the GPU datatype engine with the Open

MPI infrastructure. The Open MPI communication framework – outside the MPI

API – is divided into three layers, with each one playing a different role. At the

top level, the PML (point-to-point management layer) realizes the MPI matching,

fragments, and reassembles the message data from point-to-point communications.

Different protocols based on the message size (short, eager, and rendezvous) and

network properties are available (latency, bandwidth, RMA support), and the PML is

designed to pick the best combination in order to maximize network usage. Below the

PML, the BML (BTL management layer) manages different network devices, handles

multi-link data transfers, and selects the most suitable BTL for a communication

based on the current network device where messages go through.

The lowest layer, the BTL (byte transfer layer), is used for the actual point-to-

point byte movement. Each BTL provides support for a particular type of network

(TCP, shared memory, InfiniBand, Portals, uGNI and so on), and mainly deals with

low level network communication protocols where the focus is on optimally moving

blobs of bytes. As different network devices have their own optimal communication

protocols, the methodology of GPU datatype engine integration is realized at the level

of the network device (the BTL). In this paper, we focus on the shared memory and

InfiniBand BTL, and propose support for two types of protocols: RDMA and copy
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Figure 4.4: Pipelined RDMA protocol for send/receive of non-contiguous GPU-
resident data.

in/out. Of course, these protocols are adaptable to the GPU and network capabilities,

and can be easily extended to other BTLs.

4.3.1 RDMA Protocol

NVIDIA’s GPUDirect technology improves GPU to GPU communication by allowing

data movement between GPU devices without going through host memory. According

to Wang et al. (2016), PCI-Express bandwidth of GPU-GPU is larger than the one of

CPU-GPU, therefore, RMDA GPU-GPU communication not only provides shortest

data path between processes, but also has higher PCI-Express utilization. In intra-

node communications, CUDA IPC allows the GPU memory of one process to be

exposed to the others, and therefore provides a one sided copy mechanism similar to

RDMA. In inter-node communication, GPUDirect RDMA supports data exchange

directly between the GPU and the network interface controller using PCI-Express,

enabling direct GPU data movement between nodes.
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Taking advantage of GPUDirect, a basic GPU RDMA protocol can be imple-

mented as follows: sender packs a non-contiguous GPU datatype into a contiguous

GPU buffer, and then exposes this contiguous GPU buffer to the receiver process. If

the synchronization is done at the level of an entire datatype packing, the receiver

should not access the data until the sender has completed the pack operation. The

resulting cost of this operation is therefore the cost of the pack, followed by the cost

of the data movement plus the cost of the unpack. However, if a pipeline is installed

between the 2 processes, the cost of the operation can be decreased, reaching the

invariant (which is the cost of the data transfer) plus the cost of the most expensive

operation (pack or unpack) on a single fragment, which might represent a reduction by

nearly a factor of 2 if the pipeline size is correctly tuned. This approach also requires

a smaller contiguous buffer on the GPU as the segments used for the pipeline can

be reused once the receiver completes the unpack and notifies the sender that its

operation on a segment is completed.

The Open MPI’s PML layer is already capable of implementing message frag-

mentation and can send/receive them in a pipelined fashion. However, applying this

pipelining feature directly for PML-based RDMA protocols is costly because PML is

the top-level layer, and pipelining in this layer requires going through the entire Open

MPI infrastructure to establish an RDMA transfer for each fragment. Starting an

RDMA transfer requires the sender to send its GPU memory handle to the receiver

for mapping to its own GPU memory space, which is a costly operation. With such

an approach any benefits obtained from pipelining will be annihilated by the overhead

of registering the RDMA fragments. To lower this cost, we implement a light-weight

pipelined RDMA protocol directly at the BTL level, which only proposes a single

one-time establishment of the RDMA connection (and then caching the registration).

The implementation of our pipelined RDMA protocol uses BTL-level Active

Message Eicken et al. (1992), which is an asynchronous communication mechanism

intended to expose the interconnection network’s flexibility and performance. To

reduce the communication overhead, each message header contains the reference of
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a callback handler triggered on the receiver side, allowing the sender to specify how

the message will be handled on the receiver side upon message arrival.

Taking advantage of Active Message communications, the sender and receiver are

dissociated, and they synchronize only when needed to ensure smooth progress of the

pack/unpack operations. While the sender works on packing a fragment, the receiver

is able to unpack the previous fragment, and then notify the sender that the fragment

is now ready for reuse. Once the sender receives the notification from the receiver that

a fragment can safely be reused, it will pack the next chunk of data (if any) directly

inside. Figure 4.4 presents the steps of the pipelined RDMA protocol. Besides the

address of a callback handler for invoking the remote pack or unpack functions, the

header in our implementation also contains additional information providing a finer

grain control of the pack/unpack functions (such as the index of the fragment to

be used). In our RDMA protocol, the packing/unpacking is entirely driven by the

receiver acting upon a GET protocol, providing an opportunity for a handshake prior

to the beginning of the operation. During this handshake, the two participants agree

on the type of datatype involved in the operation (contiguous or non-contiguous) and

the best strategy to be employed. If the sender datatype is contiguous, the receiver can

use the sender buffer directly for it’s unpack operation, without the need for further

synchronizations. Similarly, if the receiver datatype is contiguous the sender is then

allowed to pack directly into the receiver buffer, without further synchronizations. Of

course, based on the protocol used (PUT or GET), a final synchronization might be

needed to inform the peer about the data transfer completion. The more detailed

description of the pipelined RDMA protocol is as follows.

• Sender: detects if GPU RDMA is supported between the two MPI processes,

and requests a temporary GPU-residing buffer from the datatype engine. It

then retrieves the memory handle of this temporary GPU buffer, and starts the

RDMA connection request providing the memory handle and the shape of the

local datatype in a request message. It then waits until a pack request is received
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from the receiver. After finishing packing a fragment, an unpack request is sent

to the receiver signaling the index of the fragment to be unpacked. In case the

GPU buffer is full, or the pipeline depth has been reached, the sender waits until

it receives an acknowledgment from the receiver notifying that the unpacking

is finished for a particular fragment that can be reused for the next pack. This

stage repeats until all the data is packed.

• Receiver: upon receiving an RDMA request it maps the memory handle

provided by the sender into its own memory, allowing for direct access to the

sender’s GPU buffer. After the RDMA connection is established, the receiver

signals the sender to start packing, and then waits until it receives an unpack

request from the sender. After finishing the unpacking of each fragment, the

receiver acknowledges the sender, allowing the fragment to be reused. In

the case where the sender and the receiver are bound to different GPUs, we

provide the option to allow the receiver to allocate a temporary buffer within

its device memory and move the packed data from sender’s device memory into

its own memory before unpacking. In some configurations, going through this

intermediary copy delivers better performance than accessing the data directly

from remote device memory. When using temporary buffer, receiver is able to

acknowlesges sender a fragment to be reused right after data is move into the

temporary buffer, without waiting for the completion of the unpacking of the

fragment. It provides the opportunity to let sender to start packing as early as

possible.

4.3.2 Copy In/Out Protocol

In some cases, due to hardware limitations or system level security restrictions, the

IPC is disabled and GPU RDMA transfers are not available between different MPI

processes. To compensate for the lack of RDMA transfers we provide a copy in/copy

out protocol, where all data transfers go through host memory. It is worth noting that
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this approach is extremely similar to the case when one process uses device memory

while the other only uses host memory.

Open MPI handles non-contiguous datatypes on the CPU by packing them into a

temporary CPU buffer prior to communication. When GPU RDMA is not available,

we forced Open MPI to always consider all data as being in host memory, and therefore

it always provides a CPU buffer even for datatypes residing in device memory. When

the datatype engine detects that the corresponding non-contiguous data is actually

in device memory, it allocates a temporary GPU buffer (with the same or smaller size

than the CPU buffer) for packing. Once this GPU buffer is full, the packed data is

copied into the CPU buffer for further processing. This procedure repeats until the

entire data is packed. A similar mechanism applies to unpack.

Unlike the RDMA protocol, extra memory copies between device and host memory

are required. To alleviate the overhead of such memory transfer, pipelining can also

be used by allowing the sender to partially pack the data, fragment after fragment,

and allow the receive to unpack once it receives each packed fragment. Therefore,

the pipelining becomes more complex, overlapping packing/unpacking on the GPU,

with device-to-host data movement and intra-node communication. Another CUDA

capability, zero copy, can be exploited to minimize the memory copy overhead.

Instead of using the CPU to explicitly drive memory movement, the CPU buffer is
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mapped to GPU memory with the help of CUDA UMA, and then the data movement

is implicitly handled by hardware, which is able to overlap it with pack/unpack

operations. Overall, as indicated in the experimental Section 4.4, copy in/out protocol

is a general solution suitable for most platforms, and delivers good performance –

especially once integrated with a pipelined protocol.

4.3.3 Analysis of Pipelining of Pack/unpack with Data Move-

ment

In both RDMA and copy in/out protocols, pipeline technique is applied to overlap

pack/unpack kernels on GPU with packed data transfer between processes. Since

non-contiguous data communication includes three steps (pack, data movement and

unpack), it is necessary to use 3-stage pipeline. Figure 4.5 shows the time line of

the 3-stage pipeline compared with communication without pipeline. The time of

2rd stage (data movement) depends on hardware network throughput, thus it is not

compressible. Therefore, by overlapping pack/unpack kernels with data movement,

the entire time of transition non-contiguous message is time used for packing and

unpacking one fragment plus the cost of data movement of entire message, which is

much more efficient than communication without pipeline. Pipeline fragment size is

an important tuning factors that affect performance. Pipeline fragment size is the

size of each fragment to be packed, transferred and unpacked. If fragment size is

too big, the cost of pack/unpack one fragment is significant, resulting in increment

of overall cost. Fragment size cannot be too small as well. As seen in Figure 4.5,

time of pack/unpack kernels is consisted of kernel overhead Tkoverhead and actual

pack/unpack time of one segment(Tpack/Tunpack). The Tkoverhead is constant and only

related to GPU hardware, and Tpack/Tunpack varies by fragment size. If fragment size

is too small, Tkoverhead becomes dominated. Moreover, PCI-Express is bandwidth-

oriented instead of latency-oriented, and large messages provide better bytes per

second transfer rates. Hence, small fragment can not occupy the full bandwidth of
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PCI-Express, leading to sub-optimal performance. Overall, for large messages, which

is the scope of most GPU applications, the fragment size should be large enough to

fulfill the network bandwidth. For modern GPUs, we set the pipeline fragment size

to 1MB to 4MB based on networks used (GPUDirect or going through host memory).

As discussed in Section 4.3.1, another benefit of pipeline is to minimize the usage of

GPU buffer by reuse it: after the remote process has moved packed data into its own

buffer, the packing buffer can be released for reuse by further packing kernels Limited

by GPU memory size, it is important to retain the minimal GPU buffers being used

while leave more memory for applications, and still keep the performance beneficial

of pipeline. Since pack/unpack operations mainly include intra-GPU data movement,

Tpack/Tunpack reflects the GPU memory bus bandwidth. Time used for data movement

over the network (Tnetwork) depends on the network bandwidth between two processes,

which is usually much smaller than GPU memory bus. Therefore, in order to overlap

data movement with pack/unpack operations, providing two separate GPU buffer is

large enough and take turns to reuse them.

Most GPU applications need to utilize GPU for computations, hence, it is desired

to let GPU pack/unpack kernels to occupy GPU cores as few as possible. With

pipeline, it provides opportunity to let pack/unpack to use less GPU resources as

long as the cost can be hidden by data movement stage. We investigate the minimal

resources required in later performance benchmark(Section 4.4.3).

4.4 Performance Evaluation

We evaluate our datatypes packing/unpacking methodology using four types of

benchmarks. First, we investigate the performance of the GPU datatype engine.

Second, we look at inter-process GPU-to-GPU communication through a non-

contiguous data ping-pong test, and compare with MVAPICH2.1-GDR. Third, we

figure out the minimal GPU resources required for GPU packing/unpacking kernels

to achieve optimal overall performance when communication is engaged. Last, we

71



nb

Figure 4.6: Triangular matrix (red one) vs Stair triangular matrix (red and green
one), width and height of stair nb is multiple of CUDA block size

analyze the impact on non-contiguous data transfer when access to the GPU resource

is limited (the GPU is shared with another GPU intensive application). Experiments

are carried out on an NVIDIA PSG cluster: each node is equipped with 6 NVIDIA

Kepler K40 GPUs with CUDA 7.5 and 2 deca-core Intel Xeon E5-2690v2 Ivy Bridge

CPUs; nodes are connected by FDR IB.

4.4.1 Performance Evaluation for Datatype Engine

In this section, we investigate the performance of our GPU datatype engine by

using two commonly used datatypes: vector and indexed. These datatypes are

representative of many dense linear algebra based applications, as they are the

basic blocks of the ScaLAPACK data manipulation. More precisely, these types

are represented as a sub-matrix and an (upper or lower) triangular matrix.

Considering a sub-matrix with column-major format, each column is contiguous

in memory, and the stride between columns is the size of the columns in the original

big matrix, which follows the characteristic of a vector type (shown as “V” in the

following figures). In the lower triangular matrix case, each column is contiguous in

memory with a size smaller by one element than the size of the previous column; and

the strides between consecutive columns are equal to the previous stride plus 1, which

can be described by an indexed type (shown as “T” in the following figures). First,

we evaluate the performance of our packing/unpacking kernels by measuring GPU
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memory bandwidth. Figure 4.7 presents the GPU memory bandwidth achieved from

packing these two datatypes into local GPU buffer using our CUDA kernel compared

with moving contiguous data of the same size using cudaMemcpy. cudaMemcpy is

already the optimal implementation for moving contiguous GPU data, which can be

treated as the practical peak of GPU memory bandwidth. Compared to cudaMemcpy,

our GPU packing kernel is able to obtain 94% of the practical peak for a vector

type. The memory instructions in the unpacking kernel are the same as the ones

in the packing kernel – but in the opposite direction – and therefore the unpacking

kernel delivers the same performance as packing kernels; this is not presented in the

figure. For a triangular matrix, each column has a different size, which results in

inefficient occupancy of the CUDA kernels; therefore, a GPU packing kernel is only

able to achieve 80% of the GPU memory’s peak bandwidth. In order to prove that

the bandwidth difference between the sub-matrix and the triangular matrix is indeed

from the less efficient GPU occupancy, the triangular matrix is modified to a stair-like

triangular matrix (Figure 4.6). Thus, the occupancy issue can be reduced by setting

the stair size nb to a multiple of a CUDA block size to ensure no CUDA thread is

idle. Sure enough, it is able to deliver almost the same bandwidth as the vector type.

After studying the performance of the packing/unpacking kernels, we measure the

intra-process performance of packing non-contiguous GPU-resident data to evaluate

the GPU datatype engine. Because of the current limitation of GPUDirect, using

an intermediate host buffer for sending and receiving over the network is better for

large messages than direct communication between remote GPUs in an InfiniBand

environment vandeVaart (2014). Thus, studying the case of going through host

memory is also necessary. In the following benchmark, one process is launched to

pack the non-contiguous GPU data into a local GPU buffer, followed by a data

movement to copy the packed GPU data into host memory; and then, the unpacking

procedure moves the data from host memory back into the original GPU memory

with the non-contiguous layout.
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Figure 4.7: GPU memory bandwidth of packing kernels for sub-matrix and lower
triangular matrix comparing with contiguous data of the same size. “T” represents
triangular matrix, “V” represents sub-matrix, “C” represents contiguous matrix

Accordingly, the time measurement of the benchmarks in this section contains two

parts: “d2d” measures the time of packing/unpacking non-contiguous data into/from

a contiguous GPU buffer; and “d2d2h” measures the time of packing/unpacking plus

the round trip device-host data movements. We also apply zero copy, shown as “0cpy,”

to use the CUDA UMA to map the CPU buffer to GPU memory. In this case, the

GPU to CPU data movement is taken care of by hardware implicitly. Since zero copy

involves implicit data transfer, we are only able to measure its total time without

having a separate in-GPU pack/unpack time to show in figures.

Figure 4.8 shows the results of a double precision sub-matrix and lower triangular

matrix, with respect to matrix size. From the figure, a number of interesting

trends can be observed. First, the pipelining discussed in Section ?? overlaps the

preparation of the CUDA DEVs with GPU pack/unpack kernels, almost doubling the

performance. If the CUDA DEVs are cached in GPU memory (shown as “cached”),

the preparation cost can be omitted; therefore, by caching the CUDA DEVs, the
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Figure 4.8: Performance of pack and unpack sub-matrix and lower triangular matrix
varies by matrix size.

packing/unpacking performance is improved when working on data types of the same

format. Second, even though it takes the same time (if CUDA DEVs are not cached)

to pack/unpack a sub-matrix and triangular matrix of the same matrix size on a

GPU, one must note that the triangular matrix is half the size of a sub-matrix;

therefore, compared with a vector approach, the overhead of CUDA DEVs preparation

is significant – even with pipelining – which also demonstrates the importance of

caching the CUDA DEVs. Since the MPI datatype describes data layout format, not

data location, by spending a few MBs of GPU memory to cache the CUDA DEVs,

the packing/unpacking performance could be significantly improved when using the

same data type repetitively. Third, since zero copy is able to overlap the device-host

communication with the GPU kernel, it is slightly faster than explicitly moving data

between device and host memory after/before pack/unpack kernels. In all remaining

figures, the zero copy is always enabled if going through host memory is required.
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Alternatively, CUDA provides a two-dimensional memory copy cudaMemcpy2D

to move vector-like data. Figure 4.9 presents the comparison between our vector

pack/unpack kernel and cudaMemcpy2D, when the numbers of contiguous blocks

are fixed at 1000 and 8000, while block size varies covering both small and large

problems. Since using our pack kernel to move vector-like non-contiguous GPU data

is equivalent to initiating a device to host data movement using cudaMemcpy2D, we

test it in three ways (device-to-device“mcp-d2d”, device-to-device-to-host “mcp2d-

d2d2h”, and device-to-host “mcp2d-d2h”). As seen in the figure, the performance of

cudaMemcpy2D between device and host memory highly depends on the block size:

block sizes that are a multiple of 64 bytes perform better, while others experience

significant performance regression – especially when the problem size increases. For
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non-contiguous data movement within a GPU, our kernels achieve almost the same

performance as cudaMemcpy2D. Our DEV pack/unpack kernel is not compared with

CUDA since CUDA does not provide any alternative function for irregular non-

contiguous GPU data movement.

4.4.2 Full Evaluation: GPU-GPU Communication with MPI

In this section, we evaluate the performance of the GPU datatype engine integration

with the Open MPI infrastructure. The performance is assessed using an MPI

“ping-pong” benchmark. In a shared memory environment, the RDMA protocol

over CUDA IPC is used to avoid extraneous memory copies between host and

device. In a distributed memory setting, GPU data goes through host memory

for communication. According to vandeVaart (2014), even though the GPUDirect

RDMA allows direct intra-node GPU data communication, it only delivers interesting

performance for small messages (less than 30KB), which is not a typical problem

size of GPU applications. Instead, when pipelining through host memory and

overlapping GPU pack/unpack kernels, the GPU-CPU data movement and inter-

node data transfer performs better. Therefore, in a distributed memory environment,

we always pipeline through host memory. Based on such a setup, packed GPU data

always goes through PCI-Express for communication no matter if it is in a shared or

distributed memory environment; thus, PCI-Express bandwidth could be a bottleneck

of overall communication in a ping-pong benchmark. Similar to last section, we first

evaluate the integration of the GPU datatype engine with OpenMPI by measuring

PCI-Express bandwidth achieved by vector and indexed datatypes, comparing data

in contiguous format of the same size, with results shown in Figure 4.10. Thanks

to the pipeline mechanism discussed in Section 4.3.1, we achieved 90% and 78% of

the PCI-Express bandwidth for vector and indexed types, respectively, by selecting a

proper pipeline size.
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Figure 4.10: PCI-Express bandwidth of vector and indexed data type comparing
with contiguous data.

Then, in the following ping-pong benchmarks, we explore both a shared memory

(“SM”) and a distributed memory (using InfiniBand “IB”) environment under the

following configurations with several commonly used data types, and compare them

with the state-of-art MVAPICH2:

• “1GPU”: both sender and receiver use the same GPU.

• “2GPU”: sender and receiver use different GPUs. Data is sent over network

(PCI-Express or InfiniBand) to the receiver process.

• “CPU”: the non-contiguous data is in host memory. This benchmarks the Open

MPI CPU datatype engine.

Vector and Indexed Type

Figure 4.11 and Figure 4.12 present the ping-pong benchmark with regard to the

matrix size in both “SM” and “IB” environments. As discussed in Section 4.3.1,
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Figure 4.11: Ping-pong benchmark with matrices on shared memory machine. “V”
refers to sub-matrix, “T” refers to triangular matrix.
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Figure 4.12: Ping-pong benchmark with matrices on distributed memory machine.
“V” refers to sub-matrix, “T” refers to triangular matrix.

in the “SM” environment with CUDA IPC support, we provide two options for

unpacking in the receiver side: first, the receiver unpacks directly from the packed

buffer in the remote GPU memory; second, the receiver process copies the packed

buffer into a local GPU buffer prior to unpacking. The first option involves a lot

of small chunks of data fetching from remote device memory, generating too much

traffic and under-utilizing the PCI-Express. In comparison, the second option groups

small data into a big data movement between GPUs, minimizing the traffic on the

PCI-Express and becoming faster. Based on our experiment, by using a local GPU

buffer, the performance is 5-10% faster than directly accessing remote GPU memory;

so limited by the space, we always use the second option in later benchmarks. The

“1GPU” case omits the data movement between GPUs, being at least 2x faster than

any “2GPU” case. Therefore, even though data is already packed to a contiguous

format, the data transfer between GPUs over PCI-Express is still the bottleneck of

non-contiguous GPU data communication in an “SM” environment.
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Compared with MVAPICH2, our implementation is always significantly faster,

independent of the datatype. Because of MVAPICH2’s vectorization algorithm

converting any type of datatype into a set of vector datatypes Wang et al. (2014),

each contiguous block in such an indexed datatype is considered as a single vector

type and packed/unpacked separately, resulting in sub-optimal performance. As seen

in the figure, their indexed implementation is slow, going outside the time range once

the matrix size reached 1000.

In an “IB” environment, even though data is transitioned through host memory

before being sent over the network, thanks to zero copy, the device-to-host transfers

are handled automatically by the hardware, and this transfer is overlapped with

the execution of the GPU pack/unpack kernels. In this environment we notice a

significantly more desirable behavior from MVAPICH2, at least for the vector type.

However, our approach achieves a roughly 10% improvement for the vector type.

Similar to the indexed result of “SM” environment, the MVAPICH2 performance is

quickly outside the range for matrices as small as 1500.

Vector-Contiguous

When using MPI datatypes, the sender and the receiver can have different datatypes

as long as the datatype signatures are identical. Such features improve the

application’s ability to reshape data on the fly, such as in FFT and matrix transpose.

In FFT, one side uses a vector, and the other side uses a contiguous type. Figure 4.13

shows the ping-pong performance with such datatypes of different sizes. As seen in the

figure, taking the benefit of GPU RDMA and zero copy, our implementation performs

better than MVAPICH2 in both shared and distributed memory environments

Matrix Transpose

Matrix transpose is a very complex operation and a good stress-test for a datatype

engine. With column-major storage, each column is contiguous in memory. A
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Figure 4.13: Ping-pong benchmark with vector and contiguous data type.

matrix can be described by a contiguous type or vector type if only accessing the

sub-matrix. After the transpose, each column can be represented by a vector type

with a block length of 1 element; consequently, the whole transposed matrix is a

collection of N vector types. Figure 4.14 shows the benchmark for a matrix transpose

depending on the matrix size. Since there is only 1 element in each block, the memory

access is not following the coalesced rule, and the performance is not comparable

with the regular vector type. However, such difficulty also occurs in the CPU

implementation, benefiting from the parallel capability and high memory bandwidth,

our GPU datatype implementation is at least 10x faster than the CPU version of

Open MPI. Lacking stable support for such a datatype, MVAPICH2 crashed in this

experiment and is not included in the figure.
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distributed memory environment.

4.4.3 GPU Resources of Packing/Unpacking Kernels

In previous benchmarks, GPU packing/unpacking kernels aggressively used CUDA’s

Streaming Multiprocessor (SM). Figure 4.7 shows that by using as many CUDA

cores as possible, the kernels are able to achieve more than 80 GB/s of GPU

memory bandwidth. However, in most cases, each MPI process is attached to a

separate GPU; since GPUs are connected by PCI-Express, then the communication

bandwidth is limited to the 10 GB/s available through PCI-Express. In this section,

we investigate the minimal resources required to fulfill the PCI-Express bandwidth.

The top figures of Figure 4.15 and Figure 4.16 present the GPU memory bandwidth

of packing/unpacking kernels for sub-matrix “V” and triangular matrix “T” data

types. NVIDIA’s Kepler GPU has four warp schedulers per SM; therefore, in order

to achieve the best GPU occupancy, the block size should be a multiple of 128 threads

(32 threads per warp). In the benchmark, we use 256 threads per block. As seen in the
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Figure 4.15: GPU memory and PCI-Express bandwidth of pack/unpack sub-matrix
“V” data types varies by number of blocks used for kernel launching. Matrix size
varies from 1K to 4K.

figure, it requires 16 blocks to achieve the peak bandwidth, and achieves 10 GB/s (the

peak of PCI-Express bandwidth) by launching only 2 blocks in most cases. Hence,

theoretically, by using no more than 2 blocks, the cost of packing/unpacking can be

hidden by communication over PCI-Express when pipelining is applied. Similarly,

bottom figures of Figure 4.15 and Figure 4.16 illustrates that the PCI-Express

bandwidth of the same two data types varies by the number of blocks used for kernel

launching. As seen in the figure, as we expected, the bandwidth becomes stable when

using at least 2 CUDA blocks. The K40 GPU has 15 SMs, so in the worst case,

one seventh of the GPU SMs are required to overlap the cost of packing/unpacking

kernels with communications over PCI-Express. In other cases when each MPI process

is attached to the same GPU or future NVLink is introduced with higher bandwidth,

our GPU datatype engine can be easily adapted by tuning CUDA blocks to fulfill

bandwidth.
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4.4.4 Pipeline and Resource Contention Effects

All previous benchmarks were executed under the assumption that the GPU resources

are readily available for pack/un-pack. As in some cases, overlapping communication

with computation is possible, the application might be using the GPU while MPI

communications with non-contiguous data-types are ongoing. In this section, we

investigate how resource contention affects the pack/unpack performance, as well as

the pipelining discussed in Sec 4.3.3.

In this benchmark, we launch a special kernel to continuously occupy a fixed

percentage of the GPU while executing the ping-pong benchmark. The grid size of the

kernel varies to occupy full, half, or a quarter of the GPU resources; we then measure

the ping-pong performance under these scenarios. The datatypes used are (vector)

sub-matrices of size 1000 by 1000 and 2000 by 2000, since they are typical problem
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Figure 4.17: Ping-pong benchmark with partial GPU resources available. In the
legend, the number after the matrix size is the ratio of GPU resources occupied.

sizes for GPU applications in the linear algebra domain. The results are shown in

Figure 4.17. Thanks to the pipelining methodology, a proper pipeline size improves

the performance in both shared and distributed memory machines. However, as seen

in the figure, with a small pipeline size the pack/unpack operations are divided into

many small GPU kernels, and the scheduling of such kernels could be delayed by the

CUDA runtime when the occupancy of the GPU is high. Our GPU pack/unpack

kernels mainly contain memory operations without floating point operations, and

they are memory bound. Therefore, as long as the GPU is not fully occupied, our

pack/unpack methodology is not significantly affected. By using a proper pipeline

size, we limit the loss of performance to under 10%.
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4.5 Summary

In this chapter, we have presented an efficient solution for communication of non-

contiguous data resident in GPU memory with the following two detail steps:

first, we have designed a GPU datatype engine to efficiently pack/unpack non-

contiguous/contiguous data into contiguous/non-contiguous layout before/after com-

munications by taking the advantage of large parallel capability of GPU hardware;

second, the datatype engine is integrated into Open MPI infrastructure to provide

RDMA-like communication. In additional, we have proposed a pipeline model to

overlap pack/unpack operations with data movements. We have showcased the

advantage of our non-contiguous GPU data communication by conducting several

benchmarks with four common used datatype in scientific computation domains on

both shared and distributed memory machines.
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Chapter 5

GPU-aware Collective

Communication

5.1 Issues of Traditional Collective Communica-

tion Algorithms in Heterogeneous System

Collective communication is another set of data movement patterns in which messages

are exchanged among a group of processes. In this dissertation, we focus on two

widely used collective operations: broadcast and reduce. We take broadcast as an

example for algorithm analysis, reduce is similar approach. In Open MPI, there are

five typical broadcast algorithms: flat-tree/linear, chain, binomial tree, binary tree

and splitted-binary tree Pješivac-Grbović et al. (2007). In flat-tree/linear algorithm,

root sends messages to all the other processes in sequence. In chain algorithm, all

the processes form a chain and messages are propagated from the root to leaf one

by one. In binomial and binary tree algorithms, messages traverse the tree starting

at the root and going towards the leaf processes through intermediate processes. In

the splitted-binary tree algorithm, the original message is split into two parts, and

the first half of the message is sent to the left half of the binary tree, and the second

half of the message is sent to the right half of the tree. Later, every node exchanges
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message with their partner in the opposite side of the binary tree. For large message,

all of these algorithms support message segmentation which divides whole message

into small segments and these segments are transferred in pipeline fashion, allowing

for overlap of concurrent communications.

Chapter 4 has already shown huge performance improvement of non-contiguous

GPU data communication via offloading pack/unpack operations on GPU and

applying pipeline to overlap pack/unpack with data movement. The improvement of

GPU-aware p2p communication demonstrates that it is very important to integrate

the knowledge of GPU (i.e. many core feature and GPUDirect) into MPI runtime.

Because of the following issues, directly applying the conventional collective algorithm

in heterogeneous system is not efficient; hence, in the context of Open MPI,

even though collective communications are built on top of p2p communications,

optimal GPU-aware p2p does not guarantee the optimal GPU-aware collective

communications.

5.1.1 Multiple Networks

Modern systems trend to be heterogeneous, which contains multi-core CPUs and

accelerators such as GPUs. GPUs are attached to host via high speed host to

peripheral connections (i.e. PCI-Express and future NVLink). Therefore, message

exchanges between processes within a collective communication involve intra-socket,

inter-socket and inter-node communications, which can occupy different physical

networks. In this dissertation, PCI-Express, Intel OPI and InfiniBand are used

as examples of these three types of networks respectively. Because the disparate

networks are independent, a smart collective communication framework should be

able to efficiently utilize all networks, eventually providing more opportunities for

concurrent communication over different networks. Traditional collective operations

are targeted to homogeneous systems, which assumes the communication cost between

any two processes are the same. Therefore, they do not have the ability to take care
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of multiple network links with different latency. In most cases, network links are full-

duplex: a process can have two concurrent communications but different directions.

The chain algorithm is able to utilize the benefit of full-duplex network by leveraging

one direction to receive data and another direction to send data. However, chain

algorithm has poor ability to resist network noise: a delay of any process would

propagate the noise to the following processes of the chain. Moreover, a process is

able to use different networks (i.e. PCI-Express, QPI and InfiniBand) to concurrently

communicate with other processes as long as networks are independent. Process in

chain algorithm only sends data in one direction, hence, it is not able to efficiently

utilize all network resources. A tree algorithm allows concurrent communications

if mapping communications of process to children processes to different networks.

However, with traditional binary/binomial tree algorithms without taking care of

network topology, process may use the same direction of network to propagate data to

all of its children processes. It is acceptable for small messages, since the performance

is bounded by network latency instead of network bandwidth. For large messages,

which is a typical message size of GPU applications, communications of process to its

children processes are serialized and leading to sub-optimal performance. Therefore,

none of the traditional collective algorithms works efficiently in heterogeneous system.

It is desired to leverage the knowledge of GPU network topology to design collective

algorithms, which allow different parent-children communication via independent

network links and better utilization of all network links.

5.1.2 Process Mapping

A virtual topology represents the way that MPI processes communicate of a collective

operation. A physical topology represents network connections between CPU cores,

GPUs and nodes in the hardware. How to map virtual topology to physical

topology, also called process mapping, is critical for the performance of collective
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operation. There are three typical process mapping strategies in MPI: by-core, by-

node, by-socket. By-core/socket associates processes with successive core/socket.

By-node maps one process on each node, wrapping around the list of available

nodes until all processes have been mapped. Because the latency of disparate

networks (intra-socket, inter-socket and inter-node) are quite different, it requires MPI

application developers to have the capability to select the optimal process mapping

to minimize the communication over slow channel. For example: in a traditional

chain broadcast algorithm, chain is created based on processes’ rank instead of

processes’ physical location; if the processes are mapped by core, the number of

inter-node communications is the minimal; but if processes are mapped by node,

every link in the chain becomes an inter-node communication and deliver sub-optimal

performance. MPI also provides MPI Comm split communicators with user defined

process mapping. However, as discussed in 5.1.1, networks in heterogeneous systems

are much more complicated than homogeneous system, application developers who

has little knowledge about the underlying network of systems are unlikely to select

the optimal process mapping strategy. Therefore, it is preferred that MPI library is

able to automatically rearrange mapping of processes involved in collective operations

based on network topology.

In this chapter, we present a topology-aware GPU collective framework by

leveraging GPU network information such as topology. By introducing a tight collab-

oration between multiple layers of collective algorithms, our collective communication

achieves concurrent inter-node, intra-socket and inter-socket communication over

different independent networks. As a side-effect of using GPUs, we also have the

opportunity minimize the cost of the reduction operations by offloading them on the

GPUs to further boost performance of collective communications.
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5.2 Design of Topology-aware Collective Commu-

nication

5.2.1 Topology-aware Tree

To integrate the network topology knowledge into collective communication, topology-

aware tree is used to represent topology hierarchy of entire network. The first phase

of building topology-aware tree is to gather topology information from all processes

participating in collective communication. Each process collects its own hierarchical

topology information using Portable Hardware Locality (hwloc) Broquedis et al.

(2010) framework. The hwloc software package provides an abstraction of the

hierarchical topology of modern architectures, including nodes, sockets and cores.

Because of the limitation of hwloc, we cannot get further network topology

information such as network switch or router. So in this dissertation, we only

consider three network levels: node level, socket level and gpu level. In GPU-aware

MPI, each GPU maps to a separate process. Each process uses a topology tuple

(Node ID, Socket ID, GPU ID) to represent its location. After every process

gathers its topology tuple, all the processes exchange their local information so

that all the processes has topology information of all other processes to form a

topology table. Later, topology table is cached in memory, so that all the following

collective operations within the same or duplicated communicator can directly use the

cached topology table instead of gathering it again, no matter what kind of collective

operations they are.

With topology table, we can build a topology-aware tree to do collective operations

such as broadcast or reduce. Since reduce is just an opposite operation of broadcast

with additional reduction operations, we use broadcast as an example in following

sections. In the gpu level, all the processes belong to a socket form a group called

Level 1 group. As in Figure 5.1, P0, P1, P2 and P3 are in the same Level 1 group. A

socket leader is selected from each Level 1 group. The strategy to select a leader can
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vary. We choose the process with the lowest Core ID on the same socket as socket

leader. In the socket level, all the socket leaders in the same node form a group called

Level 2 group. As shown in Figure 5.1, P0 and P4 belong to the same Level 2 group.

Furthermore, a node leader is selected among all the socket leaders in the same node

and all the node leaders forms a group called Level 3 group, which includes P0, P8

and P16. In a word, each group has a leader, which is a member of upper level group.

Once leaders of all the groups are selected, we can build a topology-aware tree

to do collective operations. The topology-aware tree is a combination of sub-trees of

every group. For each group, sub-tree contains all the processes within the group and

uses the group leader as root of this sub-tree. Because the group leader is a member

of upper level group, the root of a sub-tree must appears in other sub-trees and it

becomes an intermediate process to combine sub-trees. As in Figure 5.1, P4, P5,

P6 and P7 form a sub-tree (chain shape) in its Level 1 group with P4 as root , also

P0 and P4 form another sub-tree (chain shape) in its socket group with P4 as root.

P4 glues these two sub-trees together. Recording the entire topology-aware tree for

each process consumes too much memory and is not scalable. Instead, each process

only store partial topology-aware tree related to itself (it’s parent and children), and

caches it into local host memory for reuse of future broadcast communications of the

same communicator. It eliminate the cost of building topology-aware tree.

5.2.2 Algorithm Selection of Sub-trees

Since communication within each group is independent from others (Level 1 2 and

3 groups communications are respected to intra-socket, inter-socket and inter-node

communications), each group can have a different sub-tree. Although the three

levels of algorithms are tightly integrated, there are still a variety of combinations

that are possible, whose performance greatly varies depending on hardware features

and properties. In this section, we discuss how to select the proper algorithm for

each group. Pješivac-Grbović et al. (2007) introduces decision tree approach to
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Table 5.1: Latency of different broadcast algorithms with Hockney model

Algorithms Latency
Flat tree\Linear T = ns ∗ (P − 1) ∗ (α + βms)

Chain T = (P + ns − 2) ∗ (α + βms)
Binomial tree T = ns ∗ dlog2 P e ∗ (α + βms)
Binary tree T = 2 ∗ (dlog2(P + 1)e+ ns − 2) ∗ (α + βms)

Splitted-binary tree T = 2 ∗ (dlog2(P + 1)e+ dns

2
e − 2) ∗ (α + βms) + α(ms

2
) + ms

2
∗ β(ms

2
)

select algorithms with the help of performance model of collective communications.

This approach does not work for heterogeneous systems since most performance

models assume flat network (unique type). However, in our topology-aware collective

algorithm, network within each hierarchical group is flat, it is able to employ

performance models to guide the selection of collective algorithms for each group.

One of the most frequently used model is Hockney Model Hockney (1994). Even

though there are more sophisticated models such as LogP Culler et al. (1993), LogGP

Alexandrov et al. (1995) and PLogP Kielmann et al. (2000), this model is sufficient

for our needs. Hockney model assumes that the time to send a message of size m

between two nodes is T = α + βm, where α is the latency (or startup time) per

message, independent of message size, β is the transfer time per byte or reciprocal

of network bandwidth. In the case of reduction operation, we assume that the time

spent in computation on data in a message of size m is γm, where γ is computation

time per byte. This linear model ignores effects caused by memory access patterns

and cache behavior, but is able to provide a lower limit on time spent in computation.

This cost model assumes that all processes can send and receive one message at the

same time while maintain constant latency and bandwidth, regardless of the source

and destination. Therefore, the entire time of send a message of size m between two

processes is:

T = α + βm+ γm

Section 5.1 introduces 5 broadcast algorithms. For large message, all of such 5

algorithms in Open MPI support message segmentation and propagating in pipeline

fashion. Table 5.1 shows the performance analysis of these 5 broadcast algorithms
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using the Hockney model Pješivac-Grbović et al. (2007) when pipeline is applied.

Since α and β represent constant parameters of hardware network, the selection of

most efficient algorithm is based on the message size m (equals to size of each pipeline

segment ms times number of segments ns) and number of processes participated in

collective communication P . In the context of communication of each group, P refers

to the number of processes with in the group. In a typical GPU clusters shown in

Figure 5.1, there are four GPUs per socket and 2 socket in total. In such setup, we

select pipeline chain algorithm for Level 1 group since according to the formula in

Table 5.1, the cost of chain algorithm of 4 processes can be considered as ns∗(α+βm)

which is the smallest among all 5 algorithms. Beside, system noise propagation, one

of the major side effect of chain algorithm, is unlikely a issue since there are only 4

processes. From the hardware perspective, PCI-Express is bi-directional, it support

a process to send and receive message simultaneously, which is the precondition of

Hockney Model. Similarly, we also select pipeline chain algorithm for Level 2 group.

For Level 3 group, if there are only a few nodes, we select chain algorithm; otherwise,

tree-based algorithms can be used for large scale clusters.

5.2.3 Collective Communication with Topology-aware Tree

The traditional way to implement hierarchical collective operations is using commu-

nicators Kandalla et al. (2010) Subramoni et al. (2012b) Awan et al. (2016). For

each group, a sub communicator is created. The broadcast starts from the top level

communicator. The next level can start only when the upper level broadcast is

finished. Therefore, this method is not efficient for large messages. To efficiently

transfer large messages, messages usually are divided into fixed-size segments and

are transmitted in pipeline fashion. But in such implementation, the handling of

communicators of different levels does not cooperate tightly, therefore, the lower level

broadcast can not start until the higher level finishes sending the whole message, and

leads to sub-optimal pipelining.
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In this dissertation, we present a fine grain pipeline approach. In our implementa-

tion, topology-aware collective is not divided into several smaller collective operations

of different communicators, but is treated as a single communicator. A group leader is

the transition process between different levels. Our design dissolves the boundaries of

different levels and allows fine grain pipeline. Instead of waiting for receiving the whole

message from upper level communicator, a transition process posts non-blocking

receive request for one segment from its parent in the topology-aware tree; the

completion of that request triggers multiple non-blocking send requests to its children

and another receive request from its parents for next segment. Therefore, a transition

process can start transmitting messages as soon as one message segment has been

received. Since we are using non-blocking p2p communications, a transition process

can issue multiple communications of different levels simultaneously. Also, because

Level 1(intra-socket), Level 2(inter-socket) and Level 3(inter-node) communications

can occupy different networks, our collective communication can achieve concurrent

communications between different levels.

5.2.4 Minimize Communications Over PCI-Express

As seen in Figure 5.1, node leader is the busiest MPI process of the entire

communications because it not only stays in node group, but also socket and core

group. In broadcast operation, node leader receives data from previous node leader

and sends data to next node leader, next socket leader and next process within the

socket. Figure 5.2.a shows such data flow of node leader when using GPUDirect.

Inter-GPU communications between node leaders go through Network Interface

Controller (NIC) of InfiniBand via PCI-Express. When a node leader sending data

to next socket leader, data goes through a implicit intermediate CPU buffer to

next socket leader GPU. Such data-flow utilize PCI-Express and QPI bus. When

the node leader sending data to next process of core group, data-flow go through

PCI-Express as well. Since such three communications occupy the same direction
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Figure 5.2: Data flow of non-root node leader MPI process

of PCI-Express simultaneously, only one third of PCI-Express bandwidth can be

reached for each communication. As shown in Figure 5.2.b, when GPUDirect is

disabled, inter and intra socket communications are the same as before, but inter-

node communications need to take an extra step to go through implicit intermediate

CPU buffer. Since the CPU buffer is implicitly managed by MPI p2p communication,

each p2p communication would use different CPU buffers even for transmitting the

same data. Therefore, a lot of CPU memory and PCI-Express bandwidth is wasted.

To solve the congestion of PCI-Express in previous implements, we allocate a

explicit CPU buffer for node leader process to cache GPU data. None-root node

leader caches received data into this CPU buffer, so that it can send the data to next
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Figure 5.3: Process mapping using hardware topology of PCI-Express switch

node leader and socket leader directly from CPU buffer without pulling data from

GPU memory via PCI-Express again. Later, cached data is updated to GPU memory

via asynchronized memory movement. Root process also caches data in CPU memory

to alleviate the load of PCI-Express. Figure 5.2.c shows the optimized data flow of

node leader process. Therefore, as long as NIC and GPUs are not connected to the

same PCI-Express switch, communications between NIC and explicit CPU buffer,

CPU buffer to GPU and GPU to neighbor GPU use different PCI-Express lane, and

therefore can be overlapped. Hence with the design of using explicit CPU buffer,

we are able to map intra-socket, inter-socket and inter-node communications to use

different physical networks, and achieve communication overlapping.
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5.2.5 PCI-Express Switch Level Process Reorder

As discussed in Section 5.2.1, the topology-aware tree are build to minimize heavy

communications no matter what kinds of process mapping strategies are chosen.

In typical GPU clusters, several GPUs within the same socket are connected to a

PCI-Express switch, and inter-switch communications are slower than intra-switch

communications. Since PCI-Express switch is also bi-directional, having more than

one communications per direction shares the PCI-Express bandwidth, therefore

reduce performance. As seen in Figure 5.3, when mapping processes to GPUs and

applying the chain algorithm based on their ranks, it is not ensure that how many

times the chain crosses PCI-Express switch. In worst mapping, the chain crosses

switch three times and two of them are in the same direction so that the bandwidth

is cut in half. In intermediate mapping, the chain crosses switch twice but in different

direction so the performance would not be affected ideally. In best mapping, the

chain crosses switch only once. Therefore, to minimize inter-switch communications,

we detect the hardware topology of PCI-Express switches with the help of hwloc, and

build a chain of optimal mapping based on GPU locality instead of MPI rank.

5.2.6 Offload Reduction Operation on GPU

Reduction operations are mathematical operations on arrays, which are extremely

parallel, so it works more efficiently in GPU by letting each CUDA thread to handle

reduction operation on each element of array. However, as discussed in Section 2,

the current GPU-aware MPIs still use CPU to do reduction, which is not efficient.

Since most MPI implementation is still single threaded, reduction operations in CPU

occupies CPU resources and delays the handling of other communications independent

with the reduction results. Therefore, in the design of our collective operations, we

offload the reduction operations in GPU asynchronously by using multiple CUDA

streams, which allows communications overlapping with reduction operations. We
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developed CUDA kernels for pre-defined MPI reduction operations. Users can also

develop their own CUDA kernel functions to handle user defined reduction operations.

5.3 Performance Evaluation

In this section, we evaluate the performance of topology-aware collective framework

using two most widely used collective operations: broadcast and reduce. We

investigate GPU-aware collective operations using three types of experiments: first,

the total number of processes are fixed, and we measure the performance of

different message size; second, we look at the strong scalability, which measures

the performance by varying number of processes with fixed message size; third, we

measure the performance with different process mapping strategy to demonstrate

the performance of our framework is not affected by process mapping. We compare

our topology-aware collective operations (shown as “OMPI-topo”) with default Open

MPI (shown as “OMPI-tuned”) and MVAPICH2.2-GDR (shown as “MVAPICH2”).

The experiment is conducted in Nvidia PSG cluster: each node is equipped with 4

K40 GPUs with CUDA 7.5 and 2 deca-core Intel Xeon E5-2690v2 Ivy Bridge CPUs,

nodes are connected by 40Gb/s FDR IB.

In the OMPI-topo, both the broadcast and the reduce operations are pipelining

algorithms, in which messages are split into several small segments. A perfect

pipeline needs to meet two criterion: large enough segment size and number of

segments. If segment size is too small, message latency as α in Hockney model

becomes dominate, preventing the full p2p bandwidth from being leveraged. If there

are not enough number of segments, pipeline establish time is still significant and

the overall performance is hurt. Therefore, it is difficult for small messages to meet

both criterion and hence our framework mainly targets for large messages which is

also the message size of most GPU applications. To fully utilize the bandwidth of

PCI-Express, we use 512 KB as segment size, because p2p communication over PCI-

Express is about to reach the peak bandwidth with message size 512 KB.
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As discussed in Section 5.2.2, pipeline chain algorithm is used for both Level 1 and

Level 2 groups. Because of the limitation of resource allocation, we can only obtain 8

nodes for the experiment. Considering the number of nodes and message size, chain

algorithm is also applied in Level 3 group based on the analysis of cost model.

5.3.1 Performance Scalability

Figure 5.4 shows the latency of broadcast and reduce with GPU data varies by message

size on 8 nodes (32 GPUs in total). Tuned module is default in OpenMPI, which can

switch algorithms based on different message size. Therefore, as shown in this figure,

after 4MB/16MB, the broadcast/reduce algorithm of OMPI-tuned is switched and

slope of curves changes. As discussed before, pipeline segment size is set to 512KB,

hence, OMPI-topo does not have obvious improvement over others when the message

is less than 2MB because of the lack of entire segments. For large message, the

benefit of fine grain pipelining becomes dominated, so that OMPI-topo over-performs

MVAPICH2 and OMPI-tuned 2-3 times on broadcast. Furthermore, by taking the

benefit of asynchronized reduction operation in GPU, our reduce is almost 10 times

faster than the other two MPI libraries, while their reductions occupy CPU.

5.3.2 Strong Scalability

Scalability is another important factor to evaluate the performance of MPI libraries.

Figure 5.5 presents the result of strong scalability experiment of broadcast and reduce

with fixed message size and varies number of nodes. By caching data in CPU memory,

it reduce the PCI-Express traffic for non-root node leader processes. Hence such

processes participated in all 3 hierarchical groups (inter-node, inter-socket and intra-

socket) are able to concurrently communicate with members of 3 different groups

via independent networks(InfiniBand, CPU memory and PCI-Express). However,

since original data is in GPU memory, inter node and intra socket communication
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of root process occupies the same direction of PCI-Express, leading to dropping of

performance when more than 2 nodes is engaged, compared with 1 node.

Since chain algorithm is used for each group and groups occupy independent

networks for communications, the entire cost of broadcast/reduce can be considered

as the cost of propagating data from root to the last node leader in Level 3 group

plus the cost of transferring data to the last process of Level 1 group of the last

node. Such communication pattern is also a chain. According to the model of chain

algorithm shown in Table 5.1, the time of chain algorithm can be treated as T =

ns ∗ (α + βm) if the message size is large enough to ignore the cost of establishing

pipeline, and hence performance does not depends on the number of processes within

the chain. Therefore, as seen in Figure 5.5, the latency of our broadcast and reduce

104



trend to be stable when increasing the number of nodes, which represents perfect

strong scalability. OMPI tuned switches algorithms based on number of processes and

message sizes. However, the decision strategy is not designed for homogeneous system,

not heterogeneous system with GPUs, hence, it would not select a optimal algorithm,

leading to much slower performance than MVAPICH2 and our OMPI-topo. Evidence

can be seen that, when only using one node, OMPI-tuned does not use the chain

algorithm which should be the optimal one, resulting significant performance drop.

Again, because of fine grain pipelining and concurrent communication of different

topology groups, we achieve better scalability than OMPI-tuned and MVAPICH2.

5.3.3 Process Mapping

In MPI program, process mapping is crucial for performance. Figure 5.6 demonstrates

the performance influence of different mapping strategies. Because 4 GPUs are

attached to the same socket, we use two kinds of traditional mapping: by-core and

by-node. In additional, we randomly switch ranks in communicator to created a

random mapping.by MPICommsplit. We average the result of 50 times random

mapping to look at the performance influence of unusual mapping. It is obvious that

no matter what kinds of process mapping strategies is used, OMPI-topo always has

steady and good performance because process are mapped based on topology not

ranking. MVAPICH2 may use a chain-like algorithm as their default algorithms for

message size of 32MB. Evidence can when the processes are mapped by node, all

communications in chain-like algorithm are inter-node communications, and hence is

slowest of other process mapping strategies.

In typical heterogeneous systems, GPUs within a socket are divided to several

PCI-Express switches, resulting to heavier inter-switch communications than intra-

switch communications. Therefore, a smart collective communication should also be

able to take care of the topology of intra-socket GPU locality. Now, we focus on

the effect of process mapping based on topology of PCI-Express switch. In the PSG
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K40 cluster, GPU 0, 1 and GPU 2, 3 are connect to different switches. To only

investigate the influence of process mapping based on PCI-Express switch without

the influence of other networks, we conduct the experiment of process mapping on

PCI-Express switch level in single node. As discussed in Figure 5.3 of Section ??,

there are 3 types of process mapping (optimal, intermediate and worst mapping) for a

chain algorithm in PSG K40 cluster, which deliver different performance. Figure 5.7

presents the bandwidth of broadcast with these three mapping strategies. In the result

of MVAPICH2, the worst mapping get half the bandwidth of its optimal mapping

since it crosses PIC-Express three times. The intermediate mapping theoretically

should performs the same as optimal mapping since PCI-Express is bidirectional.

However it is still slower than optimal mapping in MVAPICH2. Because we build

the chain based on topology of PCI-Express switch instead of rank, no matter what

kind of mapping is used, we are able to achieve the same performance.

5.4 Summary

In this chapter, we have proposed a topology-aware collective framework in Open

MPI infrastructure, which is able to minimize the slowest channels in heterogeneous

systems and provide a close collaboration between different levels of networks. In

addition, we have minimized communications over PCI-Express by caching data in

CPU memory, so that inter-node and inter-socket communications are directly use

the cached data instead of pulling data from GPU memory. Hence, the traffic over

PCI-Express is alleviated. We have also offloaded the reduction operations onto GPU,

which is able to take advantage of the embarrassingly parallel nature of the reduction

operations and efficiently map them onto GPU threads.
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Chapter 6

Conclusions and Future Directions

6.1 Conclusions

As heterogeneous compute nodes, featuring different types of processing units such

as CPU cores and accelerators, become more pervasive, the need for a programming

model capable of providing transparent access to all types of resources and delivering

portability and efficiency across a large range of hybrid environments becomes critical.

In this dissertation, we demonstrate that by incorporating integrating GPU knowledge

such as cores, memory and network topology into conventional programming models

including data-flow and message passing models, they are able to corporate with

GPUs tightly and fully utilize all types of computing resources in an efficient way,

and therefore become real GPU-aware programming models.

The data-flow programming model, in which the inherent parallelism of the

application is expressed as DAG, coupled with a runtime to manage tasks in

homogeneous systems, has been proven to outperform legacy folk-join approaches.

When adapting it to heterogeneous system, one the of major difficulties is data

granularity disagreement of CPU and GPU tasks caused by significant hardware

differences (less heavy weight cores vs many light-weight cores). To address this

issue, we have proposed a “hierarchical DAG” approach that further improves the
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applicability of the data-flow model to accelerated compute nodes. Data granularities

of tasks become variable, and the runtime arbitrates depending on the type of

the target computing unit. The performance analysis demonstrates that such an

approach improves the asymptotic performance for dense linear algebra applications

by employing the appropriate task grain on GPUs, while retaining a suitable amount

of parallelism for CPU computations. Because GPU memory has separate memory

space with CPU memory, and limited size, we have developed cache coherence

protocol along with a multi-level memory management strategy to maximize data

reuse and minimize data movement between CPU and GPUs by tracking data in

CPU and GPU memory. We have also achieved overlapping of communication with

data movement by offloading different operations to separate CUDA streams.

As a more generic programming paradigm, message passing programming model

focuses on message exchanges among processes without assistance of shared variables.

As a widely accepted standard of message passing communication, MPI defines the

communication patterns of point-to-point and collective communications, and have

been proved efficient and portability in homogeneous systems. In heterogeneous sys-

tems, the desire of GPU-aware MPI is urgent. In this dissertation, we have presented

a efficient point-to-point communication design of data residing in GPU memory. The

GPU datatype engine presented in this dissertation takes advantage of the parallel

capability of the GPUs to provide a highly efficient in-GPU datatype packing and

unpacking. We integrate the GPU datatype engine into the state-of-the-art Open MPI

library, at a level of integration such that all communications with contiguous or non-

contiguous datatypes will transparently use the best packing/unpacking approach.

The different protocols proposed, RDMA, copy in/out, pipeline, and the use of novel

technologies, such as GPUDirect, drastically improve the performance of the non-

contiguous data movements, when the source and/or the destination buffers are

GPU-resident. Experimental results demonstrate that our design out-performs the

state-of-the-art MVAPICH2 for data with both regular and irregular memory layout.
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In additional point-to-point communications, our topology-aware collective frame-

work fully exploit the hierarchical network of heterogeneous system, and orchestrates

the collaboration between multiple levels of networks. The fine grain pipeline

proposed in this dissertation dissolve the the boundary between different levels of

networks and allows a smooth transition across different levels. By incorporating the

GPU network topology into collective framework, we provide more opportunity for

concurrent communications over independent networks of different topology levels.

We demonstrate experimentally that 1) out framework is immune to modifications

of the underlying process-core binding; 2) it delivers better performance and strong

scalability than state-of-the-art MVAPICH2.

6.2 Future Directions

This dissertation proved that conventional programming models can be beneficial

from exploiting the knowledge of GPUs, from single GPU hardware level to entire

network topology, and are back to glories in heterogeneous systems. Even though

this work is done on Nvidia’s GPUs with CUDA, the idea can be extended to other

many-core accelerators such as AMD’s GPU with OpenCL and Intel Xeon Phi with

OpenMP.

With the development of Nvidia’s GPU, NVLink is likely to replace current PCI-

Express to provide higher bandwidth and lower latency. The penalty of GPU Unified

Memory Architecture is eliminated with the improvement of latency. The boundary

of GPU and CPU memory is trended to dissolve, resulting shared memory between

CPU and GPU which is similar to integrated GPU. Our work can be extended to this

kind of platform by un-plugging the data movement component. Another trend is

the topology change of NVLink, which allows a GPU to communicate with multiple

GPUs simultaneously, and therefore affects our topology-aware collective framework.

Since NVLink is only in the level of intra-node communications, the flexibility of the

plug-in/plug-out design in our framework allows for easy embedding of new intra-node
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collective operation algorithm specific for new NVLink topology into our framework.

Undoubtedly, a faster intra-node collective module will further boost the throughputs

of our topology-aware collective framework.
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