1,734 research outputs found

    An Alternative Conception of Tree-Adjoining Derivation

    Get PDF
    The precise formulation of derivation for tree-adjoining grammars has important ramifications for a wide variety of uses of the formalism, from syntactic analysis to semantic interpretation and statistical language modeling. We argue that the definition of tree-adjoining derivation must be reformulated in order to manifest the proper linguistic dependencies in derivations. The particular proposal is both precisely characterizable through a definition of TAG derivations as equivalence classes of ordered derivation trees, and computationally operational, by virtue of a compilation to linear indexed grammars together with an efficient algorithm for recognition and parsing according to the compiled grammar.Comment: 33 page

    Markov chains, R\mathscr R-trivial monoids and representation theory

    Full text link
    We develop a general theory of Markov chains realizable as random walks on R\mathscr R-trivial monoids. It provides explicit and simple formulas for the eigenvalues of the transition matrix, for multiplicities of the eigenvalues via M\"obius inversion along a lattice, a condition for diagonalizability of the transition matrix and some techniques for bounding the mixing time. In addition, we discuss several examples, such as Toom-Tsetlin models, an exchange walk for finite Coxeter groups, as well as examples previously studied by the authors, such as nonabelian sandpile models and the promotion Markov chain on posets. Many of these examples can be viewed as random walks on quotients of free tree monoids, a new class of monoids whose combinatorics we develop.Comment: Dedicated to Stuart Margolis on the occasion of his sixtieth birthday; 71 pages; final version to appear in IJA

    The Complexity of Graph-Based Reductions for Reachability in Markov Decision Processes

    Full text link
    We study the never-worse relation (NWR) for Markov decision processes with an infinite-horizon reachability objective. A state q is never worse than a state p if the maximal probability of reaching the target set of states from p is at most the same value from q, regard- less of the probabilities labelling the transitions. Extremal-probability states, end components, and essential states are all special cases of the equivalence relation induced by the NWR. Using the NWR, states in the same equivalence class can be collapsed. Then, actions leading to sub- optimal states can be removed. We show the natural decision problem associated to computing the NWR is coNP-complete. Finally, we ex- tend a previously known incomplete polynomial-time iterative algorithm to under-approximate the NWR

    A Symbolic Intruder Model for Hash-Collision Attacks

    Get PDF
    In the recent years, several practical methods have been published to compute collisions on some commonly used hash functions. In this paper we present a method to take into account, at the symbolic level, that an intruder actively attacking a protocol execution may use these collision algorithms in reasonable time during the attack. Our decision procedure relies on the reduction of constraint solving for an intruder exploiting the collision properties of hush functions to constraint solving for an intruder operating on words

    Inferring Different Types of Lindenmayer Systems Using Artificial Intelligence

    Get PDF
    Lindenmayer systems (L-systems) are a formal grammar system which consist of a set of rewriting rules. Each rewriting rule is comprised of a symbol to replace (predecessor), a replacement string (successor), and an optional condition that is necessary for replacement. Starting with an initial string, every symbol in the string is replaced in parallel in accordance with the conditions on the rewriting rules, to produce a new string. The replacement process iterates as needed to produce a sequence of strings. There are different types of L-systems, which allow for different types of conditions, and methods of selecting the rules to apply. Some symbols of the alphabet can be interpreted as instructions for simulation software towards process modelling, where each string describes another step of the simulated process. Typically, creating an L-system for a specific process is done by experts by making meticulous measurements and using a priori knowledge about the process. It would be desirable to have a method to automatically learn the L-systems (the simulation program) from data, such as from a temporal sequence of images. This thesis presents a suite of tools, collectively called the Plant Model Inference Tools or PMIT (despite the name, the tools are domain agnostic), for inferring different types of L-systems using only a sequence of strings describing the process over some initial time period. Variants of PMIT are created for deterministic context-free L-systems, stochastic L-systems, and parametric L-systems. They are each evaluated using existing known deterministic and parametric L-systems from the literature, and procedurally generated stochastic L-systems. Accuracy can be detected in various ways, such as checking whether the inferred L-system is equal to the original one. PMIT is able to correctly infer deterministic L-systems with up to 31 symbols in the alphabet compared to the previous state-of-the-art algorithm's limit of 2 symbols. Stochastic L-systems allow symbols in the alphabet to have multiple rewriting rules each with an associated probability of being selected. Evaluating stochastic L-system inference with 960 procedurally generated L-systems with multiple sequences of strings as input found the following: 1) when 3 input sequences are used, the inferred successors always matched the original successors for systems with up to 9 rewriting rules, 2) when 6 sequences of strings are used, the difference between the associated probabilities of the inferred and the original L-system is approximately 1%. Parametric L-systems allow symbols to have multiple rewriting rules with parameters that get passed during rewriting. Rule selection is based on an associated Boolean condition over the parameters that gets evaluated to choose the rule to be applied. Inference is done in two steps. In the first step, the successors are inferred, and in the second step, appropriate Boolean conditions are found. Parametric L-system inference was evaluated on 20 known parametric L-systems. For 18 of the 20 L-systems where all successors were non-empty, the successors were correctly identified, but the time taken was up to 26 days on a single core CPU for the largest L-system. The second step, inferring the Boolean conditions, was successful for all 20 systems in the test set. No previous algorithm from the literature had implemented stochastic or parametric L-system inference. Inferring L-systems of greater complexity algorithmically can save considerable time and effort versus constructing them manually; however, perhaps more importantly rather than relying on existing knowledge, inferring a simulation of a process from data can help reveal the underlying scientific principles of the process

    Acta Cybernetica : Volume 19. Number 2.

    Get PDF

    Answering Queries using Views over Probabilistic XML: Complexity and Tractability

    Full text link
    We study the complexity of query answering using views in a probabilistic XML setting, identifying large classes of XPath queries -- with child and descendant navigation and predicates -- for which there are efficient (PTime) algorithms. We consider this problem under the two possible semantics for XML query results: with persistent node identifiers and in their absence. Accordingly, we consider rewritings that can exploit a single view, by means of compensation, and rewritings that can use multiple views, by means of intersection. Since in a probabilistic setting queries return answers with probabilities, the problem of rewriting goes beyond the classic one of retrieving XML answers from views. For both semantics of XML queries, we show that, even when XML answers can be retrieved from views, their probabilities may not be computable. For rewritings that use only compensation, we describe a PTime decision procedure, based on easily verifiable criteria that distinguish between the feasible cases -- when probabilistic XML results are computable -- and the unfeasible ones. For rewritings that can use multiple views, with compensation and intersection, we identify the most permissive conditions that make probabilistic rewriting feasible, and we describe an algorithm that is sound in general, and becomes complete under fairly permissive restrictions, running in PTime modulo worst-case exponential time equivalence tests. This is the best we can hope for since intersection makes query equivalence intractable already over deterministic data. Our algorithm runs in PTime whenever deterministic rewritings can be found in PTime.Comment: VLDB201
    corecore