103 research outputs found

    Preface to the April 2018 Issue including selected works from CIbSE 2017 and LACLO 2016

    Get PDF
    This issue of the CLEIej consists of three main parts: i) a review paper on the state of the art of how contextual information extracted from a user task can help to improve searches for contents relevant to this task; ii) extended and revised versions of Selected Papers (which correspond to the second and third best paper from each track) presented at the XX Ibero-American Conference on Software Engineering (CIbSE 2017), which took place in Buenos Aires, Argentina, in May 2017; and, iii) extended and revised versions of selected papers from LACLO 2016, the XI Latin American Conference on Learning Objects and Technology, which took place in San Joseé, Costa Rica, in October 2016

    Re-addressing the Window: Environmental Performance of Adaptive Fenestrations for Indian Climate

    Get PDF
    The primary function of building fenestrations known to humankind is to provide daylight, fresh air and view. However, with the emergence of mechanical systems, the purpose of space heating and cooling, ventilation and lighting are widely fulfilled artificially. The comprehensive focus of this research is to investigate the role and evolution of windows to date, the factors that have influenced them, its effect on human psychology and their contribution in creating better living spaces. The Indian government’s scheme of constructing 20 million homes by 2022 and about 15% rise in the use of air conditioning per year in the urban and rural parts of India can be directly associated with the persistent shortage in electricity supply which has led to power cuts of about 16 hours per day in mostly the rural areas of the country and especially during the summer months (National Building Organization, 2016), (The Hindu, 2013; Wolfram, 2012). Hence, it is of specific importance to undertake this research to understand how windows have evolved and what their role in the future might be, especially in relation to design and the attainment of comfort. This research will contribute by portraying ‘window’ as an adaptive tool since they have the potential to create diversity, flexibility and social interaction on along with providing thermal and visual comfort for its users. This will be achieved by examining and readdressing passive design elements prevalent in the traditional Indian buildings, by documenting the current trend in window design and user preference, and by testing the documented windows through computational analysis to understand their impact on the thermal comfort in a modern residential unit setting. The final outcomes of this study that were achieved through fieldwork and performance analysis strongly demonstrated the significance of windows in improving the indoor thermal comfort. Moreover, the simulations ascertained that the contribution of windows was more substantial when they were a part of a holistic design intervene on that took into consideration on window design, building materials, building form and orientation, building techniques, climactic conditions, surrounding context and application of appropriate environmental controls

    Modelling of a rope-free passenger transportation system for active cabin vibration damping

    Get PDF
    Conventional vertical passenger transportation is performed by lifts. Conventional traction-drive electrical lifts use ropes to transfer the rotational motion of an electrical motor into a vertical motion of the cabin. The vertical passenger transportation system discussed in this paper does not use any ropes, the motor directly provides a driving force, which moves the cabin. This new propulsion is realized through an electrical linear motor. The use of the linear motor requires a new design of the passenger transportation system (PTS), which includes reducing the weight of the car through lightweight construction. The reduced stiffness of the lightweight design renders the construction more vulnerable to vibrations. In order to improve ride quality of the transportation system it is necessary to develop new concepts to damp the vibrations. One way to increase stiffness characteristics of the system is to introduce active damping components to be used alongside passive damping components. It is essential to derive a dynamic model of the system in order to design and also later control these damping components in the best possible way. This paper describes the fundamental steps undertaken to derive a dynamic model for designing and controlling active damping components for the new type of vertical PTS. The model is derived as a Multi-Body System (MBS), where the connections between the bodies are modelled as spring damper elements. The derivation of the MBS is demonstrated on a transportation system, consisting of three main components: a sledge, holding the rotor of the linear motor; a mounting frame, which is used to provide support for the cabin; and the actual cabin. The modelling of the propulsion system, thus the electrical part of the PTS, will not be the focus of this work

    Evaluating a holistic energy benchmarking parameter of lift systems by using computer simulation

    Get PDF
    At present, there are benchmarking parameters to assess the energy performance of lifts, e.g. one in Germany adopted by VDI (4707-1/2), one internationally published by ISO (BS EN ISO 25745-2:2015), and the other in Hong Kong adopted by The Hong Kong Special Administrative Region (HKSAR) Government. These parameters are mainly checking the energy consumed by a lift drive without considering real time passenger demands and traffic conditions; the one in Hong Kong pinpointing a fully loaded up-journey under rated speed and the two in Europe pinpointing a round trip, bottom floor to top floor and return with an empty car, though including energy consumed by lighting, displays, ventilation etc. A holistic normalization method by Lam et al [1] was developed a number of years ago by one of the co-authors of this article, which can assess both drive efficiency and traffic control, termed J/kg-m, which is now adopted by the HKSAR Government as a good practice, but not specified in the mandatory code. In Europe, the energy unit of Wh has been used but here, Joule (J), i.e. Ws, is adopted to discriminate the difference between the two concepts. In this article, this parameter is evaluated under different lift traffic scenarios using computer simulation techniques, with an aim of arriving at a reasonable figure for benchmarking an energy efficient lift system with both an efficient drive as well as an efficient supervisory traffic control

    A study into the influence of the car geometry on the aerodynamic transient effects arising in a high rise lift installation

    Get PDF
    One of the main goals in designing a high-speed lift system is developing a more aerodynamically efficient car geometry that guarantees a good ride comfort and reduces the energy consumption. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to analyse an unsteady turbulent air flow around two cars moving in a lift shaft. The paper is focused on transient aerodynamic effects arising when two cars pass each other in the same shaft at the same speed. The scenarios considered in the paper involve cars having three different geometries. Aerodynamic forces such as the drag force that occur due to the vertical opposite motions of the cars have been investigated. Attention is paid to the airflow velocity and pressure distribution around the car structures. The flow pattern in the boundary layer around each car has been calculated explicitly to examine the flow separation in the wake region. The results presented in the paper would be useful to guide the lift designers to understand and mitigate the aerodynamic effects arising in the lift shaft

    A computational and empirical analysis of the thermal performance of insulating concrete formwork

    Get PDF
    The research presented in this EngD thesis focused on Insulated Concrete Formwork (ICF), a site-based, Modern Method of Construction (MMC). An ICF wall consists of modular prefabricated Expanded Polystyrene Insulation (EPS) hollow blocks and cast in situ concrete. The blocks are assembled on site and the concrete is poured into the void. Once the concrete has cured, the insulating formwork stays in place permanently, providing very low U-values and high levels of airtightness. ICF is often thought of as just an insulated panel acting thermally as a lightweight structure. There is a view that the internal layer of insulation isolates the thermal mass of the concrete from the internal space and interferes with thermal interaction. Despite evidence of ICF’s enhanced thermal storage capacity (compared to a lightweight timber-frame panel with equivalent insulation), there is still a gap in understanding when attempting to quantify the effect of the thermal mass within ICF.Using computational analysis (Building Performance Simulation - BPS) and empirical evaluation (monitoring data), the aim of the EngD research was to analyse the aspects that affect the thermal performance of ICF; to develop an understanding about its thermal behaviour and its response to dynamic heat transfer; and, to investigate how the latter is affected by the inherent thermal inertia of the concrete core. [Continues.]</div
    • …
    corecore