168 research outputs found

    Recognising Complex Mental States from Naturalistic Human-Computer Interactions

    Get PDF
    New advances in computer vision techniques will revolutionize the way we interact with computers, as they, together with other improvements, will help us build machines that understand us better. The face is the main non-verbal channel for human-human communication and contains valuable information about emotion, mood, and mental state. Affective computing researchers have investigated widely how facial expressions can be used for automatically recognizing affect and mental states. Nowadays, physiological signals can be measured by video-based techniques, which can also be utilised for emotion detection. Physiological signals, are an important indicator of internal feelings, and are more robust against social masking. This thesis focuses on computer vision techniques to detect facial expression and physiological changes for recognizing non-basic and natural emotions during human-computer interaction. It covers all stages of the research process from data acquisition, integration and application. Most previous studies focused on acquiring data from prototypic basic emotions acted out under laboratory conditions. To evaluate the proposed method under more practical conditions, two different scenarios were used for data collection. In the first scenario, a set of controlled stimulus was used to trigger the user’s emotion. The second scenario aimed at capturing more naturalistic emotions that might occur during a writing activity. In the second scenario, the engagement level of the participants with other affective states was the target of the system. For the first time this thesis explores how video-based physiological measures can be used in affect detection. Video-based measuring of physiological signals is a new technique that needs more improvement to be used in practical applications. A machine learning approach is proposed and evaluated to improve the accuracy of heart rate (HR) measurement using an ordinary camera during a naturalistic interaction with computer

    Recognising Complex Mental States from Naturalistic Human-Computer Interactions

    Get PDF
    New advances in computer vision techniques will revolutionize the way we interact with computers, as they, together with other improvements, will help us build machines that understand us better. The face is the main non-verbal channel for human-human communication and contains valuable information about emotion, mood, and mental state. Affective computing researchers have investigated widely how facial expressions can be used for automatically recognizing affect and mental states. Nowadays, physiological signals can be measured by video-based techniques, which can also be utilised for emotion detection. Physiological signals, are an important indicator of internal feelings, and are more robust against social masking. This thesis focuses on computer vision techniques to detect facial expression and physiological changes for recognizing non-basic and natural emotions during human-computer interaction. It covers all stages of the research process from data acquisition, integration and application. Most previous studies focused on acquiring data from prototypic basic emotions acted out under laboratory conditions. To evaluate the proposed method under more practical conditions, two different scenarios were used for data collection. In the first scenario, a set of controlled stimulus was used to trigger the user’s emotion. The second scenario aimed at capturing more naturalistic emotions that might occur during a writing activity. In the second scenario, the engagement level of the participants with other affective states was the target of the system. For the first time this thesis explores how video-based physiological measures can be used in affect detection. Video-based measuring of physiological signals is a new technique that needs more improvement to be used in practical applications. A machine learning approach is proposed and evaluated to improve the accuracy of heart rate (HR) measurement using an ordinary camera during a naturalistic interaction with computer

    Online Handbook of Argumentation for AI: Volume 1

    Get PDF
    This volume contains revised versions of the papers selected for the first volume of the Online Handbook of Argumentation for AI (OHAAI). Previously, formal theories of argument and argument interaction have been proposed and studied, and this has led to the more recent study of computational models of argument. Argumentation, as a field within artificial intelligence (AI), is highly relevant for researchers interested in symbolic representations of knowledge and defeasible reasoning. The purpose of this handbook is to provide an open access and curated anthology for the argumentation research community. OHAAI is designed to serve as a research hub to keep track of the latest and upcoming PhD-driven research on the theory and application of argumentation in all areas related to AI.Comment: editor: Federico Castagna and Francesca Mosca and Jack Mumford and Stefan Sarkadi and Andreas Xydi

    THEORETICAL AND PRACTICAL ASPECTS OF DECISION SUPPORT SYSTEMS BASED ON THE PRINCIPLES OF QUERY-BASED DIAGNOSTICS

    Get PDF
    Diagnosis has been traditionally one of the most successful applications of Bayesian networks. The main bottleneck in applying Bayesian networks to diagnostic problems seems to be model building, which is typically a complex and time consuming task. Query-based diagnostics offers passive, incremental construction of diagnostic models that rest on the interaction between a diagnostician and a computer-based diagnostic system. Every case, passively observed by the system, adds information and, in the long run, leads to construction of a usable model. This approach minimizes knowledge engineering in model building. This dissertation focuses on theoretical and practical aspects of building systems based on the idea of query-based diagnostics. Its main contributions are an investigation of the optimal approach to learning parameters of Bayesian networks from continuous data streams, dealing with structural complexity in building Bayesian networks through removal of the weakest arcs, and a practical evaluation of the idea of query-based diagnostics. One of the main problems of query-based diagnostic systems is dealing with complexity. As data comes in, the models constructed may become too large and too densely connected. I address this problem in two ways. First, I present an empirical comparison of Bayesian network parameter learning algorithms. This study provides the optimal solutions for the system when dealing with continuous data streams. Second, I conduct a series of experiments testing control of the growth of a model by means of removing its weakest arcs. The results show that removing up to 20 percent of the weakest arcs in a network has minimal effect on its classification accuracy, and reduces the amount of memory taken by the clique tree and by this the amount of computation needed to perform inference. An empirical evaluation of query-based diagnostic systems shows that the diagnostic accuracy reaches reasonable levels after merely tens of cases and continues to increase with the number of cases, comparing favorably to state of the art approaches based on learning

    The UMPG Viking, 11/22/1971

    Get PDF
    First Sixty Days - Complete Text of Address by Louis Calisti To UMPG Community -- Trustees Meeting At Gorham -- Indians Gain Free Education -- Hockey and Football May Be Herehttps://digitalcommons.usm.maine.edu/viking/1047/thumbnail.jp

    Fresh fish: Observation up close in late seventeenth-century England

    Get PDF
    Medieval and Early Modern Studie
    • …
    corecore