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DIAGNOSTICS
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University of Pittsburgh, 2014

Diagnosis has been traditionally one of the most successful applications of Bayesian networks.

The main bottleneck in applying Bayesian networks to diagnostic problems seems to be model

building, which is typically a complex and time consuming task.

Query-based diagnostics offers passive, incremental construction of diagnostic models

that rest on the interaction between a diagnostician and a computer-based diagnostic system.

Every case, passively observed by the system, adds information and, in the long run, leads

to construction of a usable model. This approach minimizes knowledge engineering in model

building.

This dissertation focuses on theoretical and practical aspects of building systems based

on the idea of query-based diagnostics. Its main contributions are an investigation of the

optimal approach to learning parameters of Bayesian networks from continuous data streams,

dealing with structural complexity in building Bayesian networks through removal of the

weakest arcs, and a practical evaluation of the idea of query-based diagnostics. One of the

main problems of query-based diagnostic systems is dealing with complexity. As data comes

in, the models constructed may become too large and too densely connected. I address

this problem in two ways. First, I present an empirical comparison of Bayesian network

parameter learning algorithms. This study provides the optimal solutions for the system

when dealing with continuous data streams. Second, I conduct a series of experiments

testing control of the growth of a model by means of removing its weakest arcs. The results
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show that removing up to 20 percent of the weakest arcs in a network has minimal effect on

its classification accuracy, and reduces the amount of memory taken by the clique tree and

by this the amount of computation needed to perform inference. An empirical evaluation of

query-based diagnostic systems shows that the diagnostic accuracy reaches reasonable levels

after merely tens of cases and continues to increase with the number of cases, comparing

favorably to state of the art approaches based on learning.
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1.0 INTRODUCTION

Bayesian networks (BNs) are convenient tools for building models in various domains. One

of the most successful applications of Bayesian networks has been diagnostics. However,

constructing BN models is a complex and time consuming task. Building a BN for a domain

involves three tasks: (1) identifying important variables, (2) identifying relationships among

these variables, and (3) obtaining probabilities [Druzdzel and van der Gaag, 2000]. For a

sufficiently complex diagnostic model, it is not uncommon for these tasks to take hundreds

of hours [Onisko, 2003].

We can also learn models from data. Given a sufficiently large set of past cases, we can

learn both the structure and the parameters of a Bayesian network [Pearl and Verma, 1991,

Cooper and Herskovits, 1992, Spirtes et al., 1993]. Although model construction from data

can significantly reduce knowledge engineering effort, large and complete data sets are hard

to find. There are many complex devices or systems, such as airplanes for example, that do

not break often, or at least are not supposed to break often.

There have been several lines of research outside of learning from data that focus on

model building. The first approach focuses on providing more expressive building tools. The

noisy-OR model [Pearl, 1988, Henrion, 1989] and its generalizations [Dı́ez, 1993, Srinivas,

1993] simplify the representation and elicitation of independent interactions among multi-

ple causes. Kraaijeveld and Druzdzel [2005], for example, describes a system that aids rapid

interactive construction of large diagnostic models, simplified by means of a three level struc-

ture and noisy-OR gates. Heckerman [1990] developed the concept of similarity networks

in order to facilitate structure building and probability elicitation. The second approach,

usually referred to as knowledge-based model construction (KBMC), emphasizes aiding of

model building by an automated generation of decision models from a domain knowledge-
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base guided by the problem description and observed information [Breese et al., 1994]. The

third approach is to apply system engineering and knowledge engineering techniques for

aiding the process of building Bayesian networks. Mahoney and Laskey [1996], Laskey and

Mahoney [1997] address the issues of modularization, object-orientation, knowledge-base,

and evaluation in a spiral model of the development cycle. Koller and Pfeffer [1997], Pfef-

fer et al. [1999] developed Object-Oriented Bayesian Networks (OOBN) that use objects as

organizational units to reduce the complexity of modeling and increase the speed of infer-

ence. Lu et al. [2000] proposes mechanism-based model construction, in which models are

constructed from a collection of mechanisms based on scientific laws or pieces of existing

models. Ibargengoytia et al. [2006] proposes to learn a Bayesian network model for a nor-

mal mode of operation, for which data is typically available, and then detect anomalies as

deviations from this model.

1.1 PROBLEM STATEMENT AND MOTIVATION

Even though Bayesian network (BN) models have proven useful in diagnostic domains [Heck-

erman and Breese, 1999], they are quite hard to field in practice. Interestingly, it is not com-

putational complexity that is critical here. The main hurdle in applying Bayesian networks

to complex diagnostic problems seems to be model building.

Query-based diagnostics [Agosta et al., 2008] offers passive, incremental construction of

diagnostic models that rest on the interaction between a diagnostician and a computer-based

diagnostic system. Every case, passively observed by the system, can add information to the

model, and in the long run, construct a usable model. This approach minimizes knowledge

engineering in model building.

While this idea is appealing, it has undergone only limited testing in practice. There

are two existing prototypes implementing this approach. An industrial prototype of the

system has been implemented and fielded at Intel and tested in the domain of diagnostics

and corrective maintenance of factory equipment [Agosta et al., 2010]. A widely accessible

prototype, called Marilyn [Pols, 2007] has been developed at the University of Pittsburgh.

2



Neither of the two prototypes, nor the very idea of a system that eliminates completely the

knowledge engineering phase and learns successively from diagnostic cases have undergone

a formal evaluation. This dissertation focuses on the theoretical and practical aspects of the

Marilyn system, including its formal evaluation.

There are several technical problems that need to be addressed for practical query-based

diagnostic systems to be built. One such problem is processing of continuous streams of

data. Each query-based diagnostic system must work in an environment where there are

new data records/cases added systematically to the body of data. A practical question is

whether they should be processed incrementally or periodically in batch mode. Another

problem is the continuous increase in complexity of the models’ structure. At some point,

if unmanaged, the models may become intractable. One way of controlling the growth of a

model is to systematically simplify its structure by removing its weakest arcs. There are two

research questions: (1) how many arcs can we remove with minimal impact on the model’s

accuracy?, and (2) what are the benefits of removing weakest arcs in terms of the reduction

of memory requirements and computation time?

1.2 CONTRIBUTIONS

The main contributions of this dissertation are: (1) an investigation of the optimal way of

learning parameters of Bayesian networks from continuous data streams, (2) dealing with

structural complexity in building Bayesian networks, and (3) a practical evaluation of the

idea of query-based diagnostics.

Query-based diagnostics approach requires fewer cases for learning than the other simple

Bayesian networks in performing classification.

I describe a series of experiments that subject a prototype implementing passive, in-

cremental model construction to a rigorous practical test. While query-based diagnostics

are more suitable to diagnostics application, we can also apply the query-based diagnostics

approach to classification tasks which contain only discrete variables. I evaluate the pro-

totype (Marilyn) systematically, based on five data sets: three data sets from the UCI
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Machine Learning Repository and two help desk data sets at the University of Pittsburgh.

I compare the system’s diagnostic accuracy with other Bayesian learning algorithms: Naive

Bayes, a Bayesian search algorithm Greedy Thick Thinning, and Tree Augmented Naive

Bayes algorithm [Ratnapinda and Druzdzel, 2009, 2011].

There is no significant difference in terms of parameter accuracy and classification accu-

racy among the three Bayesian network parameter learning approaches: the batch learning,

the incremental batch learning, and the online learning when learning Bayesian network

parameters from continuous data streams.

To find an optimal approach to perform Bayesian network parameter learning algorithms

for continuous data streams, I conduct a series of experiments to compare two notable

parameter learning algorithms: the EM algorithm and the online EM algorithm. I use

several real data sets to create gold standard Bayesian network models. I use these models

to generate continuous streams of data. I learn the parameters from these streams of data

using three approaches: batch learning, incremental batch learning, and online learning. I

measure the time taken by the learning procedure, compare the accuracy of the learned

parameters to the original (gold standard) parameters that have generated the data, and

test the diagnostic accuracy of the learned models [Ratnapinda and Druzdzel, 2013].

The complexity of a Bayesian network can be reduced by removing its weakest arcs, with-

out compromising its accuracy.

Practical models based on Bayesian networks often reach the size of hundreds or even

thousands of variables. In some applications, such as query-based diagnostics, models are

built dynamically and grow in size with time. The amount of computation necessary to

perform belief updating may become prohibitive. One way of controlling the growth of a

model is to systematically simplify its structure by removing its weakest arcs. I perform an

empirical evaluation of structural simplification of Bayesian networks by removing weak arcs.

I use six networks built from real data sets. I systematically remove arcs from the weakest to

the strongest, relying on four measures of arc strength called strength of influence. I measure

the classification accuracy of the resulting simplified models, the amount of memory taken

by the clique tree and the amount of computation needed to perform inference [Ratnapinda

and Druzdzel, 2014].
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1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is structured as follows. Chapter 2 introduces terms

and concepts that are necessary for subsequent chapters. Chapter 3 describes the idea of

query-based diagnostics and its implementation. Chapter 4 presents an approach for learning

parameters of Bayesian networks from continuous data streams. Chapter 5 addresses the is-

sues of dealing with structural complexity in building Bayesian networks. Chapter 6 presents

an empirical evaluation of query-based diagnostics. Chapter 7 evaluates and discusses sev-

eral aspects of query-based diagnostics in a practical domain. Chapter 8 summarizes the

dissertation and outlines directions for further research.
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2.0 BACKGROUND

This chapter gives a review of the concepts involved in query-based diagnostic systems,

notably Bayesian networks, noisy-OR gates, the EM algorithm and the strength of influence.

2.1 BAYESIAN NETWORKS

Bayesian networks [Pearl, 1988] are acyclic directed graphs representing joint probability

distributions over sets of variables. Every node is the graph represents a random variable.

Lack of an arc between two nodes represents conditional independence between the variables

that these nodes represent. Nodes are quantified by means of conditional probability ta-

bles (CPTs), representing the probability distribution of the variables that they represent,

conditional on their parent variables in the graph. Nodes without parents are specified by

prior probability distributions. The joint probability distribution over a set of variables

X = {X1, . . . , Xn} 1 can be obtained by taking the product of all prior and conditional

probability distributions:

Pr(X) = Pr(X1, . . . , Xn) =
n∏
i=1

Pr(Xi|Pa(Xi)) . (2.1)

Figure 1 shows a simple Bayesian network modeling two computer hardware problems.

The variables in this model are: Computer is old, Damaged CPU, Damaged VGA card, Hard

disk LED does not work and Monitor LED never goes to steady green. Each of the variables

in the model is binary, i.e., has two outcomes: True and False.

1I will use the following notation. The capital letters are variables (e.g., X), and lower case letters are
outcomes (e.g.,x).
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Figure 1: An example Bayesian network modeling computer hardware problems

A directed arc between Damaged CPU and Hard disk LED does not work indicates that

Damaged CPU will affect the probability that Hard disk LED does not work. Similarly, an

arc from Computer is old to Damaged VGA card indicates that computer age influences the

likelihood of a damaged VGA card.

The most important type of reasoning in Bayesian networks is known as belief updating.

Belief updating amounts to computing the probability distribution over variables of interest

given the evidence. For example, in the model of Figure 1, the variable of interest could

be Damaged CPU and the BN could compute the posterior probability distribution over

this node given the observed values of Computer is old, Hard disk LED does not work, and

Monitor LED never goes to steady green. Once the network has updated the probability

values, these can be used to make a diagnostic decision.
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2.2 THE NOISY-OR GATE

Bayesian networks suffer from a practical problem: Because CPTs represent the probability

distribution of a node conditional on all combinations of parent variables, their size grows

exponentially with the number of parents. Table 1 shows the CPT for the node Monitor

LED never goes to steady green. The node has three parents and CPT consists of 23 = 8

different probability distributions.

Table 1: Conditional probability table of the node Monitor LED never goes to steady green

One solution to the exponential growth of CPTs is application of Independence of Causal

Influences (ICI) models [Dı́ez and Druzdzel, 2006]. The ICI models assume that parent

variables can cause the effect independently of each other. This assumption allows to reduce

the number of parameters needed to specify an interaction from exponential to linear in the

number of parents.

The noisy-OR gate [Pearl, 1988, Henrion, 1989] is a probabilistic extension of the deter-

ministic OR gate. Each variable in a noisy-OR gate is binary and has two states: present

and absent. Presence of the parent variables Xi effects the presence of the child variable Y .

If all the parent variables are absent, then the child variable is also absent.

This can be modeled in propositional logic by the following Boolean function:

Y = X1 ∨X2 ∨ . . . ∨Xn . (2.2)

The noisy property of the noisy-OR gate states that if a parent cause variable Xi is

present and all other parent variables are absent, Xi has a probability pi of causing the effect

y. The probability of variable Y present given that only Xi is present is:

pi = Pr(y|x1, . . . , xi, . . . , xn) .
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The probability of y given a subset X of causes present is:

p(y|X) = 1−
n∏
i=1

(1− pi) . (2.3)

In general, it is infeasible to explicitly include all possible causes of an effect. I use an

extension of the noisy-OR gate called the leaky noisy-OR gate [Henrion, 1989, Dı́ez, 1993]

for query-based diagnostics. The parameter pi of a leaky noisy-OR gate is defined as the

probability that Y will be true if Xi is present and every other parent of Y , including

unmodeled causes of Y (the leak), are absent.

2.3 BAYESIAN NETWORK PARAMETER LEARNING

The most flexible algorithm for learning Bayesian network parameters is the EM (Expec-

tation Maximization) algorithm [Dempster et al., 1977, Lauritzen, 1995]. While there are

several variants of the EM algorithm, two are most notable: the basic EM algorithm [Demp-

ster et al., 1977] and the online EM algorithm [Sato and Ishii, 2000, Liang and Klein, 2009,

Cappe, 2010].

The Expectation-Maximization (EM) algorithm [Dempster et al., 1977] is a widely used

method of computing maximum likelihood estimates given incomplete data. One application

of the EM algorithm is in learning parameters of Bayesian networks. The EM algorithm

consists of two steps: (1) the expectation step (E-step) that uses the current parameters to

compute the expected values of the missing data, and (2) the maximization step (M-step),

during which the maximum likelihood of the parameters are estimates based on the expected

values from the E-step. The EM process repeats until it converges to the maximum likelihood

or it reaches a pre-defined improvement threshold.

In the basic EM algorithm, during each iteration, we perform the E-step to calculate the

expected sufficient statistics across all observation. Then, we do the M-step once at the end

to re-estimate the parameters using sufficient statistics from the E-step. Following Cappe

[2010], we describe the basic EM algorithm as follows: Given n observations, Y1, . . . , Yn, and

an initial parameter guess θ0, do, for k ≥ 1.
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E-step: Sn,k =
1

n

n∑
t=1

Eθk−1
[s(Xt, Yt)|Yt]

M-step: θk = θ̄ (Sn,k) .

We define Xt as a random variable corresponding to a variable Yt.

The online EM algorithm performs the E-step and follows it by the M-step after each

observation. In the E-step, the online EM algorithm uses stochastic approximation instead

of sufficient statistics [Cappe, 2010].

Sn = Sn−1 + γn
(
Eθ̄(Sn−1) [s(Xn, Yn)|Yn]− Sn−1

)
.

Updating the model after each observation may lead to a poor approximation, which the

online EM algorithm avoids by interpolating between Sn−1 and the expectation values. The

value that weights between a previous value and an expected value is a positive step size

called γn. We use the generalized version of the online EM algorithm, proposed by Cappe

[2010], in the following way. Given S0, θ0 and a sequence of step sizes (γn)n≥1, do, for n ≥ 1.

E-step: Sn = (1− γn)Sn−1 + γnEθn−1 [s(Xn, Yn)|Yn]

M-step: θn = θ̄(Sn) .

We have to select a step size γn for the online EM. We use the assumption often used in

the stochastic approximation literature that
∑

n γn =∞,
∑

n γ
2
n <∞. If we use γn = 1/nα,

then the range of values for 0.5 < α ≤ 1 is valid.
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2.4 STRENGTH OF INFLUENCE

Strength of influence [Koiter, 2006] measures the strength of an arc between two nodes

in a model. It is based on the differences between the posterior probability distributions

of a child node for each possible state of the parent. While for some applications (e.g.,

visualization or sensitivity analysis) Koiter [2006] suggested taking the maximum difference,

in this dissertation, I base the link strengths on the average over all differences because it

covers a broader range of situations. The strength of influence is defined as follows:

1

n

n∑
i=0

D(P (A), P (B|A)) ,

where node B is the child of node A, A has n states and D is a function measuring the

distance between two distributions.

Koiter [2006] uses four distance measures D: Euclidean, Hellinger, J-divergence and

CDF. If P and Q are two probability distributions over n states, the Euclidean distance

between them is defined as:

E(P,Q) =

√√√√ n∑
i=1

(pi − qi)2 .

Euclidean distance focuses on absolute differences between probabilities and does not

correctly account for their relative differences. For example, the same absolute difference of

0.1 between two small probabilities (e.g., 0.01 and 0.11) seems much larger than between

two moderate probabilities (e.g., 0.6 and 0.7). Two popular measures have been proposed

to account for relative differences: Hellinger distance [Kokolakis and Nanopoulos, 2001] and

Kullback-Leibler (KL) distance [Kullback and Leibler, 1951].

Hellinger distance between P and Q is defined as follows:

H(P,Q) =

√√√√ n∑
i=1

(
√
pi −
√
qi)2 .
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J-divergence [Johnson and Sinanovic, 2000] is calculated by using the average of the two

possible values of the KL distance. KL distance is defined as:

KL(P,Q) =
n∑
i=1

(pilog2(
pi
qi

)) .

J-divergence is then defined as:

J(P,Q) =
KL(P,Q) +KL(P,Q)

2
.

Cumulative Distribution Functions (CDF) distance [Kraaijeveld, 2005] is defined as:

C(P,Q) =
1

n− 1

n∑
i=1

|P (P ≤ pi)− P (Q ≤ qi)| .

All four measures of link strength are symmetric. The range of these measures of link

strength is normalized to the interval [0, 1]. I demonstrate the differences among the four

measures of link strength by means of the following example after Ebert-Uphoff [2007].

Figure 2 shows a simple Bayesian network with two binary nodes A and B and b as their

only free numerical parameter. Figure 3 shows how the four measures of strength of the arc

A→ B change as a function of b. Please note that when there is only one parent, Euclidean

distance and CDF distance are equal to each other. The values of the strength of influence

decreases monotonically as the conditional distribution P (B|A) becomes symmetric. J-

divergence is the least linear of the four measures.

���

���?

A

B

A : P(A=True) = 0.5

B : P(B=True|A = True) = b
B : P(B=True|A = False) = 1- b

Figure 2: A simple Bayesian network illustrating the four measures of link strength. The

interaction between nodes A and B is quantified by means of one free parameter b.

12



Figure 3: Strength of influence as a function of the parameter b for the network of Figure 2
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3.0 QUERY-BASED DIAGNOSTICS

This chapter describes the idea of query-based diagnostics (QBD) and a web-based imple-

mentation of query-based diagnostics called Marilyn [Pols, 2007]. Marilyn is written in

C# and ASP.NET, using the Microsoft SQL database to store data. It utilizes the Bayesian

reasoning engine SMILE,1 running under the Microsoft Windows Vista Server. Mari-

lyn is available on the Decision Systems Laboratory’s web site at the following location:

http://barcelona.exp.sis.pitt.edu/.

3.1 FUNDAMENTALS OF QUERY-BASED DIAGNOSTICS

Agosta et al. [2008] proposed an approach that eliminates knowledge engineering altogether.

In what they call query-based diagnostics, they propose embedding a diagnostic aid in ex-

isting systems for diagnostic record keeping. A diagnostician working on a case, recording

symptoms and other findings along with the final diagnosis, without being aware of it, partic-

ipates in constructing a simplified Bayesian network model that supports future cases. From

the theoretical perspective, the idea is a combination of structure elicitation and incremental

learning. The diagnostician provides the system with a basic distinction between symptoms,

background information, and the final diagnosis. Past cases solved by diagnosticians can

provide considerable information about the domain. Every new case acquired by the system

adds useful information and, in the long run, leads to building a usable model. As cases

accrue, the system refines the structure and the parameters of such model and improves its

accuracy.

1http://genie.sis.pitt.edu/
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3.2 MODEL STRUCTURE

The Bayesian networks constructed by Marilyn use a simplified structure called the BN3M

model [Kraaijeveld and Druzdzel, 2005], which distinguishes three fundamental types of

variables:

• Fault variables, which represent the problems that the diagnostician wants to identify

(e.g., a disease or a device malfunction).

• Observation variables, which include observed symptoms and results of diagnostic tests.

• Context variables, which are the background, history, or other information known by the

technician performing the diagnosis that may influence the probability of a fault and,

therefore, are relevant to the diagnosis.

The structure of BN3M networks consists of three levels, with the context information

variables on the top, the fault variables in the middle, and the observation variables at the

bottom. Influences are possible only between neighboring layers.

Figure 4 shows an example of this structure. The first context variable, User is a regis-

tered student, influences the variable User has no print quota. The second context variable

Computer lab is busy influences the faults Printer is backing up and Printer is out of paper.

No print job out is influenced by any three of the fault variables. Trays 5 and 6 are empty

is influenced only by the fault Printer is out of paper.

Marilyn works with a simplified structure of the network, sometimes called BN2O

(Bayesian Network with 2-layer of noisy-OR gates). The structure of BN2O networks consists

of two layers, with the fault variables in the top layer, and the observation variables at the

bottom layer. Influences are possible only between neighboring layers. All nodes in the

BN2O networks are discrete and, therefore, we can apply the BN2O structure to classification

problems containing only discrete variables.

15



Figure 4: An example of a BN3M model

3.3 IMPLEMENTATION

Figure 5 shows Marilyn’s architecture. Marilyn appears to a user as a computer program

for logging case data. A user interacts with it through a web browser, entering elements of

the case at hand. The case data are entered in free text format, and the system performs

simple text matching to suggest values entered in prior cases.

Figure 5: Marilyn’s architecture

Figure 6 shows Marilyn’s web user interface. There are three panels of a diagnostic

session: symptom, background information, and diagnosis. The two tabs on the left hand side
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are for adding symptoms, and background information. The right hand side panel presents

a user with a list of most likely diagnoses implied by the data entered so far. Behind the

scene, Marilyn constructs a Bayesian network from the prior cases stored in the database

and, ultimately, adds the current case to the database.

Figure 6: Implementation of Marilyn’s website

3.3.1 Prior knowledge

Algorithm 1 Query-based diagnostics

1: for each session do

2: [Build a Bayesian network]

3: [Learn Bayesian network parameters using the EM algorithm]

4: [Add the case to the database of cases]

5: end for
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Algorithm 2 Build a Bayesian network

1: Input: nodes table NT ; arcs table AT

2: for each node X in nodes table NT do

3: Add X to the model M

4: Set the node X name

5: Set the node X outcomes to True and False

6: end for

7: for each node X in M do

8: Find the number of parent nodes P per child nodes C of X in arcs table AT

9: Add arc for C for each parents P to the model M

10: switch P do

11: case 0 :

12: Set the node C type to CPT type

13: Set the node C prior probability distributions to 0.1, 0.9

14: case 1 :

15: Set the node C type to CPT type

16: Set the node C conditional probability distributions to 0.8, 0.2, 0.1, 0.9

17: otherwise :

18: Set the node C type to noisy-MAX type

19: Set the node C conditional probability distributions for all P to 0.8, 0.2

20: Set the node C leak parameters to 0.1, 0.9

21: end for

22: Save the initial model M to GeNIe file called dataem.xdsl

Algorithm 1 explains fours steps of query-based diagnostics for each diagnosis session.

When Marilyn starts, it constructs a Bayesian network from the existing database (in the

very beginning, this database is empty). The database consists of six tables: arcs, diagnosis,

domains, nodes, lablog, and emlog. The first four tables store the information about causal

interactions among variables, the number of diagnostic sessions that have been stored by the

system, the diagnostic domains, and variables, respectively. The last two tables store data
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Algorithm 3 Learn Bayesian network parameters using the EM algorithm

1: [Loading Data Phase]

2: Copy lablog table LT to emlog table EMT

3: Drop column id and date in EMT

4: Export EMT to a text file output.txt OP

5: [EM Phase]

6: Load dataem.xdsl from Algorithm 2

7: Load OP

8: Set Equivalent Sample Size to 10

9: Invoke EM parameter learning

10: Save the final model M to a GeNIe file called lem.xdsl

for each session and store the diagnostic logs used in refining the model parameters.

Marilyn constructs the BN3M structure by going through all diagnostic cases entered

so far and connecting all context variables and and all observation variables to the fault

node observed in the case (i.e., the final diagnosis, as indicated by the diagnostician). This

provides a graph skeleton that is subsequently quantified in the following way. All prior

probability distributions are set to 0.1/0.9. All conditional probability distributions are set to

0.8/0.2 (see algorithm 2). The EM algorithm, which Marilyn subsequently invokes, treats

these initial values as prior probability distributions. I perform the parameters smoothing

by setting the Equivalent Sample Size to 10. Then, the EM refines the prior probability

distributions by means of the records accrued during the past diagnostic cases. While the

above priors are arbitrary, I found that they are capable of inducing reasonable behavior on

the part of the model, even if the number of existing records is small. There is an increasing

body of evidence that the precise values of parameters are not crucial in practice [Pradhan

et al., 1996, Onísko and Druzdzel, 2013].

The final model, i.e., model obtained after the parameter refinement stage, is used by

Marilyn to generate a list of most likely diagnoses for the current diagnostic case (see

algorithm 3).
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Algorithm 4 Add the case to the database of cases

1: Input: nodes table NT ; arcs table AT ; lablog table LT ; a list of observation LO; a list

of context LC; a diagnosis D

2: [Saving diagnosis D]

3: if D not exists in NT then

4: Add D to NT

5: end if

6: Get DID id from NT and add DID to LT

7: [Saving context C]

8: for each C in LC do

9: if C not exists in NT then

10: Add C to NT

11: end if

12: Get CID id from NT and add CID to LT

13: Add an arc from C to D into AT

14: end for

15: [Saving observation O]

16: for each O in LO do

17: if O not exists in NT then

18: Add O to NT

19: end if

20: Get OID id from NT and add OID to LT

21: Add an arc from O to D into AT

22: end for

20



3.3.2 User interface

This section explains the beginning state in Algorithm 4.

The Marilyn interface follows a diagnostician work-flow by default. There are three

phases of a diagnostic session: observation, context information, and diagnosis. These cor-

respond to different panels (1) Symptoms, (2) Background, and (3) Diagnosis.

A user can enter information in the text box located on top of each panel. Under the

text box, a list of suggested information related to the current panel ranked from the most

to the least probable. A user will click on the Symptom and the Background label to switch

between these steps.

Suppose a lab user has told a lab consultant that she has not received her print job.

This user is a registered student, who tried to print a PDF document from the University

CourseWeb web site.

In the first step, the lab consultant, who will work with a new Symptom panel, in which

he can input some related observations to the lab user problems which is No print job out. A

lab consultant can selecting the No print job out on the lists to enter this observation shown

in Figure 7. A lab consultant can use a search function to find the related information

shown in Figure 8. The search function will match any texts (not case sensitive) with three

or more letters. Once she has finished entering observations, the lab consultant can click

the Background panel next to the Symptom panel to proceed onto the context information

screen.

In the second step, the lab consultant may input history or information of the problems.

She may check the lab user printing balance to see if the lab user has enough balance to

print. With printing problems, the lab consultant will browse the print queue server called

Pharos to check the history of the lab user print jobs. After gathering all related information,

she will input three variables: User balance is not zero, No print job in Pharos system and

Print PDF from CourseWeb in any order from the lists in the Background panel shown in

Figure 9. Once entering context information is done, the lab consultant can proceed to the

final panels or go back to work on the Symptom panel.

In the third step, the user enters the final diagnosis for the case at hand. She can
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Figure 7: A user selects an observation in the Symptom panel.

select the diagnoses which were suggested by the Marilyn model or enter a new diagnostic.

Marilyn diagnostic panel suggests a list of possible diagnoses ranked by their posterior

probabilities, as implied by the underlying model shown in Figure 10. In this example, the

lab consultant worked with the network that is based on twenty five computing lab help desk

cases, and the system was able to give a correct suggestion to the lab consultant. The first

suggestion was Document can not print without saving. This refers to a specific requirement

of the computing lab that the lab users can not print some documents directly from the web

site without saving them first to local space on the disk. Next, the lab consultant selects the

causes by clicking on check box in the Diagnosis panel shown in Figure 11. Figure 12 shows

a final screen after a lab consultant entered all the information.

The consultant confirms the session by clicking the Close Case icon on the top right

hand corner in order to save the session in the database. If the causes do not appear on the

list, the lab consultant can type in a text field and then click the add (+) button , the new

causes will be added to the causes list. The user can export a built model in .xdsl format

22



Figure 8: A user finds related information using Marilyn search function.

file by clicking the Get Model icon on the top right hand corner. The .xdsl file needs to be

opened in a program called GeNIe. Marilyn allows for working with other domains by

using the Expert Panel icon.

The Marilyn interface can be adapted to work with a typical classification data set by

applying the simplified BN2O structure. In this case, there are two phases of a diagnostic

session: observation and diagnosis. These correspond to different panels (1) Symptoms, and

(3) Diagnosis. One limitation of Marilyn is that it only works with discrete variables,

which is a common requirement in Bayesian network.

Suppose a user is working with the SPECT Heart data set (details in Chapter 6) on a

record with three symptoms present (id4, id9, and id17).

In the first step, the user can input three observations: id4, id9, and id17 (Figure 13).

Once the user has finished entering observations, he can proceed to the final panels.

In the last step, the user enters the final diagnosis for the case at hand. The user finds the

final diagnosis from the original data set, which is Present, in which matches the Marilyn

suggestion. Figure 14 shows the final screen after the user has entered all the information.
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Figure 9: A user selects background information in the Background panel.
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Figure 10: The Diagnosis panel.
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Figure 11: A user selects the diagnosis in the Diagnosis panel.
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Figure 12: An example of a completed diagnosis session for computer lab domain.

Figure 13: A user selects three observations in the Symptom panel for SPECT Heart domain.
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Figure 14: An example of a completed diagnosis session for SPECT Heart domain.

28



4.0 PARAMETER LEARNING IN QUERY-BASED DIAGNOSTICS

An increasing number of domains involve continuous collection of massive amounts of data.

World Wide Web-based systems, for example, often generate records for every user transac-

tion. Real-time monitoring systems obtain sensor readings in fraction of a second increments.

A corporate call center may deal with hundreds or even thousands of new cases daily. There

exist systems that specialize in continuous data streams and that operate in real-time, e.g.,

[Tucker et al., 2003, Olesen et al., 1992, Ratnapinda and Druzdzel, 2011]. They all need to

learn from the incoming massive amounts of data and systematically update whatever they

know about the system that they are monitoring.

When building practical query-based diagnostic systems for these types of systems, the

questions arise on how we should process these continuous streams of data. This chapter

presents an empirical comparison of Bayesian network parameter learning algorithms for

continuous data streams.

4.1 LEARNING CONTINUOUS DATA STREAMS IN BAYESIAN

NETWORKS

There are two fundamental approaches to processing continuous data streams, which we will

call batch learning and incremental learning. In the batch learning approach, we repeatedly

add new records to the accumulated data and learn anew from the entire data set. When

the number of data records becomes very large, this approach may be computationally

prohibitive. In addition, it requires storing and efficiently retrieving the entire data set,

which may not be feasible. In the incremental learning approach, we assume that the model
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learned in the previous step summarizes all the data collected up to that step and use the

newly acquired data to refine the model. Incremental learning approach can be divided into

two types: incremental batch learning and online learning. The incremental batch learning

or mini-batch learning updates the model by processing the incoming data in chunks, i.e.,

groups of records. The online learning updates the model by processing records one at the

time as they arrive.

The most flexible algorithm for learning Bayesian network parameters is the EM (Ex-

pectation Maximization) algorithm [Dempster et al., 1977, Lauritzen, 1995]. While there

are several variants of the EM algorithm, two are most notable: the basic EM algorithm

[Dempster et al., 1977] and the online EM algorithm [Sato and Ishii, 2000, Liang and Klein,

2009, Cappe, 2010].

The most common mode of operation of the basic EM algorithm is batch learning, i.e.,

learning from an entire data set. The basic EM algorithm can be also applied to incremental

batch learning, in which case the existing set of parameters, learned previously from a

database of cases, is assigned a level of reliability, expressed by a number called the equivalent

sample size. Equivalent sample size expresses the number of data records that have been

used to learn the existing parameters. While updating the existing parameters, the EM

algorithm weights the new cases against the existing parameters according to the relative

sizes of the data sets. The computational complexity of the incremental batch learning

depends primarily on the size of the set of additional records, i.e., the mini-batch. The

online EM algorithm is a modification of the basic EM algorithm that allows for processing

new data into the existing model one record at a time. Its complexity at each time step,

both in terms of computation time and memory use, is thus minimal. I should state clearly

here that it is based on different principles than incremental EM, so the two algorithms are

not equivalent when the increment is equal to one record (Figures 15 and 16).

The question that I pose in this chapter is which of the three approaches is best in practice

when learning Bayesian network parameters from continuous data streams. I focus on the

impact of choice of each of the learning schemes on (1) computational complexity of learning

(speed), (2) accuracy of the learned parameters, and (3) the model’s ultimate accuracy. I

pose the third question in the context of classification tasks, which is a common application
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Figure 15: A plot of the average Hellinger

distance as a function of the number of

records comparing the incremental EM and

the Online EM algorithm when processing

one record at the time (Letter data set).

Figure 16: A plot of the classification ac-

curacy as a function of the number of

records comparing the incremental EM and

the Online EM algorithm when processing

one record at the time (Letter data set).

of Bayesian networks. While there exists literature that is related to this question, no

comprehensive comparison has been made so far in the context of Bayesian networks. Some

papers focus on the comparison of batch learning to incremental learning, e.g., [Carbonara

and Borrowman, 1998, Wilson and Martinez, 2003]. They agree on the obvious truth that the

online learning is computationally more efficient than batch learning and show experimentally

that it also achieves accuracy that is similar to that of the batch learning. Cappe [2010],

who compares batch EM to online EM, suggests that the decision to select between the two

algorithms depends on the size of the data set. His experiments indicate that when the size

of the data is smaller than 1,000 records, EM is preferred over online EM. Holmes et al.

[2004] study how mini-batch size affects the performance of incremental learning in terms of

classification accuracy and speed. They demonstrate that larger chunk sizes lead to higher

classification accuracy.
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4.2 AN EMPIRICAL COMPARISON OF BAYESIAN NETWORK

PARAMETER LEARNING ALGORITHMS FOR CONTINUOUS DATA

STREAMS

I selected seven data sets from the UCI Machine Learning Repository [Frank and Asuncion,

2010] in order to create gold standard Bayesian network models. I subsequently used these

models to generate large data sets (each containing 1,000,000 records) to simulate continuous

data streams in my experiments. I re-learned Bayesian network parameters from these data

streams using (1) batch learning, (2) incremental batch learning, and (3) online learning.

I implemented the EM and the online EM algorithms in C++. I performed my tests on

a Windows 7 computer with 8 GB of memory, and an Intel Core i5-3317U processor running

at 1.70 GHz.

4.2.1 The data

I selected seven data sets from the UCI Machine Learning Repository: Adult, Australian

Credit, Bank Marketing, Chess (King-Rook vs. King-Pawn), Letter, Mushroom, and Nursery,

using the following selection criteria:

• The data include a known class variable so that I could test the accuracy of the learned

models on a real problem.

• The data contain a reasonably large number of records. I used the EM algorithm for

learning parameters in the gold standard models. The EM algorithm learns parameters

more accurately from large data sets and this increased the quality of my initial models.

In addition, because I check the accuracy of the models on the original data, the larger

the data set, the more reliable my results.

• The majority of the attribute types should be discrete in order to reduce the need for

discretization, which would be a confounding factor in my experiments.

• The data do not contain too many missing values (not more than 1/3 of the data set).

Missing values require special treatment in structure learning algorithms, which would

be an additional confounding factor in my experiments.
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• The selected data sets have a wide range in the number of attributes (8–36), so that I

obtain models of different size for testing.

I decided to use real rather than synthetic data because I wanted my experiments to be

as close as possible to real world applications. I listed all selected data sets and summarized

their properties in Table 13.

Adult, Australian Credit, Bank Marketing, Chess (King-Rook vs. King-Pawn), Letter,

Mushroom, and Nursery,

The Adult data set predicts a person incomes whether a person makes over 50K a year.

There are 14 attributes of demographic data. The Australian Credit data set classifies as

positive (+) or negative (-) on 14 anonymized variables. The Bank Marketing data set clas-

sification goal is to predict if the client will subscribe a term deposit. There are 16 attributes

of demographic data. The Chess (King-Rook vs. King-Pawn) data set classifies as win or

no win. The 36 attributes describe a board-descriptions for the chess endgame. The Letter

data set objective is to identify each of a large number of black-and-white rectangular pixel

displays as one of the 26 capital letters in the English alphabet. There are 16 integer at-

tributes which values range from 0 through 15. The Mushroom data set classifies mushrooms

as edible or poisonous based on 22 attributes of the shape and texture. The Nursery data set

objective is to rank applications for nursery schools into five classes:not recommend, recom-

mend, very recommend, priority, and special priority. There are 8 attributes of demographic

data.

4.2.2 Selecting learning rate for online EM algorithm

I use the generalized version of the online EM algorithm, proposed by Cappe [2010], in the

following way. Given S0, θ0, and a sequence of step sizes (γn)n≥1, do, for n ≥ 1.

E-step: Sn = (1− γn)Sn−1 + γnEθn−1 [s(Xn, Yn)|Yn] (4.1)

M-step: θn = θ̄(Sn) . (4.2)
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Table 2: Data sets used in my experiments. #I denotes the number of records, #A denotes

the number of attributes, #CV denotes the number of class variables, #FP denotes the

number of free parameters, and MV indicates presence of missing values.

Data set #I #A #CV #FP MV
Adult 48842 14 2 3762 Yes
Australian Credit 690 14 2 388 No
Bank Marketing 45211 16 2 1180 No
Chess 3196 36 2 972 No
Letter 20000 16 26 25279 No
Mushroom 8124 22 2 4786 Yes
Nursery 12960 8 5 645 No

I have to select a step size γn for the online EM. Cappe [2010] suggests that the most

robust value of α is 0.6. To find the optimal values for α, I measure the accuracy of each

learning rate α by calculating the Hellinger distance between the parameters in the learned

models and the original parameters in the gold standard models. I show a typical plot of

Hellinger distance as a function of the number of records for the Adult data set (Figure 17).

Hellinger distance for online EM increases with the value of the α and, therefore, I select the

lowest α values of 0.501 for my experiments.

4.2.3 Experiments

To learn the gold standard Bayesian networks, I applied the standard Bayesian learning al-

gorithm proposed by Cooper and Herskovits [1992]. This algorithm does not handle missing

values and continuous variables. I first discretized continuous attributes using equal fre-

quency discretization with 5 intervals, removed all records with missing values, and used the

Bayesian learning algorithm to learn the model structure. Subsequently, I used the entire

data sets (i.e., including the records with missing values) to learn the models’ numerical

parameters. The models constructed in this way were my gold standard models.

I used the gold standard models to generate data sets of 1,000,000 records each (no

missing values). I used these records to simulate data streams in my experiments. I used
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Figure 17: Average Hellinger distance as a function of the number of records in the data

stream for the Adult data set using different learning rate α

the structures of the gold standard models as skeletal models for learning parameters.

In my experiments, I compared the following three algorithms for parameter learning

from continuous data streams:

1. The basic EM algorithm applied at each step to the entire data set. I referred to it as

the batch learning approach. I started running the batch learning procedure at 10,000

records. Then I invoked the batch learning algorithm after every 10,000 records. I used

uniform priors and equivalent sample size of 1 for all runs.

2. The batch incremental learning approach means that the learning happens after each k

new instances and these new records serve to refine the existing model. In my experi-

ments, I set k = 10, 000. In the first step (the first 10,000 records), I used uniform priors

and equivalent sample size of 1. In each subsequent step, I used the existing model as the

base model and ran the EM algorithm with the equivalent sample size parameter equal to

the number of data records that had been used to learn the existing model. For example,

when processing the records between 30,000 and 40,000, I set the equivalent sample size
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to 30,000 (the existing model had been learned from the previous 30,000 records). The

basic EM thus combines the new parameters with the existing parameters, according to

the relative size of the data sets.

3. The online learning approach updates the network parameters each time a new record

becomes available. I ran the online EM algorithm until it reached 1,000,000 records.

According to Cappe [2010], to get better performance in parameter learning, it is better

not to perform the maximization step for the first 20 records. Following his idea, I

started the maximization step only after the first 20 records had been processed. I used

the learning rate α = 0.501 for all runs.

I measured the CPU time consumed by each of the algorithms. I measured the accuracy of

parameters in the learned models by comparing them to the parameters in the gold standard

models. I tested the classification accuracy of the learned Bayesian network models on the

original data sets from the UCI Machine Learning Repository.

4.2.4 Results

4.2.4.1 Speed Figure 18 shows that the difference between incremental learning and

batch learning algorithms grows larger as the number of records increases. The larger the

number of attributes in a Bayesian networks, the larger the savings in computation time. I

report the run time of each algorithm processing the last 10,000 records (i.e., from 990,000

to 1,000,000) in Table 3. The batch incremental learning approach and the online learning

approach use constant amount of time for each run and spend less computation time than

the batch learning approach. Times on the order of a second are practically negligible in a

system employed in practice — data usually come at a lower speed.

4.2.4.2 Parameter accuracy I show the final average Hellinger distance for all data

sets in Table 4. Because the shape of the distance curves as a function of the number of

records seems quite regular, we also added a second number that indicates the slope of the

curve at the last 100,000 records. When equal to -0.01, for example, it leads to an absolute

reduction of Hellinger distance of 0.01 per 100,000 records.
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Figure 18: Adult data set computation time. Time taken by the batch algorithm is linear in

the number of records, I omit its run time after 100,000 records in order to show the details

for the incremental batch EM and the online EM algorithms

Table 3: Computation time required to process the last 10,000 records in a data set of

1,000,000 records shown in seconds. Please note that from records 990,000th to 1,000,000th,

incremental batch learning runs only one time; the the online learning algorithm runs 10,000

times.

Data set Incremental Batch Batch Online
Adult 0.55 84.22 1.18
Australian Credit 0.55 78.66 0.66
Bank Marketing 0.73 112.41 0.94
Chess 1.93 276.55 1.89
Letter 1.03 157.72 4.99
Mushroom 1.61 165.47 1.86
Nursery 0.36 51.72 0.48

In six of the seven cases, the batch learning approach resulted in the smallest Hellinger

distance, i.e., the highest accuracy of retrieving the original parameters from data. The

online learning performed best only on the Mushroom data set. This result differs somewhat

from the results obtained by Liang and Klein [2009], who observed that online EM is often
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Table 4: Final Hellinger distance

Data set Incremental Batch Batch Online
Adult 0.07642 0.01786 0.06608

-0.00006 -0.00073 -0.00268
Australian Credit 0.02750 0.00527 0.01660

-0.00012 -0.00018 -0.00310
Bank Marketing 0.05668 0.00710 0.03072

-0.00012 -0.00030 -0.00048
Chess 0.02984 0.00818 0.02116

-0.00003 -0.00053 -0.00065
Letter 0.13040 0.04762 0.09783

-0.00009 -0.00043 -0.00257
Mushroom 0.09482 0.04188 0.02109

-0.00005 -0.00108 -0.00028
Nursery 0.06070 0.01341 0.04219

-0.00002 +0.00001 -0.00313

more accurate than batch EM on unsupervised tasks. The negative slopes of the curves (the

second number in the table) indicate that each of the algorithms improves its accuracy over

time. However, this improvement is typically smaller for the incremental batch algorithm.

I show plots of of Hellinger distance as a function of the number of records for the all

data sets Figure 19, 20, 21, 22, 23, 24, and 25). Hellinger distance for both batch EM

and online EM decreases with the number of records. Incremental batch learning typically

seems to reach a plateau beyond which it hardly improves the accuracy of parameters.

4.2.4.3 Classification accuracy In testing the classification accuracy of the learned

models on the original UCI Machine Learning Repository data sets, I used the simplest

possible criterion, which is that the model guesses the most likely class to be the correct

class for each record. Table 5 shows the final accuracy for all data sets. While the difference

in accuracy seems minimal, the batch learning approach resulted in the best classification

accuracy on all data except for the Nursery data set. We show plots of models’ classification

accuracy as a function of the number of records in Figures 26, 27, 28, 29, 30, 31, and 32.
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Figure 19: Average Hellinger distance as a function of the number of records in the data

stream for the Adult data set

Figure 20: Average Hellinger distance as a function of the number of records in the data

stream for the Australian Credit data set
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Figure 21: Average Hellinger distance as a function of the number of records in the data

stream for the Bank Marketing data set

Figure 22: Average Hellinger distance as a function of the number of records in the data

stream for the Chess (King-Rook vs. King-Pawn) data set
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Figure 23: Average Hellinger distance as a function of the number of records in the data

stream for the Letter data set

Figure 24: Average Hellinger distance as a function of the number of records in the data

stream for the Mushroom data set
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Figure 25: Average Hellinger distance as a function of the number of records in the data

stream for the Nursery data set

Table 5: Final classification accuracy

Data set Inc. Batch Batch Online Gold
Adult 84.21% 84.22% 84.20% 84.23%
Australian Credit 85.51% 85.51% 85.51% 85.51%
Bank Marketing 89.48% 89.54% 89.52% 89.55%
Chess 94.21% 94.21% 94.21% 94.21%
Letter 83.97% 87.57% 86.01% 87.61%
Mushroom 99.85% 99.90% 99.90% 99.90%
Nursery 94.74% 94.64% 94.63% 94.65%

4.2.4.4 Missing Values In order to check whether missing data have impact on the

results, I used the gold standard models again to generate data sets of 1,000,000 records

with 10 percent and 30 percent values missing at random. I repeated my experiments on

all data sets. I obtained qualitatively similar results with a slight overall increase of the

Hellinger distance and decrease of classification accuracy (Tables 6 and 9).
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Figure 26: Classification accuracy as a function of the number of records for the Adult data

set

Figure 27: Classification accuracy as a function of the number of records for the Australian

Credit data set

43



Figure 28: Classification accuracy as a function of the number of records for the Bank

Marketing data set

Figure 29: Classification accuracy as a function of the number of records for the Chess

(King-Rook vs. King-Pawn) data set
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Figure 30: Classification accuracy as a function of the number of records for the Letter data

set

I performed the Wilcoxon test [Demšar, 2006] on the data in Tables 6 to compare the

three learning approaches on the resulting Hellinger distance. Tables 7 and 8 show the

results of this test.

There are significant differences among the approaches in the two-tailed test. One-tailed

test results show that the batch learning significantly more accurate than the other two

approaches. The online learning is significantly better than the incremental batch approach.

I performed the Wilcoxon test among the three learning approaches for the classification

accuracy in Tables 9. Table 10 and Table 11 show the results of this test.

Two-tailed test shows significant differences between the incremental batch learning and

the batch learning and between the incremental batch learning and the online learning.

There is no significant difference between the batch learning and the online learning. The

one-tail test results show that the batch learning and the online learning are significantly

more accurate than the incremental batch learning.
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Figure 31: Classification accuracy as a function of the number of records for the Mushroom

data set

Figure 32: Classification accuracy as a function of the number of records for the Nursery

data set
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Table 6: Final Hellinger distance with values missing at random. Baseline denotes no missing

values, 10% denotes 10 percents values missing at random, and 30% denotes 30 percents

values missing at random.

Data set Incr. Batch Batch Online
Baseline 10% 30% Baseline 10% 30% Baseline 10% 30%

Adult 0.0764 0.0844 0.1033 0.0179 0.0213 0.0267 0.0661 0.0722 0.0839
A. Credit 0.0275 0.0360 0.0367 0.0053 0.0052 0.0090 0.0166 0.0182 0.0231
Bank M. 0.0567 0.0678 0.0850 0.0071 0.0080 0.0194 0.0307 0.0332 0.0422
Chess 0.0298 0.0361 0.0455 0.0082 0.0084 0.0180 0.0212 0.0225 0.0342
Letter 0.1304 0.1461 0.1776 0.0476 0.0485 0.0622 0.0978 0.1078 0.1364
Mushroom 0.0948 0.1037 0.1043 0.0419 0.0432 0.0615 0.0211 0.0243 0.0338
Nursery 0.0607 0.0578 0.0621 0.0134 0.0111 0.0182 0.0422 0.0438 0.0474

Table 7: Wilcoxon’s two-tailed test among the incremental batch learning, the batch learning,

and the online learning in terms of the Hellinger distance.

Batch Online

Incr. Batch 0.000128067 2.861023e-06

Batch N/A 2.221482e-03

Table 8: Wilcoxon’s one-tailed test among the incremental batch learning, the batch learning,

and the online learning in terms of the Hellinger distance.

Incr. Batch Batch Online

Incr. Batch - 1 1

Batch 6.403349e-05 - 0.003332223

Online 1.430511e-06 0.9990115 -
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Table 9: Final classification accuracy with values missing at random. Baseline denotes no

missing values, 10% denotes 10 percents values missing at random, and 30% denotes 30

percents values missing at random.

Data set Incr. Batch Batch Online
Baseline 10% 30% Baseline 10% 30% Baseline 10% 30%

Adult 84.21% 84.19% 84.00% 84.22% 84.21% 84.22% 84.20% 84.22% 84.20%
A. Credit 85.51% 85.51% 85.51% 85.51% 85.51% 85.51% 85.51% 85.51% 85.51%
Bank M. 89.48% 89.30% 89.27% 89.54% 89.55% 89.52% 89.52% 89.43% 89.46%
Chess 94.21% 94.15% 94.21% 94.21% 94.21% 94.21% 94.21% 94.21% 94.21%
Letter 83.97% 83.46% 81.10% 87.57% 87.53% 87.34% 86.01% 85.79% 84.37%
Mushroom 99.85% 99.85% 99.80% 99.90% 99.90% 99.88% 99.90% 99.90% 99.85%
Nursery 94.74% 94.51% 94.56% 94.64% 94.64% 94.66% 94.65% 94.71% 94.78%

Table 10: Wilcoxon’s two-tailed test among the incremental batch learning, the batch learn-

ing and the online learning in terms of the classification accuracy.

Batch Online

Incr. Batch 0.006811761 0.006811761

Batch N/A 0.086282340

Table 11: Wilcoxon’s one-tailed test among the incremental batch learning, the batch learn-

ing and the online learning in terms of the classification accuracy.

Incr. Batch Batch Online

Incr. Batch - 1 1

Batch 0.00340588 - 0.1294235

Online 0.00340588 0.9628983 -
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4.3 DISCUSSION

This chapter addresses the problem of learning Bayesian network parameters from contin-

uous data streams. I have described an experiment that focuses on a comparison of three

approaches: (1) batch learning, (2) incremental batch learning, and (3) online learning, in

terms of the computational efficiency, the resulting accuracy of parameters, and the resulting

classification accuracy.

There is no significant difference in terms of parameter accuracy and classification accu-

racy among the three Bayesian network parameter learning approaches: the batch learning,

the incremental batch learning, and the online learning when learning Bayesian network

parameters from continuous data streams.

I rejected the null hypothesis because there are significant differences among these ap-

proaches in terms of parameter accuracy and classification accuracy.

The results indicate that while batch learning, i.e., the basic EM algorithm, makes the

largest computational and storage demands, it also offers the highest resulting parameter

accuracy. Online EM requires less computation time and no storage while achieving similar

results to incremental EM algorithm in terms of accuracy. Incremental EM shows better

accuracy for small data sets.

I advise to use batch learning applied to the entire data set whenever computation time

and memory space permit. When the computation becomes too long or the complete data set

uses too much storage, switching over to the online algorithm is a safer choice. It seems that

both the, batch and the online EM algorithms, make significant improvements in accuracy

in the beginning. A possible hybrid strategy is to start with the batch EM algorithm and

transform it to the online EM algorithm when its run time becomes prohibitive. We show

two typical plots for different strategies (1) Hellinger distance as a function of the number of

records in Figure 33 and (2) models’ classification accuracy as a function of the number of

records in Figure 34. An alternative strategy for all systems in which real-time response is

critical, is to use the online EM algorithm during daily operations and the batch EM during

maintenance hours. This should ensure that the starting points of the online algorithm for

real-time operations is always the best possible.
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Figure 33: A typical plot of the average Hellinger distance as a function of the number of

records in the data stream with different strategies (Letter data set).

I observed that classification accuracy did not change much with refinement of parame-

ters. My experiments have confirmed an earlier finding of Onísko and Druzdzel [2013] that

Bayesian networks are quite insensitive to precision of their numerical parameters.

There is a fundamental question that one needs to ask when processing continuous

streams of data: Does the system from which the data originate remain constant over time?

In this work, I assumed tentatively that it does and, hence, I learned from all accumulated

records. Real systems, however, can evolve over time (e.g.,  Lupińska-Dubicka and Druzdzel

[2012]). In all such cases, it is quite appropriate to assign more recent parameters a higher

weight. It may be natural in such cases to discard older records altogether and, hence, avoid

the problem of excessive data storage or prohibitive computation. My approach and results

hold for all such cases. One might treat the data sets in our experiment as belonging to the

sliding windows from which the parameters are learned.
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Figure 34: A typical plot of the classification accuracy as a function of the number of records

with different strategies (Letter data set).
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5.0 DEALING WITH STRUCTURAL COMPLEXITY

Practical models based on Bayesian networks (BNs) reach often the size of hundreds or even

thousands of variables. When these are densely connected, both the amount of memory

to store a compiled clique tree and the amount of computation necessary to perform belief

updating may become prohibitive [Cooper, 1990]. In Marilyn, it is a necessity to control

their growth. Otherwise, at a certain point, an uncontrolled model is bound to become

intractable.

One way of controlling the growth of a model is to systematically simplify its structure

by removing its weakest arcs. There have been two approaches to arc removal in Bayesian

networks. The first approach focuses on minimizing the KL-divergence between the joint

probability distributions represented by the original and the approximated networks (e.g.,

[Kjaerulff, 1994, van Engelen, 1997, Choi et al., 2005, Choi and Darwiche, 2006b,a, Renooij,

2010]). The second approach introduces a measure of arc strength and then approximates

the model by removing its weakest arcs. Boerlage [1992] defines link strength for arcs con-

necting binary nodes as the maximum influence that the parent node can exert on the child

node. Nicholson and Jitnah [1998] use mutual information as a measure of link strength.

They show how inference can be simplified by averaging the conditional probabilities of all

parents. Ebert-Uphoff [2007, 2009] proposes a link strength measure called True Average

Link Strength (TALS). Similarly to the work of Nicholson and Jitnah [1998], TALS uses

mutual information to calculate link strength and uses the average values of the probability

of a parent by conditioning on all other parents to calculate mutual information. The scale

of TALS is not linear and also not very intuitive. Therefore, as Ebert-Uphoff [2007, 2009]

herself states, it does not seem suitable to use as a threshold for arcs removal. Koiter [2006]

proposed another measure of strength of influence, resting on the analysis of differences
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among the posterior marginal probability distributions of a child node for different states

of the parent node. He calculates the difference between distributions using four distance

measures: Euclidean, Hellinger, J-divergence and CDF. This strength of influence has been

applied in practice for the purpose of model visualization (e.g., [Hsu et al., 2012, Theijssen

et al., 2013]), and has been a standard element of the GeNIe software for the last seven

years.

The question that I pose in this chapter is how much the accuracy of classification models

will suffer as I simplify them by removing their weakest arcs. I pose two questions: (1) how

many arcs can we remove with minimal impact on the model’s accuracy?, and (2) what are

the benefits of removing weakest arcs in terms of the reduction of memory requirements

and computation time? I describe an experiment, in which I use several real data sets

from the UCI Machine Learning Repository [Frank and Asuncion, 2010] to create Bayesian

network models. I subsequently use these models as gold standards to test how removing

their weakest arcs impacts their accuracy, memory demands, and inference time. I perform

this for each of the four measures proposed by Koiter [2006].

My goal was evaluating the practical impact of model simplification by removing weak

arcs on performance measures such as classification accuracy, memory requirements, and

computational demands. I selected six data sets from the UCI Machine Learning Repository

in order to create gold standard Bayesian network models for the experiments. I decided to

use real rather than synthetic data sets because I wanted the experiments to be as close as

possible to real world applications.

5.1 THE DATA

I selected six data sets: Chess (King-Rook vs. King-Pawn), Letter, Molecular Biology (Splice-

junction Gene Sequences), Mushroom, Nomao and Optical Recognition of Handwritten Dig-

its (ORHD) using the following selection criteria:

• The data include a known class variable so that I could test the accuracy of the models

on a real problem.
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• The data set contains a reasonably large number of records (more than 1,000). The

main reason for this is that I used the EM algorithm [Dempster et al., 1977], which

learns parameters more accurately from large data sets. In addition, because I check the

accuracy of the models on the original data, the larger the data set, the more reliable

the results.

• The selected data sets should not be too small in terms of the number of attributes

(16–72), so that I obtain models with reasonably large number of arcs and a challenging

total clique tree size.

• The majority of the attribute types should be discrete in order to reduce the need for

discretization, which would be a possible confounding factor in the experiments.

• The data set should not contain too many missing values (not more than 1/3 of the data

set). Missing values require special treatment in structure learning algorithms, which

would be an additional confounding factor in the experiments.

• The probability over the class variable distribution is not too strong biased toward one

class. Nomao has the probability of the most likely class equal to 73% while the other

data sets varies from 11% to 52%.

Table 13 lists the key properties of the data sets selected for the experiments.

I described the Chess (King-Rook vs. King-Pawn), the Letter and the Mushroom data set

description in Chapter 4. The Molecular Biology (Splice-junction Gene Sequences) data set

objective is to recognize, given a sequence of DNA, the boundaries between exons (the parts

of the DNA sequence retained after splicing) and introns (the parts of the DNA sequence

that are spliced out) which are neither, EI or IE. There are 60 attributes of the sequence of

a character (a, g, t, c). The Nomao data set is a collection of data from multiple sources

on the web. The goal is to predict if data refer to the same place (+1) or (-1). There 72

attributes of geographic data. The Optical Recognition of Handwritten Digits (ORHD) data

set classified bitmaps of handwritten digits into single digit numbers (0..9). There are 64

integer attributes which values range from 0 through 16.
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Table 12: Data sets used in the experiments. #I denotes the number of records, #A denotes

the number of attributes, #C denotes the number of classes, #R denotes the number of arcs,

#CB denotes total clique tree size of the original BN model, #CT denotes total clique tree

size of the original TAN model, and MV indicates presence of missing values.

Data set #I #A #C #R #CB #CT MV
Chess 3196 36 2 100 311KB 284B No
Letter 20000 16 26 39 664KB 9KB No
Molecular Biology 3190 60 3 101 10MB 4KB No
Mushroom 8124 22 2 47 21KB 894B Yes
Nomao 28575 72 2 279 168MB 2KB No
ORHD 5620 64 10 82 317KB 150KB No

5.2 EXPERIMENTS

To learn the gold standard Bayesian networks, I applied the standard Bayesian search-based

learning algorithm (BS) proposed by Cooper and Herskovits [1992] and Tree Augmented

Naive Bayes algorithm (TAN) proposed by Friedman et al. [1997]. Both algorithms do not

handle missing values and continuous variables. I first discretized continuous attributes using

equal frequency discretization with 5 intervals, removed all records with missing values, and

used each algorithm to learn the model structure. Subsequently, I used the entire data sets

(i.e., including the records with missing values) to learn the models’ numerical parameters.

I present some characteristics of the resulting models in Table 13. No BS models resemble

Naive Bayes structure. The BS models have much larger total clique size than TAN models.

I used the models constructed in this way as the gold standard models, which I subse-

quently simplified by removing weak arcs using four distance measures: Euclidean, Hellinger,

J-divergence and CDF. I calculated the strength of influence for each arc in the gold standard

network. Figure 35 shows the gold standard model for letter data set after calculating the

strength of influence. Subsequently, I removed all arcs that had the strength of influence be-

low a threshold setting (0.1, 0.2, 0.3, ..., 0.9, and 1.0). For example, when I set the threshold

at 0.4, I removed all arcs that had the strength of influence less than 0.4 shown in Figure 36.

55



Figure 35: The gold standard model for letter data set. The thickness of the arcs represents

the strength of influence between two nodes in Euclidean distance.

I tested the classification accuracy of the simplified Bayesian network models by means of

10-fold cross validation on the original data sets from Table 13. I measured the total clique

tree size and the CPU time consumed by performing inference on each of the simplified

networks. I performed the tests on a Windows Vista computer with 4 GB of memory, and

an Intel Core 2 Quad Q6600 processor running at 2.4 GHz. I implemented all the code in

C++.
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Figure 36: A simplified model for letter data set after removing all arcs that have the strength

of influence below 0.4.

5.3 RESULTS

Because the qualitative behavior of the accuracy of the networks is more important in the

experiment than the precise numerical results, I present the results of the experiment graph-

ically.

5.3.1 Histograms of the link strengths

Figures 37, 38, 39, 40, 41 and 42 show histogram of the link strength for the six networks

studied in the experiments, for each of the four measures of the link strength.
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Figure 37: Histogram of the link strength for the Chess network

Figure 38: Histogram of the link strength for the Letter network
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Figure 39: Histogram of the link strength for the Molecular Biology network

Figure 40: Histogram of the link strength for the Mushroom network
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Figure 41: Histogram of the link strength for the Nomao network

Figure 42: Histogram of the link strength for the ORHD network
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5.3.2 Classification accuracy

In testing the classification accuracy of the simplified models on the original UCI Machine

Learning Repository data sets, I used the simplest possible criterion, which is that the model

guesses the most likely class to be the correct class for each record. I show eight plots of

models’ classification accuracy as a function of the four strength of influence measures in

Figure 43 and 44. Figure 45 and 46 show eight plots of model’s classification accuracy as

a function of the percentage of the arcs removed for each of the networks.

Figure 43: Classification accuracy as a function of the distance threshold for each of the four

measures of the link strength for the BS models

The results show that for all link strength measures, except J-divergence, the classifica-

tion accuracy does not decrease much from the gold standard when the threshold is below

0.2 (this corresponds to removal of around 20 percent of all original arcs). Then the accuracy

drops sharply and reaches a plateau after roughly 0.6 (when roughly 60–80% of the arcs have

been removed; see Figure 43 and 44).
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Figure 44: Classification accuracy as a function of the distance threshold for each of the four

measures of the link strength for the TAN models

I explored further the reason for the sudden drop in the curves and found that this is

related to removal of arcs between the class node and the nodes belonging to its Markov

blanket. In the experiment, five of the six data sets contained no missing data. When there

are no missing data, any node that is not in the Markov blanket of the class node will not

affect the accuracy. In TAN models, all feature nodes belong to the Markov blanket of the

class node. I show in Figure 47 that the accuracy reaches the plateau point when all the

arcs in the Markov blanket are removed.
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Figure 45: Classification accuracy as a function of the percentage of arcs removed for each

of the six data sets
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Figure 46: Classification accuracy as a function of the percentage of arcs removed for each

of the six data sets for the TAN models
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Figure 47: Percentage of arcs within the class node’s Markov blanket removed as a function

of the Euclidean distance threshold

5.3.3 Memory usage and computation time

I measured the memory usage and the time taken to perform inference on simplified networks

relative to the memory usage and inference time on the original (gold standard) networks.

Removal of weak arcs can lead to significant savings in memory. Figure 48 shows the total

clique tree size as a function of the percentage of arcs removed. We can see that even with

as few as 20 percent of the weakest arcs removed the savings in memory approach an order

of magnitude, which can mean a difference between an intractable and a tractable network.

Figure 48: Total clique tree size as a function of the percentage of arc removed

Figure 49 shows the computation time as a function of the percentage of arcs removed.
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Here also, we can see that even with as few as 20 percent of the weakest arcs removed the

computational savings can be significant. The results here are somewhat confounded, as the

computation time includes the time taken to create the clique tree, an integral part of the

inference procedure as implemented SMILE,.

Figure 49: Computation time as a function of the percentage of arc removed

Clique tree size and computation time go hand in hand. Figure 50 shows this relationship

between the two for each of the networks studied.

Figure 50: Computation time as a function of the total clique size
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5.4 DISCUSSION

I reported the results of an empirical evaluation of simplifying the structure of Bayesian

networks for the purpose of inference by removing weak arcs. I calculated four measures

of strength of each arc and then used these measures to sort arcs from the weakest to

the strongest. I conducted a series of experiments on six networks selected from the UCI

Machine Learning Repository, in which I systematically removed arcs from the weakest to

the strongest with the regular Bayesian network model and the TAN model. I measured the

resulting classification accuracy of models, clique tree size, and computation time.

The complexity of a Bayesian network can be reduced by removing its weakest arcs, with-

out compromising its accuracy.

The results support the hypothesis because the results for both models show that re-

moving up to roughly 20 percent of the weakest arcs in a network has minimal effect of its

classification accuracy. At the same time, both the amount of memory taken by the clique

tree and the amount of computation needed to perform inference decreases significantly.

We can apply these results to the query-based diagnostics model. The TAN model

and Marilyn’s model share the same characteristics where all feature nodes belong to the

Markov blanket of the class node.
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6.0 EVALUATION OF QUERY-BASED DIAGNOSTICS

In this chapter, I evaluate a prototype of Marilyn systematically, based on several real data

sets.

6.1 EXPERIMENT

6.1.1 The Data

I tested the accuracy of Marilyn on four different data sets listed in Table 13. I collected

the computing lab data set over the course of two semesters at a help desk of a University

of Pittsburgh campus computing lab. Typical campus computing lab help desk problems

involve printing problems and printer troubleshooting. Among the four hundred cases in the

data set, there are a total of 16 different observations, 12 different context variables, and 21

different problems. The remaining three data sets originate from the UCI Machine Learning

repository and were selected based on the following four criteria:

• The data include a known class variable.

• The attribute types of all variables are discrete. I wanted to avoid the need for discretiza-

tion, which could become a factor confounding my experiment.

• The number of cases in the data file should be over 100, which I believe to be large

enough for the purpose of the experiment.

• The data should have been used in the literature in the past, so that I have information

about baseline accuracy of learning algorithms.
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The three medical UCI Machine Learning repository data sets that fulfilled the above

requirements were SPECT Heart, Breast Cancer and Lymphography. Their properties are

listed in Table 13.

Table 13: Data sets used in my experiments.

Data set Records Attributes Class variables Missing values

Computer lab 400 49 21 No

SPECT Heart 267 23 2 No

Breast Cancer 286 10 2 Yes

Lymphography 148 19 4 No

6.1.2 Methodology

I test the accuracy of Marilyn as a function of the number of cases that it has seen on

each of the data sets listed in Table 13. This is of interest because the idea of query-based

diagnostics is meant to work especially when there are no data that can be used to learn a

model. Availability of a complete data set would make Marilyn useless, as the model could

be learned from data by means of any of the Bayesian network learning methods available

in the literature.

I imitated Marilyn’s diagnostician’s work-flow, which consists of entering three types

of information: context information, observations, and the final diagnosis. While, in case of

the computing lab help desk data, I had full knowledge of the three types of information, I

did not know which of the features in the medical data sets were context variables and which

were observations. Effectively, I treated all features in these data sets as observations. This is

a conservative assumption, as it is an additional handicap for Marilyn in the experiments.

The effect of my treatment of the medical data was that Marilyn constructed two layer

BN2O networks in these cases, similarly to the QMR-DT model [Middleton et al., 1991].

I ran Marilyn 30 times for each data set, randomizing each time the order of records

in the data file. The order of the records offered to Marilyn may affect its accuracy and
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presenting different orders allows us to observe a range of behaviors. I used the simplest

possible criterion in making a diagnostic decision and assumed that the most likely diagnosis

is Marilyn’s final diagnosis. This is, again, a conservative assumption, as the system

displays the top n most likely diagnoses and this gives the user a chance to improve on the

system, especially in the early stages, when the model is very crude.

6.2 RESULTS

I calculated Marilyn’s cumulative accuracy after each record, so as to know how system’s

accuracy develops as a function of the number of diagnostic cases that the system has seen.

Figure 51 shows the average accuracy of Marilyn as a function of the number of cases

for each of the four data sets with range of the curves (vertical bars) plotted for selected

number of records. The plots show that while Marilyn was rather weak in the beginning

(during the first thirty cases or so), it became quite accurate after roughly 70 to 100 cases

(this varied per data set). Interestingly, in case of the SPECT data set, Marilyn reached

the accuracy of over 60% after fewer than ten cases. In all data sets, 40 or so cases were

sufficient to reach a reasonable accuracy. This accuracy not only improved over time but also

improved reliably, as indicated by smaller variance in the results of different random orders

of records. Interestingly, there is some similarity between the plots of Marilyn’s accuracy,

as in Figure 51, and the so called power curve of practice in the psychology literature [Newell

and Rosenbloom, 1981].

Cumulative accuracy for the last record entered is the final accuracy result of Marilyn

on the data set. Marilyn’s final accuracy on the four data sets was 90.25%, 78.75%, 77.18%,

and 69.95% for the Computer Lab, SPECT Heart, Breast Cancer, and Lymphography data

respectively (see the extreme right cumulative accuracy in Figure 51). It has to be added

that in achieving this result Marilyn has seen (i.e., was trained on) the average of 50%

of the records. When processing the first case, Marilyn has seen zero prior cases, when

processing the 10th case, it has used only 9 preceding cases, when processing the last, nth

case, it has seen n− 1 preceding cases. The average number of training records is thus n/2.
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Figure 51: Marilyn’s cumulative accuracy as a function of the number of cases seen

Table 14: Accuracy comparison results with Bayesian approaches using leave-one-out cross

validation

Data set Marilyn Naive Bayes Greedy Thick Thinning

CompLab 94.50% 94.25% 91.25%

SPECT 79.40% 79.40% 78.65%

BC 68.18% 42.57% 47.97%

Lymph 81.08% 66.08% 67.83%
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In order to disambiguate the specific procedure that I used to obtain Marilyn’s cu-

mulative accuracy from the capability of the learning function by itself, I performed an

experiment in which I allowed Marilyn to learn from all available records alongside with

two Bayesian learning algorithms: (1) Naive Bayes [Langley et al., 1992], and (2) a Bayesian

search algorithm Greedy Thick Thinning [Dash and Druzdzel, 2003]. I used the leave-one-out

cross validation to measure the accuracy of the three classifiers, assuming that the diagnosis

is correct when the most probable class matches the correct class. I show the results of

this experiment in Table 14. Marilyn performed better than Naive Bayes and GTT on

all data sets. I believe that some of Marilyn’s power comes from its priors and structural

information extracted from the data.

The three data sets that I chose for my experiments have been subject of experiments

published in the literature. The best accuracy result for SPECT heart data with CLIP3

machine learning algorithm is 84% [Kurgan et al., 2001]. The best accuracy achieved on the

Breast cancer data was by means of k-nearest neighbor (k-NN) algorithm and amounted to

79.5% [Kononenko et al., 1997]. The best accuracy on the Lymphography set was achieved

by means of the Tree-Augmented Naive Bayes algorithm and was 85.47% [Madden, 2002]. I

compared Marilyn’s accuracy to each of these, repeating the experiment under the same

conditions, i.e., with precisely the same cross-validation method as used in the experiments

reported in the literature. Table 15 shows the accuracy for each of the data sets and each of

the algorithms. For the SPECT Heart, I used verification test criteria are shown in Table 16.

The results show that Marilyn was better in terms of accuracy and specificity but was lower

in terms of sensitivity.

Table 15: Accuracy comparison results with state of the art approaches

Data set Marilyn CLIP3 k-NN TAN

SPECT 93.58% 84% N/A N/A

BC 73.02% N/A 79.50% N/A

Lymph 81.92% N/A 82.60% 85.47%
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Table 16: Accuracy comparison results of SPECT Heart data set using verification test

Sensitivity Specificity Accuracy

CLIP3 80% 84.30% 84%

Marilyn 46.67% 97.67% 93.58%

While Marilyn’s accuracy is typically lower than that of the state of the art learning

algorithms, it is certainly in the same ballpark. I would like to point out that the best results

reported in the literature belong to different algorithms, i.e., there seems to be no algorithm

that is uniformly best on all data sets. If the same algorithm were applied to all four data

sets, there is a good chance that its accuracy on some of these could be worse than the

accuracy of Marilyn.

6.3 DISCUSSION

I described a series of experiments that subject a prototype implementing passive, incremen-

tal model construction to a rigorous practical test. Data obtained from the UCI Machine

Learning repository made the evaluation fairly realistic. The results of my experiments show

that a system like Marilyn is capable of giving reasonable suggestions after a modest num-

ber of observed cases. Accuracy in the order of 70-90% typically occurred not later than

after roughly 40 cases. Even though this experiment offers just a few data points and this

type of systems need to be tested more in practice, I believe that the result is very promising

and compares favorably with state of the art approaches based on learning.
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7.0 PRACTICAL FIELDING OF QUERY-BASED DIAGNOSTICS

In this chapter, I describe an experiment that tests Marilyn in real diagnostic environments.

I present an evaluation of Marilyn diagnostic model construction by means of six hundred

help desk cases at the School of Education, University of Pittsburgh. An important issue

with Marilyn is how the system handles the growth of the model structure. The challenge

for the algorithm is how to handle the growth of the number of parents for a single node and

the growth of the number of parameters. As the number of parameters and cases increases,

the EM algorithm requires longer time for their parameters to converge and slows the network

construction.

7.1 EMPIRICAL EVALUATION

7.1.1 Experiment Data

I has been working as a computer lab consultant between eight and ten hours per week from

Fall 2009 to Spring 2014. This has offered an excellent opportunity to collect real help desk

data. The School of Education technology department provides services to all School of

Education faculty, staff, and students. Their services include computer labs, media services,

the Help Desk, and the School of Educations intranet. Their operation hours are Monday

through Friday 8:30 a.m.—5:30 p.m. The Help Desk locates at 5308 Posval Hall. A customer

can walk-in, call or submit a School of Education help desk ticket on the School of Education

support websites. There are four types of help desk tickets: problems, requests, questions,

and others (see Table 17).
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To collect the diagnostic cases for Marilyn, I used the problems type tickets. The

help desk problems tickets include, but are not limited to, printing job problems, printer

troubleshooting, software, hardware, and other diagnostic problems. I retrieved the help

desk tickets from the Help Management System shown in Figure 52. In each case, the data

were collected in three steps. First, I used the Ticket Search Options to list the tickets

by year and selected closed on the status of tickets. Closed tickets denoted that the case

was closed or completed. Second, I recorded all information available in the tickets as

shown in Figure 53. Third, I clean up the data by distinguish all the data into three types

of variables: observations, context information, and final diagnosis. However, I could not

use all the available cases in Table 17. There were several reasons: tickets were closed

due to the lack of communicate from customers, the consultants did not specific a final

diagnosis on the tickets, or tickets were not related to diagnosis. I recorded all qualify cases

in the Microsoft Office Excel work book shown in Figure 54. There were 600 qualifying

tickets between January 2009 and December 2013. In this School of Education help desk

domain, the collected data indicate that there is always at least one observation and only

one problem; however the context information may be not available for all cases. Data

range from one to four observations, context information range from zero to three and only

one problem occurs. There are a total of 120 different observations, 24 different context

information, and 60 different problems. I show the distribution of frequency for the six-

hundred cases in Figure 55. This figure shows that the distribution of problems is skewed

with the top five problems covering roughly 40% of the cases. As we have seen in the CSSD

data set (Chapter 6), skewness of the problem set seems typical for practical diagnostic

domains. Essentially, some problems are common and occur often with others occurring

only sporadically.

7.1.2 Experimental Design

I used the same methodology in Chapter 6 to evaluate Marilyn’s accuracy. In this help desk

domain, I had full knowledge of the data set to identify three types of information to build

a 3-layer BN3M model. I performed an additional practical test in a situation where the
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Table 17: Number of the School of Education help desk tickets from 2009–2013

Ticket Type 2009 2010 2011 2012 2013

Others 4 8 13 5 53

Problems 782 579 954 705 590

Questions 5 2 2 12 11

Requests 393 116 77 182 101

Figure 52: The Help Management System tickets search web page.

user of Marilyn do not have the full knowledge of the domain. In this situation, Marilyn

treats all features in the data set as observations and constructs two-layer BN2O networks

instead.

I ran Marilyn 20 times for each network type, randomizing each time the order of

records in the data file. As the system displays the top n most likely diagnoses, it gives

the user a chance to improve on the system. I sorted the results from the most to the lease
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Figure 53: An example of a completed help desk tickets.

Figure 54: An example of help desk tickets data set.

likely. The default size of the diagnostic windows is nine. However, I only chose the first five

suggestions of Marilyn to be used for comparing accuracy with the original data.

Figure 56 shows the number of different problems encountered as a function of the number

of cases. The cases are processed in chronological order of the tickets. In a total of 60

problems in the domain, 30, 40, and 50 problems are covered in the first 80, 160, and 250

cases respectively. This number assumes that the Marilyn model should be able to give

suggestions for most of the cases after seeing the first 250 cases.

7.1.3 Results

Figure 57 shows the 3-layer Bayesian networks created by Marilyn after six-hundred cases.

There are a total of 204 nodes and a total of 350 arcs. The top layer has 24 context informa-

77



Figure 55: Problem distribution of six-hundred help desk data set.

tion nodes. The middle layer has 60 fault nodes and the bottom layer has 120 observation

nodes. The maximum number of parents per child is 12. The average number of parents per

node is 1.7.

I used the same cumulative accuracy in Chapter 6 to test Marilyn’s accuracy. I applied

the same measure of accuracy as Onísko et al. [2001]. I am interested in Marilyn suggestions

that the list of possible diagnoses contains the correct diagnosis for a small set of values. I

chose a window of W=1, 2, 3, 4, and 5.

Figure 58 shows the average cumulative accuracy of Marilyn as a function of the number

of cases that have been entered into the system. With six-hundred cases, Marilyn reached

the average accuracy of 60.99%, 69.99%, 72.87%, 74.62%, and 76% for W1, W2, W3, W4,

and W5 respectively.
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Figure 56: The accumulate of the help desk problems entering to the Marilyn.

For the 2-layer network, there are a total of 204 nodes and a total of 350 arcs. The top

layer has 60 fault nodes and the bottom layer has 144 observation nodes. The maximum

number of parents per child is 13. The average number of parents per node is 1.7.

Figure 59 shows average cumulative accuracy of Marilyn as a function of the number

of cases that have been entered into the system. With six-hundred cases, Marilyn reached

the average accuracy of 61.77%, 71.72%, 75.50%, 78.09%, and 79.72% for W1, W2, W3, W4,

and W5 respectively.

Figures 60 and 61 show the average accuracy of Marilyn for the most likely diagnosis

(W1) with range of the curves (vertical bars) plotted for selected number of records. The
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Figure 57: A section of the six hundred cases BN3M model built by Marilyn.

plots show a similar trend to the one observed in Chapter 6, i.e., Marilyn seems weak in

the beginning, but it becomes quite accurate and consistent later.

In order to compare with others Bayesian learning algorithms, I performed Marilyn

system’s diagnostic accuracy with 10-fold cross validation. Here I use the simplest criterion

that the most likely diagnosis is Marilyn’s final diagnosis. Table 18 shows the results of

this experiment. Marilyn 2-layer is more accurate than the others approaches.

Figure 62 shows histograms of classification accuracies ranked from the most to the least

number of problems. It shows that Marilyn work well when there are only few number of

cases per diagnosis. When the number of cases per diagnosis reaches around 30 to 40, all

approaches are in the same order of magnitude.

7.1.4 Model management

There are two critical practical issues related to Marilyn model management: (1) dealing

with continuous data streams, and (2) model growth.

As discussed in Chapter 4, batch learning makes the largest computational and storage

demands but offers the highest resulting parameter accuracy. Online EM is a good alternative

as it requires less computation time and no storage while achieving decent accuracy.

In the help desk application, real-time response is critical, the best practice is to use the
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Figure 58: The graph shows average percent of accuracy as a function of the number of cases

for 3-layer BN3M models

online EM algorithm during daily operations and the batch EM during maintenance hours.

In the experiments described earlier in this chapter, I only used batch learning applied to

the entire data set as the data arrived. Figure 63 shows that batch learning computation

time grows linearly with the number of records. When there are fewer than 300 records,

the computation time is less than 20 seconds. However, it becomes large later. Therefore,

from 300th to 600th records, I invoked the batch learning every 10 records instead of every

record. It not only saves computation time needed to run all the test but does not decrease

the accuracy significantly. As I show in Figure 56, the Marilyn model encounters most of

the cases after around the 250th case.
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Figure 59: The graph shows average percent of accuracy as a function of the number of cases

for 2-layer BN2O models

The second issue with Marilyn is how the system handles the growth of the model

structure. The reasoning engine SMILE, is capable of handling large networks, and per-

forms Bayesian inference in a fraction of a second. The challenge for the algorithm is how

to handle the growth of the number of parents for a single node. In this experiment, even

after six hundred cases have been entered in the system, this problem was not noticeable.

The maximum number of parents per node for network was 13. This number are not large

enough to degrade the speed of inference of Marilyn.
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Figure 60: Marilyn’s cumulative accuracy as a function of the number of cases seen for

3-layer BN3M models

7.2 3-LAYER VS 2-LAYER STRUCTURE

To find the difference in accuracy of Marilyn between a 3-layer BN3M model and two-layer

BN2O model, I performed the Wilcoxon test [Demšar, 2006]. I could only use two data sets:

CSSD and School of Education in which I have full knowledge of these domains. For CSSD

data set, I need to ran additional two-layer BN2O Marilyn for 30 times with the same

order of records as in Chapter 6. Then, I performed the Wilcoxon test for CSSD with 30

pairs of cumulative accuracy. For School of Education data set, I perform the Wilcoxon test

with 20 pairs of cumulative accuracy. Table 19 shows the results of this experiment.

For the test results, the CSSD a 3-layer network is significantly more accurate than a 2-

layer network. In case of the School of Education data set, the 2-layer network is significantly

more accurate than the 3-layer network.
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Figure 61: Marilyn’s cumulative accuracy as a function of the number of cases seen for

2-layer BN2O models

Table 18: Accuracy comparison results with three Bayesian approaches using 10-fold cross

validation

Learning algorithms Accuracy

Marilyn 3-layer 70.33%

Marilyn 2-layer 72.33%

Naive Bayes 53.66%

Tree Augmented Naive Bayes 53.50%

Greedy Thick Thinning 40.33%
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Figure 62: Distribution of number of correct classification cases among five approaches using

10-fold cross validation

Figure 63: Help desk data set computation time by the batch algorithm
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Table 19: Wilcoxon’s statistical test between the 3-layer BN3M model and the two-layer

BN2O model.

CSSD School of Education

Two-tail 0.005735 0.0008841

One-tail 3 > 2 0.002867 0.9996

One-tail 2 > 3 0.9974 0.000442

7.3 DISCUSSION

Query-based diagnostics approach requires fewer cases for learning than the other simple

Bayesian networks in performing classification.

Marilyn is a passive diagnostic model construction tool that is able to give suggestions

based on information entered by diagnosticians. I conducted an experiment to evaluate

Marilyn’s accuracy, testing the model by means of six-hundred cases of help desk data.

This is a fairly realistic and similar to problems faced by most diagnositc situations. The

results of the experiment showed that Marilyn is more accurate than the other Bayesian

approaches based on learning when there are only few cases available as shown in Figure 62.

This results support the hypothesis. I believe that some of Marilyn’s power comes from

its priors and structural information extracted from the data as discussed in Chapter 3.

I discuss practical issues related to Marilyn model management. In the help desk

domain, it is advisable to use the online EM algorithm during daily operations and the

batch EM during maintenance hours. The structural complexity of the networks is not large

enough to justify the arc removal procedure.
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8.0 DISCUSSION AND FUTURE WORK

Query-based diagnostics offers passive, incremental construction of diagnostic models based

on the interaction between a diagnostician and a computer-based diagnostic system. Ef-

fectively, this approach minimizes knowledge engineering, the main bottleneck in practical

application of Bayesian networks. While this idea is appealing, it has undergone only lim-

ited testing in practice. There are notable two issues that need to be addressed in practical

query-based diagnostics systems: (1) processing of continuous streams of data and (2) the

continuous increase in complexity of the models structure.

The main contribution of this dissertation are (1) an investigation of the optimal approach

to learning parameters of Bayesian networks from continuous data streams, (2) dealing with

structural complexity in building Bayesian networks through removal of the weakest arcs,

and (3) a practical evaluation of the idea of query-based diagnostics.

I described a series of experiments that subject a prototype implementing passive, incre-

mental model construction to a rigorous practical test. Data obtained from the UCI Machine

Learning Repository and the two help desk domains made the evaluation fairly realistic. The

results of our experiments show that a system like Marilyn is capable of giving reasonable

suggestions after a modest number of observed cases. Accuracy on the order of 60-80%

typically occurred not later than after roughly 60 cases. The result is very promising and

compares favorably with state of the art approaches based on learning.

I conducted a series of experiments to find an optimal approach to perform Bayesian

network parameter learning algorithms for continuous data streams. I compared two no-

table parameter learning algorithms: the EM algorithm and the online EM algorithm using

several real data sets from the UCI Machine Learning Repository. The results show that the

batch learning approach leads consistently to the best parameter accuracy and diagnostic
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accuracy but may take orders of magnitude longer run times than incremental learning. The

incremental batch learning approach uses the least computation time but its accuracy is typ-

ically inferior to both batch learning and online learning. The online learning leads to lower

accuracy typically worse than batch learning but requires only a modest computational and

storage effort.

I performed an empirical evaluation of structural simplification of Bayesian networks

by removing weak arcs. The results show that removing up to roughly 20 percent of the

weakest arcs in a network has minimal effect on its classification accuracy. At the same

time, structural simplification of networks leads to significant reduction of both the amount

of memory taken by the clique tree and the amount of computation needed to perform

inference.

One direction of future work would be to apply query-based diagnostics in a real help

desk environments. The user interface of Marilyn has been improved several time for the

better ease of use. Marilyn allows its users to enter free text, which the program interprets

as the name of a variable. Currently, the system does not deal with the problem of redundant

nodes or wrong data. If a user enters redundant nodes or wrong data, it is possible to fix the

model directly in the database in what I called “expert mode.” To prevent redundancy and

common typos in the future, the system needs to provide to the user, through a web interface,

additional information from domain experts and ability to edit the past cases. To integrate

the system seamlessly into any existing help desk environment would required additional

functionality. A good example would be the Help Management System from the School of

Educational portal, which provides a user the search functionality for the past/unfinished

tickets and the ticket reports.
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