2,360 research outputs found

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Learning-based run-time power and energy management of multi/many-core systems: current and future trends

    Get PDF
    Multi/Many-core systems are prevalent in several application domains targeting different scales of computing such as embedded and cloud computing. These systems are able to fulfil the everincreasing performance requirements by exploiting their parallel processing capabilities. However, effective power/energy management is required during system operations due to several reasons such as to increase the operational time of battery operated systems, reduce the energy cost of datacenters, and improve thermal efficiency and reliability. This article provides an extensive survey of learning-based run-time power/energy management approaches. The survey includes a taxonomy of the learning-based approaches. These approaches perform design-time and/or run-time power/energy management by employing some learning principles such as reinforcement learning. The survey also highlights the trends followed by the learning-based run-time power management approaches, their upcoming trends and open research challenges

    Dynamic Energy and Thermal Management of Multi-Core Mobile Platforms: A Survey

    Get PDF
    Multi-core mobile platforms are on rise as they enable efficient parallel processing to meet ever-increasing performance requirements. However, since these platforms need to cater for increasingly dynamic workloads, efficient dynamic resource management is desired mainly to enhance the energy and thermal efficiency for better user experience with increased operational time and lifetime of mobile devices. This article provides a survey of dynamic energy and thermal management approaches for multi-core mobile platforms. These approaches do either proactive or reactive management. The upcoming trends and open challenges are also discussed

    Phase-based Tuning for Better Utilized Multicores

    Get PDF
    The latest trend towards performance asymmetry among cores on a single chip of a multicore processor is posing new software engineering challenges for developers. A key challenge is that for effective utilization of these performance-asymmetric multicore processors, code sections of a program must be assigned to cores such that the resource needs of a section closely matches resource availability at the assigned core. Determining this assignment manually is tedious, error prone, and it significantly complicates software development. We contribute a transparent and fully-automatic program analysis, which we call phase-based tuning, to solve this problem. Phase-based tuning adapts an application to effectively utilize performance-asymmetric cores of a processor. Our technique does not require any changes in the compiler or operating system, thus it is easy to deploy in existing tool chains. It does not require any input from the programmer except the application. Furthermore, it is independent of the characteristics (performance-asymmetry) of the target multicore processor, which has two benefits. First, it avoids the need to create multiple customizations of the binary for each target architecture, and second it relieves the programmer of the burden of anticipating the target architecture. Last but not least, our technique significantly improves performance. Compared to the stock Linux scheduler, our best technique shows 36% average process speedup, while maintaining fairness and with negligible overheads

    Exploiting heterogeneity in Chip-Multiprocessor Design

    Get PDF
    In the past decade, semiconductor manufacturers are persistent in building faster and smaller transistors in order to boost the processor performance as projected by Moore’s Law. Recently, as we enter the deep submicron regime, continuing the same processor development pace becomes an increasingly difficult issue due to constraints on power, temperature, and the scalability of transistors. To overcome these challenges, researchers propose several innovations at both architecture and device levels that are able to partially solve the problems. These diversities in processor architecture and manufacturing materials provide solutions to continuing Moore’s Law by effectively exploiting the heterogeneity, however, they also introduce a set of unprecedented challenges that have been rarely addressed in prior works. In this dissertation, we present a series of in-depth studies to comprehensively investigate the design and optimization of future multi-core and many-core platforms through exploiting heteroge-neities. First, we explore a large design space of heterogeneous chip multiprocessors by exploiting the architectural- and device-level heterogeneities, aiming to identify the optimal design patterns leading to attractive energy- and cost-efficiencies in the pre-silicon stage. After this high-level study, we pay specific attention to the architectural asymmetry, aiming at developing a heterogeneity-aware task scheduler to optimize the energy-efficiency on a given single-ISA heterogeneous multi-processor. An advanced statistical tool is employed to facilitate the algorithm development. In the third study, we shift our concentration to the device-level heterogeneity and propose to effectively leverage the advantages provided by different materials to solve the increasingly important reliability issue for future processors

    RePP-C: runtime estimation of performance-power with workload consolidation in CMPs

    Get PDF
    Configuration of hardware knobs in multicore environments for meeting performance-power demands constitutes a desirable feature in modern data centers. At the same time, high energy efficiency (performance per watt) requires optimal thread-to-core assignment. In this paper, we present the runtime estimator (RePP-C) for performance-power, characterized by processor frequency states (P-states), a wide range of sleep intervals (Cl-states) and workload consolidation. We also present a schema for frequency and contention-aware thread-to-core assignment (FACTS) which considers various thread demands. The proposed solution (RePP-C) selects a given hardware configuration for each active core to ensure that the performance-power demands are satisfied while using the scheduling schema (FACTS) for mapping threads-to-cores. Our results show that FACTS improves over other state-of-the-art schedulers like Distributed Intensity Online (DIO) and native Linux scheduler by 8.25% and 37.56% in performance, with simultaneous improvement in energy efficiency by 6.2% and 14.17%, respectively. Moreover, we prove the usability of RePP-C by predicting performance and power for 7 different types of workloads and 10 different QoS targets. The results show an average error of 7.55% and 8.96% (with 95% confidence interval) when predicting energy and performance respectively.This work has been partially supported by the European Union FP7 program through the Mont-Blanc-2 project (FP7-ICT-610402), by the Ministerio de Economia y Competitividad under contract Computacion de Altas Prestaciones VII (TIN2015-65316-P), and the Departament d’Innovacio, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programacio i Entorns d’Execucio Paral.lels (2014-SGR-1051).Peer ReviewedPostprint (author's final draft
    • …
    corecore