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ABSTRACT

DYNAMIC PROCESSOR RECONFIGURATION FOR
POWER, PERFORMANCE AND RELIABILITY

MANAGEMENT

SEPTEMBER 2016

SUDARSHAN SRINIVASAN

B.E.E., VIT UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Sandip Kundu and Professor Israel Koren

Technology advancements allowed more transistors to be packed in a smaller area,

while the improved performance helped in achieving higher clock frequencies. This,

unfortunately led to a power density problem, forcing processor industry to lower

the clock frequency and integrate multiple cores on the same die. Depending on

core characteristics, the multiple cores in the die could be symmetric or asymmetric.

Asymmetric multi-core processors (AMPs) have been proposed as an alternative to

symmetric multi-cores to improve power efficiency. AMPs comprise of cores that

implement the same ISA, but differ in performance and power characteristics due

to varying sizes of micro-architectural resources. As the computational bottleneck

of a workload shifts from one resource to another during its course of execution,

reassigning it to another core (where it runs more efficiently), can improve the overall

power efficiency. Thus achieving high power efficiency in AMPs requires (i) a diverse
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set of cores that are optimized for various program phases, (ii) runtime analysis to

determine the best core to run on, and (iii) low overhead of re-assigning a thread to

a different core type.

Decisions to swap threads between AMPs are made at coarse grain granularity of

millions of instructions, to mitigate the impact of thread migration overhead. But the

computational needs of the program rapidly change during the course of its execution.

The best core configuration for an application such that, both power consumption and

performance are optimized, changes over time rapidly at fine granularity of thousands

of instructions. This dissertation explores ways to design core micro-architecture such

that high power efficiency could be achieved, if switching overhead could be lowered,

enabling fine grain switching.

To take advantage of power saving opportunities at fine grain granularity, this the-

sis explores reconfigurable/morphable architectures where core resources are recon-

figured on demand to suit the needs of the executing application. At first, we explore

reconfigurable architectures consisting of two kinds of cores: out-of-order (OOO) big

cores and in-order (InO) small cores. The big cores provide higher performance while

the small cores are more power efficient. In this proposed architecture, OOO core

reconfigures into InO core at run time. Our proposed online management scheme

decides to switch between these core types such that we obtain significant power ben-

efits without impacting performance. We also observe that, resource requirements of

applications can be quite diverse and consequently, resource bottlenecks or excesses

can vary considerably. Thus, reconfiguration between just two core modes may not

fully exploit power and performance improvement opportunities.

We therefore, explore reconfigurable architectures consisting of diverse core types

that not limited to big and little cores. A single core can reconfigure into multiple core

modes where each mode has unique power and performance characteristics. Workload

performance on a particular core mode depends on a large set of processor resources.
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Some workloads are highly memory intensive, some exhibit large instruction depen-

dency, some experience high rates of branch mis-prediction, while other workloads

exhibit large exploitable instruction level parallelism. A diverse set of core modes

is needed, that could address shifting resource needs during various program phases

of an application. Different trade-offs in power and performance could be achieved

by reducing or expanding the size of various resource. Trade-offs for each core mode

are also affected by operating voltage and frequency. We therefore, propose joint

core resource resizing with dynamic voltage and frequency scaling (DVFS), which is

important for applications whose performance is sensitive to changes in frequency.

Thus, at fine granularity, the core should adapt to varying instruction window sizes,

execution bandwidth and frequency to meet the demands of the workload at run-time

to improve power efficiency.

Many current processors employ DVFS aggressively to improve power efficiency

and maximize performance. This dissertation studies the tradeoff in power efficiency

in using fine grain DVFS and reconfigurable architectures mentioned above.

We also explore another important problem due to continued scaling of devices

which results in higher vulnerability to soft-errors. We consider dynamic core recon-

figuration from the perspectives of both power efficiency and vulnerability to soft-

errors. An online management scheme is proposed such that core reconfiguration

upon a thread switch not only improves power efficiency but also does not increase

the vulnerability to soft errors.

In summary, we propose in this thesis several solutions for improving power ef-

ficiency by integrating heterogeneity within the core. We also address how popular

power reduction techniques like DVFS are comparable to our approach. Finally, we

address reliability challenges along with improving power efficiency.
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CHAPTER 1

INTRODUCTION

Advancements in technology has resulted in increased transistor performance and

the ability to pack more transistors into a small area. We now commonly see pro-

cessors with beyond 1B transistors on a die as shown in Figure 1.1. Unfortunately

the power consumption per transistor hasn’t dropped at a corresponding rate [28].

This is primarily due to fundamental physical limits reached at the transistor level.

As transistor becomes smaller, leakage current increases because transistor thresh-

old voltages have been reduced to the point where the devices don’t completely shut

off. The increased device density and rising frequency unfortunately led to a rapid

growth in power density. This growth in power density has become unsustainable at

100 W/cm2 due to packaging limitations. Thus, the industry can no longer rely solely

on manufacturing improvements to achieve better power efficiency, forcing them to

look at micro-architecture innovations and power management techniques to keep

within the power dissipation limits [14].

Figure 1.1. Trend in transistor integration on single chip [82]

.
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A parallel trend has been to lower the processor frequency and include more

cores on the die, which paved the way for the multicore era [39]. Traditionally multi-

cores are symmetric, where all cores have identical power/performance characteristics.

Though multicores have resulted in lower power density, they are still constrained

by the total power dissipation that depends on the currently available packaging

and cooling technologies. Due to limitation on power budget, the fraction of cores

in a given multicore design that can run at full speed simultaneously is dropping

exponentially [97]. This lead industry/researchers to coin the term ‘Dark silicon’,

where at any given time instance, the number of cores that can be active is limited

by chip’s power budget and is smaller than the total number of cores that are present

in the chip [28, 34]. Dark silicon means that a significant fraction of cores need

to be idle (Dark) or under-clocked (Dim) at any point of time. To maintain the

power budget, logic is severely under clocked in case of dim silicon. Dim silicon

technology includes spatial dimming through use of Dynamic Voltage and Frequency

Scaling (DVFS), temporal dimming through computational sprinting [76] or Intel

Turbo Boost technology [20] where the chip power budget is allowed to exceed its

limit for short durations of time to achieve enhanced performance followed by a long

period of inactivity or low power computation. In the dark slicon era, as silicon

area is cheap, architects can spend area to increase the energy efficiency. This lead

to emergence of Heterogeneous architectures or Asymmetric Multi-core Processors

(AMPs) consisting of diverse core types on the die as a potential solution to the

power density problem.

AMP architectures are classified into 1) physical asymmetric cores that execute

the same ISA but have different micro architectures resulting in diverse power and

performance characteristics to better match various application behaviors [9, 35, 40,

52, 54] 2) hybrid cores consisting of different architecture and ISA 3) DVFS to emulate

AMP with physical symmetric cores [3] and 4) Reconfigurable cores where a single
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core reconfigures into multiple core types with varied frequency and micro-architecture

[61, 90, 91]. This thesis is focusing on reconfigurable AMP cores, DVFS to emulate

AMP and physical asymmetric cores as explained later in this chapter. As applications

exhibit diverse program behavior during the course of execution, AMP architectures

offer opportunities to achieve higher power efficiency by dynamically migrating an

application from one core type to another based on the current resource needs of the

application. Usage of AMP have also gained importance in mobile systems and data

centers. In mobile systems, low power consumption helps in prolonging battery life.

Data centers experience low average utilization but also periods of high activity that

need more computing resources to meet the desired quality of service.

In this thesis we consider AMP architectures consisting of monotonic or non-

monotonic core types. Monotonic core types in AMP include high performance/high

power and low performance/low power core types [55, 95]. Figure 1.2 shows an

example of industry standard monotonic core type, ARM’s Big.LITTLE [35]. Big

cores (higher performance cores) are used for compute intensive tasks and little cores

(low performance cores) are used for less demanding tasks. Another example of

monotonic core type is Nvidia’s Kal-El [70] which contains 4 high performance and

one low power core.

Another class of AMP architectures consists of non-monotonic core types where

each core is power/performance optimized to different instruction level behavior of

the workload. Non-monotonic core types, thus can provide higher power efficiency

than monotonic core types [66, 67, 69]. In Figure 1.3 we show the different cores types

and configurations which are analyzed in this thesis and we study the performance

and power/trade off in each of the different core configuration.

To take advantage of the performance/power benefits of non-monotonic core types,

accurate steering of an application phase to the most suitable core type is required.

High performance per watt for single threaded applications requires that we maxi-
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Figure 1.2. Example of monotonic core type consisting of big(OOO) core and lit-
tle(InO) core [33]
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mize power efficiency while minimizing the latency impact [52]. But thread swapping

between core types in AMPs (monotonic/non-monotonic), can take thousands of cy-

cles depending on the algorithm employed to swap threads and the mechanism to

exchange contexts [81]. To amortize the large overhead associated with thread swap-

ping, in most proposals, thread swapping decisions are made at a coarse instruction

granularity of hundreds of thousands to millions of instructions [23, 52]. Therefore,

achieving high power efficiency using AMP architecture requires: (i) a diverse set of

cores that are optimized for various program phases, (ii) runtime analysis to deter-

mine the best core to run on, and (iii) low overhead of re-assigning a thread to a

different core type.

Numerous opportunities to improve power efficiency at more fine grained instruc-

tion granularity [77, 103, 105] are missed out by a coarse grain approach. Existing

static AMP architectures with multiple asymmetric cores and memory system incur

large power/performance overhead for switching at fine granularity. To minimize

thread switching overhead and obtain improved power efficiency of single threaded

applications, this thesis explores reconfigurable/morphable architectures, where core

resources are reconfigured on demand to suit the needs of the application. This

supports heterogeneity within the core and minimizes thread switching overhead.

As the current industry standard AMP architecture is ARM’s big/little, this thesis

proposes a morphable/reconfigurable architecture design, where a single superscalar

out-of-order (OOO) core can morph/reconfigure itself dynamically into an In-Order

(InO) core at runtime. As the reconfiguration is performed within the same core

and the application’s architectural states are retained, the overheads of switching is

reduced, thus enabling fine-grained switching between OOO and InO modes. Such

a reconfigurable architecture can switch only between two monotonic core types.

Having only 2 monotonic core types does not cater to the rapidly changing demands

of all workloads thus leaving us with following un-answered questions.
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1. How to design a reconfigurable architecture that adapts to varying demands

of workloads at runtime with varying window sizes, execution bandwidth and

voltage/frequency ?

2. How to design a run time mechanism for steering the application to the right

core type ?

To address the above questions, we have performed a core design space exploration

experiment to select a set of non-monotonic core architectures that are fundamentally

different from the big/little architecture. The architectures of the cores can differ in

fetch width, issue width, buffer sizes (e.g., Reorder buffer (ROB), Load Store Queue

(LSQ) and Instruction Queue (IQ), clock frequency and operating voltage. We then

use the selected core architectures to define the distinct core modes of the proposed

reconfigurable architecture. Our reconfigurable core can dynamically morph into any

one of these execution modes. Thus, this thesis proposes joint core resource resizing

with dynamic voltage and frequency scaling (DVFS). This way, the reconfigurable

core can mimic a high diversity asymmetric multi-core processor.

The computational resource requirements of an application change during its ap-

plication execution and are not available beforehand. To take advantage of higher

power efficiency opportunities, we need an on-line mechanism that is computation-

ally fast and reasonably accurate in guiding the application to the right core mode

at run time. The decision to choose what the best core to reconfigure into, needs to

be taken at fine grain granularity. We propose a dynamic reconfiguration relying on

online estimators to select the best core mode for the current needs of the executing

application.

Many current processors employ DVFS aggressively to improve power efficiency

and maximize performance [16, 20]. For example, memory bound phases of an ap-

plication might not have sufficient ILP to keep the core busy and thus providing op-

portunities for scaling down voltage/frequency. Reducing voltage/frequency in such
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Figure 1.4. Different AMP and DVFS designs made to switch at Fine/Coarse grain
granularity (Quantum).

cases provides cubic reduction in power with minimal loss in performance [44]. Intel

turbo-boost technology increases the frequency of active cores when other cores are

idle, providing enhanced performance [20]. DVFS traditionally involves high over-

head (tens of microseconds) as it depends on off-chip voltage regulator to switch from

one voltage to another, thus allowing DVFS to be performed only at coarse grain OS

switching granularity of millions of instructions [49]. Intel introduced fully integrated

voltage regulator (FIVR) in their Haswell microprocessors, considerably reducing the

voltage transition time, which enables switching from one voltage/frequency to an-

other at fine granularity [17]. In this thesis, we study the trade off in power effi-

ciency between applying only fine grain DVFS in static CMOS and reconfigurable

architectures. We also study the effect of using on-chip and off-chip regulators for

DVFS and compare to a reconfigurable architecture that uses an on-chip regulator.

Figure 1.4, summarizes the overhead involved in switching between different AMP

architectures and architectures that employ only DVFS. Reconfigurable architectures

with fine grain switching have smaller switching overhead than coarse grain AMP

architectures as shown in Figure 1.4. We analyze in this thesis each of the different

architectures shown in Figure 1.4 and identify the architectures that provide the best

performance/Watt. Thus this thesis would answer the following questions:
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1. Can cores with dynamic heterogeneity consisting of DVFS and core reconfigu-

ration online provide higher power efficiency than fine grain DVFS only?

2. How to design a run time scheme to switch between different core configuration

and DVFS modes online? Does fine grain DVFS provide higher power efficiency

than coarse grain DVFS? What are the power efficiency benefits of coarse grain

core reconfiguration compared to fine grain core reconfiguration?

Recent literature has shown that reduced feature sizes and aggressive power man-

agement lead to increased process variation and soft error rates (SER) respectively

[13, 24]. More severe defects at smaller technology nodes arise due to larger process

variations, resulting in significant variation in characteristics of devices from what

was intended at the design stage [15]. Soft errors occur when data stored in nodes

of transistor are flipped due to radiation effects. The trend in soft error rates due

to technology scaling is shown in Figure 1.5. Due to the increased soft error rate at

lower technology nodes, we also discuss in this thesis the effects of soft-errors on core

reconfiguration.

During core reconfiguration, there is trade-off between power efficiency and vul-

nerability to soft errors. For example, a workload that exhibits frequent cache misses

achieves a higher power efficiency under lower voltage and frequency conditions. This

leads to lower power without a decrease in performance as the performance bottleneck

is the result of cache misses and not low frequency. Even though this may increase

power efficiency, it also leads to greater vulnerability to soft-errors due to the lower

voltage. Several studies report adverse impact of dynamic voltage and frequency

scaling (DVFS) on SER [30, 88, 98, 106]. In this thesis, we explore dynamic core re-

configuration of non-monotonic core types with DVFS, for optimizing two objectives

simultaneously: improving throughput/Watt efficiency and reducing vulnerability to

soft errors.
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Figure 1.5. Trends in soft error rate [15]

In summary, we propose multiple solutions to improve power efficiency by bringing

heterogeneity into the core and developing a fast run time mechanism to switch

between different core modes at fine granularity. We also provide solutions to reduce

SER combined with improving power efficiency at fine granularity, when switching

between different core modes. We outline below the different sections in this thesis.

In Chapter 2, we show our design of monotonic cores can improve power efficiency

over existing monotonic core architectures. In Chapter 3, we introduce non-monotonic

architectures and develop an on-line run time mechanism for mapping the application

to the right core type. In Chapter 4, we present new non-monotonic architectures

and show how they improve performance/watt when compared to designs described

in Chapters 2 and 3. In Chapter 5, we compare our core design with various DVFS

schemes. In Chapter 6, we present solutions to the problem of not only improving

power efficiency but also reducing vulnerability to soft errors.
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CHAPTER 2

IMPROVING POWER EFFICIENCY USING
MORPHABLE ARCHITECTURE WITH MONOTONIC

CORE TYPES

The computational needs of a program changes over time. Sometimes a program

exhibits low instruction level parallelism (ILP), while at other times the inherent ILP

may be higher; sometimes a program stalls due to a large number of cache misses,

while at other times it may exhibit high cache throughput. Hence, the best core

configuration (size of the queues, number of execution units etc.) for an application

such that both energy consumption and performance are optimized, changes over

time. In that spirit, Asymmetric Multicore Processors (AMPs) have been proposed

to allow matching the computing needs of a thread to a core where it executes most

efficiently [3, 4, 52, 79].

Monotonic AMPs employ two kinds of cores: out-of-order (OOO) big cores and

in-order (InO) small cores. The big cores provide higher performance while the in-

order small cores are more power efficient. As the benefits of such AMPs are highly

dependent on a proper thread-to-core assignment, the threads are swapped between

the cores at runtime so that the objective function (for example, performance or

performance/power or energy) is improved for the current program phase. However,

thread swapping incurs non-negligible costs. The swapping overhead can vary from

a few thousand [4, 81] to millions of cycles [9, 51] depending on the algorithm em-

ployed to swap threads and the mechanism to exchange contexts. To amortize the

large overhead associated with thread swapping, in most proposals, thread swapping

decisions are made at the granularity of hundreds of thousands to millions of instruc-
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Figure 2.1. Energy consumption difference between OOO and InO core for SPEC
benchmarks

.

tions [9, 51]. Unfortunately, numerous opportunities to improve performance/power

at a more fine grained instruction granularity [77, 103, 105] are missed out by such

approaches. Therefore, there is need for a mechanism to realize these opportunities

without incurring large thread swapping penalties.

OOO core relies heavily on speculative execution by making use of data structures

such as ROB and reservation stations to support OOO execution. Data movement

between these structures consume significant power as shown in Figure 2.1. In-order

core consumes significantly less power as it does not execute instructions speculatively

and thus it does require fewer hardware structures compared to an OOO core. Figure

2.2 shows the IPC difference resulting from running the workload mcf on the OOO and

InO cores. In this figure, the IPC is sampled at a coarse grain instruction granularity

of 50K instructions. Here, it can be seen that at no point is the IPC of the InO core

comparable to that of the OOO core. Figure 2.3 compares the IPC difference when

running the workload mcf on the OOO and InO cores at a fine grain granularity
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of 500 instructions. It can be seen that, not only are the IPCs of the two cores

comparable in some of the instruction intervals, but at some points in the plot, the

InO core outperforms the OOO core. The InO core with simpler pipeline structures

experiences less stalls when compared to an OOO core for benchmarks that experience

significant memory misses. The InO is the power efficient core and from the figure,

it is clear, that at smaller instruction granularities, when the performance difference

between the two core types is small, we can gain in throughput/Watt by switching

from the OOO to the InO core. However, swapping threads at such a small granularity

in current AMPs, will likely negate all benefits. Hence, there is need for a more fine

grain switching mechanism that does not incur large thread swapping penalties. In

this chapter we address the following questions:

1. How to design an AMP architecture that can allow switching between AMP

core types at fine grain instruction granularity?

2. How to design a simple runtime scheme that determines when to switch between

AMP core types?

3. How fine grain should core switching be done to achieve the highest through-

put/Watt

To address the above issues, we propose a core morphing mechanism that reaps

most of the benefits of AMPs, without incurring the penalty associated with thread

swapping. Our proposed mechanism introduces heterogeneity within a single core by

morphing it from OOO to InO core and vice-versa. Certain Intel processors feature

a special debug mode in which the OOO core turns into an InO core [51]. We extend

this mechanism for improving power efficiency by opportunistically switching to the

InO mode, if deemed beneficial. As the morphing is performed within the same core

and the architectural states are retained, the overheads associated with our scheme

are negligible, thus enabling fine-grained switching between OOO and InO modes

12
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2.1 Related Work

We now provide an overview of recent advances made in literature that closely

relate to our proposed scheme.

2.1.1 Asymmetric Multicore Processors (AMP)

A number of proposals have been made on the topic of AMPs for performance

and performance/Watt gains. Kumar et al. in [54] make use of cores of different sizes

to best match the thread to one of the available cores. However, only a single thread

was run on a system consisting of four cores. This greatly simplifies the scheduling

problem in AMPs. AMPs have also been used to eliminate serial bottlenecks in

parallel workloads. Suleman et al. [95] considered such an architecture consisting of

big cores and several small cores. The big cores were used as accelerators. The central

component of every proposal focusing on AMPs revolves around the mechanism to

determine the best thread to core assignment such that while switching to a more

power efficient core, the power hungry structures in the high performance core are

not utilized. Several researchers have also proposed AMP core types for operating

system codes [62] and ILP and MLP intensive codes [73].

2.1.2 Morphable or Dynamic Multicores

There have been several proposals that advocate dynamic morphing of multicores

or single cores such that performance and power efficiency are enhanced at run time.

In a number of proposals, the starting point is a multicore consisting of small cores

which then fuse together into a large OOO core on demand [48, 75, 96]. Such ap-

proaches suffer from additional latencies that arise from combining resources from

various cores. A different scheme was adopted by Khubaib et al. in [47] where

they start with a baseline OOO core that morphs itself into a simultaneously multi-

threaded InO core depending on the number of incoming threads. All such schemes
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require significant changes to the microarchitecture making them difficult to adopt in

practice.

Dynamic sharing of processor resources for power and performance benefits is also

a well explored area. Kumar et al. [53] explore sharing of various large structures

in the multicore for power and area savings. In [81], Rodrigues et al. explored

dynamic exchange of execution units such that performance/Watt is improved. All

such schemes require extra circuitry that must be designed and verified. In [61],

Lukefahr et al. make a proposal that is similar to ours. In their scheme, heterogeneity

is introduced into a single core by provisioning two execution backends to the core.

One backend is an OOO while the other is InO. Both backends share the caches and

fetch units. The difference between this scheme and ours is explained in detail in the

proposed architecture section later in this chapter.

2.1.3 Recent advances made in thread to core Mapping in AMPs

Prior knowledge about the computational resource requirements of different ap-

plications is generally not available beforehand. Hence, there is a need for an online

mechanism to characterize the time-varying program behavior and determine the ap-

propriate mode (OOO or InO) at runtime such that the throughput/Watt of the

executing application is maximized. We next cover some of the recent advances made

in scheduling in AMPs.

2.1.3.1 Sampling Based Techniques

Online learning schemes offer a more practical solution to the AMP scheduling

problem. These schemes learn the characteristics of the workloads online and based

on this make informed thread scheduling decisions. Online learning schemes primarily

employ phase classification and sampling techniques to perform scheduling [9, 52, 81,

102]. Whenever a stable phase change is detected, the new phase is sampled on all the

core-types in the AMP [81, 84]. Winter et al. explored different techniques such as
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brute force, greedy and local search for thread to core mapping using heterogeneous

cores [102]. For implementing each of these techniques, they sample the thread on

each of the cores to make thread switching decisions. Becchi et al. proposed a

steering algorithm by sampling thread on both fast and slow cores and computing

the speedup factor for deciding on thread switch [9]. Such sampling based schemes

pose significant overhead as the application must be sampled on each of the core

types before migrating the thread to the preferred core. Thus, such schemes may not

be scalable for a many-core system [23] and can only be employed at coarse grain

instruction granularities and as such cannot be used for our purpose.

2.1.3.2 Heuristics Based Techniques

Heuristics based thread to core mapping approaches are improvement over sam-

pling based schemes as they eliminate the overhead involved in sampling. Prior works

have used certain metrics such as L2 miss rate or stall information to determine the

right thread to core assignment [51, 83]. Saez et al. proposed a steering algorithm for

monotonic core type that relies on estimating the L2 miss rate [83]. It is, however,

unclear whether using L2 misses alone is sufficient to make thread to core assign-

ment decisions such that performance/power is maximized. Koufaty et al. determine

thread to core mapping in an AMP, using program to core bias which is estimated

online using the number of external and internal stalls [51]. Their objective was only

to improve performance. Patsilaras et al. determined the amount of MLP using l2

miss statistics to determine the right thread to core assignment in AMPs [73].

2.1.3.3 Estimation Based Techniques

Estimation-based techniques are closest to what is considered in our work. Numer-

ous schemes that employ regression-based analysis techniques [21, 45, 85] for thread

to core mapping in AMPs have been published. In these, regression is used to esti-

mate power and performance in the same core. Other works estimate the performance
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and/or power of running a thread on another core in the AMP using statistics such as

cache misses and pipeline stalls gathered on the host core [23, 51, 61, 80, 93]. In our

work, we employ performance monitoring counters (PMCs) to estimate the IPS2/Watt

of the thread in both modes (OOO and InO) using the PMC of the host core. Based

on this estimation, the core that is expected to provide a higher IPS2/Watt is chosen.

2.2 Proposed Architecture

In our scheme, only a single core is considered. In the baseline mode, the core

operates in the OOO mode providing high performance. However, during low IPC

phases, the core may be morphed into the InO mode for a higher performance/Watt.

A similar switch is made from InO to OOO when these benefits are predicted to

have diminished. By switching between operation modes, the proposed scheme takes

advantage of heterogeneity while incurring minimal overhead upon a mode switch.

Figure 2.4 shows the considered baseline core which is a 4-way issue OOO super-

scalar core. The backend of the baseline core is provisioned with register alias table

(RAT), load/store queue (LSQ) and Re-Order Buffer (ROB) to facilitate OOO execu-

tion and inorder commit. During high-ILP program phases, a significant performance

improvement is achieved by executing the thread on the OOO baseline core. However,

when the processor is waiting for long-latency memory operations to complete or ex-

periences stalls due to data dependencies, most of the core resources are idle wasting

static power. For such low-IPC phases, a low-power InO core may be more power ef-

ficient. The OOO mode relies heavily on speculative execution by making use of data

structures such as the ROB and the reservation stations to ensure OOO execution

but in-order commit. Data movements between these structures consume significant

power. For some phases of a program, this increase may not commensurate with the

performance improvement resulting in poor throughput/Watt. It can be seen in Fig-

ure 2.4, that the issue and execution stage power for the OOO mode are significantly
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Figure 2.4. (a) High-level view of the 4-way OOO baseline core. (b) The InO core
obtained by reconfiguring the baseline core. The shaded regions indicate the units
that are power-gated during InO execution. BP - Branch Predictor.

higher than the InO mode. These are the stages where the data structures are used

and accessed the most. This result shows that the power expended in the OOO mode

can be significantly higher than in the InO mode. When such increase in power is not

accompanied by a significant performance gain, a switch in mode from OOO to InO

may be beneficial. To this end, during low-ILP/memory intensive phases, we power

off the ROB, RAT, and LSQ, enabling only in-order execution/commit. Thus, the

baseline OOO core is opportunistically morphed into an InO core providing significant

power benefits. In this mode, the baseline core supports only in-order execution and

retirement of instructions. As the performance of the core in InO mode is expected

to be low, we reduce the fetch width of the core from 4 to 2, and further more, power

off half of the decoders and, shut-down few of the multiple execution units. While

in InO mode, if the program moves to a high-ILP phase, the shut down units are

powered on, reverting back to the baseline OOO execution.

Our proposed core morphing scheme is similar to the one proposed by Lukefahr et

al. [61] but differs in the following ways. Firstly, Lukefahr et al. employ two different

backend pipelines and decode units while our scheme uses the same for both modes
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(OOO and InO). The additional units increase the core area and design/verification

effort. More importantly, the scheme proposed in [61] requires the architectural states

to be transferred across the two pipelines which adds to the overhead. In contrast, the

same register file is used by the two modes in our scheme. Finally, our scheme differs

in when the mode switch (OOO to InO and vice versa) actually happens. Whenever

the scheme decides to switch from OOO to InO mode, the units are power gated, we

then drain the pipeline and the subsequent instructions are re-fetched in InO mode.

When switching from InO to OOO mode, the units are powered back on and, the

head and tail pointers of the ROB are re-initialized to point to the same slot. Thus,

the ROB is presumed to be completely empty when the core is morphed back to the

baseline OOO mode. The fact that we make use of existing facilities in the processor

core to enable reconfiguring makes our proposal more practical.

2.3 Runtime Reconfiguration Management

Reconfiguring from the OOO to the InO mode of operation needs to be done at

runtime. This requires a mechanism that makes dynamic decisions depending on the

characteristics of the currently executing workload. The decision metric chosen for

selecting new mode is based on computing IPS2/Watt on-line [36, 5]. The metric

IPS2/Watt gives higher weightage to performance than power. Our proposed core re-

configuring scheme accomplishes this task by estimating the IPS2/Watt of the current

execution phase of the application in both the modes (OOO and InO) as explained

next.

2.3.1 Power and Performance prediction mechanism

The current characteristics of the application being executed on a core can reveal

considerable information about how suitable the core is to that application. For

example, an application phase that results in a significant number of misses in the
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level-1 cache will result in low performance and high power consumption in OOO

core. Executing this phase on an InO core would make more sense with respect to

IPS2/Watt. In order to assess the current characteristics of the application being

executed, we make use of Performance Monitoring Counters (PMC).

In order to estimate the IPS2/Watt, both performance and power need to be

measured or estimated. Performance measurement is straightforward, while real time

power or energy measurement is not. PMCs have been used as a proxy to estimate

power in the past [22, 87] and we follow a similar approach. Note that most previous

work make use of PMCs to estimate power on the same core while we need to estimate

power and performance on the currently active mode (OOO/InO), as well as the other

mode (InO/OOO) to make an informed decision.

2.3.1.1 PMCs explored in this study

There are many events that take place in a modern processor but some of them

provide better hints than others about the performance and power of the currently

executing application. To this end, we have explored fourteen different performance

counters. We considered (i) the number of retired instructions of each type (inte-

ger, floating-point etc.), (ii) memory hit and miss counters (level-1, level-2 and TLB

misses), (iii) number of mis-predicted and correctly predicted branch instructions,

(iv) number of instructions fetched and instructions retired per cycle (IPC), and (v)

pipeline stall counters which include stalls resulting from lack of reservation stations,

load/store queue entries, RAT and ROB slots.

2.3.1.2 Shortlisting the PMCs

In general, we expect a higher estimation accuracy using a large number of coun-

ters. However, there is a limit on the number of counters that may be accessed at

the same time. This limit varies from one architecture to another. For example,

in the Intel XScale processor [22], only two counters may be accessed while for the
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Figure 2.5. R2 coefficient as a function of the number of chosen PMCs. PMC InO
=> Power OOO denotes that using the performance counters of the InO mode, we
estimate the power on the OOO mode.

AMD Phenom processor, at most five counters may be accessed at the same time [87].

There is, therefore, a need to find a minimal subset of PMCs that have the highest

correlation with power and performance both in the currently active mode, and the

other.

To accomplish the task of making the right choice of PMCs, we devised a greedy

heurestic that searches the counter space iteratively. During each iteration, our

counter selection algorithm picks a new counter that best fits the estimating parame-

ter (performance or power) along with the set of counters already chosen in previous

iterations. We used linear models for curve-fitting and the best fit is qualified by the

R2 correlation coefficient. During the initial few iterations, the value of the R2 coeffi-

cient increases steeply as more counters are added, but it tends to saturate later. The

best set of counters is around the region where the R2 coefficient tends to saturate.

In order to carry out such an analysis, we performed regression analysis using the

PMCs as variables and the performance and power as objectives.

As expected, increasing the number of counters yields better R2. However, we

arrive to the point of diminishing returns after certain number of counters. The
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Table 2.1. Power and performance estimation of the other mode using the per-
formance counters’ values in the current mode. L1h - L1 Hit, Bmp- branch miss
prediction, S - Store, L- Load, DS- Dispatch Stall

Estimating Parameter Expression

InO ⇒ OOO IPC 4.5 ×10-3 × L1h + 4.417 × IPC -
0.0273 × Bmp - 2.3255

InO ⇒ OOO Power 0.080 × L1h + 71.15 × IPC -
0.4112 × Bmp - 38.46

InO ⇒ InO Power 0.0047 × L1h + 13.062 × IPC -
0.0069 × S - 7.4 ×10-5 × DS + 1.5547

OOO ⇒ InO IPC - 0.00616 × L1h + 0.06671 × IPC -
4.2 ×10-4 × Bmp - 7.5 ×10-5 × DS + 0.2768

OOO ⇒ InO Power -0.0039 × L1h+ 0.9022 × IPC +
0.0104 × S - 0.0103 × Bmp + 4.4669

OOO ⇒ OOO Power 0.0141 × L1h + 13.81 × IPC +
0.0295 × S - 0.0118 × Bmp - 0.2989

resulting number of selected counters and the R2 value obtained in each of the 6

estimation (Power/IPC) are shown in Figure 2.5. In Figure 2.5, PMC InO => OOO

IPC denotes using the PMCs of InO mode to predict IPC in the OOO mode. The av-

erage R2 value across all modes is 0.85, showing high accuracy in power/performance

estimation. The final expressions obtained are shown in Table 2.1.

The average error observed when using PMCs on one mode (OOO/InO) to predict

power in that mode as well as performance and power on the other mode (InO/OOO)

is show in Figure 2.7. While estimating the OOO parameters (IPC and power) for

the InO mode using PMCs in the InO mode, the average % error in estimating

IPC and power is around 16% and 10%, respectively. Similarly the average % error

in computing the InO parameters from OOO core was found to be 15% and 8%,

respectively. Error in estimating power using counters in the same mode was found

to be around 9% for the OOO mode and 8% for the InO mode. Using the estimated

power and performance values, IPS2/Watt for both modes is then computed using

PMCs from the currently operating mode. Although the average estimation error

is reasonably low, the actual estimation error may be considerably higher at some

time instances and this may cause wrong morphing decisions. Therefore, we analyzed
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Figure 2.6. Distribution of estimation error when using PMCs of InO mode to
estimate power in InO and OOO modes.

the temporal distribution of errors and the results are shown in Figure 5.1. This

figure depicts the error in estimating power in InO and OOO modes using PMC of

InO mode. We observe that the deviation of the errors from the mean is low for the

majority of sample points with up to 75% of the sample points lie between + or -

10% from the mean. This demonstrates that the average error is a sufficiently good

indicator for the instantaneous estimation error. In our experiments we have observed

very few decision errors.

2.3.1.3 Capturing Application Phase behavior

To adapt to the computational needs of program, it is important to identify the

program phase behavior and find out the affinity of the program phase to a specific

core mode. Morphing from OOO to InO mode or vice versa should be considered

only when the application has entered a stable phase behavior or else the overhead

of scheme to morphing will become prohibitive. After a certain number of retired

instructions, referred to as window, a tentative morphing decision about the best

mode (OOO or InO) is made based on the IPS2/Watt estimations. To avoid too

frequent switching between the modes (InO and OOO), we prefer to wait until the
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new execution phase of the thread has stabilized. W denote by n the total number of

retired instructions during this period where n = history depth × window length. For

example, if for the past n committed instructions, moving from OOO to InO mode

was the most frequent decision, it may be predicted that the application has entered a

phase where InO mode may provide higher IPS2/Watt. The window size and history

depth need to be determined experimentally. We have conducted a sensitivity study

to quantify the impact of window length and history depth on the achieved benefits.

The window size and history depth combination that yields the highest IPS2/Watt

for the entire program execution would be the best choice.

The window length was varied from 250 to 1000 instructions. Within a particular

window, the history depth (n) was varied from 2 to 8 in steps of 1. For example, a his-

tory depth (n) of 4 and window length of 500 indicates that we make a reconfiguration

decision at the end of every 2000 instructions. To determine the optimum window

size and the history depth, we ran a set of 10 benchmarks. After each benchmark

was run for 1 billion instructions (after skipping the initial 2 billion instructions),

we computed the average increase in IPS2/Watt of the proposed scheme (that can
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Figure 2.8. % Average increase in IPS2/Watt of the proposed scheme w.r.t the
baseline OOO core for different values of window length and history depth.

switch between OOO and InO modes) over the baseline OOO core. The decision to

switch between operation modes is determined by the most frequent decision made

within the history depth. As shown in Figure 2.8, window length of 500 and history

depth of 6 provides the maximum increase in IPS2/Watt. The above computation of

IPS2/Watt increase takes into account the overhead for switching between modes, as

explained in the next section. Thus, in all our future experiments, the window length

of 500 and history depth of 6 is used.

2.3.1.4 Switching between OOO and InO modes

Due to the low overhead associated with our morphing scheme, we dynamically

morph from one mode to another at a fine-grained instruction granularity. As men-

tioned earlier, InO mode with reduced architectural units provides better power ef-

ficiency at the cost of performance. It is critical that we move into the InO mode

only when we expect lower power consumption without compromising performance

significantly.

At the end of every n commited instructions, we decide to move to InO mode only

if the expected IPS2/Watt in InO mode is greater than that of the OOO mode by a

defined threshold. Switching threshold parameters are discussed in Section 2.4.1
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2.3.1.5 Reconfiguration overheads

Previously proposed schemes for morphing [61, 79] or swapping of threads between

asymmetric cores [4, 9, 52, 80] incur large overhead and as a result, thread swapping

or morphing were done at a very coarse grain granularity. The overheads for these

schemes arise from the transfer of architectural state requiring a warm up the cache

and the branch predictor [3, 80] or due to a high communication latency to send or

receive data operands [79]. In our proposed scheme, morphing is done within the core

and thus it avoids all the above overheads as there is no need to change the state of the

register file, caches and branch predictors. The overhead associated with our scheme

is due to the power gating/power up of the ROB, RAT and LSQ units and partial

power on/off of fetch, decode and execution units while switching between OOO and

modes. When power-gating individual units, there is no dynamic power consumed

and the static energy consumed by these idle units is not very high providing us with

increased power savings. Power gating/power-on of all the blocks simultaneously may

lead to a sudden power surge and thus we employ staggered power gating where one

block is gated every clock cycle. To compute IPS2/Watt, seven expressions (shown

in Table 2.1) must be evaluated online, which require four multiply and accumu-

late (MAC) operations per expression. The resulting computation overhead is about

30 clock cycles. Average overhead for pipeline drain is estimated to be 60 cycles.

Detailed information on the reconfiguration controller which contains MAC unit is

explained in next chapter. Thus, the average overhead when switching between modes

is conservatively assumed to be 100 clock cycles for every switch. Actual switching

overhead is calculated in runtime by taking into account the draining of resources

from buffers before mode switch can be initiated. The switch between OOO and InO

modes is handled in hardware and no changes are required to the operating system.
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Table 2.2. Baseline OOO core parameters considered. The values in parenthesis
represent the change while in InO mode.

Param Value Param Value

Issue 4 (2) INTREG 96 (NA)

FPREG 80 (NA) INTISQ 36 (36)

FPISQ 36 (NA) LS units 3 (1)

LSQ 128 (NA) ROB 128 (NA)

L1(I/D) 64K L2 2M

Freq (GHz) 1.6 Type OOO (InO)

Table 2.3. Execution unit specifications for the baseline core. (P - Pipelined, NP -
Not pipelined, PP - Partially pipelined).The values within parenthesis represent the
change while in InO mode

FP DIV FP MUL FP ALU

1 unit, 21 cyc, P 1 unit, 5 cyc, P 2 (1) units, 3 cyc, P

INT DIV INT MUL INT ALU

1 unit, 23 cyc, P 1 unit, 8 cyc, P 4 (2) units, 1 cyc, P

2.4 Results and Analysis

In this section, we evaluate our proposed core morphing scheme. The core pa-

rameters considered in this work are listed in Tables 2.2 and 2.3. Most of these

parameters were take from [32]. As shown in Table 2.2 , the OOO core is provisioned

with large resources (e.g., integer and floating-point registers, issue queues and L2

cache) which is representative of modern super-scalar processors. The changes to

the architectural parameters and the execution units in the InO mode are shown in

parenthesis in Tables 2.2 and 2.3 , respectively. We used Gem5 as our cycle accurate

simulator with integrated McPAT modeling framework to compute the power of the

core and L1 caches [10, 59]. The evaluation was carried out using SPEC2006 and

SPEC2000 benchmarks suites [11, 89]. Each of the benchmarks were run for 1 billion

instructions after skipping the first 2 billion instructions.

2.4.1 Power Efficiency

The decision to switch from one configuration mode to another is based on the

IPS2/Watt threshold. We now explain the process of determining the IPS2/Watt
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Figure 2.9. % Increase in IPS/Watt vs various switching threshold

threshold. As shown in Figure 2.9, IPS2/Watt threshold was varied from 2% to 8%

for the determined window length of 500 and history depth of 6. We observe that

at smaller threshold of 2%, the achieved improvement in IPS/Watt is 16%. As we

increase the threshold to 4%, we observe a higher improvement in IPS/Watt. At the

lower threshold (2%), reconfiguration can happen too frequently thus increasing the

reconfiguration overhead resulting in reduced IPS/Watt. Beyond 5%, there is smaller

benefit due to reduction in the number of reconfiguration. The IPS2/Watt threshold

was therefore set to 4%.

Figure 2.10 shows the increase in IPS/Watt when compared to the baseline OOO

core. Memory intensive benchmarks such as soplex and mcf provide an IPS/Watt

improvements of 37% and 38%, respectively. Higher IPS/Watt improvement is ob-

tained, since these benchmarks stall the pipeline frequently on memory misses and

running them on InO core is more power efficient. Branch intensive benchmarks such

as astar, sjeng and gobmk also achieve high IPS/Watt by morphing into InO core

during periods of high miss-prediction activities. Benchmarks which are highly com-

pute intensive such as bzip2, h264ref and apsi do not incur many memory stalls and

thus do not morph into InO core frequently, resulting in lower IPS/Watt improve-
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Figure 2.10. % Increase in IPS/Watt of proposed scheme w.r.t the baseline OOO
core.

ments. Figure 2.11 compares the average IPS2/Watt, IPS/Watt and energy savings

compared to the baseline OOO core. IPS/Watt improvement of 17%, energy savings

of 19% and IPS2/Watt improvement of 21% are obtained.

2.4.2 Comparison to other Switching schemes

We compare our PMC-based fine grain morphing scheme referred as FineGrain PMC

to three other switching schemes, namely: (i) Sampling based switching within a

morphable architecture, referred to as CoarseGrain sampling ; (ii) Oracular scheme

referred to as Oracular ; and (iii) PMC-based switching at coarse grain granularity,

referred to as CoarseGrain PMC. Traditional AMP architecture such as big.LITTLE

allow switching to be done at a coarse grain instruction granularity of about hun-

dreds of millions of instructions which is at the granularity of phase change. These

architectures employ sampling based techniques to determine the right AMP core

type. As a result, they cannot exploit low performance phases that exist at a finer

granularity due to the high overhead involved in sampling based scheme. We com-

pare our traditional coarse grain sampling (CoarseGrain sampling) based switching

in AMP with our FineGrain PMC. To model the sampling based scheme we use
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Figure 2.11. % Increase in IPS2/Watt, IPS/Watt and energy savings of proposed
scheme w.r.t the baseline OOO core.

two parameters, the switching interval and sampling interval. To make the decision

to morph into a different core type, after every switching interval the application is

sampled on each of the core types. The best core type which is found during the

sampling interval is the core we morph into, where the application is run for the next

switching interval. The switching interval is taken to be 1M with sampling interval

of 10K instructions. In the oracular scheme, an oracle steering algorithm is used to

guide the core in morphing decisions. Switching between core modes is performed at

instruction granularity of 3K as determined earlier. Thus, for every 3K instructions

retired, the oracular scheme chooses the core that will best suit the application in the

next 3K interval.

As shown in 2.12, the oracular scheme provides an IPS/Watt improvement of

31%. This scheme provides the upper-bound for maximum IPS/Watt that could be

achieved by our scheme. FineGrain PMC scheme achieves a higher by 6% IPS/Watt

compared to CoarseGrain PMC scheme. CoarseGrain sampling scheme provides a

lower by 10% IPS/Watt compared to the FineGrain PMC scheme. Sampling is

performed at a coarse grain level missing opportunities available at lower granularity.
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Figure 2.12. Comparison of four switching schemes.

The number of mode switches for the chosen window length and history depth is

shown in Table 2.4 for all the benchmarks. As expected, benchmarks which achieve

increased power savings exhibit higher number of switches into InO mode. Table 2.4

also shows the percentage of time spent by each benchmark in the InO mode. Bench-

marks like mcf and soplex spent more than 50% of time in InO core thus providing

improved power efficiency.

Figure 2.13 shows the IPS/Watt improvement with increasing values of core re-

configuration overhead. Our initial estimated cost of overhead for reconfiguration is

100 cycles, the actual overhead is computed during simulation taking into account

draining of banked resources. From Figure 2.13, we can observe that as the overhead

increases from 100 to 500 cycles, IPS/Watt decreases by 2%. On overhead of 1K

cycles and beyond, there is larger decrease in IPS/Watt indicating that switching at

fine granularity must have a fast switching mechanism.

We also compare our reconfigurable design with architectures that resemble ARM

Big/Little architecture [35]. ARM Big/Little architectures consist of high perfor-

mance OOO ‘Big’ core and energy efficient InO ‘Little’ core. It differs from our
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Table 2.4. Number of switches per million instructions and percentage time spent
by benchmarks in the InO mode

Benchmark Switches/million Percentage time spent in
instruction InO mode

bzip2 64 12

apsi 70 14

h264ref 75 15

namd 90 18

applu 94 19

omnetpp 110 22

ammp 125 23

libquantum 133 26.6

equake 140 28

gobmk 148 29

hmmer 153 30.6

swim 155 31

sjeng 162 42

art 165 48

astar 170 50

soplex 183 55

mcf 185 60

Figure 2.13. Impact of core reconfiguration overhead on IPS/Watt improvement
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morphable architecture, where each core has two separate core modes. The core pa-

rameters are the same as those shown in Table 2.2. The PMC based online scheme is

used to switch between core types. Switching between core types involves overhead

of 20 usec [35]. Due to higher overhead of switching, migration of applications be-

tween cores is done at coarse granularity of 10M instructions. We then compare the

throughput/Watt obtained using a reconfigurable design against the ARM Big/Little

architecture. We find that, the reconfigurable design with fine grain switching achieves

a higher, by 7% throughput/Watt compared to the ARM Big/Little architecture.

2.5 Conclusion

Applications experience a change in characteristics over time. Hence, a different

core configuration (size of the ROB, number of execution units etc.) may be more

suitable with respect to energy and performance at different time instants. Therefore,

AMPs have been considered to support the diverse needs of applications. Here, de-

pending on the current application characteristics, threads are swapped between the

available cores in the AMP such that the objective function (for example, energy or

performance) is optimized. Prohibitive thread migration overheads limit the instruc-

tion granularity at which such thread swapping decisions may be made, even though

many opportunities present themselves at fine grain granularities. In this chapter,

we have considered an architecture that is capable of realizing these benefits. Here,

depending on application characteristics, a super-scalar OOO processor may morph

itself into an in-order (InO) core at runtime, if deemed to be beneficial. Such mor-

phing is feasible as it resembles the existing debug feature present in certain Intel

processors. The decision to morph between operation modes (OOO/InO) is made

using information gathered from performance monitoring counters. The proposed

scheme opportunistically morphs into InO mode to maximize IPS2/Watt. Our re-
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sults indicate that, on average, an IPS/Watt improvement of 17% is obtained over

the baseline OOO core.
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CHAPTER 3

IMPROVING POWER EFFICIENCY OF
NON-MONOTONIC PROCESSORS VIA PROGRAM

PHASE CLASSIFICATION

Most commercial AMP architectures are monotonic ones, that include either high

performance/high power and low performance/low power core types. Another class

of AMP architecture consist of non-monotonic AMPs where each core is power and

performance optimized for a different instruction level behavior. AMP architectures

(monotonic/non-monotonic) offer opportunities to achieve higher energy efficiency by

dynamically migrating an application from one core type to another based on its cur-

rent resource needs. The key challenges are: (i) how to dynamically determine which

is the best core for the application to run on and, (ii) How often to allow such migra-

tions, given that they may entail considerable overhead. Scheduling threads across

cores is commonly done by the Operating system (OS). Popular OS-based schemes

include Round Robin and FIFO. These scheduling schemes are suited for Symmet-

ric Multicore Systems (SMPs), where each of the cores has the same capabilities.

Thread-to-core mapping for non-monotonic (NM) architecture is more challenging

as each core has diverse resources and exhibits varied performance/Watt. We have

observed that different applications prefer different core types to achieve high per-

formance/Watt. This motivates the need for an accurate dynamic thread-to-core

assignment for NM architectures. Traditional OS-based schedulers are either static

or respond to program changes at a large scheduling interval granularity while the

behavior of programs may change much faster. Thus, a hardware based scheduling

solution may perform better.
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Figure 3.1. High-level overview of the hardware thread scheduling approach.

In this work, we develop a hardware based thread-to-core mapping which is respon-

sive to program changes at a fine granularity and performs accurate thread-to-core

assignment, resulting in higher performance/Watt. The central idea of this work is

depicted in Figure 3.1, showing the hardware scheduler that re-assigns applications

running on one core type to another NM core type that can achieve a higher per-

formance/Watt. The hardware scheduler includes an online performance bottleneck

based program phase classification mechanism, that detects program phases online,

taking into account the core micro-architecture details. Each phase behavior can be

characterized by a distinct resource bottleneck, which could be relieved by migrat-

ing the application to another core type that is provisioned with more resources to

alleviate that bottleneck. To determine the most suitable thread-to-core mapping,

we developed a scheme that estimates the expected throughput/Watt of the current

phase in each of the different core types. The thread is then migrated to the core that

is expected to provide the highest throughput/Watt. Thus, our scheme can closely

track program phase changes and match the application phase requirements to the

most suitable core type.
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3.1 Non-Monotonic Architecture

We consider in this work non-monotonic AMPs that consist of diverse core types

with varying core resource sizes, execution width, cache sizes and frequency. Prior

works have performed core design space explorations to identify a set of non-monotonic

core types that cater to diverse instruction level behaviors of different programs [69].

It was observed that, if only 1 core type is allowed, it would resemble current super-

scalar OOO cores that strive to achieve a balance between core frequency and ILP.

The remaining cores would be accelerator cores that are designed to relieve specific

processor bottlenecks. A representative 4-core non-monotonic architecture that is

considered in this work is shown in Table 3.1 [69]. We present in this thesis, an

effective phase classification and a runtime scheme for thread-to-core mapping. The

presented approach is not just suited to the particular flavor of non-monotonic archi-

tecture shown in Table 3.1. Instead, it can be applied to other diverse non-monotonic

core architectures. Table 3.1 shows four core types. The baseline core type is called

the Average core (AC) and it resembles an ordinary super-scalar core. In addition,

we have three accelerator cores: 1) Narrow core (NC) that caters to application

phases with ILP bottleneck, 2) Larger Window (LW) core that caters to application

phases with an instruction window bottleneck, and 3) Wider core (WC) that caters

to application phases with an execution width bottleneck.

In this work, we use a modified Gem5 simulator integrated with the McPAT

power model [10, 59]. We use SPEC2006 and SPEC2000 benchmarks which are cross

compiled for Alpha ISA with -O2 optimization [11, 89]. The benchmarks are run for

4 billion instruction after fast forwarding the first 2 billion.

3.1.1 Program Phase Detection

Our proposed thread-to-core mapping scheme detects program phase changes on-

line and assigns the new program phase to the most suitable core type that can
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Table 3.1. Core Parameters (A 2MB L2 cache is shared by all core types)

Core Type F (GHz) Buffer size Width Caches (KB)
(IQ,LSQ,ROB) (fetch,issue) (I,D)

AC 1.6 32,128,128 3,3 64,64
NC 2 32,64,64 2,2 16,16
LW 1.4 48,128,384 4,4 128,128
WC 1.4 32,128,128 6,6 128,32

provide the best throughput/Watt. Applications have diverse program phases and as

the computational needs of program phases are not available beforehand, they need

to be determined online. Program phase behaviors have been studied extensively for

the purpose of speeding up application simulation and for on the fly performance and

power optimizations of different application phases [19]. Swapping of threads from

one core type to another involves significant thread migration overhead. As a result,

to reduce this overhead, thread swapping should to be done only when stable program

phases are detected [46, 80, 86]. Therefore, phase detection schemes should detect

stable program phases and leave out unstable or short duration phases that would

not justify a reassignment to a new core type.

3.1.1.1 Phase Detection based on a Bottleneck Type Vector

Our proposed phase detection scheme is based on a bottleneck type vector (BTV)

as the non-monotonic core types that are used in this work, cater to different perfor-

mance bottlenecks. BTV tracks the frequency of the resource bottlenecks experienced

by the application over an instruction interval. We track different performance bot-

tleneck with the following performance monitoring counters [68]:

• Cache Stall: These counters track the I-cache, D-cache and L2-cache stalls.

The I-cache stall counter tracks the number of cycles in which an instruction fetch is

stalled due to an I-cache miss. The D-cache stall counter tracks the number of cycles

in which a load is stalled due to a D-cache miss. The L2-cache stall counter tracks

the number of cycles in which the processor stalled due to a L2 miss.
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• Branch Mispredict: This counter tracks the number of cycles the processor

stalled due to a branch misprediction.

• Resource Stall: This counter tracks the number of cycles in which the instruction

dispatch is stalled due to a blocked IQ or ROB or LSQ.

•Width Stall: This counter tracks the number of cycles in which ready instructions

are stalled due to an insufficient issue width.

• IPC counter: This counter tracks the program’s IPC during the period of exe-

cution interval.

The above counter values are normalized with respect to the total number of

cycles during the instruction interval. In our scheme, each application first starts

executing in the baseline AC core. After a fixed n committed instruction, the above

mentioned bottleneck counters are read and a BTV vector consisting of the tracked

counter values is formed and then, the phase classification is initiated. The phase

classification’s goal is to identify a previously classified stable BTV phase that has a

similar bottleneck frequency distribution compared to the current BTV. When two

BTV are compared, if the sum of the absolute differences between the components

of the previously classified BTV and the current BTV is greater than a given phase

threshold (that needs to be determined), then we classify it as a potential new phase.

Otherwise, the current BTV is declared to match a previously classified phase. To

differentiate between a stable BTV phase and an unstable phase, once a potential new

phase is identified, we wait for m (another parameter that needs to be determined)

consecutive intervals before classifying it as a new phase. Majority of m consecutive

intervals must have BTV differences larger than the phase threshold (when compared

to the previously classified stable phases). Once a new program phase is detected in

the currently executing core, the best core type for the current phase is determined

by computing the values of IPS2/Watt for the current phase when executing in each

of the different core types. A minimum improvement in IPS2/Watt that would justify

39



a swap needs to be determined, since a too small a improvement would not outweigh

the cost of thread swapping. Once the application is migrated to a new core type, our

phase detection algorithm is re-initiated to detect new program phases and re-assign,

if necessary, to the most suitable core type.

3.1.1.2 Phase Classification Parameters

To determine the quality of our phase classification approach, two metrics are

used: 1) % of the total program execution that can be classified into stable phases,

and 2) The ratio of the standard deviation in IPC between the classified stable phases

to the mean value. To reduce the search space of the phase classification parameters,

we considered only combinations of phase classification parameters that would result

in % unstable phase and % standard deviation in IPC to be less than 15%. The

search space for identifying the phase classification parameters resulted in instruction

interval length varying between 10K to 150K, phase threshold parameter varying from

5% to 15% and phase interval (m) varying from 4 to 6.

As the goal of finding the right phase classification parameters is to maximize

IPS/Watt, for each of the short-listed values of every parameter, we find the overall

improvement in IPS/Watt using an oracular approach that maps the application

phases to the NM cores listed in Table 3.1. As shown in Figure 3.2, the highest

improvement in IPS/Watt is obtained for an interval length of 50K. In Figure 3.3

we analyze the effect of the phase threshold parameter, at an interval length of 50K,

on other phase classification metrics. The metric %NonStablePhase provides the %

of unstable phases obtained by our phase classification scheme, %SD-IPC is the IPC

standard deviation for the classified stable phases, %Intervals-PhaseChange is the %

of intervals that result in phase change, and ClassifedPhase is the average number

of classified phases across all benchmarks. All of the above metrics are plotted for

various phase thresholds (5% to 15%). A lower threshold (5%) results in a higher % of
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Figure 3.2. % of the improvement in IPS/Watt as a function of the interval length.
Combinations of different phase classification parameters are averaged for the same
interval length.

unstable phases, higher number of classified phases and an increase in the number of

phase transitions. A higher threshold (15%) results in fewer classified phases and also

an increase in the standard deviation of the IPC. Thus, considering the two phase

classification metrics, we found that the largest throughput/Watt improvement is

obtained for a phase interval length of 50K, phase threshold parameter of 8.5% and

phase interval of m=4.

3.2 Online Phase to Core Mapping

We implemented a run time scheme using performance monitoring counters (PMC)

for effective mapping of program phases to the non-monotonic core types. The de-

cision to switch from one core type to another is based on the computed value of

IPS2/Watt for each of the different core types for the currently executing program

phase. We develop a PMC-based estimation model for estimating the IPS2/Watt

of the currently executing program phase on each of the other core types using the

PMCs of the currently executing core type. The development of PMC-based estima-

tion model is similar to what is explained in Chapter 2.
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Figure 3.3. Various phase classification quality metrics for different values of the
phase threshold parameter.

3.2.1 PMC-based Estimation Model

Prior publications have shown that using a small set of PMCs, power can be

estimated online with high accuracy [78, 94]. Based on prior works, we use linear

regression to derive expressions for estimating the performance and power for each

of the different core type. For deriving these expressions, we chose a diverse set of

workloads (sjeng, h264ref, soplex, omnetpp, bzip2, namd, gobmk, hmmer) from the

SPEC06 suite [11] whose phases have affinity to at least one of the core types. To

estimate the quality of the linear regression, we computed the correlation coefficient

(R2). As shown in Table II, the average correlation coefficients for power and per-

formance were found to be 0.91 and 0.84, respectively. We also show in Figure 3.4,

the average error in computing power and performance across different core types

using the PMCs of the current core type. The average errors when estimating the

power and performance are 11% and 8.5%, respectively. Thus, we are able to estimate

power and performance with reasonably high accuracy allowing us to make the right

thread-to-core mapping. The derived linear regression expressions are used by the

hardware scheduler to compute the power and IPC online as explained next.
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Table 3.2. Power and Performance estimation accuracy across different core types

Core Type Correlation Correlation
Coefficient (Power) Coefficient (IPC)

PMC AC ⇒ Power/IPC 0.93 0.83
PMC NC ⇒ Power/IPC 0.88 0.81
PMC LW ⇒ Power/IPC 0.91 0.85
PMC WC ⇒ Power/IPC 0.92 0.87

0 

2 

4 

6 

8 

10 

12 

14 

AC->Power/IPC NC->Power/IPC LW->Power/IPC WC->Power/IPC 

% Average error (IPC) % Average error (Power) 

Figure 3.4. % of the average error in computing IPC and power for each of the
different core types. AC⇒ Power/IPC denotes the average error in estimating power
and IPC in each of different core types using the PMCs of the AC core.
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3.3 Thread Migration Overhead

Our thread migration decisions are made online and are transparent to the oper-

ating system (OS), that is unaware of the underlining heterogeneity of the cores. In

our scheme, the initial thread-to-core mapping is done by the OS. Then, our proposed

mechanism will attempt to increase the throughput/Watt by choosing the right core

type for each detected phase. Our scheme relies on phase detection logic and hard-

ware controller to compute the expected throughput/Watt in each of the different

core types. The goal of the phase detection logic is to detect stable program phases

using predetermined phase classification parameters. Once a stable program phase

is identified, we compute the expected throughput/Watt from the monitored PMC

values using a MAC (multiply and accumulate) unit. The MAC unit uses the linear

regression expressions (that are functions of PMCs values) to compute the power and

performance. The MAC unit is pipelined and can compute 1 MAC operation per

cycle. We estimate the overhead for all the MAC computations to be 60 cycles. Each

time we decide to migrate the application phase to another core type, we incur an

overhead for transferring the register state and for cache warm up in the new core.

The overhead for the register transfer and the cache warm up is conservatively as-

sumed to be 350 cycles [69, 80]. We assume that the time required to wakeup the

core, into which the thread is migrating, is hidden since when this core is woken up,

the previous core is still executing the program. Thus, taking all the overheads into

account, we conservatively assume a total overhead of 2000 cycles upon a thread mi-

gration. In the results section, we also show the impact of a higher overhead on the

overall performance.
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3.4 Results

3.4.1 Evaluation Framework

In this section we evaluate different program phase to core mapping schemes and

compare the throughput/Watt achieved by each of the schemes to our BTV-based

phase detection and PMC-based thread-to-core mapping approach. The compared to

schemes include:

• Static Scheme: This is the baseline scheme against which our various thread-to-

core mapping schemes are compared. In this scheme we execute the entire application

on the AC core type, as it resembles a conventional super-scalar core.

• Oracular Scheme: Here, an oracle determines the phase to core mapping once

a phase change is detected, by making accurate predictions of the expected through-

put/Watt. Oracular based approaches are used to obtain an upper-bound for the

achievable throughput/Watt and can not be implemented in practice. Still, to have

a realistic scheme, we take into account the overhead for a core switch.

• Sampling Scheme: In this scheme, once a phase change is detected, the new

program phase is sampled on each of the core types for a period of 10K instructions.

During this sampling period, power and IPC values are collected in each of the core

types and the core that provides the highest IPS2/Watt is chosen as the right core

type for the application phase. We continue executing on the new core type until

we detect the next phase change. We take into account the overhead of sampling in

computing the throughput/Watt of this scheme.

• ITV-based Scheme: Several recent publications have used a thread-to-core map-

ping scheme for AMPs that relies on an Instruction Type Vector (ITV) to detect

program phase changes [46, 80, 81]. The AMP core types considered in these works

are monotonic cores types consisting of only high performance or low performance

cores. We have implemented the ITV-based phase detection scheme in order to inves-

tigate how well will this scheme perform when applied to non-monotonic core types.
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If what follows we outline the implementation of the ITV scheme. After the commit

of n (a parameter to be determined) instructions, we collect the values of counters

that count the number of different retired instruction types out of the n instructions.

The collected instruction types include load, store, integer, floating-point and branch.

The counters that form the ITV are different from those that form the BTV, as the

BTV counters are micro-architecture dependent while the ITV counters only count

the different types of retired instructions. After every n retired instructions, the new

ITV vector is compared to ITV vectors of previously classified phases. If the resulting

sum of the absolute differences between the ITV components is greater than a pre-

determined threshold (called phase threshold), then the newly captured ITV vector

belongs to a new phase. If the calculated value is smaller than the threshold, the

previously classified phase is repeating. As the goal of the phase classifying algorithm

is to identify stable program phases, we wait until m consecutive intervals have an

ITV vector difference that is smaller than phase threshold. As the benchmarks that

we use are somewhat different from those used in [46, 80, 81], we have redone the

phase classifying experiments based on the ITV, and have determined the following

values of the phase classification parameters: interval length n=150K, m=4 and phase

threshold=11.2%. The throughput/Watt achieved by the ITV scheme is calculated

for the sampling, oracular and PMC-based schemes. The PMC-based scheme refers to

using PMCs to estimate the IPS2/Watt for each of the core types before the decision

to migrate the thread is done.

3.4.2 Throughput/Watt Analysis

We analyzed the throughput/Watt obtained by our BTV approach and then com-

pared it to other thread-to-core mapping schemes as mentioned above. Figure 3.5

shows that we obtain a 22% average improvement in throughput/Watt for the SPEC

benchmarks [11, 89], compared to the static scheme where the application is run to
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Figure 3.5. % Improvement in throughput/Watt obtained by the PMC-based BTV
scheme when compared to the static scheme.

completion on only one core type (AC). Diverse core bottleneck behaviors observed

in each of the benchmarks are captured by the application phases and are mapped to

core types that relieve these bottlenecks, thus improving the throughput/Watt. The

considered bottlenecks include L1 cache (Icache, Dcache) bottleneck, L2 bottleneck,

instruction window bottleneck, branch misprediction bottleneck and instruction issue

bottleneck. The benchmarks that we experimented with have mixed characteristics

with diverse phase behavior consisting of compute intensive benchmarks (hmmer,

bzip2, h264ref), branch intensive benchmark (astar, gobmk, art) and memory inten-

sive benchmark (mcf, libquantum, soplex). The average and maximum number of

stable phase detected by the BTV approach across all the benchmarks have been 8

and 11, respectively. Once a stable program phase is detected, we can either map the

program phase to another core type or continue execution on the same core type. On

average we have observed only 8.2% transitions from one core type to another and

the number of times the hardware scheduler is woken up to collect PMC values and

compute the IPS2/Watt is on the average 650 times per application run. The number

of thread migrations and the invoke rate of the hardware scheduler are not too high

resulting in a low core switching overhead.

Figure 3.6 compares the average throughput/Watt for the BTV scheme using the

oracular, sampling and PMC-based thread-to-core mapping approaches. The Orac-
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Figure 3.6. % of improvement in throughput/Watt achieved by various switching
schemes for the BTV and ITV based approaches.
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Figure 3.7. Comparing the number of phases detected and the number of switches
for the ITV and BTV based schemes.

ular scheme, on average, obtains a 10% higher improvement in throughput/Watt

compared to the PMC-based scheme. The PMC-based scheme outperforms the sam-

pling scheme by 8% due to the higher overhead experienced by the sampling. The

BTV scheme shows an improvement of 12% in throughput/Watt compared to the

ITV-based approach as it considers core bottlenecks rather than only the distri-

bution of instruction types. The BTV scheme switches between core types more

frequently than the ITV scheme, spending more time in affine cores that alleviate

performance bottlenecks. Figure 3.7 shows the number of phases detected by both

schemes. On Average, the ITV scheme detects 7 program phase vs. 8 detected by the
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Figure 3.8. Average % change in PMC events between different program phases
classified by the BTV and ITV schemes.

BTV scheme. We also analyzed the number of phase to core transitions performed by

the two schemes. The BTV-based scheme has more transitions than the ITV-based

one. Out of the 4.3% transitions for the ITV scheme, 2% agree with the BTV scheme.

To further compare the phases identified by the BTV and ITV schemes, we studied

the relative change in PMC values between different program phases classified by the

ITV and BTV schemes. Figure 3.8 shows the percentage change in IPC, dcacheMiss,

l2cacheMiss, branchMispred (number of branch mis-predictions), DispatchStall and

Instruction types between different program phases classified by the ITV and BTV

approaches. The BTV scheme captures bottlenecks in program execution and thus

shows a higher percentage of variation in the bottleneck counters between different

program phases. In contrast, ITV phases are micro-architecture independent and

only capture differences in instruction types and thus shows a higher percentage of

variation in instruction types between phases.

Figure 3.9 compares the improvement in performance obtained by the ITV and

BTV approaches using various switching schemes. We obtain a higher, by 6.5%,

improvement in performance using the BTV approach compared to the ITV one.

Figure 3.10 shows the impact of the core hopping overhead on performance. As

mentioned previously, the average overhead of core switching has been assumed to
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Figure 3.9. % of improvement in performance obtained from various switching
schemes for the BTV and ITV based approaches.
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Figure 3.10. The impact of varying switching overhead (in cycles) on performance.
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be 500 cycles. If the overhead for switching increases from 500 to 1K cycles, the

performance drops by only 1.5% for the BTV scheme. Increases beyond 1K cycles,

result in a steeper drop in performance. In summary, our results indicate that the

BTV-based phase detection scheme outperforms the ITV-based scheme, achieving a

higher throughput/Watt for non-monotonic core types.

As prior ITV approaches have been used for mapping application phase to mono-

tonic core types [46, 80, 81], we also compare BTV vs. ITV based approaches for

monotonic cores. We studied monotonic architecture consisting of Big/Little cores.

Big core is OOO core that resembles the AC core type. Little (InO) core is imple-

mented with fetch/issue width of 2, IQ entries of 36, similar cache sizes and frequency

to that of AC core. Both the cores share a common L2 cache. We implemented both

ITV and BTV based phase detection approaches for the monotonic core design. As

before, the IPS2/Watt is estimated from the PMCs. Program phase is then mapped

to the core that provides the best throughput/Watt. Switching from OOO to InO

core is preferable during memory bound, high branch mis-predict or low ILP phases

for better energy efficiency. Micro-architecture independent counters such as those

used for tracking ITV phases can track whether the phase is memory intensive (count-

ing load/store access and using IPC information) or compute intensive (number of

integer/floating point instruction executing in pipeline and IPC information). Unlike

non-monotonic core types which have varied performance and power profiles across

different core types, monotonic core types provide high performance or low power

core types, which helps ITV to map compute intensive phase to high performance

core and memory intensive phases/low IPC phases to low power cores. As a result,

the advantages of BTV in monotonic cores is not as pronounced.

Figure 3.11 compares the throughput/Watt improvement obtained for our mono-

tonic core design. Using BTV based approach, we obtain 14% improvement in

throughput/Watt and 11% from the ITV approach using PMC based scheme. The
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Figure 3.11. % Improvement in throughput/Watt obtained from various switching
schemes for monotonic core types for our BTV and ITV based approaches.

ITV based approach does considerably well for monotonic core types, as the difference

in throughput/Watt between the two approaches (ITV and BTV) is only 3%. The

BTV based approach for non-monotonic core type provides a higher by 9% through-

put/Watt when compared to monotonic core types.

3.5 Conclusion

To achieve the high throughput/Watt potential of non-monotonic cores, a runtime

mechanism is needed for thread-to-core assignment that would choose the most suit-

able target core. In this work we propose an efficient thread-to-core mapping scheme

that detects program phase changes based on various resource bottlenecks and uses

performance monitoring counters for assessing the most suitable target core. Our

results indicate that the proposed thread-to-core mapping scheme can increase the

throughput/Watt of application by 22% for non-monotonic architectures and by 14%

for monotonic architectures. The methodology described here is equally applicable

to other variants of monotonic and non-monotonic core types.
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CHAPTER 4

IMPROVING POWER EFFICIENCY USING
MORPHABLE ARCHITECTURE WITH

NON-MONOTONIC CORE TYPES

Previously explored AMP cores have shown that applications can exhibit diverse

program phase behavior where each program phase behavior can exhibit one (or

more) of common processor performance bottlenecks arising from cache misses, lim-

ited execution resources or execution width, large degree of instruction dependencies,

or inherently low instruction level parallelism [69]. Consequently, there is need for

diverse set of non-monotonic AMP architectures where each core is power and per-

formance optimized to different instruction level behavior designed to address these

bottlenecks. In Chapter 2, we explored reconfigurable monotonic AMP architectures

that provides higher energy efficiency than the baseline OOO core and Big/Little

architectures. In this chapter, we explore reconfigurable non-monotonic architectures

that can provide improved power efficiency compared to monotonic designs presented

in Chapter 2.

Dynamic morphing of core resources in monotonic cores was previously proposed

[47, 61, 91, 92]. Such designs eliminate the overhead associated with transferring the

state of a workload from one core to another upon a switch. This allows morphing to

take place at fine grain instruction granularities (∼1000 instructions) which reportedly

results in significant energy savings at a small loss in performance [61] . We observe

that resource bottlenecks or excesses can be quite diverse in applications. Thus,

morphing between just two core modes may not fully exploit power and performance

improvement opportunities.
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Figure 4.1. IPC/Watt for SPEC benchmarks [11] running on OOO cores differing
in fetch/execution/retire widths and core resources.

To test the potential benefits of having three or more distinct morphable core

configurations, we analyzed the IPC/Watt of three OOO cores differing in execution

widths and core resources (which are scaled appropriately for the chosen width), for

workloads from the SPEC 2006 suite [11] . We call these cores the 4-way, 2-way

and 1-way cores where 4,2, and 1 indicate the execution width. Figure 4.1 shows

that there are workloads that achieve the highest IPC/Watt when run on the 4-way

core while there are other workloads for which a 2-way or even a 1-way core can

provide the highest performance/Watt. The latter workloads do not need the same

amount of resources as those that prefer the 4-way core. Hence, for such workloads

energy savings can be achieved by running them on the reduced fetch width core with

reduced resource sizes, resulting in better performance/Watt.

Figure 4.2 shows the performance/Watt for the sjeng benchmark from SPEC 2006

suite [11] at fine instruction granularity, for the three OOO cores mentioned above.

The temporal variation in demand for resources exhibited by the workload, motivates

studying a morphable architecture that can morph between three (or more) core

modes as it may achieve considerable performance/power improvements.
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Figure 4.2. IPC/Watt over a period of execution for the benchmark sjeng [11]
sampled every few thousand of committed instructions.

We performed a core design space exploration to select a set of core architectures

that are fundamentally different from big/little architecture. The number of modes

is determined based on the law of diminishing marginal utility. The design space

exploration has resulted in four distinct core modes appropriate for fine grain switch-

ing. The architectures of the core modes differ in fetch width, issue width, buffer

sizes (e.g., ROB, LSQ and IQ), clock frequency and operating voltage. We then

use the selected core architectures to define the distinct core modes of the proposed

morphable architecture. Our self-morphable core will dynamically morph into any

one of these execution modes differing in fetch width, issue width, buffer sizes (e.g.,

IQ, LSQ, ROB) and clock frequency. This way, the self-morphable core can mimic a

high diversity asymmetric multicore processor. A morphable core architecture that

can switch between the different core modes needs an effective online mechanism to

determine the most efficient core mode for the current phase of application. Further-

more, since many performance and power improvement opportunities exist at a fine

instruction granularity, both the (i) morphing decision mechanism, and the (ii) hard-

ware morphing process need to be fast. To this end, we propose an online decision
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mechanism to identify the most power efficient core mode for the current execution

based on hardware performance monitoring counters (PMCs).

4.1 Related Work

4.1.1 Non-montonic Multicore Processors (AMP)

Kumar et al. proposed non-monotonic core types containing mix of cores with

different power and performance characteristics, so that every application phase is

scheduled to a core that achieves the best power-efficiency [52]. They showed signifi-

cance performance benefits for multi-programmed workloads. Their solution does not

take advantage of pipeline depth or varying frequency in the core design search space

and are focused on maximizing throughput only. They only considering oracle steer-

ing towards different core type. Navada et al. considered accelerating single threaded

workloads by performing complete design space exploration and identifying a set of

heterogeneous cores that would maximize performance [69]. Their core design space

exploration was done at coarse grain instruction granularity to determine the best

set of N-core type for AMP design. Their conclusion was that with N core types, the

optimal number of heterogeneous cores for single threaded performance would con-

tain an average core (i.e., best homogeneous core) and (N-1) accelerator core types

that target specific bottlenecks encountered during a program execution. Azizi et al.

explored energy-performance trade-offs in processor design space [6]. They examined

six different processor architectures consisting of single-issue, dual-issue and quad-

issue designs with both in-order and out-of-order execution and proposed different

architectures for different design objectives. In this work we try to unearth non-

monotonic core types when switching could be performed at fine grain granularity

through a design space exploration experiment.

56



4.1.2 Adaptive Asymmetric Cores

There are several publications advocating morphing of a core at runtime to adapt

to changing workload needs and improve performance and/or power efficiency. The

closest work to our proposal that advocated morphable asymmetric cores for switching

at fine grain instruction granularity consisted of monotonic core types [47, 61, 71, 91,

92]. The above mentioned morphable architectures focus only on morphing between

two extreme architectures while we explore, in this work, morphing into a larger

number of core configurations (or modes). Such a morphable architecture is more

likely to match the demands of various workloads by addressing a more diverse set of

bottlenecks.

A less aggressive form of core morphing has been discussed in [2, 7, 8, 26, 74].

These configurable architectures dynamically adjust the cache and storage buffers

such as ROB, LSQ and IQ to the application demands. The proposed configurable

architectures do not consider varying the execution width or changing the frequency

and voltage. Dubach [27] et al. proposed machine learning based predictive model

that predicts the best hardware configuration for any phase and then dynamically

change the micro-architecture. Kumar et al. explain how expensive structures be-

tween adjacent cores can be shared while keeping floorplan in mind [53]. Homayoun

et al. proposed ways by which micro-architectural structures can be shared across 3D

stacked cores [41]. The above techniques are limited to a number of micro-architecture

structures they adapt to and are suitable only for coarse grain switching. Other ap-

proaches have proposed sharing caches and pipelines between cores. Cache sharing

approaches have focused on multiplexing L1 caches among multiple cores to elimi-

nate state transfer overhead on thread switch from one core to another [25, 65, 77].

Multiplexing pipelines within cores have also been proposed to achieve heterogeneity

[67].
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4.1.3 Dynamic Voltage and Frequency Scaling

A heterogeneity technique that has been widely used for obtaining energy effi-

ciency is Dynamic Voltage and Frequency Scaling (DVFS). DVFS reduces voltage

and frequency of the cores to obtain high energy efficiency at the expense of perfor-

mance loss. DVFS is usually targeted in memory intensive phases when maximum

energy efficiency could be obtained with minimum performance loss. Traditionally,

the benefits of DVFS techniques are limited by the voltage and frequency scaling

overhead. Whenever there is a change in processor frequency, the PLL needs to re-

lock to the newer frequency which would result in halting of processor. This overhead

in Intel processors in taken to be 5 µs [72] . There is an additional overhead incurred

when scaling up voltage/frequency as the processor operates at lower frequency till

the voltage has scaled up to the newer value, resulting in performance loss [72]. This

overhead is estimated to be around 25 µs for our range of voltage/frequency con-

sidered based on the work in [72]. Thus, to minimize the high overheads, DVFS is

applied at coarse grain instruction granularity on the order of millions of processor

cycles and is therefore, limited to operating system scheduling intervals. Previous

studies have also explored the balance between performance/energy for DVFS with

several frequency/voltage levels [43, 104]. To mitigate the high overhead of coarse

grain DVFS schemes, researchers have proposed using on-chip regulator that can al-

low rapid transitions between the voltage levels [29, 49, 56]. With the help of on-chip

regulator, voltage transition time is brought down to less than 20ns. Our proposed

non-monotonic core types with varied frequency/voltage can improve energy effi-

ciency not only in memory intensive phases but also in branch intensive phases, low

ILP phases and phases that have serial computation. Recent research has shown

that heterogeneity within a core can provide a higher energy efficiency than DVFS

schemes [36, 60]. Energy saving benefits of DVFS are also diminishing with newer

technologies as observed in [57].
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4.2 Proposed Architecture

Asymmetric multicores may contain multiple core types with each core type spe-

cialized for a specific workload characteristics. As the multicore is constrained by

the Thermal Dissipation Power (TDP) limit of the package, the cores cannot feature

the largest possible size for all micro-architectural structures and yet operate at the

highest possible frequency.

Consequently, there are always trade-offs in core design. For example, to support

a higher degree of instruction level parallelism (ILP), the pipeline width should be

increased. Such an increase would, in turn, limit the allowed core frequency due to

the TDP constraint. Thus, a core specialized for high ILP may not meet the needs of

a workload with extensive sequential instruction dependency whose performance can

only be improved by increasing the frequency. Therefore, designing the right mix of

cores for an AMP that caters to the demands of diverse workloads requires careful

balancing.

A diverse mix of cores that can address different resource demands can also benefit

the execution of a single benchmark. For example, Figure 4.3 shows the IPC variations

between 0.6 to 1.6 observed in the course of executing the SPEC benchmark sjeng.

The figure shows that as the IPC varies, the usage of several core resources varies

too. We further observe that variations in ROB, LSQ and IQ occupancy happen at

a small instruction granularity.

Therefore, our proposed self-morphable core should be capable of dynamically

reconfiguring to adapt to the current demands of the executing workload and should

allow such reconfigurations to be done at a fine-grain instruction granularity. To this

end, we do not vary cache sizes upon core reconfiguration to avoid costly migrations

of cache content. The selected fixed cache sizes were determined experimentally to

be: 64KB for the I-cache and the D-cache and 2MB for the L2 cache.
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Figure 4.3. IPC and resource occupancy over a period of benchmark sjeng ’s execu-
tion as a function of instructions committed.

Table 4.1. Core Design Parameters

Core Parameter Range of Values
Fetch, Issue Width 1,2,3,4,5

ROB size 8,16,32,64,96,128,192,256,384
Issue Queue size 12,24,36,48,64

LSQ Size 8,16,32,64,96,128,192
Clock Period 0.4ns-1ns (steps of 0.1ns)
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4.2.1 Design Space Exploration

We wish to identify the distinct core modes that should be supported by our

morphable core. Table 4.1 outlines the range of core parameters for our core selection.

Clock frequency is varied within the common range of super-scalars’ speed. The

search would determine the core modes that can provide the best performance/Watt

for fine grain instruction slices. If we allow the relevant core parameters to assume all

their possible values shown in Table 4.1, the resulting design space exploration would

require experimenting with 11,025 combinations of parameters. However, core sizing

for improved performance/power in [46] has shown that increasing the size of one

resource without a commensurate increase in other resources yields limited benefits.

Thus, certain parameter combinations such as (ROB=8, IQ=64, LSQ=192, Width=4)

are not acceptable design candidates as a small 64-entry ROB cannot support large IQ

and LSQ and would not result in any performance or power benefits. By performing

design space pruning, we have reduced the number of core design combinations that

need to be analyzed to 300.

The remaining 300 design combinations were analyzed exhaustively with the ob-

jective of achieving the highest possible IPS2/Watt by allowing switching between

core modes every 2000 instructions. The decision to switch modes is based on the

metric IPS2/Watt that assigns higher significance to performance than to power. The

reason for choosing 2K as our fine grain instruction interval will be explained in the

next section. After each 2K retired instructions interval we compute the potential

increase in the IPS2/Watt for every core configuration out of the 300 candidates.

A minor increase in the IPS2/Watt does not justify a core mode switch but, more

importantly, does not justify adding a new core mode. Therefore, we had to choose

a threshold for the minimum improvement that will justify an additional core mode.

Each mode switch involves an overhead (explained later) and thus having large num-

ber of core modes may result in high morphing overhead while too few modes may
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Figure 4.4. % Average improvement in IPS2/Watt and number of modes as a
function of IPS2/Watt threshold.

not benefit all benchmarks and thus achieve a lower IPS2/Watt. Our experiments as

shown in Figure 4.4, revealed that selecting a IPS2/Watt threshold of less than 20%

yields more core types but the additional IPS2/Watt improvement achieved by most

of these core types is limited. Increasing the threshold to 20% reduces the number of

core types to four with a higher IPS2/Watt improvement for most benchmarks. We

have also observed that the IPS2/Watt improvement and the details of the core types

are not very sensitive to small variations (from 20%) in the threshold. A further

increase in the threshold to 25% (and higher) resulted in fewer core combinations

but the majority of benchmarks did not benefit from morphing. We have, therefore,

decided to use a threshold of 20% and have as a result, four core modes.

4.2.1.1 Power Unconstrained Core Selection

The architectural parameters of the selected four core modes that will best ac-

commodate the diverse application phase behavior (of the SPEC benchmarks) are

shown in Table 4.2. This set includes an Average Core (AC) which targets most of
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Figure 4.5. IPS2/Watt as a function of ROB size for the AC core mode (power
unconstrained).

Table 4.2. Core parameters for a power unconstrained design

Core F (GHz) Buffer size Width Average
Mode /V (IQ,LSQ,ROB) (fetch,issue) Power (W)
AC 1.6/0.8 36,128,128 4,4 2.2
NC 2/1 24,64,64 2,2 1.7
LW 1.4/0.8 48,128,256 4,4 2.4
SM 1.2/0.7 12,16,16 1,1 0.82

the application phases and a Larger Window (LW) core that has a bigger window

size and targets application phases which have a window bottleneck. In addition, the

set includes a Narrow Core (NC) which targets application phases with low ILP and

accelerates sequential execution using a higher frequency. The fourth mode is a Small

core (SM) with a lower frequency that caters to low performance phases that exist at

fine grain granularity.

To illustrate our core mode selection process, we show the impact of changes in

the ROB size of the AC mode in Figure 4.5 for a subset of benchmarks that spent

significant amount of time in the AC mode. It can be observed that ROB=128 (the

chosen size for the AC mode), offers the best IPS2/Watt. Figure 4.6 illustrates our

process for determining the frequency. We observe that at a frequency of 1.6GHz the

IPS2/Watt is the highest.
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Figure 4.6. IPS2/Watt as a function of frequency for the AC core mode (power
unconstrained).

Table 4.3. Core parameters for a power constrained design (2W)

Core Freq Buffer size Width Average
Mode (GHz) (IQ,LSQ,ROB) (fetch,issue) Power (W)

AC 2W 1.6 36,128,96 4,4 1.6
NC 2W 2 24,64,64 2,2 1.7
LW 2W 1.2 48,192,128 3,3 1.9
SM 2W 1.2 12,16,16 1,1 0.82

4.2.1.2 Power Constrained Core Selection

In the previous section we searched for the best core modes without restricting the

overall peak power. Peak power dissipation is important for processor design since

the thermal budget of processor, cooling cost, power supply cost and packaging cost

depend on the processor’s peak power dissipation [50]. We now repeat the search

(for the preferred core modes) but with a limit on the power budget. We considered

processor peak power dissipation limits similar to those in prior works [69, 99], i.e., 2W

and 1.5W. For a peak power constraint of 2W, we obtained four somewhat different

core modes shown in Table 4.3. Further reducing the power budget to 1.5W, reduces

the number of preferred core modes to three with the high-frequency narrow core

excluded.
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Table 4.4. Core parameters for a power constrained design (1.5W)

Core Freq Buffer size Width Average
Mode (GHz) (IQ,LSQ,ROB) (fetch,issue) Power (W)

AC 1.5W 1.4 36,64,64 3,3 1.32
LW 1.5W 1 24,128,128 3,3 1.4
SM 1.5W 1.2 12,16,16 1,1 0.82

4.2.2 Dynamic Morphing

In the proposed scheme all core modes are derived from a single OOO processor

core with banked resources, where each bank can be turned on or off and the frequency

can be raised or lowered to configure the core to the modes described in Table 4.2. The

buffers that are dynamically resized are the ROB, LSQ and IQ. The fetch width and

issue width are also dynamically resized. Decoding units are subsequently powered

on/off when the fetch and issue width is resized.

Our baseline execution mode is an average OOO core (AC) that will be dynami-

cally morphed into three other modes, namely, smaller core (SM), narrow core (NC)

or larger window (LW) core during runtime. Although each of the four modes has

a distinct combination of buffer sizes, fetch and issue width and frequency, they all

have the same cache size. This allows us to resize resources while leaving the contents

of the cache intact, which in turn allows fine grain switching with low overhead to

take advantage of every opportunity for power savings or performance enhancement.

Switching from one mode to another is determined by estimating the power and

performance in all other modes based on performance counters’ values in the currently

executing mode. We reconfigure into another core mode only when the reconfiguration

is predicted to result in a sufficiently higher IPS2/Watt. An in-depth description of

our runtime switching mechanism is provided in the next section.

4.2.3 Adaptively Sizing Buffers for the Morphable Core

In the proposed morphable core, the ROB, IQ and LSQ are implemented as banked

structures where each bank can be independently powered on/off. The banks have

65



L1 I-Cache

Fetch BP Decode

Reg

File

ROB LSQ L1 D-

cache

Frontend

Backend

L2

cache

Baseline OOO mode

IQ

INT FUs FP FUs

Figure 4.7. High-level view of the morphable core. The shaded units are reconfigured
during run time.

their own set of input/output drivers, pre-chargers and sense amps. The dynamically

re-sizable buffer can be formed by stacking more than one of these banks together

[2, 18, 74] . The bank size for ROB, LSQ and IQ needs to be determined carefully.

A too small a bank may result in larger resizing overhead in terms of layout area

and design cost. It has also been shown that a too big bank size causes a significant

increase in energy consumption whereas bank sizes of 8, 16 or 32 have only small

differences in energy consumption [101]. Thus, taking technology considerations into

account, the bank size for the ROB and the LSQ is set to 16 and for the IQ it is set

to 8 [74, 101] .

4.3 Runtime Morphing Management

The proposed dynamic morphing/reconfiguration relies on online estimators to

select the best core mode for the current needs of the executing application. The

previously proposed morphing in [61] has determined the core to morph into by

computing the performance (online) without taking power into account. Also, prior

configurable architectures did not provide an effective online management scheme for

run time morphing decisions [26, 74]. We designed an online power and performance

estimation scheme that is fast and sufficiently accurate to support the morphing

decision process. The key challenge here is the fact that while the program is executing

on the current core mode, we need to estimate the IPS2/Watt for all four core modes.
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To estimate power and performance on-line for computing the IPS2/Watt metric

we need to select an appropriate set of hardware performance counters. We start

with a large number of counters that have good correlation with power and identify

a smaller set of counters that can be used to estimate power and performance online

in each of the core modes at a sufficient accuracy. Linear regression is then used

to derive expressions for estimating the performance and power in the other core

modes using hardware performance monitoring counters (PMCs) in the current core

mode. Prior works [23, 80, 93] that derived expressions for estimating power and/or

performance have considered only a big/little architecture and without changes in

voltage/frequency. In this work we show how accurately we could predict power and

performance in each of the cores modes which are architecturally different and are

running at different voltages and frequencies.

4.3.1 Power and Performance Estimations based on PMCs

We use PMCs to estimate the power and performance of each of the different core

modes and based on these values and the known frequencies of all the core modes,

we compute the metric IPS2/Watt. The PMCs chosen for our study are listed below.

1. IPC : The longer the processor takes to execute an application, the more power

it dissipates.

2. Cache activity : Cache misses at any level in the hierarchy directly impact

the performance and in turn, the power consumption. Therefore, the number

of hits and misses at both Level 1 (L1h, L1m) and Level 2 (L2m, L2h) caches

are important when estimating the power and performance.

3. Branch activity : Branch mispredictions cause considerable loss in perfor-

mance and power. Therefore, we track the number of Branch mispredictions

(Bmp) .
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4. Instructions committed : Each instruction type (in the ISA) utilizes a sep-

arate set of resources. Thus, hardware counters which count the number of

Integer (INT ), Floating-point (FP ), Load (L), Store (St), Branch (Br) in-

structions and the total number of Fetched instructions (Fi) are tracked.

5. Buffer-full stalls : The performance of a processor suffers when the pipeline

stalls due to lack of entries in the ROB, LSQ, IQ or RAT (register alias table).

4.3.1.1 Shortlisting Performance Counters

Our goal is to find the smallest set of counters that would allow us to estimate

power and performance on each of the core modes with a reasonable accuracy. Moni-

toring fewer counters reduces the hardware overhead for estimation. PMC values are

available only for the currently executing mode but we need to estimate power and

performance for the other three core modes as well. For example, if the application

is currently running on the average core mode, we need to estimate the power of

this configuration and the power and performance for the other three configurations,

namely the NC, LW and SM modes using the PMCs of the current AC mode.

To select the PMCs that exhibit the highest correlation to the required estimates

(of power and performance) and then obtain the corresponding expressions (using

linear regression) we select a training set of eight SPEC2006 benchmarks [11] which

includes sjeng, h264ref, soplex, omnetpp, bzip2, namd, gobmk, hmmer where each

of these benchmarks has application phases that prefer one of the four different core

modes. The values of the counters listed previously were tracked at fine grain instruc-

tion granularity, i.e., after every 2K instructions committed during the execution of

the benchmark. To select a suitable subset of counters, we use an iterative greedy

algorithm based on the least squared error. The algorithm seeks to minimize the sum

of squares of the differences between the estimated and actual power values. The

correlation coefficient R2 provides a statistical measure of how close the data are to
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Figure 4.8. R2 coefficient as a function of the number of chosen PMCs. PMC AC
=> Power NC denotes using the performance counters of the average core mode to
estimate the power on the narrow core mode.

the fitted regression line. Starting with a set of counters, we iterate through all re-

maining counters to determine which among them is the best to add to the existing

set. The candidate counter that yields the highest correlation coefficient is selected.

Figure 4.8 shows the value of the coefficient R2 when the PMCs of the average core

mode (AC) are used to estimate the power and IPC on the other three core modes.

The figure shows that four to five counters are sufficient as the R2 value saturates

afterwards. Note also that estimating the power in the same core yields a higher R2

value than in other core modes indicating higher estimation accuracy. We need a

minimum of four counters to estimate the IPC on the SM and NC core modes but R2

saturates at five counters for the IPC of the LW core. Similar analysis was carried out

for the estimations on the other three core modes. After selecting the most suitable

counters, linear regression is used to derive the expressions for the performance and

power estimation. Table 4.5 shows the expressions obtained for estimating the power

and IPC for each of other three modes and the power of the AC mode using the values

of the PMCs monitored while executing in the AC mode. For the sake of brevity, we

show only the expression for estimating the power and IPC on each of other three
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Table 4.5. Power (P) and performance (IPC) estimation for the other three modes using
the performance counters values in the AC mode.

Estimated Parameter Expression

AC ⇒ Power AC 1.40·10−2 · L1h+ 13.81 · IPC
+2.95·10−2 · St− 1.18·10−2 ·Bmp
-0.29

AC ⇒ Power NC −1.30 ·Bmp− 0.85 · L1m
+0.41 ·Br + 2.30·10−2 · St +0.46

AC ⇒ Power LW −0.34 · L2m− 1.04 · L
-0.56 ·Bmp−1.40·10−2 ·L1h+0.1

AC ⇒ Power SM −3.10 · L1m+ 6.67·10−3 · IPC
-4.20× 10−2 ·Bmp+ 0.27

AC ⇒ IPC SM 0.21 · L1h+ 0.91 · IPC
+0.11 · L− 0.12 ·Bmp +4.46

AC ⇒ IPC LW 0.12 · IPC − 1.81 · L1h
+0.31 · St− 1.23 · L1m +0.29

AC ⇒ IPC NC 1.12·10−1 ·Br + 1.81 · IPC
+3.9·10−2 · St− 1.18·10−2 · L2h
+0.38

core modes when using the PMCs of the average core mode. Similar expressions have

been obtained for other combinations.

4.3.1.2 Accuracy of Power/Performance Estimation

The accuracy of the power and performance estimations is shown in Figure 4.9.

The estimation error study was conduced for a set of 17 workloads that consists of mix

of SPEC2000 and SPEC2006 benchmarks [11, 89]. We observe that the average error

in estimating power is 8% which is significantly lower than the 16% average error in

estimating IPC. Although the average estimation error is reasonably low, the actual

estimation error may be considerably higher at some time instances and this may

cause wrong morphing decisions. Therefore, we analyzed the temporal distribution

of errors and the results are shown in Figure 4.10. This figure depicts the error in

IPC estimation for the other three core modes using the PMCs of the NC core mode.

We observe that the deviation of the errors from the mean is low for the majority

of sample points with up to 80% of the sample points lie between ± 10% from the
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in estimating power and IPC in all other core modes using the PMCs of the average
core (AC) mode.

mean. This demonstrates that the average error is a sufficiently good indicator for

the instantaneous estimation error. In our experiments we have observed very few

decision errors.

4.3.2 Morphing Controller

To enable morphing between different core modes, we need an on-chip controller

that governs all the required changes in the core configuration upon morphing. We

envision this controller to be a variant of similar controllers for core morphing [61]. It

obtains periodically PMC values from the current core configuration and estimates the

IPS2/Watt for the current and alternative core modes. The estimation is based on the

expressions described previously. We assume that the controller includes a multiply

and accumulate (MAC) unit that is pipelined and capable of completing 1 MAC

operation per cycle, and is power gated when not in use. The IPS2/Watt estimates

determine the best mode to morph into. If the estimated IPS2/Watt for one of the

modes is sufficiently higher than for the current mode, a mode transition is initiated.

Mode switches incur some overhead especially if a change in voltage/frequency is
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Figure 4.10. Estimation error distribution when using the PMCs of the NC mode
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required as the PLL must be relocked to the new operating conditions. The overheads

imposed by the controller are discussed in the next section. The controller sets the

voltage and frequency by placing values in the Voltage Control Register (VCR) and

the Frequency Control Register (FCR). The Voltage Regulator Module (VRM) reads

the VCR and sets up the new voltage. Similarly, the FCR controls the frequency

division within the PLL. Finally, the controller also features a Configuration Control

Register (CCR) that directs which units should be powered on or off.

4.4 Experimental Setup

4.4.1 Simulator and Benchmarks

To evaluate our proposed morphable core architecture we have used Gem5 as a

cycle accurate simulator with integrated McPAT modeling framework to compute the

power of the core and L1 caches [10, 59]. We ran experiments using 17 benchmarks

from the SPEC2006 and SPEC2000 benchmarks suites [11, 89]. The benchmarks were

cross compiled using gcc for Alpha ISA with -O2 optimization. In the simulation
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experiments we executed 4 billion instructions of each benchmark after skipping the

first two billion.

4.4.2 Determining the Window Size

Power and performance estimates are calculated after a fixed number of commit-

ted instructions referred to as window. To prevent switching too frequently (e.g.,

after every window) we wait until the particular phase of the currently executing

application has stabilized. To this end, we wait for a fixed number of windows to

elapse before making a decision to switch modes. We term this number of windows

the history depth. A decision to switch modes is then made based on the most fre-

quently recommended core mode during the windows in this period. This way, short

periods of transient behavior of the executing application will not result in a core

mode switch.

We denote by n the total number of retired instructions during this period where

n = history depth × window length. For example, if for the past n committed instruc-

tions, moving from the average core to the narrow core mode was the most frequent

recommendation, we conclude that the application has entered a phase where the

narrow core may provide a higher IPS2/Watt and we switch from the average to the

narrow core mode. We have conducted a sensitivity study to quantify the impact of

the window length and history depth on the achieved benefits. The window size and

history depth combination that yields the highest IPS2/Watt for the entire program

execution would be the best choice. The window length was varied from 250 to 1000

instructions in steps of 250. Within a particular window, the history depth was varied

from 1 to 10. For example, a window length of 500 and history depth of 4 means

that we make a reconfiguration decision at the end of every 2K instruction (500 × 4).

Along with varying window length and history depth, we iteratively run experiments

to determine the minimum improvement IPS2/Watt threshold that determines the
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Figure 4.11. Percentage increase in IPS2/Watt over AC core-mode for a range of
window lengths and history depth

mode switch. It was determined to be 5%. Figure 4.11 shows the achieved increase in

the average IPS2/Watt when switching to the preferred core mode from the current

AC mode for the SPEC benchmarks. Based on this figure, a window length of 500

and history depth of four provide the largest improvement in IPS2/Watt. Thus, in

all our remaining experiments, a reconfiguration decision is done at the end of every

2K instructions.

4.4.3 Morphing overhead

In the proposed scheme, the voltage and frequency may change at a fine instruction

granularity. The potential overhead of frequent voltage and frequency scaling must

be taken into account. Traditionally, DVFS has been applied at coarse instruction

granularity, of the order of millions of processor cycles, due to high overhead that is

involved in scaling voltage and frequency using an off-chip regulator [72]. Recently,

Kim et al. has proposed the use of an on-chip regulator which reduces the time needed

for scaling voltage to tens of nanoseconds or hundreds of processor cycles [49]. Using

an on chip regulator, a low overhead (hundreds of cycles) DVFS can be performed
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at a fine grain instruction interval. A hardware-based fine grain DVFS mechanism

that uses an on chip regulator was implemented by Eyerman et al. where DVFS

was performed upon individual off-chip memory accesses [29]. We assume that such

an on chip regulator has been included in the processor design. The authors of [49]

have estimated the DVFS latency to be 200 cycles. In our experiments we have used

this 200 cycles DVFS latency that constitutes a major component of the overall core

morphing overhead. As the latter is design dependent, the result section includes

analysis of the impact of higher overheads on the core performance.

Overheads associated with power-gating/power-up of banks of ROB, LSQ, IQ and

partial powering on/off of fetch and decode units are also taken into account. When

power gating individual units/banks, no dynamic energy is consumed and the static

energy consumed by these idle units is low. Power-gating/power-on of all the blocks

simultaneously may lead to a sudden power surge and therefore, we assume staggered

power gating where only a single bank is gated in a given clock cycle. Powering off

a single bank is expected to take tens of clock cycles [27]. The bank selected to be

turned off is the one with the smallest number of used entries. If the selected bank is

not empty we must wait until all its entries are vacated before switching it off.

Calculating IPS2/Watt using the PMC-based performance and power estimates

involves a computational overhead. To compute IPS2/Watt, 7 expressions (shown in

Table 4.5) must be evaluated online, which require four MAC operations per expres-

sion. The resulting computation overhead is about 30 clock cycles. Once the mode

switch decision is made, the controller needs to set the voltage and frequency regis-

ters with new values and initiate a mode switch which incurs an additional overhead.

Taking into account all the individual overheads we, conservatively, estimate the total

overhead to be 500 cycles. As the frequency of core reconfiguration is not high (as will

be shown in the next section), even a higher morphing overhead will have a negligible
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Figure 4.12. % Increase in IPS2/Watt vs various switching threshold

impact. We analyze in the next section the impact of a higher overhead on the core

performance.

4.5 Evaluation

4.5.1 Power Efficiency

As mentioned previously, applications exhibit diverse phase behavior and the core

mode on which an application runs most efficiently changes during the course of

execution. The decision to switch modes is based on the metric IPS2/Watt that

assigns higher significance to performance than to power.

The IPS2/Watt metric is calculated using the expressions for estimating the

power and performance (see Table 4.5). To avoid frequent switching, we have done

sensitivity analysis to determine the right switching threshold as shown in Figure

4.12. At lower threshold (2%), reconfiguration happen too frequently for insignificant

gains in IPS2/Watt, thus increasing the reconfiguration overhead resulting in reduced

IPS2/Watt improvements. Beyond 6%, there is reduced benefit due to reduction in

number of reconfigurations. The IPS2/Watt threshold is set therefore to 5%.
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Figure 4.13. Tenancy of core modes for the unconstrained power core.

Figure 4.13 shows the percentage occupancy in each of the four core modes in

the unconstrained power case. The figure demonstrates the diversity in the use of

four core modes by the different benchmarks and also shows that each of the four

modes is highly utilized (more than 40% of the time) in some of the benchmarks.

The morphable architecture presented in [61] consists of two core modes (OOO and

InO) and only benefits applications that have memory intensive phases or phases

with high branch mis-prediction rates, as these phases are mapped to the power

efficient InO core. Compute intensive benchmarks do not benefit as much from the

two-mode morphable architecture as they have very few phases with low performance

that could be mapped to an InO core. Our proposed morphable architecture caters

to more diverse application phases due to the four distinct core modes that relieve

diverse resource bottlenecks.

The percentage improvement in IPS2/Watt for the SPEC benchmarks executing

on our proposed morphable architecture when compared to executing completely on

the AC core mode is shown in Figure 4.14. On an average (using geometric mean),

we achieve an IPS2/Watt improvement of 37% compared to the baseline architec-

ture of the AC core. Benchmarks which are memory intensive or have high branch

mis-prediction rates, such as mcf, soplex, and astar, achieve larger IPS2/Watt im-
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Figure 4.14. IPS2/Watt improvement of the proposed morphing scheme compared
to execution on AC mode for SPEC benchmarks.

provements since they can be mapped to an energy efficient core mode. Compute

intensive benchmarks, such as hmmer, bzip2, and h264, also take advantage of the

proposed morphable architecture. We observe on average of 34% improvement in

IPS2/Watt for the compute intensive benchmarks compared to the 38% improvement

for memory intensive ones.

The morphable core should allow a wide variety of applications to run effectively

on different core modes. We ran benchmarks from the MiBench[37] and Mediabench

[58] suites to test our morphable core capabilities on applications apart from SPEC

benchmarks. As seen from Figure 4.15, we obtain on average 15% IPS2/Watt im-

provement demonstrating the benefits of the morphable cores for a wide range of

applications. Note however, that the MiBench and Mediabench applications achieve

a lower benefit as they do not have as diverse program phases as the SPEC bench-

marks.

4.5.2 Comparison to Other Switching Schemes

We compare our PMC-based fine-grain core mode switching scheme, referred to

as FineGrain PMC, to three other switching schemes, namely: (i) Sampling based
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Figure 4.15. IPS2/Watt improvement of the proposed morphing scheme compared
to execution on AC mode for Mediabench/Mibench benchmarks.

switching within a morphable architecture, referred to as CoarseGrain sampling ; (ii)

Oracular scheme referred to as Oracular Switch; and (iii) PMC-based switching at

coarse grain granularity, referred to as CoarseGrain PMC.

To this end, we have implemented the morphable architecture presented in this

thesis with morphing decisions made based on sampling. The parameters used for

this implementation include a switching interval of 1M instructions and a sampling

interval of 10K instructions [69]. We have also implemented the oracular scheme

where an oracle determines, every 2K instruction, which is the best core mode for the

next interval of 2K instructions. The third implemented scheme is a PMC-based one

making switching decisions at a coarse grain granularity of 1M instructions.

Figure 4.16 compares the IPS2/Watt and the energy savings obtained for the four

switching schemes. The CoarseGrain sampling yields 14% less energy savings than

the FineGrain PMC. The reason for lower energy savings for the sampling-based

scheme is twofold. First, sampling is wasteful when the program is already running

on the best available core. Second, sampling is performed at a coarse grain level thus

missing opportunities available at finer granularity. Thus, our PMC-based run-time

decision mechanism helps in making the right morphing decisions yielding higher en-
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Figure 4.16. Comparing the IPS2/Watt and energy saving of four morphing schemes.

ergy savings. We also compare the IPS2/Watt of the coarse grain and fine grain

PMC-based schemes. FineGrain PMC yields 11% higher IPS2/Watt compared to

CoarseGrain PMC. This scheme also does much better than CoarseGrain sampling

due to a smaller performance overhead in PMC schemes compared to sampling based

ones. The oracular scheme achieves a higher IPS2/Watt, by 10%, than our Fine-

Grain PMC scheme. As the oracular scheme cannot be implemented in practice,

it provides an upper-bound for the maximum IPS2/Watt that could potentially be

achieved by our approach.

Figure 4.17 compares the IPC improvements over the baseline average core for the

four switching schemes. The IPC value obtained for the power budget of 2W and 1.5W

is normalized to that of the corresponding average core (AC) mode obtained with 2W

and 1.5W power constraint, respectively. For the unconstrained case, we observe a

9% improvement in IPC over the baseline (AC) core mode using the FineGrain PMC

scheme compared to the 3% achieved by the sampling-based scheme. The oracular

scheme shows an upper bound of 12% IPC improvement. For a 2W power budget,

a 7% improvement in IPC is achieved by the FineGrain PMC scheme compared to

2.5% for the sampling-based scheme. These results show that our morphing scheme

improves performance although its main goal is to improve the performance/Watt.
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Figure 4.17. IPC comparison for power constrained and unconstrained cores for
various switching schemes.

Figure 4.18 shows the reduced performance improvement experienced by the differ-

ent morphing schemes for increasing values of the core morphing overhead. Although

our initial estimated cost (overhead) of morphing is 500 cycles but the actual over-

head is calculated during the simulation accounting for draining of banked resources.

As mentioned previously, the morphing overhead is design dependent and thus it is

important to estimate the impact of a higher overhead. Figure 4.18 shows that as

the overhead increases from 500 to 1K cycles, the performance drops by 3.5% for

our FineGrain PMC scheme. Higher increases in the morphing overhead result in

larger performance losses indicating that switching at fine granularity must have a

fast switching mechanism.

Figure 4.19 shows the number of switches in our 4-mode morphable architecture at

various instruction granularities. As expected, a greater number of reconfigurations

takes place at lower instruction granularities, thus yielding higher IPS2/Watt when

compared to coarse grain switching at instruction granularity of 10K and above. For

our selected 2K instruction interval the number of switches on average is 12500 in

100M instructions, i.e., after every 2K instructions we have a probability of 25% to

perform a mode switch.
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Figure 4.18. The impact of morphing overhead on IPC.
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Figure 4.20 shows the impact of power constraints on the IPS2/Watt improvements

and the energy savings achieved by our morphing scheme. For the unconstrained

power case, we obtain a 36% IPS2/Watt improvement and 33% energy savings (com-

pared to the average core mode), while for the 2W power budget case, the IPS2/Watt

improvement is only 27% and the energy savings drop down to 24%. We also compare

the throughput/Watt achieved by non-monotonic architecture using FineGrain PMC

with the coarse grain switching with FineGrain PMC architecture. We obtain 12%

more throughput/Watt using FineGrain PMC architecture compared to NM archi-

tecture designed with coarse grain switching support.

4.5.3 Comparison of the 4-mode Morphable Core to the Big/Little ar-

chitecture

To compare our 4-mode morphable core to the previously proposed 2-mode archi-

tectures (OOO and InO) [47, 61] we analyzed an OOO/InO morphable architecture

proposed in Chapter 1. Whenever a decision is made to switch from OOO to InO

or vice-versa, the fetch width is reduced, half the decoders are powered off, some of

the functional units are shut down (e.g., INT ALUs reduced from 4 to 2, FP ALUs
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Figure 4.21. Comparison of the IPS2/Watt improvement (over execution on the AC
mode) between our FineGrain PMC morphable core and the 2-mode morphable core
(AC,InO).

reduced from 2 to 1) and the ROB and Register Alias Table (RAT) are powered off.

Turning off structures (while moving to InO mode) by clock gating was employed in

[47]. When a mode switch happens, the pipeline is drained and several units are pow-

ered on/off depending on the core mode we are morphing into, and then instruction

execution starts in the new mode.

The selected architectural parameters for the OOO core are those of the AC

mode in Table 4.2. The InO core has a fetch/issue width of 2, IQ with 36 entries,

and cache sizes and frequency identical to those of the AC core. The instruction

granularity at which core switching decisions are made was set to 2K instructions. The

decision to morph is based on the estimated IPS2/Watt using a PMC-based estimation

mechanism. The IPS2/Watt improvement achieved by the 2-mode morphable core

(AC,InO) (over executing on the AC mode) is compared to that achieved by our

4-mode core in Figure 4.21. On average, the 2-mode core achieves a 21% increase

in IPS2/Watt versus the 37% achieved by our 4-mode core. Figure 4.22 compares

the average increase in IPS2/Watt, IPS/Watt and energy savings achieved by our 4-

mode FineGrain PMC with those obtained when using the 2-mode (OOO(AC),InO)
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Figure 4.22. Comparing the IPS2/Watt, IPS/Watt and energy savings between the
FineGrain PMC and the 2-mode (AC,InO) morphable core.

scheme. On average, the 4-mode scheme achieves a 12% higher IPS/Watt and a 14%

higher energy saving compared to 2-mode (OOO(AC),InO) scheme.

The goal of the next experiment is to determine whether including an InO mode

is necessary or it can be replaced by our SM mode that is still an OOO core but

has a width of 1 and minimal sizes of ROB and other buffers. Figure 4.23 compares

two schemes: the first one has two core modes, OOO (AC) and OOO (SM) while the

second has three core modes, namely, OOO (AC), OOO (SM) and InO. We observe

that the 3-mode morphing scheme that includes an InO mode provides an additional

6% IPS2/Watt improvement over the simpler 2-mode morphing. We conclude that

the inclusion of the InO core does not sufficiently improve IPS2/Watt to justify the

increased design complexity of supporting the two very different core architecture

styles, i.e., OOO and InO. We have, therefore, excluded the InO mode to keep the

micro-architecture simple.

4.5.4 Benchmark Analysis

In this section we focus on the characteristics of different benchmarks and try

to understand why some benchmarks prefer one mode of the morphable architecture
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Figure 4.23. Comparing the improvement in IPS2/Watt between a 2-mode mor-
phable core (AC, SM) and a 3-mode morphable core (AC, SM, InO).

over the others. The characteristics that we study include branch mis-predictions,

occupancy of buffers (LSQ, IQ, ROB), L2 cache misses and IPC. Benchmarks with

high branch mis-prediction rates have low ILPs and are not expected to benefit from

a higher frequency. Such benchmarks would therefore, prefer the small core mode

(SM) that runs at reduced frequency and has small resource sizes. To illustrate this

we show in Figure 4.24 the temporal behavior of the benchmark astar, that has high

branch mis-prediction rates, and compare its performance while running on the SM

and AC core modes. During this period of program execution astar exhibits a high

branch mis-prediction rate and as a result, the IPC difference between the AC and

SM modes is small but executing in the SM mode improves the IPS2/Watt.

Memory-bound applications, e.g., libquantum, mcf and xalancbmk, experience a

large number of L2 misses and generate many parallel loads. Thus, these benchmarks

prefer running in the narrow (NC) mode which has a higher frequency and reduced

buffer sizes. The higher frequency helps when many independent loads are invoked. A

similar observation was reported in [69]. Figure 4.25 shows a portion of the behavior,

as a function of time, of the benchmark mcf and compares its IPC when running

on the NC and AC modes. The section of program shown in Figure 4.25 has a high
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Figure 4.24. Analysis of the benchmark astar at a fine instruction granularity,
comparing its execution in the SM and AC modes.

L2 miss rate. The L2 misses were monitored while running on the AC mode. When

the L2 miss rate is high, the NC core mode provides a higher IPC than the AC

mode since its higher frequency helps in issuing independent loads. The performance

difference between the two core modes is small for low L2 miss rates. The IPS2/Watt

is improved by up to 7% by running in the NC rather than the AC mode.

Compute-bound applications, like bzip2, hmmer and h264ref, have high IPC and

their performance is limited by issue width and buffer resources and not by L2 cache

misses or branch miss predictions. Therefore, these benchmarks tend to prefer the

Large Window (LW) core mode. Figure 4.26 compares the execution of the bzip2

benchmark in the LW and AC modes. The number of times when one of the buffers,

ROB or LSQ or IQ, became full while running in the AC mode is also shown in the

figure. We observe that providing larger resources alleviates the problem of buffers

getting full and improves the IPC. Improved IPC and reduced frequency while running

in the LW mode, compared to the AC mode, provides an IPS2/Watt improvement of

up to 6%.
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comparing its execution in the LW and AC modes.
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4.6 Conclusion

In this chapter we proposed a morphable core design that can assume one of four

different core modes. Apart from the baseline average core mode, the additional

core modes are suited to address most common performance bottlenecks found in the

considered benchmarks. Based on a small number of performance counters, a novel

runtime mechanism estimates the performance and power across all core modes and

uses this information to determine the core mode that offers the best power efficiency.

The cache was not resized across core modes to support fast switching from one mode

to another enabling fine-grain morphing. We have shown that the proposed four-mode

morphing offers higher power efficiency than the two-mode morphing considered ear-

lier. It was also shown that fine-grain switching between core modes outperforms

switching at a large instruction granularity which misses power saving opportuni-

ties. Our results indicate that the four-mode morphable core achieves an IPS2/Watt

gain of 37% compared to a standard OOO core and 16% higher energy efficiency

compared to big/little morphable architectures. Importantly, unlike previous self-

morphing schemes that only improves throughput/power but not performance, we

improve performance by 9%.
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CHAPTER 5

ON-LINE RECONFIGURATION VS DYNAMIC
VOLTAGE AND FREQUENCY SCALING (DVFS)

In the previous chapters, we have explored reconfigurable and morphable architec-

tures that adapt to changing resource demands of workloads and enable fast switching

by reconfiguring into various core modes with varying core resource sizes, voltage and

frequency. Many current processors employ DVFS aggressively to either improve en-

ergy efficiency or increase performance [20]. For example, memory-bound phases of

an application might not have sufficient ILP to keep the core busy, providing opportu-

nities for scaling down the voltage and frequency. Such voltage/frequency reduction

provides a cubic reduction in power with limited performance loss [44]. Intel’s turbo-

boost technology increases the frequency of active cores when other cores are idle,

providing enhanced performance [20]. In the past, DVFS involved high overhead (tens

of microseconds) as it relied on an off-chip voltage regulator to switch from one volt-

age to another, and consequently, DVFS was performed at coarse grain OS switching

granularity of millions of instructions [49]. Kim et al. have shown that if on- chip

voltage regulator is used, the voltage switching time for DVFS is reduced significantly

to the order of nanoseconds enabling fine grain voltage scaling [49]. Recently, Intel

introduced a fully integrated voltage regulator (FIVR) in their Haswell processor,

reducing the voltage transition time, thus enabling voltage/frequency scaling at a

finer granularity [17]. The integrated on-chip regulator is fast, offers minimal para-

sitic losses with a reduction in the PCB footprint but an increase in chip area. Fine

grain DVFS and reconfigurable architectures provides two alternatives for improving

processor energy efficiency. In the previous sections, we have evaluated the power
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Table 5.1. Voltage and Frequency levels considered.

Frequency (GHz) Voltage (V)

1.2 0.8

1.4 0.8

1.6 0.9

1.8 1.0

2 1.1

efficiency benefits of reconfigurable architecture at fine granularity. We have shown

that combining DVFS with resource resizing can provide improved energy efficiency.

Lukefahr et al. compared the energy efficiency of the Big/Little reconfigurable ar-

chitecture to that of fine grain DVFS concluding that the Big/little reconfigurable

architecture can provide a higher energy efficiency than fine grain DVFS only [60]. In

this work, we extend this comparison to a more complex (than Big/little) AMP and

we study the power efficiency achieved by various architectures as listed below:

1. We study the power efficiency of DVFS and reconfigurable architectures for

single-threaded application at fine grain switching frequency and answer the

question whether fine-grain reconfigurable architectures provide higher power

efficiency than fine-grain DVFS only.

2. We study the effect of using on-chip and off-chip regulators for DVFS and

compare to a reconfigurable architecture that uses an on-chip regulator.

3. We evaluate the DVFS scheme based on PMC-based online scheme and compare

the efficiency of this scheme with oracular approach.

5.1 Evaluation Framework

We plan to compare the performance/Watt of architectures consisting of architec-

tures that employ only DVFS on the cores and architectures that support dynamic

core reconfigurations.
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Fine grain DVFS (Fine DVFS): The base core for fine grain DVFS simulation

experiments to be used, is the AC core shown in Table 4.2 of Chapter 4. Note

that in these experiments, only the voltage and frequency are varied; the resources

stay constant. The frequency and voltage combinations that will be used for these

experiments are shown in Table 4.2. Achievable frequencies for given voltage levels are

chosen from [1]. The overhead for fine grain DVFS (at 2K instructions granularity)

is assumed to be 100ns, based on [29, 49].

Coarse grain DVFS (Coarse DVFS): In this scheme, the core configuration is the

same as above but the switching granularity is 1M instructions due to the higher

overhead of an off-chip regulator that is assumed to be 50µs based on [29, 49].

NMRA: This is similar to what was described in Chapter 4, which consisted of

four core modes as shown in Table 4.2. The instruction granularities are 2K for

NMRA Fine and 1M for NMRA Coarse.

MRA: This is similar to what was described in Chapter 2 and includes two core

modes. Switching is done at a 2K instructions granularity. It consists of an OOO

core that is similar to the AC core in Table 4.2 and an InO core.

Big Little: This architecture resembles ARM’s Big Little [35]. It differs from the

MRA architecture where the OOO and InO cores are separate cores with each having

its own L1 caches and a shared L2 cache. The OOO core is the baseline Average Core

(AC). Switching between the cores is performed at coarse grain granularity of 10M

instructions. Migrating task from Big core to a small core incurs an overhead of 20K

cycles [35].

5.2 Runtime Mode Selection

An effective runtime management is necessary for the application to run on the

most suitable core mode or choose the most appropriate voltage/frequency at runtime

(for architectures that employ only DVFS). All the architectures considered in this
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work use the same runtime scheme, explained below, to make on-line reconfiguration

decisions. We employ the PMC-based runtime scheme described in prior chapters, to

effectively map the application to the appropriate mode [80, 90] .

5.2.1 Decision Metric

The decision metric chosen for selecting a new mode is IPS2/Watt [36, 5] as it

assigns a higher weight to performance than power. The mode that is estimated to

provide the highest IPS2/Watt is the one that will be used in the next time interval.

To calculate the value of IPS2/Watt for the different modes, we wish to use as few

PMCs as possible to accurately estimate (at runtime) the power and performance.

5.2.2 Performance and Power Estimation using PMCs

The PMCs selected for computing the power and performance should obviously,

have good correlation with power and performance and limited mutual correlation.

Once the most suitable PMCs are identified, a linear regression is used to derive ex-

pressions for power and performance. To make mode switch decisions, we need to use

the values of the PMCs in the currently executing mode to estimate IPS2/Watt in

each of the other modes. As shown previously, using PMCs, power and performance

can be accurately estimated not only in the current mode but also in the other modes

To derive the linear regression expression for power and performance, we use a set

of training workloads which are chosen to have diverse application behavior. Power

and performance equations are then derived individually for each of the architec-

tures explored in this work. Figure 5.1 shows the accuracy in estimating the average

power and IPC across different architectures as explained previously. For example,

the NMRA → Power/IPC in Figure 5.1 show that, power and IPC across different

core modes in the NMRA architecture can be estimated with an accuracy of 8%

and 14%, respectively. Fine grain schemes such as (Fine DVFS, NMRA, MRA) pro-

vide higher estimation accuracy than coarse grain scheme (Coarse DVFS, Big Little).
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Figure 5.1. Average % error in estimating Power and IPC across different modes in
each of the different architectures.

Thus, PMC-based estimation scheme can estimate power and performance on-line

with reasonably high accuracy across different architectures.

5.3 Results

5.3.1 Power Efficiency Evaluation

For each of the schemes, the results are normalized with respect to the baseline

Average core (AC) shown in Table 4.2. The PMC-based runtime scheme is used for

each of the different architecture.

5.3.1.1 Fine/Coarse DVFS vs Fine/Coarse NMRA schemes

We compare the throughput/Watt for 4 different architecture schemes as shown

in Figure 5.2. The figure shows that the Fine DVFS scheme provides 8% more

throughput/Watt compared to the Coarse DVFS scheme due to its ability to tran-

sition between different V/F levels at a lower overhead. The NMRA Fine scheme

consists of several core modes running at different V/F to better match the diverse

application behavior. The NMRA Fine scheme provides 16% more throughput/Watt

compared to the Fine DVFS scheme by adapting to the resource demands of the ap-

plication phases online through core resource resizing and DVFS. The NRMA Fine
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Figure 5.2. Throughput/Watt comparison between DVFS and NMRA architectures.

architecture captures diverse short phase behavior at finer granularity such as low

performance phases, branch intensive phases, memory intensive phases and low ILP

phases. The Fine DVFS provides its highest benefit when targeting memory in-

tensive phases (stalling on L2 misses). In contrast, the NRMA Fine architecture

adapts to various workload behaviors, resulting in a higher throughput/Watt than the

Fine DVFS scheme. The NRMA Coarse scheme achieves 11% less throughput/Watt

compared to the NRMA Fine architecture due to coarse grain switching, thus missing

out on fine grain opportunities for improving power efficiency. We conclude, therefore,

that NRMA Fine architectures provide a higher throughput/Watt than Fine/Coarse

DVFS architectures.

Figure 5.3 compares the throughput/Watt between Fine DVFS and NMRA Fine

for different flavors of benchmarks. Computation intensive benchmarks such as bzip2,

hmmer, namd, h264ref do not benefit significantly from DVFS. Memory intensive

benchmark such as mcf, libquantum, soplex, swim have a high L2 miss and indepen-

dent loads and can take advantage of DVFS and achieve higher throughput/Watt.

Branch intensive benchmark such as astar, sjeng also use DVFS during periods of

high branch miss-predictions to improve throughput/Watt. NMRA Fine uses DVFS
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Figure 5.3. Throughput/Watt comparison between Fine DVFS and NMRA Fine
architectures.

along with resource resizing to provide higher throughput/Watt for different flavors

of benchmarks. Branch intensive benchmarks that have low ILP, make use of the SM

core mode which has a lower frequency and reduced resource sizes, to provide higher

throughput/Watt than the Fine DVFS scheme. Computation intensive benchmarks

are limited by resource sizes and issue width, they make use of the LW core mode to

improve the throughput/Watt. Memory bound benchmarks make use of the NC core

mode that has reduced resources and higher frequency which helps in accelerating

independent loads.

5.3.1.2 Fine DVFS vs NMRA vs Fine/Coarse BigLittle architectures

Figure 5.4 compares four different architecture schemes. Along with NMRA Fine

and Fine DVFS, we also compare architectures that switch only between OOO and

InO core. As mentioned previously, the MRA scheme reconfigures an OOO into an

InO core at fine granularity, whereas the Big Little architecture switches between

separate OOO and InO core types at coarse granularity. The NMRA Fine scheme

provides 11% higher throughput/Watt compared to the MRA scheme. The MRA

scheme only switches between two very different core modes (OOO and InO) and

thus does not cater to the diverse demands of applications as the NMRA scheme
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does. The Big Little architecture achieves 6% less throughput/Watt compared to

the MRA scheme. The Big Little architecture switches at coarse granularity and

has separate core and memory systems, which cause more performance and power

overhead on thread switch. The MRA scheme provides higher throughput/Watt

than the Big Little because of its ability to switch at fine granularity with reduced

switching overhead. Thus, from Figure 5.4, we conclude that the NMRA Fine scheme

achieves higher throughput/Watt compared to the Fine DVFS and MRA schemes.

Figure 5.4 also compares the energy savings of several schemes. The largest energy

savings of 34% are achieved using NMRA Fine, followed by 24% using MRA, 19%

using Big Little and 17% using Fine DVFS. The Fine DVFS scheme achieve energy

savings at the cost of performance loss. An average performance loss of 5.4% was

observed when compared to running in the baseline architecture. The NMRA scheme

with diverse core modes that resolve processor bottleneck, achieves a 7% average

increase in performance compared to the baseline.

5.3.2 Power Efficiency Comparison between Oracular and PMC schemes

Figure 5.5 compares between the PMC and an Oracular scheme to determine core

mode switch, across three different architectures that switch at fine granularity. In

the oracular scheme, an oracle determines every 2K instruction, the best core mode

for the next 2K instructions. The Oracular scheme provides an upper bound for

the throughput/Watt that could be achieved but clearly, can not implemented in

practice. The throughput/Watt achieved by the PMC-based scheme closely follows

the oracular scheme in each of the different architectures.

5.3.3 Impact of switching overhead on different architectures

Figure 5.6 compares different architectures with varying mode switching over-

head. Mode switching overhead is design dependent and hence it is important to

estimate the impact on throughput/Watt of higher mode switching overheads. For

97



0 

5 

10 

15 

20 

25 

30 

35 

40 

NMRA_Fine Fine_DVFS MRA Big_Little 

% Energy Savings % Average IPS/Watt improvement 

Figure 5.4. Throughput/Watt and energy savings comparison between DVFS,
NMRA and BigLittle architectures.
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Figure 5.5. Throughput/Watt comparison across different architectures with PMC
and oracular run time schemes.
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Figure 5.6. Impact of mode switching overhead on different architecture schemes.

the NMRA Fine scheme, the average mode switching overhead was estimated to be

500 cycles, but the actual switching overhead is calculated in run time taking into

account, time for draining the resources from the banked structures. The Fine DVFS

architecture incurs an overhead when switching between different V/F levels using an

on-chip regulator and is estimated to be less than 200 cycles [29, 49]. For the MRA

scheme, the overhead involves pipeline draining and clock gating the unused struc-

tures upon each mode switch and the average overhead is estimated to be less than

20nsec [61] or about 100 cycles [91]. From Figure 5.5, we observe that as the over-

head increases from 500 cycles to 1K cycles, the throughput/Watt drops by 6%, 5%

and 5.3% for the NMRA Fine, Fine DVFS and MRA schemes, respectively. A larger

increase in the overhead beyond 1K cycles will result in a further loss in through-

put/Watt indicating that architectures that switch at fine granularity need a fast

switching mechanism.

5.4 Conclusion

Fine grain DVFS and reconfigurable architectures provide two alternatives for im-

proving processor power efficiency. In this chapter, we compare the throughput/Watt

and energy savings of various reconfigurable and DVFS architectures that support fine
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grain and coarse grain switching. To evaluate the benefits of fine grain switching, two

reconfigurable architecture were studied: non-monotonic reconfigurable architecture

with four diverse core modes and reconfiguration between big and little cores. The

use of an on-chip regulator that supports fine grain DVFS and the use of an off-chip

regulator that can support only coarse grain DVFS was also studied. To evaluate

power efficiency of various architecture, a PMC-based fast decision mechanism to

support switching between various modes was implemented. Our results indicate

that, when switching at fine granularity, the NMRA architecture provides 17% im-

provement in energy efficiency compared to fine grain DVFS alone and 11% more

than MRA architecture that reconfigures between OOO and InO core. When com-

pared to static Big/Little (Big Little) architecture, NMRA architecture achieves 14%

improvement in energy efficiency. Thus we conclude that at fine grain, non-monotonic

core architecture with DVFS support is superior than either pure DVFS or Big/Little

architecture.
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CHAPTER 6

ON-LINE MECHANISM FOR RELIABILITY AND
POWER-EFFICIENCY MANAGEMENT

In the previous chapters, we have explored dynamic AMP architecture for im-

proved power efficiency. In this chapter, we follow the second approach and consider

dynamic core reconfiguration from the perspectives of both throughput/Watt effi-

ciency and vulnerability to soft-errors. A soft error can be caused by neutron or

alpha particle strike which changes the state of a single bit as shown in Figure 6.1.

The error produced by an alpha particle strike is transient and the bit is not perma-

nently damaged.

Power efficiency and vulnerability to soft-error often lead to a trade-off in core re-

configuration. For example, a workload that exhibits frequent cache misses achieves

a higher power efficiency under lower voltage and frequency conditions that lead to

lower power without decrease in performance as the performance bottleneck is the

result of cache misses and not low frequency. Even though this may increase power

p n+ n+ 
- + 

- + - + 
- + 

N 
1 

0	
  

Error 

Figure 6.1. Soft error resulting in neutron or alpha particle strike resulting in a bit
flip.
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efficiency, it also leads to greater vulnerability to soft-error due to lower voltage.

Recent literature has shown that reduced feature sizes and aggressive power manage-

ment lead to increased soft error rate (SER) [13, 24]. Several studies report adverse

impact of dynamic voltage and frequency scaling (DVFS) on SER [30, 88, 98, 106].

In this chapter, we investigate dynamic core reconfiguration with non-monotonic core

types for optimizing two objectives simultaneously: improving throughput/Watt ef-

ficiency and reducing vulnerability to soft errors. Given that a thread is running on

a certain core type, if by switching to a different core type the power efficiency can

be improved without increasing the soft-error vulnerability, we should always do so.

Similarly, if switching to another core configuration mode can reduce the soft-error

vulnerability without decreasing the power efficiency, we should always do so. This

approach ultimately leads to choices where we cannot improve one of these objectives

without sacrificing the other one. We use a Cobb-Douglas production function [38]

for arbitration among competing optimization objectives.

Measuring power efficiency and soft-error vulnerability requires quantitative met-

rics. For power efficiency we use the metric IPS/Watt, where IPS represents the

number of instructions executed per second. Soft error vulnerability is measured in

terms of Architecture Vulnerability Factor (AVF) introduced in [63]. AVF represents

the fraction of fault that result in user visible error which is dependent on the pro-

cessor micro-architecture as well as the application running on the processor. The

AVF of a processor depends on the utilization of processor structures during run-

time. Prior research has shown that AVF varies at instruction granularities within

application [12]. AVF sensitivity to microarchitectural resource sizes was studied in

[64]. These studies demonstrate that AVF varies from workload to workload and for

a given workload, it varies from one core mode to another. Thus, in a dynamic core

reconfiguration, there is a need to measure AVF online and take proactive actions,
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which is a one of the contributions of this chapter. We summarize the work in this

chapter below:

1. We develop a runtime mechanism for dynamically switching among non-monotonic

core types, at fine grain granularity for simultaneously balancing throughput/Watt

and SER.

2. We develop a runtime estimation mechanism for predicting throughput/Watt

and AVF of all the core modes. The runtime mechanism estimates through-

put/Watt and AVF in each of the core modes that are micro-architecturally

different and run at different voltage/frequency using the performance monitor-

ing counters (PMCs) of the host core mode.

3. We present a comparative study of the proposed runtime scheme against several

other alternatives to demonstrate its efficiency.

6.1 Related Work

The probability that a soft error will lead to a user visible error is computed

based on the processor AVF. The SER of a system is computed as the product of

raw SER and individual component AVF [63]. Prior work have also shown how

AVF may be estimated during runtime using a set of PMCs [63, 100]. Biswas et al.

proposed quantized AVF estimation to track AVF variations at fine grain granularity

using a few performance counters and also showed that the AVF of various processor

components such as ROB, LSQ and IQ vary significantly during the course of program

execution [12]. Soundararajan et al. studied the impact of frequency and voltage on

SER when applying dynamic voltage and frequency (DVFS) [88]. Their work showed

the impact of frequency and voltages changes on AVF and SER, when various DVFS

algorithms are applied. They concluded that using only performance/Watt goals to

choose various operating points for DVFS will not lead to improved system reliability.
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Previous works have formulated online estimation models to compute AVF of a single

core. In this work, we develop a linear regression based online model that can estimate

AVF on all the core modes which are architecturally different and run at different

voltage/frequency using the PMCs of the host core mode.

6.2 Proposed Architecture and Online Management

The different core modes used in this chapter for our experiments are similar to

those shown in Table 4.2. To aid in fine grain switching between different modes, we

only have one processor core whose resources are banked; they can be turned on or

off and the frequency can be raised or lowered to configure the core to each of modes

shown in Table 4.2.

We developed a run time management scheme that uses PMCs to select the core

to reconfigure into. To balance between power and performance in choosing the right

mode, we compute the metric IPS2/Watt of all the modes . To compute IPS2/Watt

online, we use PMCs to estimate online, the power and performance for all the modes.

Likewise, we use PMCs to predict AVF for all the modes, which would help us to

compute the SER. The key novelty in this work, is that we need to predict IPS2/Watt

and AVF on all other modes, using the PMCs of the host mode unlilke previous works

that compute AVF or power/IPC only on the same core. Thus, our online scheme

will choose the best mode that balances throughput/Watt and SER.

6.2.1 AVF Estimation using PMCs

As the AVFs of ROB, LSQ and IQ vary significantly during the course of pro-

gram execution, prior works have suggested using a small set of PMCs to track the

AVF of processor components during run time [12]. We use PMCs to track AVF of

the three components (ROB, LSQ and IQ) in each of modes using the PMCs of the

host mode as in [12]. The counters used to track AVF include store buffer utilization,

104



Table 6.1. Accuracy of AVF estimation across all the modes

Core configurational R2 coefficient
Mode

PMC AC ⇒ AVF 0.92
PMC NC ⇒ AVF 0.84
PMC LW ⇒ AVF 0.85
PMC SM ⇒ AVF 0.81

ROB utilization, branch miss-prediction, IQ utilization, ROB empty cycles and stores

flushed before DTLB response. Counter values are collected every 2K instructions.

Linear regression expressions were derived using these counters for estimating the

overall AVF in each of the modes. The same set of training workloads are chosen

as mentioned earlier for power/performance estimation to derive trained expressions

to compute AVF online. Due to good correlation of the above mentioned counters

with AVF, an average correlation coefficient R2 of 0.86, considering all four modes,

is obtained as shown in Table 6.2. Table 6.2 shows the average R2 obtained when

estimating AVF across different modes using the PMCs of the host mode. The ac-

curacy in estimating the overall AVF across different modes is shown in Figure 6.2,

for a mix of SPEC2000 and SPEC2006 benchmark [11]. We observe that the average

error in estimating AVF is 11%, across all modes. Though the average error is 11%,

the instantaneous error computed during run time may be much higher for some time

intervals. The temporal distribution of the error is shown in Figure 6.3. For the sake

of brevity, we show only the error distribution for modes which had the worst case

average error, shown in Figure 6.2. As observed from Figure 6.3, for 75% of sample

points the error is within ± 15% from the mean. This indicates that the overall error

at the time of decision making is not high.
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Figure 6.2. Average error in estimating overall AVF in all the modes using PMC
of host core. For example, PMC AC ⇒ AVF denotes average error in estimating the
AVF for all the other modes using the PMCs of AC mode.
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6.2.2 Metrics to achieve trade-off between throughput/Watt and relia-

bility

Our on-line scheme consists of estimating the throughput/Watt and SER online

using PMCs as discussed previously. IPS2/Watt is computed online for all the modes

using the PMCs of the current mode. We then compute the effective SER of each

mode as shown below [63]:

Effective SER = AV F × Raw SER

Raw SER is the total expected bit flip rate due to soft errors. As not all soft errors

affect the output, effective SER is derived from Raw SER. The Raw SER depends

on the voltage and frequency. Scaling of voltage has an exponential relationship with

soft errors, where a lower voltage leads to an increased error rate [31, 107]. Previous

studies that have analyzed the effect of frequency on SER and have shown that SER

has a linear relationship with frequency [31, 42]. The RAW SER as a function of

both voltage and frequency is shown below [31]:

Raw SER(f,v) = (f/fmax)× e−c0(v−vmax) * Raw SER0

fmax and vmax denote maximum voltage and frequency values for a core. c0 is

a constant as determined in [31]. Raw SER0 is the SER computed at max voltage

and frequency. Decision to switch between the modes is made by computing a reli-

ability power efficiency (RPE) metric online. The proposed RPE metric follows the

Cobb-Douglas function [38] to trade off between two simultaneous objectives, namely,

throughput/Watt and SER.

RPE =(IPS2/Watt)a × (Effective SER)−b

The exponents a and b are weights that control RPE, where a and b are numbers

> 0 such that a+b=1. Normalization of IPS2/Watt and Effective SER is necessary,

as RPE is a unitless metric. The values of the weights could be set based on the

designers requirements as discussed in the result section.
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For runtime management, the RPE metric is computed online for every mode in

each of 2K instructions intervals. We call this scheme, PMC RPE. A decision to

switch configuration is based on maximizing RPE across modes. To prevent too fre-

quent switching from one mode to another, the potential gain in RPE from switching

core mode must exceed a certain threshold. The target threshold was found to be 4%

based on a sensitivity study.

6.3 Experimental Setup and Results

We evaluate our proposed scheme using the Gem5 cycle accurate simulator [10]

integrated with McPAT power model [59]. A modified Gem5 simulator was used to

collect AVF information and power values online. SPEC2006 and SPEC2000 bench-

marks are used for our experiments which were cross compiled for Alpha ISA with

-O2 optimization. We ran our experiments for 4 billion instructions while skipping

the first 2 billion.

6.3.1 Throughput/Watt and SER results

We evaluated the benefits of the proposed scheme using our 4-mode architecture

and studied its impact on throughput/Watt and SER. Our baseline core is the average

core, AC.

Benchmarks which are highly control bound (astar, sjeng) incur more stalls due

to branch mispredictions. During periods of high misprediction, these benchmarks

deliver the best throughput/Watt in the SM mode, as higher frequency or buffer re-

sources do nothing to address this bottleneck. Similarly, memory intensive bench-

marks (mcf, soplex, libquantum) contain low ILP phases due to significant data

L2/TLB misses. These phases achieve a better throughput/Watt in NC or SM.

As benchmarks like mcf have independent loads, NC with reduced resources sizes

and increased frequency helps to improve performance. On the other hand, compute
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Figure 6.4. % Average increase in IPS/Watt compared to the baseline OOO(AC)
using the PMC RPE scheme

bound benchmarks (bzip2, hmmer, h264ref) have high IPC resulting in window bot-

tleneck and thus prefer to have sections of application phases run on the LW as the

performance of these benchmarks is limited by buffer resources and issue width.

Figure 6.4 shows improvement in IPS/Watt across all benchmarks using our

PMC RPE scheme. We observe that on average, an IPS/Watt benefit of 24% is

achieved. The percentage decrease in Effective SER compared to running in the

baseline mode across all benchmarks is shown in Figure 6.5. Effective SER reduction

of 12% is achieved.

Figure 6.6 shows the time spent in each of the modes, showing that all modes are

well utilized across all benchmarks. Memory intensive workloads such as libquantum,

that have a high L2 miss rate and numerous parallel loads show high mode occupancy

in SM and NM. When run on the baseline AC, libquantum has enough memory level

parallelism to use the buffer resources but the amount of time instructions occupy

entries in the ROB increases due to L2 misses. This would lead to a higher SER

(resulting from increased AVF). If these sections of the program will be run on SM, it

will provide a reduced SER (lower AVF) and a higher throughput/Watt compared to

AC. Thus we observe that the percentage occupancy of SM mode is higher with RPE

based scheme than with a scheme which only improves throughput/Watt as shown
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Figure 6.5. % Average decrease in Effective SER compared to baseline OOO(AC)
while switching based on the PMC RPE scheme with RPE weight factors of a=0.6
and b=0.4.

in Figure 4.17. For libquantum we obtain 12% SER reduction and 26% improvement

in throughput/Watt compared to the baseline core (AC) as shown in Figures 6.5 and

6.4, respectively.

Architecturally correct execution (ACE) bits are subset of processor state bits

required for architecturally correct execution [63]. Some bits may not be critical to

program execution and are termed as unACE bits. unACE bits include discarded bits

due to mis-speculation. Only the ACE bits residence time in processor structures

is taken into account for AVF and resultant SER computation. Memory intensive

benchmarks like mcf show different behavior from libquantum. mcf experiences a

significant number of branches (to be mispredicted or not) that depend on the long

-latency load miss. If such a branch is mispredicted, all instructions in the ROB

fetched after the branch instruction are un-ACE. Mis-predicted branch instructions

are not part of ACE bits and thus do not affect AVF. Branch mispredictions that

are independent of long-latency data cache misses will resolve quickly such that their

interaction has a negligible effect on occupancy. Thus, running the benchmark on

NC can provide higher throughput/Watt when compared to the baseline but the
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Figure 6.6. % of time spent in different modes

reduction in SER is not significant since occupancy of ACE bits is still limited by

the miss-predicted branches. For mcf we obtain 5.3% reduction in SER and 34%

improvement in throughput/Watt compared to the baseline as shown in Figures 6.5

and 6.4. Compute bound applications such as hmmer have high ILP and would prefer

the LW mode. However, higher ILP in compute bound applications could cause the

processor to bring more instructions into the pipeline, resulting in an increase in

the number of ACE bits and thus increasing AVF. However, voltage and frequency

scaling can have contrasting effect on Effective SER as explained previously. Thus,

switching into a new mode can increase AVF but might not increase the RAW SER.

The opposite situation can happen as well. For hmmer we obtain 5% reduction in

SER and 16% improvement in throughput/Watt. Figure 6.7 shows the average (24%)

improvement in IPS/Watt, performance increase (6%) and Effective SER decrease

(12%) compared to the AC baseline.

We also experimented with different weight factors for the RPE function to com-

pare the improvement in throughput/Watt and average SER reduction for different

weight factors. Figure 6.8 compares three different weight factors for RPE function.

Setting the weight of IPS2/Watt and Effective SER to 0.7 and 0.3 respectively, results
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Figure 6.7. Increase in throughput/Watt, performance and decrease in Effec-
tive SER while switching based on the PMC RPE scheme compared to the baseline
OOO(AC).
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in an increase in IPS/Watt by 28% and decrease in Effective SER by 6% compared

to AC baseline. Setting the weights to a=0.6 and b=0.4, results in 4% reduction in

IPS/Watt and decrease in Effective SER by 6% over the above mentioned weights

(a=0.7, b=0.3). Further increase in weight of SER (a=0.4 and b=0.6), results in 3%

more SER reduction and 8% less IPS/Watt compared to weights a=0.6 and b=0.4.

Thus, based on the importance of particular metric for the designer, the weight factor

for that metric can be increased or reduced.

6.3.2 Comparison to Alternative Switching Schemes

We compare our PMC RPE scheme with three other schemes, namely, oracular

scheme (Oracular), PMC-based coarse-grain switching scheme (CoarseGrain RPE)

and PMC based fine-grain switching scheme (PMC IPS2/Watt). Oracular scheme

is implemented such that, every 2K instruction an oracle will determine what is

the best mode to switch into for the next 2K instructions. The oracular scheme

provides the upper-bound and can not be implemented in practice. As seen from

Figure 6.9, the oracular scheme achieves a 11% higher average IPS/Watt and 4%

higher average SER reduction compared to our fine grain (PMC RPE) scheme. The

CoarseGrain RPE scheme makes switching decisions using the RPE metric at coarse

grain granularity of 1M instructions. Due to coarse grain switching, this scheme

does not take advantage of power benefits at fine granularity. AVF also varies at

fine granularity which could affect the Effective SER which this schemes fails to cap-

ture. CoareGrain RPE achieves 8% lower IPS/Watt compared to PMC RPE scheme.

PMC IPS2/Watt scheme would try to switch into a mode that provides higher power

efficiency without loosing much on performance. This scheme does not take SER into

account while switching. Switching based on IPS2/Watt provides 7% more IPS/Watt

than the PMC RPE scheme as its only goal is to improve throughput/Watt. We also

obtain 6% reduction in Effective SER compared to the PMC RPE scheme.
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Figure 6.9. Comparison to various other switching schemes with RPE weight factors
of a=0.6 and b=0.4.

Figure 6.10 shows the number of switches that take place in our 4 mode archi-

tecture with RPE based scheme at various instruction granularities. For our selected

2K instruction interval, we obtain 9200 switches per 100M instructions, i.e, the prob-

ability of making a mode switch is 18.2% every 2K instructions.

6.4 Conclusion

In this chapter we have presented an online management scheme for a reconfig-

urable architecture that strives to achieve a balance between power efficiency and

reliability. The target reconfigurable architecture features four non-monotonic core

configurations with varied micro-architectural resources, voltage and frequency. SER

and throughput/Watt change rapidly during the course of program execution. The

proposed runtime management scheme estimates on-line the power, performance and

AVF based on a few performance counters to determine which is the best mode to

run on for improving both power efficiency and AVF. Our results indicate that having

diverse non-monotonic core types can increase the throughput/Watt of application

by 24% while also providing a 12% reduction in SER compared to static execution

on the baseline core.
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Figure 6.10. Number of switches per 100 million instructions for range of instruction
granularities for our 4 mode morphing scheme.
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CHAPTER 7

FUTURE DIRECTIONS

In this dissertation, we explored different kinds of core micro-architectures and

online management schemes for improving core power efficiency. Future work based

on this dissertation is presented next.

7.1 Co-Scheduling application between CPU and GPU

This dissertation focused on improving performance/Watt of applications using

non-monotonic core types. The trend towards heterogeneous processors is continuing

with tightly coupled accelerated processing unit (APU) designs in which the CPU and

the GPU are integrated on the die and share on-die resources such as the memory

hierarchy and interconnect. Challenging problem arises when we need to schedule

applications between CPU consisting of non-monotonic core types and GPU. Both

CPU and GPU may provide different performance and power profiles. The challenge

is to design a run time applications scheduler that maps applications between CPU

and GPU to achieve higher power efficiency.

7.2 Machine Learning based Online predictive model

We developed schemes to estimate performance and power on the host and other

cores in the presence of DVFS. Potential future research is to find out whether we

can further improve the accuracy of the estimation using machine learning based

techniques such as neural network or support vector techniques.
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