2 research outputs found

    Predictive prey pursuit in a whiskered robot

    Get PDF
    Highly active small mammals need to capture prey rapidly and with a high success rate if they are to survive. We consider the case of the Etruscan shrew, which hunts prey including crickets almost as large as itself, and relies on its whiskers (vibrissae) to complete a kill. We model this hunting behaviour using a whiskered robot. Shrews strike rapidly and accurately after gathering very limited sensory information; we attempt to match this performance by using model-based simultaneous discrimination and localisation of a ‘prey’ robot (i.e. by using strong priors). We report performance that is comparable, given the spatial and temporal scale differences, to shrew performance in most respects

    Biomimetic tactile target acquisition, tracking and capture

    Get PDF
    Good performance in unstructured/uncertain environments is an ongoing problem in robotics; in biology, it is an everyday observation. Here, we model a particular biological system - hunting in the Etruscan shrew - as a case study in biomimetic robot design. These shrews strike rapidly and accurately after gathering very limited sensory information from their whiskers; we attempt to mimic this performance by using model-based simultaneous discrimination and localisation of a 'prey' robot (i.e. by using strong priors to make sense of limited sensory data), building on our existing low-level models of attention and appetitive behaviour in small mammals. We report performance that is comparable, given the spatial and temporal scale differences, to shrew performance, and discuss what this study reveals about biomimetic robot design in general. © 2013 Elsevier B.V. All rights reserved
    corecore