92,754 research outputs found

    Predictive no-reference assessment of video quality

    Get PDF
    Among the various means to evaluate the quality of video streams, lightweight No-Reference (NR) methods have low computation and may be executed on thin clients. Thus, these methods would be perfect candidates in cases of real-time quality assessment, automated quality control and in adaptive mobile streaming. Yet, existing real-time, NR approaches are not typically designed to tackle network distorted streams, thus performing poorly when compared to Full-Reference (FR) algorithms. In this work, we present a generic NR method whereby machine learning (ML) may be used to construct a quality metric trained on simplistic NR metrics. Testing our method on nine, representative ML algorithms allows us to show the generality of our approach, whilst finding the best-performing algorithms. We use an extensive video dataset (960 video samples), generated under a variety of lossy network conditions, thus verifying that our NR metric remains accurate under realistic streaming scenarios. In this way, we achieve a quality index that is comparably as computationally efficient as typical NR metrics and as accurate as the FR algorithm Video Quality Metric (97% correlation)

    No-Reference Video Quality Assessment Model for Distortion Caused by Packet Loss in the Real-Time Mobile Video Services

    Get PDF
    Packet loss will make severe errors due to the corruption of related video data. For most video streams, because the predictive coding structures are employed, the transmission errors in one frame will not only cause decoding failure of itself at the receiver side, but also propagate to its subsequent frames along the motion prediction path, which will bring a significant degradation of end-to-end video quality. To quantify the effects of packet loss on video quality, a no-reference objective quality assessment model is presented in this paper. Considering the fact that the degradation of video quality significantly relies on the video content, the temporal complexity is estimated to reflect the varying characteristic of video content, using the macroblocks with different motion activities in each frame. Then, the quality of the frame affected by the reference frame loss, by error propagation, or by both of them is evaluated, respectively. Utilizing a two-level temporal pooling scheme, the video quality is finally obtained. Extensive experimental results show that the video quality estimated by the proposed method matches well with the subjective quality

    Xstream-x264: Real-time H.264 streaming with cross-layer integration

    Get PDF
    We present Xstream-x264: a real-time cross-layer video streaming technique implemented within a well known open-source H.264 video encoder tool x264. Xstream-x264 uses the transport protocol provided indication of the available data rate for corresponding adjustments in the video encoder.We discuss the design, implementation and the quality evaluation methodology utilised with our tool.We demonstrate via experimental results that the streaming video quality greatly improves with the presented cross-layer approach both in terms of lost frame count and the objective video quality metrics Peak Signal to Noise Ratio (PSNR)

    Constructing a no-reference H.264/AVC bitstream-based video quality metric using genetic programming-based symbolic regression

    Get PDF
    In order to ensure optimal quality of experience toward end users during video streaming, automatic video quality assessment becomes an important field-of-interest to video service providers. Objective video quality metrics try to estimate perceived quality with high accuracy and in an automated manner. In traditional approaches, these metrics model the complex properties of the human visual system. More recently, however, it has been shown that machine learning approaches can also yield competitive results. In this paper, we present a novel no-reference bitstream-based objective video quality metric that is constructed by genetic programming-based symbolic regression. A key benefit of this approach is that it calculates reliable white-box models that allow us to determine the importance of the parameters. Additionally, these models can provide human insight into the underlying principles of subjective video quality assessment. Numerical results show that perceived quality can be modeled with high accuracy using only parameters extracted from the received video bitstream
    • …
    corecore