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Abstract

Among the various means to evaluate the quality of video streams, light-weight
No-Reference (NR) methods have low computation and may be executed on
thin clients. Thus, these methods would be perfect candidates in cases of
real-time quality assessment, automated quality control and in adaptive mobile
streaming. Yet, existing real-time, NR approaches are not typically designed
to tackle network distorted streams, thus performing poorly when compared to
Full-Reference (FR) algorithms. In this work, we present a generic NR method
whereby machine learning (ML) may be used to construct a quality metric
trained on simplistic NR metrics. Testing our method on nine, representative
ML algorithms allows us to show the generality of our approach, whilst finding
the best-performing algorithms. We use an extensive video dataset (960 video
samples), generated under a variety of lossy network conditions, thus verifying
that our NR metric remains accurate under realistic streaming scenarios. In
this way, we achieve a quality index that is comparably as computationally effi-
cient as typical NR metrics and as accurate as the FR algorithm Video Quality
Metric (97% correlation).

Keywords: Quality of Experience, No-Reference Video Quality Assessment,
Supervised Machine Learning

1. Introduction

Low complexity No-Reference (NR) video quality methods have the potential
to provide real-time video quality assessment and automated quality control,
for instance in the context of video streaming on demand [1], peer to peer
services [2, 3] or real-time network management [4, 5]. This is because simple5

NR algorithms are computationally light and do not require comparing the video
stream under scrutiny with its original (unimpaired) benchmark, as would be
the case of Full-Reference (FR) methods [6].
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Due to their particular methodology, computational requirements and func-
tional limitations, neither FR methods nor subjective evaluations are viable10

to automate quality control processes, whereby both scalability and speed are
required. Subjective studies are performed offline but are instrumental in un-
derstanding quality perception, i.e. Quality of Experience (QoE) [7, 8]. On
the other hand, FR algorithms such as the Video Quality Metric (VQM) [9]
have proven to correlate well with the human vision system [10, 11] and this is15

the reason why many studies use them to benchmark other simpler algorithms,
rather than being used directly in video management applications [12, 13].

This is in fact the approach we use in our work, where we aim to introduce
an NR method that combines the efficiency (and applicability) of simple NR
metrics with the accuracy that is typically achieved only through heavyweight20

FR methods. In this way, our method enables a whole new range of appli-
cations, such as real-time assessment of video-on-demand services or network
provider’s quality management. This cannot be achieved through typical, low
complexity NR metrics, since these are not designed to tackle network-distorted
streams, thus performing poorly when compared to Full-Reference (FR) algo-25

rithms [14] [8]. On the other hand, FR methods are functionally inapplicable
in real-time streaming scenarios, whereby both the original and the distorted
streams are required. Subjective assessment is impractical too, due to the large
scope of testing conditions that ought to be presented to the subjects.

Nowadays, Video Quality Assessment (VQA) methods and metrics are drawn30

from knowledge in human QoE and perception [15]. At its essence, VQA is a
subjective matter, best judged by human subjects, as in subjective studies and
subjective analyses [16]. Typically, sample people (chosen from different repre-
sentative categories) rate video quality (or quality variations), under controlled
conditions, following well-established methods [17]. The outcomes are given in35

terms of Mean Opinion Score (MOS) or any other derived metric. Although
well-aligned to human perception, subjective studies are costly, time-consuming
and prone to human bias. They are fundamental to the various applications
of VQA, yet great effort has been directed towards mimicking subjective stud-
ies through completely automated processes and algorithms, as in objective40

QoE [18].
Traditionally, objective methods use as input the original reference signal

(e.g. image, video, audio) and a distorted version. In our context, this will be
a video sequence distorted by compression and network impairments. FR QoE
aims to estimate the perceptual degradation in the distorted sequence, compared45

to the reference sequence [19, 10]. Perhaps the simplest, most popular and less
accurate among FR algorithms is the Peak Signal to Noise Ratio (PSNR) [20],
derived directly from the Mean Square Error [21]. A better compromise between
complexity and accuracy is offered by the Structural Similarity (SSIM) [22, 23],
which combines video luminance, contrast and structure to evaluate the quality50

degradation at frame-by-frame level. When the inter-frame degradations are of
interest (for instance in the presence of network-impaired video streams), VQM
is a better option [10].

Although not perfectly, FR metrics provide the best correlation with human
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perception, but are not always applicable in real systems due to the requirements55

to have both the reference and the distorted sequence available. Also the more
accurate FR metrics are computationally demanding and are, instead, more
effective to generate offline benchmarking, as we do in our study.

To the other end of the spectrum, stand the NR metrics [15], that operate
merely on the distorted sequence (e.g. the video stream rendered after network60

transmission, as in our case) and measurements from the network. These metrics
usually focus on specific features [24, 25, 26], which are only indicative of quality
and do not always correlate well with subjective or FR results [7]. In previous
research, we analyzed a range of state-of-the-art NR features (computable in
real-time) on a large video dataset and involving packet losses in the 0-10%65

range [14]. We showed how different metrics capture diverse types of distortions,
concluding that none of the analyzed low complexity features is universally
effective (they are accurate only under limited operational conditions). Also, all
metrics failed under lossy networks.

Given the complexity of FR methods and the inaccuracy of low complexity70

NR methods, the aim of this paper is to explore how Machine Learning (ML)
may lead to an accurate NR method, without increasing the complexity of the
assessment process. This direction is currently being explored in the develop-
ment of NR algorithms. Promising examples are the Adaboost approach for
assessing artifacts levels in videos, by Vink et al. [27]; the bitstream based ar-75

tificial neural network, by Shahid et al. [28]; the artificial neural network for
jerkiness evaluation, by Xue et al. [29]; and the regression framework for esti-
mating the objective quality index (SSIM or PSNR), by Shanableh [30].

A key limitation of current studies is that they have focused on video dis-
tortions generated either by compression or by synthetic impairments [31] [28].80

Per contra, the assessment of realistic streaming scenarios that we are scruti-
nizing involves large datasets of videos distorted through a representative range
of network impairments. Yang et al. have provided an early study of network-
impaired videos based on a small dataset [32]. Yet our aim is to introduce a
method that is proved to work on the breath of conditions faced by network and85

service providers, who are nowadays required to manage QoE in real-time. Our
method analyses the received video stream in terms of eight NR features (both
on the bitstream and the pixel levels) in addition to sensing the network to ob-
tain two network measurements (nominal bitrate and estimated level of packet
loss) in real-time. These ten features serve as input to a Supervised Learn-90

ing (SL) algorithm that, based on previously learned samples of video quality
through an offline training process on the server side, performs a predictive NR
assessment of the quality of the video stream under scrutiny.

We extensively tested our method in a large video dataset that we generated
starting from ten video types of the Live Video Database [33]. We then enhanced95

the dataset, generating new network impaired videos, for a total of 960 samples
(Table 1) as detailed in [14]. Herein, we present the method and its evaluation,
finding an overall correlation to VQM higher than 97%. Testing out this method
on nine representative ML algorithms allowed us to show the generality of our
approach, whilst finding the best performing algorithms.100
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Table 1: Video dataset parameters range in terms of video types (acronym, name and descrip-
tion), compression and network packet loss ratio (960 samples in total).

Video type Compression Packet loss

Acronym Name Description 64kbps PL0%

bs1 Blue Sky Circular motion; Blue sky and trees 640kbps PL0.5%

mc1 Mobile Calendar Pan, horizontal tor train; Calendar vertical 768kbps PL1%

pa1 Pedestrian Area Still; People on intersection 1024kbps PL1.5%

pr1 Park Run Pan; Person across a park 2048kbps PL2%

rb1 River Bed Still; River bed, pebbles in the water 3072kbps PL2.5%

rh1 Rush Hour Still; Rush hour traffic on the street 4096kbps PL3%

sf1 Sunflower Still; Bee over sunflower 5120kbps PL3.5%

sh1 Shields Pan, still, zoom; Person across display PL4%

st1 Station Still; Railway track, train and people PL4.5%

tr1 Tractor Pan; Tractor across the fields PL5%

PL10%

Table 2: PCC correlations to VQM of the eight NR metrics and SSIM. Cell colors give
qualitative correlation levels: green (best), yellow (median), and red (worst).

V.T. CX MO NM NR BM BR BL JE SSIM

bs1 0.168 0.011 -0.488 0.118 -0.013 -0.637 0.439 -0.701 0.735

mc1 0.663 0.0177 -0.644 0.538 -0.065 -0.818 0.085 0.368 0.903

pa1 0.291 -0.028 0.646 0.457 0.11 0.465 0.442 0.057 0.883

pr1 0.304 -0.164 -0.704 -0.122 0.01 -0.2 0.49 0.607 0.688

rb1 0.533 0.57 0.432 0.514 0.546 0.44 0.2 -0.59 0.2555

rh1 0.391 -0.475 0.1655 0.32 0.351 0.369 -0.686 -0.671 0.91

sf1 0.413 -0.4141 -0.728 0.136 0.5162 0.42 0.552 -0.415 0.84

sh1 0.413 -0.0925 -0.352 0.468 0.216 -0.72 0.47 0.53 0.87

st1 0.47 -0.33 -0.65 0.35 0.4372 -0.21 0.6322 -0.267 0.7554

tr1 0.53 -0.178 0.087 0.738 0.51 0.157 0.307 0.581 0.885

All 0.418 -0.108 -0.2233 0.352 0.262 -0.073 0.294 -0.05 0.7725

±0.134 ±0.28 ±0.49 ±0.237 ±0.2275 ±0.487 ±0.362 ±0.514 ±0.187

The remainder of this paper is organized as follows. Section 2, provides a
state of the problem at hand, summarizing our earlier study of NR metrics.
In Section 3, the proposed predictive NR method is presented. The evaluation
methodology is described in Section 4. Our findings are discussed in Sections 5
to 8, in relation to different test cases. The state-of-the-art on NR metrics in105

general and the use of ML techniques in particular, is given in Section 9. Finally,
Section 10 draws conclusions, highlighting our key contributions.

2. Previous work

The experimental survey we presented in [14] served as motivation and start-
ing point for this work. Our purpose was to study the performance of low com-110

plexity NR metrics in the assessment of network-impaired video quality and, if
possible, to pinpoint NR features which could serve as alternative to FR metrics
in situations with thin clients (such as mobile devices) or where real-time quality
assessment is required in real-world streaming scenarios. These involve network-
impaired video streams, which are rather different from synthetically-impaired115

streams [8, 34]. We studied eight well-known NR metrics, over a wide range of
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video types, compressions and lossy network conditions, benchmarking the NR
accuracy against the FR metric VQM. We concluded that none of the NR met-
rics was able to perform an accurate assessment on a general base, i.e. over all
video types, compressions and network conditions. In that way, none of the sim-120

ple NR metrics under scrutiny could serve as alternative to the highly complex
FR methods. Most importantly, all metrics failed under lossy networks. How-
ever, it also emerged, that each metric exhibited specific operational boundaries,
within which the performance was accurate to the benchmark.

Armed with these results, our next research hypothesis was that it would125

theoretically be possible to derive a hybrid NR metric characterized by a much
broader operational boundary. However, before we introduce this new metric
(Section 3), it will help to summarize the key methodology and findings which we
have further detailed in [14]. We studied eight NR features, namely complexity
(CX), motion (MO), blockiness (BL), jerkiness (JE), average blur (BM), blur130

ratio (BR), average noise (NM) and noise ratio (NR). We also included SSIM,
a well-known FR algorithm, which is less accurate and complex than the VQM
benchmark [9]. All these metrics were evaluated over a range of 0− 10% packet
loss rates, what is considered to be one of the most critical types of network
impairments [8, 34]. The other parameters were video type and bitrate.135

The ten original raw, 10 seconds, 25fps video types were obtained from
the Live Quality Video Database [33]. We compressed them at eight levels
using MPEG4 part 10/H.264 and a resolution of 768x432. The selection of the
encoding bitrates has been done in a way as to obtain the most diverse variety
of video qualities. For example, very low quality transmissions (64kbps) are140

nowadays, with the currently used systems and Internet speeds, highly unlikely
to occur. Each sample was then impaired at twelve packet loss rates, obtaining
960 videos as specified in Table 1.1

Next, we carried out a detailed evaluation of the whole dataset, according
to all the NR metrics under scrutiny, including also the FR metric SSIM. Blur,145

noise, blockiness, ringing or temporal impairments have been quantified for mea-
suring the end-user’s quality [15]. Thus, for our study to be as broad as possible
we selected light-weight metrics with demonstrated correlation to the human
vision system. From all possible low-complexity metrics, we selected eight rep-
resentatives, six on the pixel layer (blur and ratio of noise and blur, blockiness150

and jerkiness) and two on the bitstream layer (complexity and motion). These
eight metrics were benchmarked against VQM through the Pearson correlation
coefficient (PCC) [35]. The key results are summarized in Table 2. While rows
one to ten of the table show the results for each of the specific video types, in
row eleven the overall averaged and deviation correlation values can be seen.155

Looking at the overall correlations (last row), we observe that none of the

1Upon acceptance of this paper, we shall release the whole dataset
and software implementation at www.tue.nl/universiteit/faculteiten/electrical-
engineering/onderzoek/onderzoeksgroepen/electro-optical-communications-
eco/research/network-management-and-control/datasets/network-impaired-video-dataset/.
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NR metrics achieves an acceptable correlation (50%). The best NR performant
is complexity (CX), with roughly an average correlation of 42%. Noise ratio
(NR), blockiness (BL) and the average blur (BM) reach roughly 30%, while
the average noise (NM) anti-correlates to the benchmark. Also, the standard160

deviations are noticeably high in all cases, which denotes a broad performance
variation across the video dataset. This can be seen directly by looking at the
spread of the cell values and colors.

As expected, being an FR metric, SSIM gives much better performance than
any of the NR ones (rightmost column), with an overall correlation to VQM of165

about 77%. Yet the standard deviation is still relatively high, indicating that
SSIM too will have a limited operational boundary. Further evaluations unveiled
that in fact SSIM starts failing at higher packet losses (between 1.5% and 4%)
and by various degrees, depending on the video type [14].

In order to narrow down the working limits of the various NR metrics, in [14]170

we went on analyzing the different video types individually (Figure 1), with
particular attention to compression level (Y axes) and packet loss (X axes). In
Figure 1, maximum correlation to VQM is shown in dark blue, while maximum
anti-correlation is in dark red. Again we see that, although the analysis has
been narrowed down (instead of being averaged across the whole dataset), none175

of the metrics operates accurately beyond some fairly narrow conditions.
It is encouraging, though, that specific blue (well correlated) areas emerge

for all the NR metrics under scrutiny. For example, in the pedestrian area video
(pa1, Figure 1a) blockiness performs well at low bitrates and on a broad range
of packet loss. In the park run video (pr1, Figure 1b), the noise ratio performs180

well on medium to low bitrates, but only when packet loss is low. At the same
time, jerkiness offers good complementary conditions (high bitrate, broad range
of packet loss). These results encouraged us to pursue the study of hybrid
metrics that would combine the strengths of individual metrics, as explained in
the remainder.185

3. Predictive NR Video Quality Method

In this section, we present our predictive NR video quality method. Figure 2
shows the block diagrams for the processes running, respectively, on the server
side and in the clients.

As with any prediction-based method, the accuracy of the model will sub-190

stantially depend on the characteristics of the dataset used for training. In the
case of our video service, the training set is composed by a number of video type
samples stored in the server (further details about the training set and process
can be found in Section 4.2). Each sample in the training set includes the eight
NR features of Table 2 (both in the pixel and the bitstream layers), two net-195

work condition parameters (packet loss rate and bitrate) and the ground truth
quality index. This training set is used (in the server) to maintain the quality
prediction function, which is then employed on the client side to compute our
predictive NR video quality assessment metric.
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(a) Correlation maps for video pa1.

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 CX pr1 MO pr1 BL

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 NM pr1 NR pr1 JE

0 1 2 3 4 510
Packet Loss [%]

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 BM

0 1 2 3 4 510
Packet Loss [%]

pr1 BR

0 1 2 3 4 510
Packet Loss [%]

pr1 SSIM

1.0

0.5

0.0

0.5

1.0

PC
C 

Co
rr

el
at

io
n

(b) Correlation maps for video pr1.

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

rb1 CX rb1 MO rb1 BL

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

rb1 NM rb1 NR rb1 JE

0 1 2 3 4 510
Packet Loss [%]

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

rb1 BM

0 1 2 3 4 510
Packet Loss [%]

rb1 BR

0 1 2 3 4 510
Packet Loss [%]

rb1 SSIM

1.0

0.5

0.0

0.5

1.0

PC
C 

Co
rr

el
at

io
n

(c) Correlation maps for video rb1.

Figure 1: Pearson correlation to VQM of the eight NR metrics (CX, MO, NM, NR, BM, BR,
BL, JE) and the SSIM FR metric, considering bitrates between 64 and 5,120 Kbps and packet
losses between 0 and 10%. Video types: a) Pedestrian Area (pa1); b) Park run (pr1); and
c) River bed (rb1). The original (unimpaired) videos were obtained from the Live Quality
Video Database [33]. Network impairments were incurred by streaming videos through the
PacketStorm network emulator [36].

At service launch, the service provider will already have a representative200

video types set (e.g., sport, action movies, cartoons, and so forth); thus an
initial prediction model can be constructed (and made available to the client
side). When a completely new video type is added or a completely different
condition is detected, the prediction model will be less accurate. Yet, over the
time the model will be updated based on new types and conditions (by means205

of feedback loops from the clients) and, what is more important, the chances
of getting new video types and conditions will rapidly diminish. In this way,
the server runs a process in the background in which the SL model is trained
with the available video samples and new models (f̂server) are uploaded to the
clients (on a continuous or periodic basis).210

On the other end of the transmission link, the video client employs the SL
model trained by the server, to generate its prediction-based quality metric (Qp).
During a streaming session, the client characterizes the incoming video in terms
of NR features and real-time network conditions, matching this information
against the prediction model to generate the NR quality index. Given the215

fact that the process in the server is executed as an independent (background)
routine, the real-time quality assessment algorithm is not tied to it. The two
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Figure 2: Block diagram of the predictive NR video quality assessment method. a) server side
(background training); b) client side (real-time assessment).

processes, in client and server, proceed independently from each other, the model
is not updated from server to client in an online manner; hence, our method
falls within the NR category. In principle, our model could also be implemented220

as an RR metric, whereby the model parameters are passed to the client online.
Yet, this is not the scenario we have explored in this manuscript.

Selecting the features that better characterize the video streams, are effective
in the SL training process (in the server) and, ultimately, generate an accurate
quality metric (in the clients), is not trivial. Our choice was driven by a prelim-225

inary (extensive) evaluation of classic, low computation and real-time NR video
features (Section 2 [14]), where we studied their operational boundaries. From
our accuracy study, as shown in the previous section, we saw that while none
of the metrics under scrutiny could provide an overall good performance, all of
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them had their own working boundaries. We then followed the intuition that, if230

individual metrics would work accurately under specific conditions, a functional
combination of those metrics could work on a broader range of conditions.

Bitstream parameters have been shown to provide good results when assess-
ing networked videos [13, 37]. However, the video characteristics and content
will have a substantial influence on the assessed quality, thus, our selection and235

prior study focused not only on bitstream features but on low complexity pixel
level metrics that can be obtained in real time from the received frames.

In general, a video stream can be characterized by several parameters, i.e.
the ones that would allow differentiating among different video types. Param-
eters regarding the video scene composition have been demonstrated to affect240

quality to a large extent [38]. Among these, scene complexity and video motion
have proven to correlate well with video quality [39]. Scene visual complexity
is conventionally defined as the level of detail or intricacy contained within an
image or frame [40] or the number of objects or elements present in the frame,
whereas video motion is the amount of movement in the video [39]. Both fea-245

tures can be empirically obtained from the codec using the equations shown
below (Equation 1) [38].

C =
BitsI

2 ∗ 106 ∗ 0.91QPI
M =

BitsP
2 ∗ 106 ∗ 0.87QPP

(1)

Where BitsI , BitsP are bits of coded Intra (I) and Inter (P) frames, and QPI ,
QPP represent the average I-Frames and P-Frames quantization parameter.
These values are also obtained directly from the encoding process and thus, do250

not increase the computational time or complexity of the method.
On the pixel level, noise and blur components (mean and ratio per feature)

have been demonstrated to provide a good measure of degradations in a frame-
by-frame assessment [41]. In the same way, blockiness [19, 42], described as
a discontinuity between adjacent blocks in images and video frames [43], was255

demonstrated in our earlier study [14] to show promising results. Finally, mea-
suring the inter-frame degradations becomes fundamental in the presence of
network impaired video. To this end, temporal features such as the jerkiness
(non-fluent and non-smooth presentation of frames) become fundamental [25].
Before they could be directly applied in the SL process, these eight NR metrics260

were averaged across the video and normalized between zero and one. Further
details on how to compute these metrics are given in [14].

In addition to the video stream characteristics, we chose two network features
(the received video bitrate and packet loss level) to capture the most significant
transmission effects on video quality [34]. Intuitively, quality is related to bitrate265

(i.e. the number of bits received per time interval), whereby higher bitrates
lead to better quality. However, this relation is highly non-linear, following a
psychometric curve [44]. Earlier studies (some from us [45]) have shown how
the parameters of the perception curve vary considerably across video types,
compression values, bitrate etc. Bitrate is therefore a critical input to derive270

the prediction model. In addition, packet losses have been demonstrated to be
the most impairing network conditions on video transmission systems [34, 8].
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Thus, a measure of the packet loss level was included in the final feature set.
These two parameters are calculated on the client side, during video reception,
and are added to the other input features of the learning algorithm (i.e. the275

eight NR metrics).
These ten parameters conform the full characterization of the videos and

serve both for training the SL model (offline on the server side) and for predict-
ing the quality of the real-time received videos (in the client side, in the form of
inputs to the trained SL method). Through SL, we derive the quality prediction280

model (i.e. the function f̂server in Figure 2) by mapping input-output pairs of
the training data. The model is then used to estimate the video quality, deter-
mining a suitable output value for any incoming stream (regardless of whether
or not this has been part of the training set) [46].

Our method, as described in Figure 2, is generic and may be easily extended285

to explore different training features and benchmark quality (FR models or
subjective studies), different video datasets and different SL algorithms. The
details of our experimental evaluations, including the choice of the different SL
algorithms are given next.

The flexibility, scalability and real-time characteristics of our method make290

it a very suitable candidate to close the feedback loop between client and server
for service and network providers, who are nowadays encouraged to manage
QoE through tailor-made adaptations of open systems/protocols (due to the
changing network conditions and the exponential increase of users).

4. Evaluation Methodology295

We describe here the complete methodology used to evaluate the predictive
quality metric introduced in Section 3. The experimental test-bed (Section 4.1,
Figure 3) comprises all the components used to carry out a comparative evalua-

tion with the benchmark quality metric. The prediction model (i.e. the f̂server)
is computed offline (as per Figure 2a), exploring a whole range of machine300

learning options, as detailed in Section 4.2. Our method is generic, it does not
demand a specific learning or benchmark algorithm. We have adopted VQM as
our benchmark, which is broadly used when subjective assessment is not viable,
as it is the case of commercial live streaming services.

4.1. Experimental Test-bed305

Once the quality prediction function (f̂server) has been computed (offline),
we are ready to perform real-time streaming tests, based on the components
depicted in Figure 3. Our testbed allows streaming any of the dataset videos
between the server and the client. We used an RTP video server to handle the
streaming process, and a commercial network emulator (PacketStorm Hurricane310

II)2 to shape and impair the stream in a controlled (replicable) environment.

2http://packetstorm.com/packetstorm-products/hurricane-ii-software/
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Figure 3: Evaluation test-bed.

The network-impaired stream is then fed to our client application, which gen-
erates the predicted metric Qp. In parallel, we generate the benchmark quality
index Qvqm. We stream all videos, in turn, under a range of network conditions
(Table 1), obtaining a full range of quality values, ready for statistical analysis.315

The accuracy is measured by means of a Pearson correlation (PCC) [35] between
the predicted quality and the benchmark quality.

As benchmark quality we selected VQM because of its demonstrated good
correlation to the human vision system and to subjective feedback [10, 11].
Furthermore, in [14] we characterized the whole dataset by means of its VQM320

index, showing its suitability as a benchmark.

4.2. Supervised learning methodology

Given the broad variety of ML approaches in the literature, an important el-
ement of our work was to explore different algorithms and find suitable avenues.
To this end, our experimental framework (Figure 3) is sufficiently generic to325

perform tests on any type of SL algorithms (we have not included unsupervised
learning methods in our study).

Among the well-established SL methods, we started experimenting with 16
different ones, ending up with a selection of 9 methods that cover a represen-
tative set of algorithms, ranging from the least complex (towards the top of330

Table 3) to the most complex ones (towards the bottom of Table 3). Methods
may be broadly categorized in two. On the one hand, the white-box methods
are able to capture a comprehensible relation between input and output features
and thus, can be interpreted in a straightforward way by a human operator. On
the other hand, black-box methods do not offer such relation and do not help335

understanding how certain predictions are derived. We review below the key
features of the methods under scrutiny.
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One of the most known and simplest white boxes is linear regression [47],
which attempts to model the relationship between a scalar (output) and one or
more independent variables by means of a linear multidimensional model of the340

input data.
Decision trees learning uses a decision tree as a predictive model which maps

observations about an item to conclusions about the item’s target value [48].
They are classified according to the type of output provided.

On the one hand, tree models, where the target variable takes a value from345

a finite set, are called classification trees. Leaves represent class labels and
branches, conjunctions of features that lead to those class labels. On the other
hand, decision trees, where the target variable can take continuous values (typ-
ically real numbers), are called regression trees.

The performance of regression and decision trees can be further improved350

by means of an ensemble approach. Ensembles use multiple learning algorithms
to obtain better predictive performance than could be obtained from any of the
constituent learning algorithms [49]. Evaluating the prediction of an ensemble
typically requires more computation than evaluating the prediction of a sin-
gle model. Thus ensembles are mostly used as a way to compensate for poor355

learning algorithms by performing extra computation. For this reason, fast (less
accurate) algorithms such as decision trees are commonly used with ensembles.

Since the first conception, several approaches to combine the ML models
have appeared. One early method is the Bootstrap aggregating [50], often ab-
breviated as Bagging, which involves having each model in the ensemble vote360

with equal weight. Another method, Boosting [51], involves incrementally build-
ing an ensemble by training each new model instance to emphasize the training
instances that previous models misclassified. In some cases, boosting has been
shown to yield better accuracy than bagging, but it also tends to be more likely
to over-fit the training data.365

The most common implementation of Boosting is Adaboost [52]. In Ad-
aboost, short for “Adaptive Boosting”, the output of the other learning algo-
rithms (‘weak learners’) is combined into a weighted sum that represents the
final output of the boosted classifier. While specific learning algorithms will
tend to suit some particular problem types better than others, and will typi-370

cally have many different parameters and configurations to be adjusted before
achieving optimal performance on a dataset, Adaboost (with decision trees as
the weak learners) is often referred to as the best out-of-the-box classifier. Ad-
aboost is used only for classification, thus in order to use it, the quality index
range (0 to 1) needs to be converted into a finite set of values.375

Another type of Boosting known to work very well together with regression
trees is LS-Boost (least squares) [53]. Like other Boosting methods, LS-Boosting
combines weak learners into a single strong learner, in an iterative fashion, where
the goal is to learn the model that predicts the outputs while minimizing the
mean squared error to the true values (averaged over the training set).380

White boxes are appreciated for their comprehensive models. Yet, they have
also been demonstrated to have limited predictive capacity or to be inflexible and
computationally cumbersome. The best classification and regression accuracy
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is typically achieved by black-box models such as Gaussian processes or neural
networks, or complicated ensembles of them [54]. These models do not, in385

general, provide a clear explanation of the reasons as to how they have come to
a certain prediction.

The Gaussian Process Regression (or Kriging) [55] provides an example.
The basic idea of Kriging is to predict values by means of interpolation in which
the interpolated values are modeled by a Gaussian process governed by prior390

covariances. Under suitable assumptions on the priors, Kriging gives the best
linear unbiased prediction of the intermediate values.

Support Vector Machines (SVMs) [56]) are supervised learning models with
associated learning algorithms that analyze data used for classification and re-
gression analysis. Given a set of training samples, each marked as belonging to395

one of two categories, an SVM training algorithm builds a model that assigns
new samples into one category or the other, making it a non-probabilistic binary
linear classifier. An SVM model is a representation of the samples as points in
space, mapped so that the examples of the separate categories are divided by a
clear gap that is as wide as possible. New samples are then mapped into that400

same space and predicted to belong to a category based on which side of the
gap they fall in.

Finally, we tested artificial neural networks (ANNs) [57], a family of models
inspired to biological neural networks, used to estimate or approximate func-
tions that can depend on a large number of generally unknown inputs. ANNs405

are generally presented as systems of interconnected “neurons” which exchange
messages between each other. The connections have numeric weights that can
be tuned based on various optimization methods, making neural nets adaptive
to inputs and capable of learning. The feedforward neural network was the first
and simplest type of artificial neural network devised. In this case, the infor-410

mation moves in only one direction, forward, from the input nodes, through the
hidden nodes (if any) and to the output nodes. A variation on the feedforward
network is the cascade forward network which has additional connections from
the input to every layer, and from each layer to all following layers.

We implemented these methods based on the ML toolbox [58] and the Neural415

Network toolbox [59] of Matlab, and the library LIBSVM [60] for the support
vector regression model. Each algorithm requires the tuning of certain param-
eters in order to optimize their performance. The values included in Table 3
(fourth column), have been found to perform better with our dataset. In order
to perform the Multiple Linear Regression, we added a bias vector (a vector of420

all ones) to the input data. As we explained in the previous section, to use the
ensemble decision tree with Adaboost, the dataset outputs have to be converted
to a set of finite values. After careful experimentation, we set the number of
classification classes to 100, ranging for 0.00 to 0.99. Values are then rounded
to their second decimal.425

Another important choice in performing ML experiments consists of the way
the training set is picked out of the whole dataset. The method used is bound
to have a sensitive effect on the performance of the prediction models and, ul-
timately, on the accuracy of the NR metric. To mimic typical situations faced
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Table 3: Parameters used for the different machine learning techniques

Type Technique Acronym Parameters

Multiple

Linear LR Added bias

W Regression

H Standard type:binary

I Regression RT N. Branches>15

T Tree

E Ensemble N. Models:500

Regression ERT-LSB N. Branches>15

Tree LS-Boost Learning Rate:0.01

B Ensemble N. Models:500

O Regression ERT-BR N. Branches>15

X Tree Bagging

Ensemble N. Classes: 100 (1/100)

Decision EDT-AB N. Models:200

Tree N. Branches>10

Adaboost Learning Rate: 0.2

Gaussian Method: exact

B Process GPR Basis: constant

L Regression Kernel: squaredexponential

A Support type: epsilon

C Vector SVR kernel: radial basis

K Regression cost and epsilon: 20 & 0.1

B FeedForward N. Hidden Neurons: 20

O Neural FNN Training: Levenberg

X Network -Marquardt

X Cascaded FW. N. Hidden Neurons: 20

Neural CNN Training: Levenberg

Network -Marquardt

by a video service provider, we carried out two set of experiments. Blind pre-430

diction, represents the worst-case performing scenario, whereby the video under
consideration is unknown to the machine learning model (Section 5). In the
most common scenario, the video server is able to prepare the ML model from
samples of the whole data-set before being transmitted to the client (Section 6).
In this way, characterizations of all the videos are present in the model of the435

system. For it, we consider the performance of these type of cases using ran-
dom cross-validation tests (Section 6). Finally, we studied the sensitivity of our
metric to the size of the training set (Section 7) and the computational time
required for our approach compared to the FR benchmarks (Section 8).

5. Evaluation of the worst-case scenario: unknown video class, blind440

prediction

As mentioned in Section 3, on service launch the service provider will have a
representative video types set and thus an initial model can be constructed and
sent to the client. When, due to a completely new type of video, the prediction
model is to be updated, the server will notify the client and the model in the445

client will be upgraded.
Therefore, the most typical scenario will see an up-to-date prediction model.
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Table 4: Overall performance of nine machine learning algorithms in blind mode (worst-case
scenario, 10-fold cross-validation). Values indicate PCC correlations to VQM, averaged for
each video type across all compression levels and network conditions (96 cases). Cell colors
give qualitative correlation levels: green (best); orange (median); and red (worst).

V.T. LR RT ERT-LSB ERT-BR EDT-AB GPR SVR FNN CNN

bs1 0.813 0.86 0.95 0.95 0.74 0.832 0.564 0.94 0.956

mc1 0.89 0.843 0.9277 0.8952 0.5842 0.8668 0.4928 0.8851 0.9198

pa1 0.87 0.955 0.9706 0.916 0.8199 0.9342 0.7085 0.9213 0.9542

pr1 0.89 0.69 0.7684 0.8185 0.2858 0.8684 0.2439 -0.6188 -0.2887

rb1 0.89 0.7067 0.901 0.9495 0.5063 0.8086 0.7054 0.4479 0.868

rh1 -0.32 0.783 0.7972 0.772 -0.3569 -0.1172 0.725 -0.0294 -0.2758

sf1 0.94 0.929 0.9729 0.9743 0.7615 0.9542 0.7462 0.9152 0.9531

sh1 0.85 0.828 0.9206 0.9294 0.6161 0.9267 0.7582 0.6712 0.8667

st1 0.94 0.858 0.9705 0.9665 0.7082 0.9634 0.4661 0.9673 0.8204

tr1 0.92 0.859 0.96 0.96 0.5084 0.976 0.711 0.9376 0.9441

All 0.768 0.83 0.9147 0.9137 0.517 0.8013 0.6121 0.6039 0.6718

±0.383 ±0.085 ±0.074 ±0.0678 ±0.344 ±0.328 ±0.168 ±0.533 ±0.505

This case will be evaluated in Section 6. We now consider the worst-case sce-
nario, to evaluate the bottom-line performance of our metric. To test SL in blind
mode, the model is trained with nine (out of ten) video types and is tested on450

the 96 samples of the remaining one (8 compression levels and 12 network condi-
tions). For statistical significance, we performed a 10-fold cross-validation test,
evaluating in turn, each of the ten videos as a new (unknown) class.

The overall performance of the 9 different machine learning algorithms in
blind mode is detailed in Table 4. The first striking result is that our metric455

always performs considerably better than any of the conventional NR metrics
(Table 2). The reason for this comes from the fact while each of the individual
NR features analyses the video in one single aspect, an SL approach combines
the action of the whole range of metrics and network conditions to provide an as-
sessment. The worst-case performance of the worst-performing machine learning460

algorithms (51.7% EDT-AB Table 4) was better than the best-performing NR
metric (41.7% CX Table 2). The Ensemble Regression Trees methods achieve
the best average performance of 91.3% (ERT-BR) and 91.4% (ERT-LSB).

Comparing the different machine learning algorithms, we found another im-
portant result: the white-box approaches (LR, RT, ERT-BR, ERT-LSB and465

EDT-AB) outperform the black-box ones (GPR, SVR, FNN and CNN). This is
interesting because the former methods tend to be less computationally inten-
sive. Intuitively, we can explain this result by looking at the standard deviations,
which tend to be rather large (up to 53% in FNN). This is to be expected in
blind prediction when the samples are significantly different. In fact, the most470

distinctive videos (the ones with distinctive time and space complexity) were
predicted with lower accuracy. For instance, video type pa1 is well represented
by the other nine video types: thus the 10-fold validation for pa1 leads to con-
sistently accurate predictions (71 to 93%). At the other end of the spectrum is
video type pr1, which leads to diverse prediction accuracies (-62% to 87%). We475

must stress that these high variations are typical of blind prediction and will
not appear in the most common operational condition (Section 6).
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Figure 4: Correlation diagrams of nine different prediction algorithms (LR, RT, ERT-LSB,
ERT-BR, EDT-AB, GPR, SVR, FNN, CNN) in comparison to VQM (used as benchmark).
The three sample videos are: pa1 (blue stars); rb1 (black stars); and pr1 (red stars).
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(a) Correlation maps for video pa1.

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 LR pr1 RT pr1 ERT-LSB

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 ERT-BR pr1 EDT-AB pr1 GPR

0 1 2 3 4 510
Packet Loss [%]

5120
4096
3072
2048
1024
768
640
64Bi

tr
at

e 
[k

bp
s]

pr1 SVR

0 1 2 3 4 510
Packet Loss [%]

pr1 FNN

0 1 2 3 4 510
Packet Loss [%]

pr1 CNN

1.0

0.5

0.0

0.5

1.0

PC
C 

Co
rr

el
at

io
n

(b) Correlation maps for video pr1.
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(c) Correlation maps for video rb1.

Figure 5: Pearson correlation to VQM of the nine prediction algorithms (LR, RT, ERT-
LSB,ERT-BR, EDT-AB, GPR, SVR, FNN, CNN), considering bitrates between 64 and 5,120
Kbps and packet losses between 0 and 10%. Video types: a) Pedestrian Area (pa1); b) Park
run (pr1); and c) River bed (rb1).

To better explore the differences across the test videos, Figure 4 shows the
correlation diagrams of the three most distinctive videos (pa1, pr1 and rb1),
whose NR metrics were scrutinized in Section 2 (Figure 1). Each diagram picks480
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one machine learning algorithm in relation to the benchmark VQM, showing the
three video types in different colors. In this way, the most accurate predictions
are concentrated around the main diagonal (y=x). We observe how video type
pa1 (blue stars) is predicted consistently well, followed by rb1 (black stars). On
the other hand, pr1 (red stars) is the most difficult to predict. Overall, RT485

and ERT-LSB are the ones that deal the best with blind prediction; and in
general, black box approaches perform the worst. Of these, only GPR performs
consistently well on all videos, while the two neural networks (FNN and CNN)
struggle with rb1 and fail with pr1. The support vector machine fails on all
cases.490

Finally, to visualize the working range of the different machine learning al-
gorithms, Figure 5 shows the Pearson Correlation (PCC) colormaps analogous
to those of Figure 1 (NR metrics). Strikingly, the well-correlated range (dark
blue) extends much further (both in packet loss and bitrate levels) than the orig-
inal NR metrics. The color patterns show also how the less complex machine495

learning methods (the upper maps in Figures 5a, 5b and 5c) have a broader op-
erational range than the more complex algorithms (lower maps in Figure 5a, 5b
and 5c). As we already hinted, the best performers are the Ensemble Regression
Trees, particularly LS-Boost (ERT-LSB) achieves nearly full correlation for all
bitrates and network conditions.500
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Figure 6: 80%-20% training to testing data distribution. The diagrams show the overall
correlation diagrams of nine different prediction algorithms (LR, RT, ERT-LSB, ERT-BR,
EDT-AB, GPR, SVR, FNN, CNN) in comparison to VQM (used as benchmark).

6. Evaluation of common-case scenario: known video class, prediction
based on prior video traces

We evaluate here the typical scenario in which our prediction based metric
is assessed on video conditions (type, rate and packet loss level) that have previ-
ously been seen by the SL algorithm. Thus, we can assume that the prediction505
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(a) Data distribution: 60%-40%.
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(b) Data distribution: 40%-60%.
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(c) Data distribution: 20%-80%.

Figure 7: Predicted values vs benchmark quality (VQM) for different distributions of training
and testing data: a) 60%-40%; b) 40%-60%; c) 20%-80%.

model will have been trained on samples from all the videos belonging to the
service provider’s dataset. Our aim is to evaluate the performance of our metric
(as described in Section 3) under realistic conditions, for a representative set
of machine learning algorithms (LR, RT, ERT-LSB, ERT-BR, EDT-AB, GPR,
SVR, FNN, CNN).510

We follow a standard machine learning evaluation method. We random-
ize the whole dataset (960 samples), splitting it into five subsets (192 samples
each). On each of the nine machine learning algorithms, we perform a 5-fold
cross-validation test, using in turn one subset for testing and the other four for
training. Just like in blind prediction (Section 5), the resulting nine prediction515

models are used to find Pearson Correlations with VQM, along with averages
and deviation values.

The first set of results is included in Table 5 (first row) and depicted in
Figure 6. We notice a definite improvement compared to blind prediction (Ta-
ble 4 and Figure 4). If we exclude SVR, that has the smallest correlation to520

VQM (63% ± 3), all other prediction algorithms are consistently accurate, in
terms of both correlations to VQM (in the 78 − 97% range) and deviations (in
the 0.4 − 6% range). Even more remarkably, all our prediction-based metrics
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Table 5: Overall performance of nine machine learning algorithms, for different sizes of the
training and testing datasets. Values indicate overall PCC correlations to VQM (and standard
deviations). Cell colors give qualitative correlation levels: green (best); orange (median); and
red (worst).

TR/TE LR RT ERT-LSB ERT-BR EDT-AB GPR SVR FNN CNN

80/20 0.78 0.93 0.97 0.95 0.83 0.888 0.634 0.92 0.89

±0.06 ±0.01 ±0.004 ±0.006 ±0.04 ±0.02 ±0.04 ±0.04 ±0.15

60/40 0.77 0.925 0.97 0.94 0.783 0.824 0.62 0.93 0.825

±0.04 ±0.004 ±0.003 ±0.006 ±0.07 ±0.041 ±0.01 ±0.05 ±0.19

40/60 0.77 0.9 0.9561 0.92 0.8 0.78 0.57 0.92 0.76

±0.03 ±0.01 ±0.002 ±0.011 ±0.0377 ±0.02 ±0.012 ±0.016 ±0.12

20/80 0.76 0.85 0.93 0.87 0.74 0.75 0.47 0.86 0.85

±0.03 ±0.02 ±0.01 ±0.01 ±0.07 ±0.02 ±0.03 ±0.04 ±0.02

work on the whole range of network conditions (0-10% packet loss) and bitrates
(64kbps to 5.12Mbps). We can confidently claim so thanks to the low deviations525

reached when averaging across all network conditions (0.4-6% range).

7. Performance vs size of the training dataset

Having established the accuracy of prediction-based metrics across a variety
of machine learning methods, our next aim was to explore how the size of the
training dataset affected the metrics accuracy. In other words, how many video530

conditions would a service provider have to use to train accurate predictions
models?

To this end, we followed the same evaluation method of Section 6, splitting
the 960-sample dataset in five subsets and performing a 5-fold cross-validation
test. However, this time we evaluated the machine learning algorithms on dif-535

ferent training sample sizes. Figure 7 and Table 5 capture all the results, con-
sidering training and testing samples of (80%;20%), (60%;40%), (40%;60%) and
(20%;80%), respectively. As expectable, the reduction of the training set leads
to an increase in error. However, this is comparably small. Overall, when the
training set is reduced from 80% to 60%, 40% and 20%, the accuracy drops by540

an average of 2.4%, 4.7% and 7.9%, respectively. For instance, if we look at
our 960-sample dataset we can expect an overall accuracy in the area of 86.6%
(using 768 samples for training), 84.1% (using 576 samples) and 78.7% (using
192 samples).

Assessing several machine learning approaches is very useful in pinpointing545

the most effective algorithms and, in turn, pursue even better performance.
For instance, neural networks show a consistent performance in excess of 85%,
even when the training set is reduced down to 20%. The best performers are
the Ensemble Regression Trees, particularly LSB with its 97% accuracy (with
80% training samples) that drops only to 93% (with 20% training samples).550

ERT-LSB is also the best performer on blind predictions (91% overall accuracy,
Table 4), which makes this the algorithm of preference for our predictive NR
method.
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Table 6: Overall computational time (in seconds) for the training of nine machine learning
algorithms, for different sizes of the training and testing datasets. Cell colors give completion
performance: green (best); orange (median); and red (worst).

TR/TE LR RT ERT-LSB ERT-BR EDT-AB GPR SVR FNN CNN

80/20 0.0003 0.012 4.48 3.63 98.5 3.7 0.03 0.45 0.44

±1e−4 ±1e−4 ±0.02 ±0.01 ±16.8 ±2.32 ±0.002 ±0.04 ±0.03

60/40 0.0002 0.01 4.04 4.1 51.2 1.8 0.02 0.38 0.38

±3e−4 ±6e−4 ±0.01 ±0.1 ±9.5 ±1.05 ±8e−4 ±0.01 ±0.03

40/60 0.0001 0.008 3.64 3.23 20.6 0.3 0.007 0.37 0.36

±2e−5 ±1e−4 ±0.01 ±0.002 ±2.5 ±0.04 ±5e−4 ±0.01 ±0.005

20/80 0.0001 0.007 3.24 3.04 5.4 0.07 0.002 0.3 0.32

±1e−5 ±1e−4 ±0.004 ±0.01 ±0.16 ±0.01 ±2e−4 ±0.01 ±0.02

8. Computational Trade-offs
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Figure 8: Performance trade-offs (accuracy and computational time) of the different learning
algorithms (colored symbols), considering all training/testing combinations. SSIM and VQM
(in black) are used to benchmark our metrics. With the exception of SVR, all other learning
models perform much better than SSIM. Computational time (in log scale) is 4 orders smaller
than SSIM and 6 orders smaller than VQM.

The models of our performance metric are trained in the background (Fig-555

ure 2, top), before being used in the client (Figure 2, bottom). Thus, the running
time of the learning algorithms will not affect the real-time quality metric com-
putational times. Still, it is interesting to see the trade-offs achievable with the
different machine learning techniques, as these will affect the service provider’s
ability to manage video datasets at scale.560

To this end, we follow the same evaluation method of Section 7, splitting the
960-sample dataset in five subsets, performing a 5-fold cross-validation test and
evaluating the algorithms on the four training-testing subdivisions considered
earlier, i.e. 80%-20%; 60%-40%; 40%-60%; 20%-80%. In each case, we measure
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the time incurred to train the model. We perform this process on a Laptop (HP565

EliteBook) with an Intel Core i7 processor and 7,7GB of RAM memory.
As it could be expected, smaller training sets incur faster completion times

(Table 6). However, the difference is not significant (computation time orders
do not vary between the 20/80 split and the 80/20 split). The fastest algorithm
was LR, with computation time in the millisecond scale. Interestingly, this is570

not the least accurate metric (overall 77% correlation, Table 5).
On the other end of the range, the ensemble regression trees (ERT-BR and

ERT-LSB) incur times ranging from 3 to 4.5 seconds. This is because they have
to build 500 consecutive models before they can complete the trained models.
Yet, these lead to the most significant accuracy.575

Even when deployed in on a low-spec laptop, the computational times of
the prediction metrics are negligible and, certainly, compatible with the typical
background processes of a service provider. Also, in a commercial setting the
background QoE processes will be supported by dedicated servers and, when
necessary, data centers or cloud services. Hence, the times involved in charac-580

terizing the video dataset would not constitute a bottleneck.
Figure 8 shows the performance trade-offs (accuracy and computational

time) of the different learning algorithms (colored symbols), considering all
training/testing combinations. To benchmark our metrics, we include also SSIM
and VQM (in black). With the exception of SVR, all other learning models per-585

form much better than SSIM, although the former are NR and the latter is FR.
Of crucial importance is our finding of the learning computational times, which
are four orders smaller than SSIM and six orders smaller than VQM. Thus pre-
diction metrics are comparably as accurate as VQM while scaling significantly
better.590

9. Related work on Machine Learning for NR Quality Assessment

In our previous research, we have conducted a range of preliminary studies
that have provided basis and motivations to the present paper. Our most rele-
vant works are summarized next. Our earlier attempts to develop NR metrics
based on conventional features (i.e. without using machine learning), lead to a595

formula that combined scene complexity and motion and could be computed in
real-time [38]. At the same time, we were exploring the use of machine learning
to address fundamental limitations of conventional NR metrics [14], mainly the
lack of generality and poor performance. In [61] we showed the use of Rein-
forcement Learning to optimize video quality in adaptive streaming, without600

using complex heuristics. In [1] we showed how artificial neural networks could
determine a linear combination of blur and noise that performed significantly
better than these two NR metrics in isolation. Finally, our recent survey of ma-
chine learning in NR video quality assessment [62] provides a snapshot of the
state-of-the-art on which our work is based. A selection of the most relevant605

on-going efforts is briefly described below.
In the last decade, several researchers have explored the machine learning

path in order to improve both the generality and accuracy of NR metrics. Al-
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ready in 2002, Gastaldo et al. introduced one of the first methods to estimate
the video quality using artificial neural networks [63]. They proposed the use610

of circular back propagation networks (based on bitstream layer parameters) in
order to mimic the users perception of compressed MPEG2 videos. Their ap-
proach showed promising results on a 12-video dataset from the motion picture
expert group (MPEG). Their study focused on video distortions deriving merely
from compression and explored a specific machine learning method.615

Also working on compressed videos, Le Callet et al. [64] employed an inter-
esting convolutional neural network as a Reduced Reference (RR) method to
allow a continuous-time quality estimation and scoring of the video. Unlike our
NR approach, in which the server transmits the machine learning model updates
only on service launch and in the case that an update is due, their method (as620

any RR metric) requires the transmission of features extracted from the original
video together with the video under scrutiny.

Zhu et al. [65] proposed the use of neural networks and features extracted
from the analysis of Discrete Cosine Transform (DCT) coefficients of each de-
coded frame from a video sequence to predict its quality. Their approach625

showed good correlation results in compressed videos of four different well-
known datasets. However, their method is distortion specific, and thus of a
more limited scope than our case. Furthermore, the complexity of the approach
makes it not viable to real-time deployments.

Staelens et al. [66] presented an NR video quality estimation method which630

uses a symbolic regression framework trained on a large set of parameters ex-
tracted from the codec. While obtaining good correlation with subjective tests,
their approach is suited only to H.264 compressed streams, thus loosing on
generality.

Similar principles were proposed in [67] by using features extracted from635

specific codecs (MPEG or H.264/AVC), the analysis of DCT coefficients, the
estimation of the quantization level used in the I-frames to measure quality of
videos distorted by only the compression process. They show high correlation
with some state-of-the-art metrics (FR, RR and NR). However, their approach
is only suited to a specific type of codec and the complexity of the feature ex-640

traction process makes this NR metric incompatible with real-time applications.
Shahid et al. [28] proposed a model combining different bitstream-layer fea-

tures using an Artificial Neural Network to estimate the quality. They tested
their method on compressed videos but focused on correlations with PSNR.

The key differentiator between our work and other valuable on-going efforts is645

our focus on a generic learning framework for assessing end-to-end streaming in
real-time. Our predictive method (Figure 2) and evaluation methodology (Fig-
ure 3) are generic - i.e. completely independent from type of video, compression,
benchmarking quality, transmission means and machine learning algorithm. We
place the heavy part of the machine learning (training) on a background pro-650

cess, allowing for a light-weight evaluation metric to be executed in real-time,
even on thin clients. We do not have to rely on synthetic impairments and have
a system that can be employed in a typical video service provisioning platform
or for real-time quality management.
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10. Conclusion655

Low-Computational No-Reference video quality methods have the poten-
tial to provide real-time video quality assessment and automated quality con-
trol, as required by services such as video streaming, video on demand, and
network management. In these situations, both subjective assessment and
computationally-intensive objective methods are unfeasible. At the same time,660

simplistic NR methods would be functionally and computationally viable but
fail to deliver accurate results, as we demonstrated in our previous work [14],
and, specifically, cannot handle network-impaired streams. On the other hand,
existing NR methods based on machine learning tend to be heavyweight and
often lack generality.665

In this work, we introduce a generic machine learning framework (Figure 2)
that allows deriving a predictive NR assessment metric. We explore the ef-
ficiency and accuracy of our metric for a broad representation of supervised-
learning techniques (Table 3), using a varied video dataset (Table 1).

Through an extensive analysis (Section 5 to 8), we demonstrated how our670

approach is not tied to any particular type of video, compression, or transmission
means. In fact, the metric performance remains remarkably high even when the
training set is reduced from 80 to 20% (Table 5), indicating that models can
accurately predict 80% of unknown conditions.

We are particularly keen to have developed an NR metric that operates675

accurately under lossy networks. We tested the whole 0-10% packet loss range,
which reflects the most extreme Internet conditions. Overall, we have achieved
an over 97% correlation to VQM, demonstrating that it is possible to develop
an NR metric that is as accurate as an FR method, while allowing real-time
assessment of video quality in realistic streaming scenarios.680

This NR method is meant as a light-weight means to close the feedback loop
between client and server. We envision our NR method to be applicable to
client-driven adaptive streaming and video-on-demand. Furthermore, we aim
to apply it to the prominent scenario that network and service providers face
today, whereby they can measure Quality of Service but don’t have feedback685

about the Quality of Experience that is actually delivered to the end-user (end
device).

Acknowledgment

This work has been carried out in the context of the European Research
Council project BROWSE (Beam-steered Reconfigurable Optical-Wireless Sys-690

tem for Energy-efficient communication - Grant 291632) and the ICT COST
Action 3D-ConTourNet (IC1105).

References

[1] M. Torres Vega, E. Giordano, D. C. Mocanu, A. Liotta, Cognitive no-
reference video quality assessment for mobile streaming services, in: in proc.695

23



of the 7th International Workshop on Quality of Multimedia Experience
(QoMex), 2015. doi:10.1109/QoMEX.2015.7148128.

[2] I. Politis, L. Dounis, T. Dagiuklas, H.264/svc vs. h.264/avc video quality
comparison under qoe-driven seamless handoff, Signal Processing: Image
Communication 27 (8) (2012) 814–826. doi:10.1016/j.image.2012.01.700

006.

[3] E. Ekmekcioglu, G. C. Gurler, A. Kondoz, A. M. Tekalp, Adaptive multi-
view video delivery using hybrid networking, IEEE Trans. Circuits and
Systems for Video Technology 2016.

[4] L. Atzori, A. Floris, G. Ginesu, D. Giusto, Streaming video over wireless705

channels: Exploiting reduced-reference quality estimation at the user-side,
Image Commun. 27 (10) (2012) 1049–1065. doi:10.1016/j.image.2012.
09.005.

[5] A. Ahmad, A. Floris, L. Atzori, Qoe-aware service delivery: A joint-venture
approach for content and network providers, in: Eighth International Con-710

ference on Quality of Multimedia Experience, QoMEX 2016, Lisbon, Por-
tugal, June 6-8, 2016, 2016, pp. 1–6. doi:10.1109/QoMEX.2016.7498972.

[6] K. Panetta, L. Bao, S. S. Agaian, A human visual ”no-reference” image
quality measure., IEEE Instrum. Meas. Mag. 19 (3) (2016) 34–38.
URL http://dblp.uni-trier.de/db/journals/imm/imm19.html#715

PanettaBA16

[7] P. Paudyal, Y. Liu, F. Battisti, M. Carli, Video quality of experience
metric for streaming services, in: Image Processing: Algorithms and
Systems XIV, San Francisco, California, USA, February 14-18, 2016, 2016,
pp. 1–5.720

URL http://ist.publisher.ingentaconnect.com/contentone/ist/

ei/2016/00002016/00000015/art00004

[8] P. Paudyal, F. Battisti, M. Carli, Impact of video content and transmission
impairments on quality of experience, Multimedia Tools and Applications
2016. doi:10.1007/s11042-015-3214-0.725

[9] M. H. Pinson, S. Wolf, A new standardized method for objectively measur-
ing video quality, IEEE Transactions on broadcasting 50 (3) (2004) 312–
322. doi:10.1109/TBC.2004.834028.

[10] S. Chikkerur, V. Sundaram, M. Reisslein, L. J. Karam, Objective video
quality assessment methods: A classification, review, and performance730

comparison., IEEE Transactions on Broadcasting 57 (2) (2011) 165–182.
doi:10.1109/TBC.2011.2104671.
URL http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#

ChikkerurSRK11

24

http://dx.doi.org/10.1109/QoMEX.2015.7148128
http://dx.doi.org/10.1016/j.image.2012.01.006
http://dx.doi.org/10.1016/j.image.2012.01.006
http://dx.doi.org/10.1016/j.image.2012.01.006
http://dx.doi.org/10.1016/j.image.2012.09.005
http://dx.doi.org/10.1016/j.image.2012.09.005
http://dx.doi.org/10.1016/j.image.2012.09.005
http://dx.doi.org/10.1109/QoMEX.2016.7498972
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://dblp.uni-trier.de/db/journals/imm/imm19.html#PanettaBA16
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://ist.publisher.ingentaconnect.com/contentone/ist/ei/2016/00002016/00000015/art00004
http://dx.doi.org/10.1007/s11042-015-3214-0
http://dx.doi.org/10.1109/TBC.2004.834028
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dx.doi.org/10.1109/TBC.2011.2104671
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
http://dblp.uni-trier.de/db/journals/tbc/tbc57.html#ChikkerurSRK11
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