4 research outputs found

    Predictive Modelling of Bone Age through Classification and Regression of Bone Shapes

    Get PDF
    Bone age assessment is a task performed daily in hospitals worldwide. This involves a clinician estimating the age of a patient from a radiograph of the non-dominant hand. Our approach to automated bone age assessment is to modularise the algorithm into the following three stages: segment and verify hand outline; segment and verify bones; use the bone outlines to construct models of age. In this paper we address the final question: given outlines of bones, can we learn how to predict the bone age of the patient? We examine two alternative approaches. Firstly, we attempt to train classifiers on individual bones to predict the bone stage categories commonly used in bone ageing. Secondly, we construct regression models to directly predict patient age. We demonstrate that models built on summary features of the bone outline perform better than those built using the one dimensional representation of the outline, and also do at least as well as other automated systems. We show that models constructed on just three bones are as accurate at predicting age as expert human assessors using the standard technique. We also demonstrate the utility of the model by quantifying the importance of ethnicity and sex on age development. Our conclusion is that the feature based system of separating the image processing from the age modelling is the best approach for automated bone ageing, since it offers flexibility and transparency and produces accurate estimate

    Otolith shape and size: The importance of age when determining indices for fish-stock separation

    Get PDF
    Stock-separation of highly mobile Clupeids (sprat – Sprattus sprattus and herring – Clupea harengus) using otolith morphometrics was explored. Analysis focused on three stock discrimination problems with the aim of reassigning individual otoliths to source populations using experiments undertaken using a machine learning environment known as \{WEKA\} (Waikato Environment for Knowledge Analysis). Six feature sets encoding combinations of size and shape together with nine learning algorithms were explored. To assess saliency of size/shape features half of the feature sets included size indices, the remainder encoded only shape. Otolith sample sets were partitioned by age so that the impact of age on classification accuracy could be assessed for each method. In total we performed 540 experiments, representing a comprehensive evaluation of otolith morphometrics and learning algorithms. Results show that for juveniles, methods encoding only shape performed well, but those that included size indices held more classification potential. However as fish age, shape encoding methods were more robust than those including size information. This study suggests that methods of stock discrimination based on early incremental growth are likely to be effective, and that automated classification techniques will show little benefit in supplementing early growth information with shape indices derived from mature outlines

    Clustering functional data using forward search based on functional spatial ranks with medical applications

    Get PDF
    Cluster analysis of functional data is finding increasing application in the field of medical research and statistics. Here we introduce a functional version of the forward search methodology for the purpose of functional data clustering. The proposed forward search algorithm is based on the functional spatial ranks and is a data-driven non-parametric method. It does not require any preprocessing functional data steps, nor does it require any dimension reduction before clustering. The Forward Search Based on Functional Spatial Rank (FSFSR) algorithm identifies the number of clusters in the curves and provides the basis for the accurate assignment of each curve to its cluster. We apply it to three simulated datasets and two real medical datasets, and compare it with six other standard methods. Based on both simulated and real data, the FSFSR algorithm identifies the correct number of clusters. Furthermore, when compared with six standard methods used for clustering and classification, it records the lowest misclassification rate. We conclude that the FSFSR algorithm has the potential to cluster and classify functional data
    corecore